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ABSTRACT
Disc accretion on to weakly magnetized objects possessing a material surface must proceed via the so-called boundary layer
(BL) – a region at the inner edge of the disc, in which the velocity of accreting material abruptly decreases from its Keplerian
value. Supersonic shear arising in the BL is known to be conducive to excitation of acoustic waves that propagate into both
the accretor and the disc, enabling angular momentum and mass transport across the BL. We carry out a numerical exploration
of different wave modes that operate near the BL, focusing on their morphological characteristics in the innermost parts of
accretion disc. Using a large suite of simulations covering a broad range of Mach numbers (of the supersonic shear flow in the
BL), we provide accurate characterization of the different types of modes, verifying their properties against analytical results,
when available. We discover new types of modes, in particular, global spiral density waves launched by vortices forming in the
disc near the BL as a result of the Rossby wave instability; this instability is triggered by the vortensity production in that region
caused by the non-linear damping of acoustic waves. Azimuthal wavenumbers of the dominant modes that we observe appear
to increase monotonically with the Mach number of the runs, but a particular mix of modes found in a simulation is mildly
stochastic. Our results provide a basis for better understanding of the angular momentum and mass transport across the BL as
well as the emission variability in accreting objects.
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1 IN T RO D U C T I O N

Accretion discs are ubiquitous in astrophysics, with objects ranging
from active galactic nuclei to protostars being fundamentally tied to
them. In the cases where the central object (i.e. accretor) is not a black
hole, but is a neutron star, a white dwarf, a protostar, or a protoplanet
(henceforth we refer to any of these objects as a ‘star’), the accretor
has a material surface, which the accreted material must connect
to in some fashion. If the accretion rate is high and the magnetic
field of the star is sufficiently low, then the accretion flow does not
get disrupted by magnetic stresses (Ghosh, Lamb & Pethick 1977;
Koenigl 1991) and the disc can extend all the way to the surface of
the star. This particular situation inevitably requires accreting gas to
transition from rapid, supersonic rotation (at Keplerian velocity) in
the disc to a slow rotation in the star. The region of the disc–star
system where this transition takes place is known as the boundary
layer (BL). Systems where the BLs are expected to emerge include
e.g. FU Ori type young stellar objects (Popham et al. 1993) and
cataclysmic variables (CVs; Kippenhahn & Thomas 1978; Narayan
& Popham 1993). Weakly magnetized neutron stars in low-mass X-
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ray binaries (LMXBs) are believed to accrete in a broadly similar
fashion through the so-called spreading layer (Inogamov & Sunyaev
1999, 2010; Gilfanov, Revnivtsev & Molkov 2003; Revnivtsev &
Gilfanov 2006; Philippov, Rafikov & Stone 2016). Objects accreting
gas directly on to their surfaces through the BLs are the subject of
this paper.

In order for the material arriving from the Keplerian disc to become
a part of a slowly rotating star it must somehow lose its angular
momentum. While the magnetorotational instability (MRI; Velikhov
1959; Chandrasekhar 1960; Balbus & Hawley 1991) is traditionally
invoked as the favoured angular momentum transport mechanism in
ionized Keplerian accretion discs, it would not operate in the BL. This
is because the MRI requires that the angular frequency � of the fluid
flow decays with the distance, d�/dr < 0, whereas the BL naturally
has d�/dr > 0, preventing the MRI from operating (Pessah & Chan
2012). This conclusion has been verified by MHD simulations of the
BLs (Belyaev, Rafikov & Stone 2013b).

Instead the disc must utilize a different mechanism to remove
angular momentum from the accreting gas, which passes through the
BL on its way to the surface of the star. Belyaev & Rafikov (2012)
identified a robust mechanism for doing that – a linear instability
operating in a supersonic shear flow, which generates acoustic
waves in the BL where the azimuthal velocity of the flow exhibits
sharp supersonic variation. This instability is global and similar in

C© 2021 The Author(s)
Published by Oxford University Press on behalf of Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/1/440/6396757 by guest on 25 April 2024

http://orcid.org/0000-0001-5939-5957
mailto:msbc@astro.princeton.edu
mailto:rrr@damtp.cam.ac.uk


Modes in the boundary layer 441

nature to the Papaloizou-Pringle instability (Drury 1979, 1980, 1985;
Papaloizou & Pringle 1984; Narayan, Goldreich & Goodman 1987;
Glatzel 1988). The waves excited by the instability propagate both out
in the disc and into the star, allowing energy and angular momentum
of accreting gas to be transported over significant distances before
being dissipated. Numerical simulations later confirmed that this
angular momentum transport mechanism robustly operates within the
BL, both in hydrodynamic (Belyaev, Rafikov & Stone 2012, 2013a;
Hertfelder & Kley 2015a) and magnetohydrodynamic (Belyaev et al.
2013b; Belyaev & Quataert 2018) settings.

This discovery marked a significant paradigm shift compared to
the local transport mechanisms invoked in previous studies of the
BL problem (Kippenhahn & Thomas 1978; Narayan & Popham
1993; Popham et al. 1993; Hertfelder et al. 2013). The intrinsically
non-local nature of this mechanism could substantially impact disc
thermodynamics and its spectrum (Belyaev et al. 2012, 2013a).
Another important implication follows from the fact that the modes
excited in the BL are intrinsically non-axisymmetric. This should
lead to the variability of emission produced in the near-BL part of the
disc and may explain the various types of quasi-periodic variability
observed in objects accreting through the BLs (e.g. CVs; see Warner
2003).

These ramifications, as well as the ubiquity of the BLs in astro-
physics, motivate further efforts to better understand their physics
through numerical simulations, building on the previous work of
Belyaev et al. (2012, 2013a, b). These past studies, while significantly
advancing our understanding of the BL structure, were often limited
in terms of the numerical resolution, duration of the simulations, and
the number of model parameters that have been varied.

In this paper, first in a series, we present a new set of long-
term, high-resolution, hydro simulations focused on exploring the BL
physics. We provide extensive exploration of both the physical and
numerical parameter space to test the sensitivity of outcomes to both
types of simulation inputs. We carry out an in-depth analysis of the
mode structure of the perturbations that arise in the vicinity of the BL
as a result of ongoing acoustic instability. A key highlight of this study
is the discovery of new types of modes, naturally emerging in this disc
region, and our attempts at understanding their origin. In the future
we will use this numerical data set to analyse angular momentum
and mass transport driven by the different modes operating in the
vicinity of the BL (Coleman et al., in preparation).

Our paper is organized as follows. In Section 2, we discuss
our physical setup and typical values of the Mach number in
different astrophysical objects to motivate the parameter choices
for our simulations. We remind the basics of the acoustic mode
phenomenology in Section 3, and cover the details of our numerical
setup in Section 4. We provide detailed morphological description
of the various modes that we find in our runs for different values of
the Mach number in Section 5 and Appendix C. Description of the
vortex-driven modes and explanation of their origin are provided in
Sections 6 and 7, respectively. We discuss properties of other modes
found in our simulations, as well as some other aspects of our work,
in Section 8, and summarize our main findings in Section 9.

2 PH Y S I C A L S E T U P A N D T Y P I C A L M AC H
N U M B E R S

In this work, we consider a system consisting of a central object
with a surface (a star) and an accretion disc extending all the way to
the star, i.e. having a physical contact with its surface. We study the
evolution of this system in 2D (vertically integrated), hydrodynamic
(i.e. no magnetic fields) setup. The disc is non-self-gravitating and

orbits in a Newtonian potential of a central point mass M�. Very
importantly, the disc has no intrinsic viscosity1 so that any mass re-
distribution (accretion) in the system can take place only due to the
action of the waves propagating in the disc and the star.

Similar to a number of previous studies of the BL (Belyaev
et al. 2012, 2013a, b), we treat disc thermodynamics using the
globally isothermal equation of state (EoS), P = �c2

s , where P is
the vertically integrated pressure, � is the surface density, and cs

is the sound speed which is constant. The advantage of using this
simple EoS comes from the fact that it keeps the disc thermodynamics
unchanged in the course of simulation. It also naturally allows
conservation of the angular momentum flux of the waves propagating
in the disc (Miranda & Rafikov 2019b, 2020), which is very important
for us since we are focusing on the wave-driven evolution of the
system. Another commonly used EoS, locally isothermal, has been
demonstrated by Miranda & Rafikov (2019b, 2020) to not conserve
the angular momentum of the waves, a phenomenon that would
have greatly complicated understanding of the wave-driven transport
(Coleman et al., in preparation). And an adiabatic EoS P∝�γ , with γ

�= 1 would lead to evolution of the thermal state of the disc as a result
of entropy production at the shocks inevitably arising in the system
(see below), again complicating the interpretation of the results.
Implicit in our choice of the EoS is the assumption of gas pressure
dominating the total pressure, i.e. radiation pressure is neglected.
Therefore, results of our study are not directly applicable to accreting
neutron stars, for which radiation pressure plays an important role.

Another reason for using the globally isothermal EoS is that it
reduces the number of parameters needed to characterize the system:
all details of the disc thermodynamics get captured in a single variable
– constant gas sound speed cs. As a result, the key physical parameter
governing the behaviour of the system in our runs is the dimensionless
Mach number M defined as the ratio of the Keplerian speed at the
surface of the star (r = R�) to the sound speed cs:

M ≡ �K (R�)R�

cs
, (1)

where �K = (GM�/r3)1/2 is the Keplerian rotation rate.
To provide motivation for the values of M explored in this work,

we estimate M in some astrophysical systems that may naturally
host BLs. We do this by relating the mid-plane temperature (Tm) of
an optically thick disc to its optical depth (τ > 1), accretion rate (Ṁ),
and orbital frequency (�) in a standard fashion (Shakura & Sunyaev
1973):

T 4
m = 3

8π

Ṁ�2

σSB
τ, (2)

where σ SB is the Stefan–Boltzmann constant. Using this relation to
compute the characteristic sound speed in the disc via c2

s = kBTm/μ

(where kB is the Boltzmann constant and μ is the mean molecular
weight) and assuming for simplicity that equation (2) holds all the
way to the surface of the star (i.e. down to R = R�), we obtain the
following general expression for the characteristic Mach number:

M =
(

8π

3

G3σ

k4
B

)1/8

M3/8
� μ1/2Ṁ−1/8R−1/8

� τ−1/8. (3)

One obvious class of astrophysical objects that may feature the
BLs are the accreting white dwarfs – CVs and AM CVn systems.
Because of thermal instability in the disc, these systems can exist in

1Our simulations have no explicit viscosity and numerical viscosity is
negligible.
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two states characterized by high or low values of Ṁ . In the high-Ṁ
state one finds for the typical parameters of CVs

M = 32

(
M�

0.6M�

)3/8 ( μ

0.6

)1/2
(

Ṁ−9
R�

1.4R⊕
τ

104

)−1/8

, (4)

where Ṁi = Ṁ/10iM� yr−1, while for the AM CVn systems2

M = 50

(
M�

0.9M�

)3/8 ( μ

1.4

)1/2
(

Ṁ−9
R�

0.8R⊕
τ

5×104

)−1/8

. (5)

The optical depth τ is estimated from stratified shearing-box simu-
lations in the respective regime3: Hirose et al. (2014) and Coleman
et al. (2016) for CVs and Coleman et al. (2018) for AM CVns. In
the low-Ṁ states of these systems (when Ṁ drops by 2–3 orders of
magnitude) M could go up to ∼300, however, the disc is likely to
be disrupted by even a weak stellar magnetic field when Ṁ is so low.

For FU Ori stars episodically accreting at high Ṁ from the
protoplanetary disc we find

M = 3.9

(
M

M�

)3/8 ( μ

0.6

)1/2
(

Ṁ−5
R�

2R�

τ

6 × 105

)−1/8

, (6)

where τ is taken from the simulations of Hirose (2015).
Motivated by these estimates, and taking into account the nu-

merical constraints that would permit an efficient parameter space
exploration, in this work we focus on exploring the BL physics
for the values of M in the range 5 ≤ M ≤ 15. We run at least
one simulation for each integer value of M in this range, although
for several characteristic values of M (6, 9, 12) we run multiple
simulations to explore the sensitivity to the initial conditions,
resolution, etc.

3 AC O U S T I C M O D E P H E N O M E N O L O G Y

We now remind the reader some basic facts about the acoustic modes
excited in the BLs. Here we simply summarize the main points made
in Belyaev & Rafikov (2012) and Belyaev et al. (2012, 2013a), which
will facilitate the description of the modes found in this work.

Highly supersonic shear present in the BL efficiently drives the
non-axisymmetric acoustic (sonic) waves propagating on both sides
of the shear layer, in which the azimuthal velocity drop takes place
(Belyaev & Rafikov 2012). These waves are global and propagate
both in the star and in the disc. In general, there are three different
types of modes that can get excited in the system, but the simulations
typically exhibit only two of them, termed lower and upper modes in
Belyaev et al. (2013a). These modes have quite distinct appearance
both in the disc and inside the star, and obey very different dispersion
relations. They are described in more detail next and are illustrated in
Fig. 1 showing the 2D snapshots of rvr

√
� – a quantity that should

be conserved for a sound wave propagating through the disc. We will
routinely display the spatial maps of rvr

√
� in the r − ϕ coordinate

plane (with ϕ as the vertical axis), to highlight the details of the
morphological features of acoustic modes near r = R� where they
are excited.

2AM CVns typically have relatively high accretor masses (see e.g. Roelofs
et al. 2007). This causes them to have small radii due to the mass–radius
relation for white dwarfs.
3Note there is a factor of 2 difference here as these papers define τ tot as twice
the mid-plane τ .

Figure 1. Example snapshots from two simulations showing the quantity
rvr

√
� (a proxy for acoustic wave action) as a function of r and ϕ in Cartesian

coordinates. The white dotted lines at r = 1 separate the star from the disc.
The dashed white curves show the expected shape of the wave pattern for
each of the modes, computed using the WKB equations (10)–(11) and the
measured values of m and �p. (a) A snapshot from an M = 6 run at 25 inner
orbits (during the linear growth phase of the sonic instability) where an m =
7, �p = 0.758 global upper mode is clearly visible in the disc (trailing spiral
arms) and in the star (inclined wave crests). (b) A snapshot of an M = 9 run
at 175 inner orbits. The dominant global lower mode with m = 19 and �p

= 0.315 is clearly visible inside the star and is trapped in the inner disc, r �
2 (Fig. 4 shows m = 19 as having the most power at r = 0.92, 1.20 at this
time). The dot-dashed white lines near r ≈ 2.2 are the inner and outer Lindblad
resonances for the m = 19 mode, while the solid line indicates the corotation
radius. The criss-cross structure results from the outward-propagating m =
19 mode reflecting off the Inner Lindblad Resonance and self-intersecting.

3.1 Upper modes

Upper modes have kr �= 0 inside the star, as the wave crests of
the perturbation pattern associated with this mode are inclined with
respect to the radial direction, see Fig. 1(a). In the disc this mode
starts off with kr = 0 as r → R� (from above); however, further out in
the disc the perturbation pattern gets wrapped up by the differential
rotation into multiple trailing spiral arms, see Section 3.3. Note the
sign change of the perturbation variable (vr in this case) across the
BL.

Belyaev et al. (2013a) came up with the following dispersion
relation between the azimuthal wavenumber m and the pattern speed
�p for the upper modes, which should hold approximately for
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m  1:

[
�(R�) − �p

]2 = c2
s

R2
�

+ κ2(R�)

m2
, (7)

where �(R�) and κ(R�) are the values of the disc angular and epicyclic
frequencies as r → R�. Note that in our runs we often find deviations
of �(r) from the Keplerian frequency �K in the disc near the star
(but outside the BL). These deviations are caused by the non-trivial
contribution of pressure support to the radial momentum balance

�2(r) = �2
K (r) + 1

�r

∂P

∂r
, (8)

enabled by the restructuring of the disc surface density near the star
(see Section 5.1). For that reason, epicyclic frequency κ(r) in the
disc near the star is generally not equal to �K(r), as it would be in a
purely Keplerian flow.

In this work, we analyse our simulation outputs using a relation
between m and �p, which is more accurate than the equation (7). The
derivation of this refined dispersion relation (A2) can be found in
Appendix A and it is plotted for many values of M in Fig. 2, clearly
showing that �p of the upper modes increases with increasing m.

3.2 Lower modes

The lower modes exhibit the kr behaviour, which is opposite to that
of the upper modes: inside the star they propagate in the azimuthal
direction only, i.e. kr = 0 for r < R�. This is illustrated in Fig. 1(b),
where inside the star one can see the perturbation pattern perfectly
aligned with the radial direction. At the same time, just outside the
star the lower modes have kr �= 0, and the wave crests are inclined
with respect to the radial direction already at r = R�. Further in the
disc kr gets modified by the differential rotation.

The dispersion relation for the lower modes was derived in Belyaev
et al. (2013a) who showed that the pattern speed �p of a lower mode
is related to its azimuthal wavenumber m through the following
relation

�p

� (R�)
= R�

r0

√
M−2 +

(MR�

2mr0

)2

, (9)

where r0 is a parameter close to unity, see Belyaev et al. (2013a).
Fig. 2 illustrates this dispersion relation for a number of values ofM ,
demonstrating that �p of the lower modes decreases with increasing
m.

3.3 Propagation of the BL-excited acoustic modes in the disc

While the appearance of the upper and lower modes just outside
the BL is very different (in terms of their kr), their subsequent
propagation in the disc follows the classical behaviour of the density
waves in differentially rotating discs (Binney & Tremaine 2008). In
particular, linear density wave theory for a Keplerian disc predicts
that an m-th azimuthal harmonic of a perturbed fluid variable f
behaving as f ∼ exp (i�m), where �m = ∫

rkr(r
′
)dr

′ + mϕ, obeys the
standard WKB dispersion relation (Goldreich & Tremaine 1980):

m2
[
�K (r) − �p

]2 = �2
K (r) + c2

s k
2
r . (10)

Wave crests trace the trajectory along which the perturbation phase
�m is constant, so that d�m = 0. Using the expression for �m, one
finds

dr

dϕ
= − m

kr (r)
. (11)

Integrating this equation with the kr(r) determined by the equa-
tion (10) one obtains the shape (i.e. the ϕ(r) dependence) of the
wave crests of the m-th harmonic of the fluid perturbation with the
pattern speed �p.

In Fig. 1(a) the white dashed curve shows the analytical prediction
for the wave crest location computed using the equations (10)–
(11) and the values of �p and m measured in the upper mode
dominating this snapshot (see captions). One can see the analytical
calculation agreeing with the actual wave crest shape extremely well
and predicting the mode to form a pattern of spiral arms sheared by
the differential rotation and propagating out to large distances (this
mode has a narrow evanescent region near the star where �(r) > �p,
in which kr = 0).

The same calculation done for the values of �p and m characteriz-
ing the lower mode dominating in Fig. 1(b) also agrees very well with
the shape of the outgoing and the incoming sonic waves. One can
see that the lower modes are trapped in a resonant cavity extending
between the stellar surface and the Inner Lindblad Resonance (ILR),
at which kr = 0 for that mode. For the modes discussed in this work
the radial location rILR of the ILR typically ends up far enough in
the disc where �(r) can be well approximated by �K. Then rILR is
determined by the condition �K(rILR)(1 − m−1) = �p, so that

rILR = R�

[
�K (R�)

�p

m − 1

m

]2/3

. (12)

For m  1 the location of ILR is close to the corotation radius rc =
R�[�K(R�)/�p]2/3, see Fig. 1(b).

4 NUMERI CAL SETUP

We simulate the BL and its vicinity – outer layers of a star
and inner regions of an accretion disc – in (vertically integrated)
cylindrical geometry, using Athena++ (Stone et al. 2020) to solve
the hydrodynamic equations

∂�

∂t
+ ∇ · (�v) = 0, (13)

∂�v
∂t

+ ∇ · [�vv + �c2
s I
] = −�∇�, (14)

where v is the fluid velocity, I is the identity tensor, and � is the stellar
potential. For all runs we used the HLLE Riemann solver, second-
order van Leer time integrator, and second-order piecewise-linear
primitive reconstruction.

Our simulation domain extends from rmin to rmax in the radial
direction and covers full 2π in azimuthal direction (ϕ). Our grid is
uniformly spaced in ϕ and logarithmically spaced in r (i.e. δr∝r). We
choose rmax = 4R�, far enough in the disc to ensure that the structures
emerging in our runs can fit within the simulation domain (e.g. see
Section 6.4). The inner boundary inside the star is placed at rmin such
that the density contrast �(rmin)/�(R�) = 107, where we assume an
isothermal hydrostatic atmospheric profile inside the star. This choice
of rmin was made to minimize the simulations dependence of rmin;
see Section 4.3 for more details.

We carry out a detailed analysis of our simulation outputs, both on-
the-fly and in post-processing. In particular, we analyse the behaviour
of the fluid variables in Fourier domain and develop a fully automated
procedure for detecting and measuring properties of the various
wave-like perturbations present in our simulations. These and other
analysis modules are described in more detail in Appendix B. The
ability to not only infer the existence of multiple modes and derive
mode wavenumber m and pattern speed �p, but to also follow their
evolution throughout the full duration of a run is what makes our
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Figure 2. Dispersion relation, i.e. a plot of a pattern speed �p versus the azimuthal wavenumber m, for a number of representative simulations with different
values of the Mach number M (labelled in the panels). Runs for all integer values of M between 5 and 15 are shown, with two runs for M = 9 to illustrate
the effects of resolution. We show the (m, �p) pairs for modes automatically detected in the disc only (at r = 1.2, yellow pluses), in the star only (r = (rmin +
R�)/2, blue circles), and global modes present both in the disc and in the star with the same m and �p at a given time (green stars). The red dotted and dot-dashed
curves display the dispersion relations for the upper (Section 3.1) and lower (Section 3.2) modes, correspondingly; grey dotted and dot-dashed curves are their
respective higher order azimuthal harmonics. The horizontal dashed lines show the maximum value of �(r) in the disc at late times. See Section 8.1.1 and other
text for details.
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analysis extremely powerful. It enables us to see important trends
and patterns across dozens of the BL simulations performed for
different values of M . Some other details of our numerical setup are
described below.

4.1 Units

To define simulation units we took the surface of the star as our
fiducial location. We chose r = 1 and � = 1 to correspond to this
location (at t = 0), and for the Keplerian velocity at the surface of
the star vK(R�) to be unity, making cs = M−1 and GM� = 1. This
choice makes the Keplerian period at the surface of the star τ � = 2π ;
this is why we often state times in the form of t/2π .

4.2 Initial and boundary conditions

To create the initial conditions of our simulations, we partitioned the
simulation domain into three regions: star (r ≤ 1 − δ/2), transition (1
− δ/2 < r < 1 + δ/2), disc (r ≥ 1 + δ/2), with δ = 0.05. We initialized
the star in hydrostatic equilibrium (HSE), � = �0 exp

(
M2/r

)
, v =

0. The disc is initialized with � = r−3/2, v = r−1/2φ̂, i.e. a pure
Keplerian disc neglecting pressure support (in the beginning of a
simulation the disc quickly adjusts to an equilibrium state accounting
for the radial pressure support). The inner and outer (radial) boundary
conditions maintain these initial conditions, for the star and disc
respectively. There is a smooth transition between the star and the
disc such that � and v as well as their first and second derivatives
(with respect to r) are continuous.

In order to seed the acoustic instability we add random seed
perturbations to the velocity field (in the disc region only). Let R
∈ [0, 1) be a random number picked from a uniform probability
distribution function (PDF), and A = 10−2 be the amplitude of the
initial perturbation. To examine any possible dependence associated
with this choice we tried four different implementations of random
seeds:

(i) Block-random: each mesh-block (32 × 32 cells for all our runs)
has the same series of random numbers R (one per cell) and the initial
perturbation is vr = AR.

(ii) Block-phase-random: similar to Block-random but

vr (r, ϕ) = A

4

∑
n=2,3,5,7

sin(nϕ + 2πR). (15)

(iii) Globally random: each block receives a different series of
random numbers with vr = AR.

(iv) Prime modes: only four random numbers are chosen (Rn) and

vr (r, ϕ) = A

4

∑
n=2,3,5,7

sin(nϕ + 2πRn). (16)

The seed type of each of our simulations can be found in Table C1.
The final letter in each simulation name indicates the seed used for
the random number generator.

4.3 Numerical robustness and convergence

We experimented with varying several numerical parameters to
ensure that our simulations are insensitive to these choices. To test
convergence of our results (see Section 8.4), for M = 6, 9, 12 we
tried doubling and halving the resolution. For a given value of Mach
number M our fiducial resolution is typically chosen so as to keep
the radial grid scale relative to the disc scale height δr/h roughly
constant, with 0.03 � δr/h � 0.06. ForM = 9 we also tried varying

the aspect ratio of the grid cells Nr/Nϕ = 7/8 and 2 and found no
noticeable differences with the fiducial choice of Nr/Nϕ = 1.

The numerical parameter that impacts our results most is the inner
radial extent of the simulation, rmin. As long as rmin is such that
�(rmin)/�(R�) ≈ 107 ± 1, we found that there are no substantial
differences in the results of runs with different rmin. However, at
density contrasts �108 tiny numeric fluctuations near rmin (likely
caused by disagreement between analytic and numerical hydrostatic
equilibrium) get amplified by the density contrast, resulting in large
amplitude radial oscillations of the star. On the other hand, below
density contrasts of ∼105 (at rmin) the acoustic waves generated in
the BL and travelling into the star get prematurely truncated by the
edge of the simulation domain.

4.4 Simulation improvements

While theAthena++ simulations we run are similar to theAthena
simulations presented in Belyaev et al. (2012, 2013a), ours differ in
a few key ways. First, all of our runs extend over full 2π in ϕ

while only a handful of the previous simulations cover this angular
extent. This is important for properly capturing all non-axisymmetric
structures emerging in simulations. Secondly, our simulations cover
a larger radial extent, going out to a maximum radius of 4R�

compared to 2.5R�, as before. We found that this allows us to
observe structures that have not been reported previously, see e.g.
Section 6.4. Thirdly, while the old simulations used a uniform radial
grid, we use a logarithmic radial grid giving us higher effective
resolution near the stellar surface, where the acoustic instability
operates, for the same number of cells.4 Fourthly, we perform
Fourier analysis of the outputs by running fast-Fourier transforms
(FFTs) on the fly (see Appendix B1) giving us new, previously
unattainable, diagnostic capabilities. These improvements allow us
to identify a statistically significant sample of modes emerging
in our simulations, and to discover and quantify new types of
modes.

5 MO R P H O L O G I C A L C H A R AC T E R I Z AT I O N
O F WAV E M O D E S

In this section, we provide a systematic description of the modes
that emerge in a particular M = 9 simulation and their evolution,
see Section 5.1. Simulations with other values of M are covered in
Appendix C. Readers not interested in such details can skip these
sections.

Table C1 lists the details for the runs in our simulation suite,
including their Mach number M , the value of rmin, resolution and
the type of initial noise pattern used to trigger the acoustic instability
in the BL (see Section 4.2). To streamline the comparison of runs
with different M , in the following we focus on simulations that
start with the same initial setup – a particular realization of the
block-random noise pattern, see Section 4.2; for that reason all these
simulations have ‘r.a’ in their label. At the same time, we also provide
comparison with simulations using other types of initial conditions
(while keeping M fixed).

We use several types of diagnostics to illustrate our observations.
To highlight the development and subsequent evolution of the
wave modes, we use the 2D snapshots of rvr

√
� in physical

4For our fiducial resolution M = 9 simulations this gives us ∼2 times the
radial resolution at R� compared to a uniform radial grid with the same number
of cells.
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Figure 3. Maps of (left-hand panel) the vortensity perturbation relative to its initial value, (centre) the perturbation measure rvr

√
� in the r − ϕ coordinate

plane for a range of r, and (right-hand panel) rvr

√
� in physical space (x(r, ϕ), y(r, ϕ)) in the full simulation domain for M = 9 simulation M09.FR.r.a.

Different panels correspond to different moments of time labelled in each row. Colour bars on top show the scale of the vortensity perturbation and rvr

√
� for

this run. See the text in Section 5.1 for detailed description of the evolution shown in this figure.

coordinates (x(r, ϕ), y(r, ϕ)) at different moments of time starting
from the linear development of the instability until the end of the
simulation, see the right-hand columns of Figs 3, C1, C3, C5. Also,
to highlight the details near r = 1, we supplement these maps
of rvr

√
� with their projections on to r − ϕ coordinate plane,

see the central columns of the same figures. Left-hand columns
of these figures illustrate the evolution of the flow vortensity, see
Section 6.

Harmonic content of the wave modes is illustrated in Figs 4, C2,
C4, C6 for M = 9, 6, 12, and 15, correspondingly. There we show
the amplitudes Am and pattern speeds �p of the dominant modes
(labelled by their m) identified by our automated mode detection
procedure (see Section B2 & B3) as a function of time at two different
radii, inside (at r shown in each figure) and outside (at r = 1.2) the
star. This plot allows us to see the transitions between the different
types of modes during the simulation. To interpret the nature of the
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Figure 4. Time evolution of the Fourier amplitudes of vr

√
� (top panels)

and pattern speeds �p (bottom panels) of a subset of the most prominent
modes in the disc–star system for the M = 9 run M09.FR.r.a. Different
columns illustrate the mode amplitude and �p at different radii: (left-hand
panel) r = 0.92, inside the star, and (right-hand panel) at r = 1.2, in the
inner disc. Different curves are colour coded according to the azimuthal
wavenumber of the mode that they represent, labelled in the inset. The large
ticks on the lower most horizontal axis indicate the temporal mid-point of an
automatically detected global mode (see Section B1). If any of these ticks
corresponds to one of the plotted modes, then they are drawn in the same
colour (e.g. the orange tick at t/2π ≈ 225).

observed modes we will later (see Section 8.3) use the Fig. 2, which
displays the different branches of the dispersion relation for upper
and lower modes.

5.1 A typical M = 9 run

Fig. 3 illustrates the development and operation of the different
modes in an M = 9 simulation M09.FR.r.a, which was run at
resolution 4096 × 4096, see Table C1. In the beginning of the
simulation, sonic instability starts off in the form of an upper m = 27
mode (not shown in this figure). By t/2π = 50, shown in Figs 3(Ab)–
(Ac), the instability reaches saturation with vr/cs ∼ several per cent;
inside the star the upper mode (with kr �= 0) is already significantly
affected by the growing lower m = 9 mode (with kr = 0 for r < 1).

Outside the star we observe large-scale spiral arms extending into
the outer disc, reminiscent of the upper mode behaviour. However,
the number of arms at r > 1 is not equal to azimuthal wavenumber
m = 27 of the upper mode visible at r < 1, it is closer to 6 or 7. We
will discuss the origin of this pattern in Section 6.

By t/2π = 100 shown in Figs 3(Bb)–(Bc), the upper mode weakens
considerably (see Fig. 4) and the perturbation pattern is dominated
by a superposition of several lower modes (their kr ≈ 0 inside the
star) with m = 19, 20. One can also see the hints of the emergence
of an m = 2 pattern in the disc, manifesting itself at t/2π = 100 as

0.0

0.2

0.4

0.6

0.8

1.0

Ω

(a)

1.0 1.5 2.0 2.5
R

0.0

0.2

0.4

0.6

0.8

Σ

(b)

0

100

200

300

400

500

600

t/
2 π

M09.FR.r.a

Figure 5. Time evolution of the azimuthally averaged (a) angular frequency
�(r) and (b) surface density �(r) for the M = 9 run M09.FR.r.a described
in Section 5.1. The colours indicated by the colour bar denote the time in
inner orbital periods (i.e. t/2π ). See the text for details.

two broad leading arms for r � 2.5. The r − ϕ shape of these arms is
broadly consistent with what one would expect from an �p ≈ 0.32
lower mode, suggesting that this low-m pattern may be somehow
related to the m = 19, 20 lower modes present in the system.

These transitions are accompanied by the evolution of disc surface
density � and angular frequency � near the stellar surface, as
illustrated in Fig. 5 at different moments of time. At around t/2π

= 100 a number of features start to develop in the �(r) profile in the
inner disc, see Fig. 5(a): an inflection point-like transition at � ≈ 0.4
inside the BL, a plateau for 1 � r � 1.2, and a slightly super-Keplerian
rotation for r � 1.2. All these features are caused by accretion of gas
from the disc (driven by the dissipation of acoustic modes) on to
the star, which is revealed by the reduction of �(r) compared to its
initial profile for r � 1.7, see Fig. 5(b). This depletion, or gap, is quite
substantial near r = 1 (� drops to 20 − 30 per cent of its initial value
at r = 1.2) and severely modifies the radial pressure support in this
part of the disc. In agreement with the equation (8), this has a direct
impact on the �(r) behaviour: �(r) develops a sub-Keplerian plateau
in the part of the gap where �(r) decreases with r (i.e. r � 1.2), and
becomes slightly super-Keplerian outside of this region, since �(r)
increases over a range of r there. These features will be discussed in
more details and across different values of M in Coleman et al. (in
preparation).

Beyond ∼100 orbits the system settles into a less chaotic state
(amplitude of vr variations decreases by ∼2–4 to vr/cs < 10−2),
which persists until about t/2π = 300, see Fig. 3C–F. During this
time the prominent m = 19 lower mode becomes quite coherent
both in the disc and inside the star (see Fig. 4a, b). Its relatively
low pattern speed �p = 0.315 corresponds to the corotation radius
rc = �−2/3

p ≈ 2.16 (assuming a Keplerian rotation curve, which is a
good assumption at these radii), in good agreement with the radius
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at which the outwardly propagating wave crests reach kr = 0, turn
around, and start propagating inwards, towards the star. Thus, m
= 19 mode becomes trapped inside the radially extended region
– the resonant cavity – between the stellar surface r = 1 and the
inner Lindblad resonance which is close to rc. The interference of
the outward/inward propagating waves at 1 < r � 2 gives rise to
a regular pattern of criss-crossing leading and trailing spiral arms
confined to the resonant cavity and rotating with a fixed angular
frequency �p on top of the (largely) Keplerian flow in the disc, see
Section 3.3 and Belyaev et al. (2012, 2013a).

During the same period, the aforementioned m = 2 mode grows
in intensity and very noticeably changes its morphology: it turns into
a radially elongated, azimuthally extended perturbation pattern that
undergoes a phase shift by π at around r = 1.4. This mode has very
low pattern speed �p ≈ 0.15 putting its corotation radius at rc ≈
3.5, still inside our simulation domain. We discuss this mode in more
detail in Section 8.2.2, but note here that it persists until about 400
orbits, co-existing with the other modes produced at the BL.

Around 300 orbits the significance of the previously dominant
lower m = 19 mode goes down both inside and outside the star; by
t/2π = 350 the associated regular criss-crossing pattern inside the
resonant cavity essentially disappears. Simultaneously, an upper m
= 23 mode starts emerging inside the star, with kr �= 0 for r < 1.
Interestingly, outside the star our data do not show this m = 23 mode:
we do see strong spiral arms with kr = 0 near the star and extending
all the way into the disc, but there are few of them, only 5 or 6,
instead of m = 23 as would be appropriate for the global upper mode
(which certainly exists inside the star). As time goes by, the number
of these global spiral arms in the disc (at r � 1.3) decreases, as if
they were merging together, and after 500 orbits only 2 or 3 of them
remain in the disc, somewhat chaotic in appearance. Such global,
low-m spirals are seen in a number of our runs and represent a novel
feature of the BL simulations that will be discussed in more details
in Sections 6 and 7.

Also, starting at around t/2π ≈ 400, a strong m = 6 perturbation
pattern, radially confined within 1 < r � 1.25, develops in the disc.
It is most coherent around t/2π ≈ 450, but can be easily traced until
the end of the run (using our automated mode detection algorithm),
interfering with the other modes operating in the system. The nature
of this perturbation will be discussed in Section 8.2.1.

6 D ISCOVERY OF VO RTEX-DRIVEN MODES I N
T H E N E A R - B L R E G I O N

In addition to spatial distributions of rvr

√
�, which illustrate the am-

plitude of the wave-like perturbation, we also examined the maps of
vortensity (or potential vorticity, related to the vorticity ω ≡ ∇ × v)

ζ ≡ ω

�
= ∇ × v

�
, (17)

which are shown in the r − ϕ coordinate plane in Figs 3, C1, C3,
C5 (left-hand columns).

These maps reveal that many of the morphological structures
observed in our simulations and mentioned in Section 5 are, in fact,
caused by the localized structures in the spatial distribution of ζ

that emerge in the near-BL region. Quite generally, we find two
types of vortensity structures that give rise to global waves in discs.
Their typical appearance is illustrated in Fig. 6, where we plot both
vortensity and rvr

√
� for a couple of representative runs.

The first type of vortensity structures reveals itself in ζ map in
Fig. 6(a) (showing a snapshot of M = 11 run at 175 orbits) as
sharp, elliptical, anticyclonic features located very close to the stellar

Figure 6. Two main types of localized vortensity structures (vortensity
change relative to its initial value) emerging in our simulations (left-hand
panel) and the fluid perturbation rvr

√
� that they drive in the disc (right-

hand panel). (a,b) Compact vortices present close to the BL, around r ≈
1.1 in the M = 11 run M11.FR.r.a at t/2π = 173. (c.d) Regular ‘rolls’
forming in the inner disc around r ≈ 1.5 in the M07.FR.r.a run at t/2π = 450.
White dashed curves (on the right) represent the locations of the wave crests
according to the WKB dispersion relation (10), and their association with
the corresponding vortex structures (on the left). See Section 6 for further
discussion.

surface. We call these structures simply vortices. They appear rather
narrow in azimuthal direction but this is simply a result of the aspect
ratio chosen in this figure – in reality they are rather elongated in ϕ.
Nevertheless, these vortices are typically well-isolated in azimuthal
direction while sharing the same radial range 1 < r � 1.2 like beads
on a wire. Looking now at Fig. 6(b), one immediately notices that
azimuthal positions of these vortices coincide extremely well with the
starting azimuthal locations (at r ≈ 1) of a number of sharp, narrow
spiral arms that propagate out into the inner disc. The strength of the
arm (amplitude of its rvr

√
�) appears to scale with the size of the

vortex to which the arm in connected. The number of arms – about
7 – is the same as the number of noticeable vortices in panel (a) of
the figure. One can also see that the global spirals in the disc co-exist
with the global lower m = 13 acoustic mode (easily visible inside
the star) – a very different type of the wave-like perturbation.
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Second type of vortensity structure is illustrated in Fig. 6(c), which
shows a snapshot of the M = 7 run at 450 orbits. This vortensity
map reveals a set of four azimuthally elongated ‘rolls’, as we call5

these structures, which are centred at r ≈ 1.5 and have approximately
equal azimuthal extent. Unlike vortices, the rolls are not isolated and
touch each other, collectively covering the full circumference of the
disc. Another difference with respect to vortices is that the rolls are
always found at some separation from the stellar surface; in Fig. 6(c)
they occupy a radial range 1.4 � r � 1.6.

Comparing panels (c) and (d) of Fig. 6 one can see that each roll
is associated with a broad spiral arm easily visible in rvr

√
�. Just as

the rolls, the spiral arms are azimuthally broad, which distinguishes
them from the narrow arms launched by the vortices. This results in a
distinct m = 4 pattern of global spirals in the outer disc. The leading
half of each roll is connected to the vr > 0 part of the corresponding
spiral arm, while the opposite is true for the trailing half of the roll,
indicating their anticyclonic nature (same as vortices). Also, Fig. 6(b)
shows that the roll-driven spirals arms can naturally co-exist with the
acoustic modes, in that case a lower mode which is rather strong in
the disc out to r ≈ 1.75.

Since the starting points of the global spirals (their azimuthal
locations at r → 1) always coincide with the positions of their
associated vortices/rolls, the pattern speed of the spiral arms in
our runs is the same as the orbital frequency of these vortensity
structures. As both vortices and rolls are passively advected with the
fluid, angular frequency �(r) of the disc fluid at their orbital radii
sets �p of their global spirals. Given that rolls are more distant from
the stellar surface than the vortices, �p of the spirals associated with
vortices is higher than �p of the spirals related to rolls.

The two kinds of vortensity structures described above emerge at
different times in many (but not all) of our simulations, and can even
co-exist for brief periods of time. Moreover they tend to evolve and
exhibit transitions from one type of structure to another. We now
briefly describe the typical evolutionary patterns of vortex-driven
modes in runs with different M .

6.1 Vortensity structures in M = 9 runs

Our fiducial M = 9 run illustrated in Fig. 3 features a set of isolated
vortices emerging near the stellar surface (r � 1.25) by t/2π =
50. These vortices are the true reason behind a set of strong global
spirals that are visible in panel (Ab) of this figure (and not the upper
mode, as mentioned in Section 5.1). They persist at 100 orbits, and
their associated spiral arms are discernible in the disc even in the
face of a strong lower mode that develops in the system. However,
beyond that point vortices merge with each other and get washed
out. Correspondingly, the characteristic narrow spiral arms in the
disc disappear leaving only the lower mode.

Beyond 400 orbits a new transition takes place in the system – a
set of rolls starts to emerge at r ≈ 1.3. At t/2π = 450 one can see
five regular, roughly equally spaced rolls connected to a set of five
strong global spirals in the disc. These rolls evolve by merging with
each other: only three of them remain at 500 orbits (still at roughly
equal azimuthal separation from each other), connected to an m =
3 set of global spirals in the disc, see panels (Ja)-(Jc). Only two
rolls (and spirals) remain at 550 orbits, separated by roughly 180◦.
However, by 600 orbits they drift azimuthally towards one another
(while remaining at the same radial distance) and would merge into
a single roll if we ran this M = 9 simulation for longer.

5We often collectively refer to isolated vortices and rolls as just ‘vortices’.

6.2 Vortensity structures in the high-M runs

At higher values of M > 9 we typically find rolls to emerge quite
early. For example, in Fig. C3(Aa) illustrating an M = 12 run
described in Section C3, a number (7 or 8) of rolls become apparent
at r ≈ 1.17 already at 50 orbits, when a number (9 or 10) of strong,
isolated vortices is still present closer to the star. Careful examination
of the panel (Ab) of that figure reveals two complexes of global
spirals – one due to the vortices next to the BL and another one
associated with the rolls, forming further out in the disc. They can be
distinguished by their different pitch angles: roll-driven spiral have
lower �p and are less tightly wound than the vortex-driven spiral
arms, which have higher �p. Because of the difference of their �p,
the two sets of spirals drift azimuthally relative to each other.

Co-existence of rolls and vortices persists in this M = 12 run for
quite a while, with both types of structures (and their associated
spirals) visible up to 250 orbits. However, the number of both
vortensity structures goes down as they merge, while maintaining
roughly the same radial distance. Vortices near the stellar surface
stop being visible only after ≈300 orbits, see panel (Da).

In this particular simulation vortensity distribution also tends to
develop a banded structure after about 150 orbits. Radially narrow
and almost azmuthally symmetric bands in ζ maps appear to give rise
to weaker rolls at larger separation from the star. This complicated
radial distribution of ζ goes away only at the end of the simulation,
although the rolls at r ≈ 1.1 still persist in some form.

A similar evolution of vortensity structures is found in the M =
15 run described in Section C4. Left row of Fig. C5 shows strong
vortices early on (panel Aa), which co-exist with a number of rolls
later on (panels Ba and Ca), with rolls dominating after ≈300 orbits.
These vortensity structures explain the global spirals visible in the
maps of rvr

√
� at various degree of coherence throughout the M =

15 run.

6.3 Vortensity structures in the low-M runs

Situation is quite different in our runs with low values of M < 9.
We find that only the M = 7 run (see Fig. 6(c),(d)) shows the de-
velopment of strong vortices and, subsequently, rolls, reminiscent of
the M = 9 run; similarity of the perturbation morphology between
the M = 7 and 9 runs has been previously noted in Section C2. On
the other hand, M = 8 run does not show any strong or long-lasting
azimuthal vortensity structures – the distribution of ζ in this run looks
quite axisymmetric throughout its duration. And the simulations with
M = 5 and 6 develop rather peculiar vortensity structure, illustrated
in the left-hand column of Fig. C1, which is very distinct from the
higher M runs.

The M = 6 run M06.HR.r.a shows near-stellar surface vortices
only for a very brief interval of time around 75 orbits (not shown).
And soon after a strong m = 2, low-�p mode (described in
Section C2) appears in the disc, the distribution of ζ develops a
characteristic wavy m = 2 pattern, in which contours of constant
ζ oscillate in ϕ with large radial amplitude (1.1 � r � 1.4).
These oscillations result from passive advection of vortensity by
the periodic large amplitude perturbations of vr associated with the
m = 2 mode.

Later on, at 425 orbits, one notices two localized vortices (blue
dots in Fig. C1 Ea near ϕ/π ≈ 0.2 and 1.6) appearing quite far from
the star, around r = 2.1. These vortices drift radially inwards and
eventually merge, resulting in a single vortex visible at 525 orbits
at r ≈ 1.9, ϕ/π ≈ 0.2, which is responsible for the strong m = 1
perturbation in rvr

√
� that develops in the outer disc for r � 1.8.
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Figure 7. Example of a single-armed spiral emerging in one of our M = 12
simulations M12.FR.random.a The white dashed curve shows the analytical
fit given by equation (19), which matches the shape of the spiral density wave
very well. Note a prominent global lower mode active in the inner disc, at r
� 1.5. See Section 6.4 for details.

However, careful examination of the vortensity patterns at larger radii
reveals that these vortices form early on near the outer boundary of
our simulation domain, as a result of a numerical artefact related
to our outer boundary condition. Their subsequent inward drift is a
natural outcome of the vortex dynamics in the disc, see Paardekooper,
Lesur & Papaloizou (2010).

This sequence of vortensity evolution is very typical for our M =
5 and 6 runs: we see essentially no vortensity structures produced
near the stellar surface (except for the wavy advective patterns), but
at late time vortices resulting from numerical artefacts at the outer
boundary migrate in and disturb the global vortensity distribution.
However, starting atM = 7 and higher we never see these numerical
artefacts appear in our runs.

6.4 Emergence of narrow, single-armed spirals

In roughly one third of our simulations we observe vortices or rolls to
gradually merge into a single strong, coherent vortex, which launches
a narrow, single-armed spiral density wave in the disc. A typical
example is shown in Fig. 7 illustrating one of our M = 12 runs
(M12.FR.random) at 400 orbits. These narrow spiral features form
almost exclusively in runs withM ≥ 7. This is because, as discussed
earlier in Section 6.1–6.3, single isolated vortices tend to form only
in simulations with sufficiently high values of M . These spiral arms
are rather long-lived and can last for ∼100 orbits. They are important
because they can lead to interesting observational manifestations in
the time domain.

Such single-armed features have much smaller azimuthal width
than the m = 1 patterns emerging in some of the low-M runs, e.g. the
one shown in Fig. C1(Fa)–(Fc). They closely resemble the spiral arms
that appear in simulations of protoplanetary discs with embedded,
moderately massive planets. Because of the narrow azimuthal width,
such arms must be superpositions of a number of high-m acoustic
modes (as in the case of planet-driven spirals), with pattern speed �p

set by the angular frequency � of their parent vortex (or roll).
This allows us to better understand the shape of these arms. Indeed,

for m  1, the first term in the right-hand side of the WKB dispersion
relation (10) can be neglected (at large radii �(r) also becomes small

compared to �p), allowing us to express

kr (r) ≈ −m
�(r) − �p

cs(r)
, (18)

where we chose sign so that kr > 0 in the outer disc, far from the
BL. Integrating the relation (11) with this expression for kr gives the
equation for the shape of the wave crest in the form (Rafikov 2002)

ϕ(r) = ϕref +
r∫

rref

�(r ′) − �p

cs(r ′)
dr ′, (19)

where ϕref is the azimuthal coordinate of the wave crest at some
reference radius rref.

The fact that the modes with m  1 have ϕ(r) essentially inde-
pendent of m means that these modes can constructively interfere,
maintaining the one-armed profile in a narrow azimuthal range over
large radial intervals. For disc–planet interaction this observation was
made previously by Ogilvie & Lubow (2002) and Rafikov (2002),
whereas Bae & Zhu (2018) and Miranda & Rafikov (2019a) pointed
out that this coherence works particularly well in the outer disc
(whereas in the inner disc it gets gradually lost). This is relevant for
our case since the narrow global arms that we observe are exterior to
the vortices that launch them.

Single-armed spirals that we see in our runs were not observed in
previous simulations of the BLs (e.g. Belyaev et al. 2012, 2013a).
Many of these earlier simulations did not extend over the full 2π

in the azimuthal direction, which would both not support single-
armed features and affect the emergence and evolution of vortices
driving the single-armed spiral. Other simulations that did cover the
full 2π in azimuth had limited radial extent (rmax = 2.5R�), which
likely prevented them from revealing single-armed spirals. To verify
this hypothesis we preformed test runs in which we varied rmax and,
indeed, did not find any single-armed spirals in simulations with
rmax ≤ 3R�. This suggests that a large radial extent is necessary for
capturing the development of such wave phenomena in simulations.

7 O R I G I N O F TH E VO RTE X - D R I V E N MO D E S

In Section 6, we uncovered a clear connection between the multiple
spiral arms and the vortex-like structures in the near-BL part of the
disc. In particular, azimuthal locations of vortices in the near-BL
region coincide with the launching sites of the major global spiral
arms in the disc. The multiplicity and pattern speeds of these spiral
arms are controlled by the number of the corresponding vortices and
their radial location. This naturally raises a question of the underlying
reason behind this relationship.

Local perturbations of vortensity, confined both in radius and
azimuthal angle, which we call vortices, are known to trigger density
waves in accretion discs through the velocity perturbations that they
induce in the underlying flow. This has been demonstrated both
numerically (Li et al. 2001; Johnson & Gammie 2005) and through
detailed analytical exploration (Mamatsashvili & Chagelishvili
2007; Heinemann & Papaloizou 2009; Paardekooper et al. 2010).
In many ways the action of vortices is similar to that of planets
(or other massive orbiting perturbers), that launch density waves via
their gravitational coupling to the disc at the Lindblad resonances
(Goldreich & Tremaine 1980). Thus, as long as vortices are present
in the inner disc, the excitation of global spiral arms propagating
over large distances is quite natural.

However, this brings up the next obvious question: what causes
the emergence of vortices in the near-BL region in the first place?
We now address this question.

MNRAS 509, 440–462 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/1/440/6396757 by guest on 25 April 2024



Modes in the boundary layer 451

7.1 Origin of vortices in the near-BL region

Examination of Figs 3, C1, C3, C5 reveals that in the beginning of
the run vortensity grows in the near-BL region above its initial value,
which is equal to �K/(2�) and is radially constant in the disc for our
initial conditions, see Section 4.2. Evolution of ζ (r) is shown in Fig. 8,
where we plot the azimuthally averaged profiles of the vortensity at
different moments of time for the runs described in Section 5. One
can see that in all four runs ζ experiences substantial evolution in the
near-BL region. This raises a possibility of a Rossby wave instability
(RWI), which operates in presence of radially structured vortensity,
being triggered in this part of the disc.

The importance of RWI in astrophysical discs has been pointed
out by Lovelace et al. (1999) who demonstrated, in particular, that
infinitesimal perturbations can grow exponentially provided that the
underlying radial profile of ζ has an extremum. It was subsequently
studied by a number of authors both analytically (Li et al. 2000; Ono
et al. 2016) and numerically (Li et al. 2001; Johnson & Gammie 2005;
Ono et al. 2018). A natural outcome of the non-linear stage of the
RWI is the formation of multiple vortices (each of them launching
their individual spiral arms) with their subsequent merger into a
single major vortex (Ono et al. 2018). This sequence of events is
precisely what we observe in our runs. Previous studies typically
triggered the RWI by features in ζ (r) profile arising due to localized
steps, bumps, or gaps in the surface density. The latter – a drop in �

– is always found to appear in our simulations, see Fig. 5.
Note that, according to Papaloizou & Lin (1989), in barotropic

discs, such as the globally isothermal disc considered in this work,
exponentially growing modes of the RWI require the minima of the
vortensity profile to exist in the disc. However, a smooth drop in
� in a Keplerian disc would give rise to a maximum of ζ (r), which
should be stable according to Papaloizou & Lin (1989). Nevertheless,
in many of our simulations we also find the minima of ζ (r) to
emerge quite naturally. Fig. 8 shows that at different moments of
time M = 9, 12, 15 runs exhibit ζ (r) profiles with (multiple) local
minima, which would give rise to RWI. Interestingly, the profile of
ζ (r) in M = 6 run tends to show only a single broad maximum
and no minima, see Fig. 8(d). This is consistent with the lack
of the near-BL vortices in the low-M runs, see Section 6 and
Fig. C1.

At the same time, it should be remembered that derivation of
the RWI excitation criterion in Papaloizou & Lin (1989) was based
on many simplifying assumptions: static, axisymmetric background
vortensity profile, infinitesimal perturbations, etc. In real near-BL
region, we see that ζ (r) is generally non-axisymmetric, rapidly
changes in time, and is being constantly perturbed by the acoustic
waves, which are at least mildly non-linear. For these reasons the RWI
criterion formulated in Papaloizou & Lin (1989) may not be directly
applicable for interpreting the results of our simulations, even if it
seems to work qualitatively. We leave the detailed exploration of the
properties of RWI modes in our simulations – growth rates, pattern
speeds, etc. – to future work.

7.2 Vortensity evolution in the near-BL region

A final step in closing the logical loop of understanding vortex-
driven modes is to explain the apparent evolution of vortensity near
the stellar surface that we observe in Fig. 8, which is necessary for
triggering the RWI. In barotropic discs ζ is strictly conserved, dζ /dt
= 0. However, conservation of ζ gets broken in presence of shocks. In
our BL simulations mildly non-linear modes evolve into shocks very
naturally, driving the growth of vortensity within the resonant cavity
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Figure 8. Evolution of the azimuthally averaged vortensity profile ζ (r) =
〈ω/�〉 in simulations with different M (labelled in each panel). Profiles of
ζ (r) at different times are colour-coded according to the legend in the upper
panel. See Section 7.1 for the discussion.
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where they are trapped. Upper modes do not seem to be efficient at
driving the growth of ζ .

The local rate at which vortensity evolves due to shocks depends
on a variety of factors: multiplicity of the waves (i.e. azimuthal
wavenumber m of the modes), their amplitude, their pitch angle
(depending on the pattern speed �p of the underlying modes), see
Kevlahan (1997), Lin & Papaloizou (2010) and Dong, Rafikov &
Stone (2011). In addition to ζ production at shocks, vortensity is
also passively advected into the star as a result of mass accretion.
Intricate interplay between these processes leads to a complicated
structure in the radial profile of ζ (r) in the near-BL zone, allowing
the RWI to operate.

To summarize, vortex-driven modes emerge as a result of multi-
stage process driven by the sonic modes. First, sonic instability in the
supersonic shear layer produces (lower) acoustic modes. Secondly,
these modes, being mildly non-linear, evolve into shocks and drive
vortensity production within the resonant cavity near the stellar
surface. Thirdly, accumulation of vortensity creates the conditions
for excitation of the RWI, which in turn gives rise to multiple vortices
in its non-linear phase. Finally, each vortex launches a density wave
that propagates out from the BL region as a vortex-driven spiral
arm. A very similar sequence of steps occurs in tidal coupling of
protoplanetary discs with massive embedded planets (Koller, Li &
Lin 2003; Li et al. 2005; de Val-Borro et al. 2007; Lin & Papaloizou
2010): planet-driven density waves shock near the planet, modifying
the vortensity profile and triggering RWI, which produces vortices
at the edges of the forming gap, with secondary spiral arms being
driven by such vortices in the disc.

7.3 Compact vortices versus ‘rolls’

The two main types of vortensity structures that we identify in our
simulations – isolated vortices and rolls – differ in a number of ways.

First, rolls tend to appear as azimuthally periodic (often connected)
chains of regular patterns of vortensity, whereas isolated vortices have
smaller azimuthal extent and are more irregular in their morphology.
Secondly, isolated vortices are most prominent in the very beginning
of the simulation, whereas rolls appear only after sufficient time has
passed for the disc surface density and vortensity structure to be
substantially modified near the BL. Thirdly, isolated vortices exist
only very close to the BL, at r → 1, whereas rolls tend to form at
some separation from the BL, typically at r ∼ (1.1 − 1.5).

At least some of these observations can be interpreted by compar-
ing ζ maps in Figs 3, C1, C3, C5 with the radial profiles of ζ in Fig. 8.
In particular, in the beginning of the simulations ζ profiles show
strong peak of vortensity at r → 1, which is the natural consequence
of the initial sharp gradient of �(r) across the BL. These peaks are
what gives rise to vortices early on in the simulation. As the run
progresses and the BL broadens, radial gradients of �(r) diminish,
lowering ζ peaks at r ≈ 1 and reducing the significance of the strong,
sharp, localized vortices over time. Fig. 8 also shows other vortensity
peaks, appearing in the disc at some distance from the BL at later
stages. It is easy to see that the radial locations of these peaks coincide
with the locations of the chains of rolls that emerge in our runs at
roughly the same moments time. In other words, rolls in the inner
disc appear to be driven by vortensity generation at weak shocks,
into which the near-BL acoustic modes inevitably evolve due to their
non-linear evolution.

Given this difference in origin, one may wonder if isolated vortices
are purely an artefact of our initial conditions in the form of a sharp
�(r) gradient. This is only partly true, since such gradient persists
through our runs because of the � drop in the BL. The amplitude

of this gradient (which directly translates into the amplitude of the
vortensity peak) is a strong function of M since the BL width is a
sensitive function of the Mach number and scales roughly as M −2,
see Belyaev et al. (2012) and Coleman et al. (in preparation). For that
reason vortices at r → 1 are never strong in our low-M runs. This is
unlike the high-M runs, in which the BL is narrow, ζ (r) maintains a
tall peak near the star (see Fig. 8) and vortices at r ≈ 1 tend to be long
lived; see e.g. ζ distribution in the left-hand panels of Fig. C5, where
some vortex-like structures are present near the BL throughout the
full duration of this M = 15 run.

7.4 Robustness of the vortex-driven modes

Formation of a depression in � near the stellar surface and the
associated peak of ζ appear essential for providing the conditions
for vortex/roll excitation in the near-BL region. Our simulations
are inviscid, and such forming gap does not get replenished by
the material arriving from larger radii in the disc. However, in real
accretion discs there is mass inflow (e.g. due to the MRI), which
would tend to refill the gap with gas brought in from larger radii, and
might prevent vortex-driven modes from appearing. This possibility
may be difficult to realize because of the efficiency with which sonic
modes transport mass near the stellar surface. It is plausible that even
with the continuous mass inflow from larger radii, sonic modes would
still be able to modify �(r) near the star, sufficient to keep RWI going.
And the gap does not need to be very deep for vortex-driven modes to
emerge; for example, M = 12, 15 runs exhibit rather shallow (only
∼ 30 per cent deep) gaps but still support vortex-driven modes.

Another potential issue with the vortex-driven waves is the fact
that our simulations are 2D. While vortices can certainly form in
3D simulations, there is an ongoing debate about their longevity
in realistic protoplanetary discs with vertical structure (Barranco &
Marcus 2005; Lesur & Papaloizou 2009; Lithwick 2009; Lin 2012;
Meheut, Yu & Lai 2012a; Meheut et al. 2012b; Lin & Pierens 2018).
In this regard we note that our own 3D simulations (to be analysed
in the future) do show the emergence of the vortex-driven modes and
their survival over long time intervals.

8 D ISCUSSION

The main goal of this work is a systematic exploration of the acoustic
mode activity in the vicinity of the BL. We do this in a rather simple
but easy to control setup, with the Mach number M being the only
key parameter of our runs. The initial distribution of the disc surface
density is chosen to ensure a flat vortensity profile, to avoid possible
biases related to the initial conditions.

The equation of state used in this work – globally isothermal –
greatly simplifies the analysis of the angular momentum and mass
transport in the near-BL region (Coleman et al., in preparation),
since recent studies (Lin 2015; Miranda & Rafikov 2019b, 2020)
have shown that the often used non-barotropic, locally isothermal
equation of state leads to non-conservation of the angular momentum
flux carried by the waves even in the absence of explicit dissipation.
Our equation of state also allows us to not worry about the long-term
effects of heating/cooling on the disc thermal state.

While carrying out this exploration, we discovered new types of
hydrodynamic wave-like phenomena that emerge in the disc near the
stellar surface. Probably the most interesting are the vortex-driven
waves, and we already covered their origin and properties at length
in Sections 6,7. In the following, we provide a discussion of several
other notable results of our simulations, among them the analysis of
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the regular acoustic (Section 8.1) and other (Section 8.2) modes, as
well as the dependence of their harmonic content on M .

8.1 Acoustic modes

Acoustic modes excited by supersonic shear in the BL are interesting
not only on their own but also because they are the ultimate drivers
of accretion on to the central object (Coleman et al., in preparation)
and are intimately involved in generation of other types of modes,
see Section 7. Both lower and upper modes (Section 3) are observed
in our simulations. Only very rarely we see the third, middle, mode
described in Belyaev et al. (2013a) temporarily appear early on in
some of our runs.

We generally find the upper mode to be prominent in the beginning
of all our runs. Later on its significance tends to go down in
simulations with M � 9, whereas in simulations with higher M
it may reappear later on, but not always: the upper mode is absent
in our M = 12 runs but persists through the whole duration of the
simulation in M = 15 case, see Figs C3 & C5.

The lower mode is seen in most of our runs, often through the
full simulation duration, like in M = 12 case (but we remind that
M = 12 runs are quite unique in maintaining extremely stable lower
mode, see Section C3). They are far less prominent in M ≥ 13 runs,
but are still present there at some level, see below.

The general expectation following from the theory of acoustic
mode excitation outlined in Belyaev & Rafikov (2012) and Belyaev
et al. (2013a) is that the modes should have comparable strength
(in rvr

√
�) immediately inside and outside the star. However, very

often it is much easier to detect a particular mode inside the star
than outside. For example, M = 6 run (Fig. C1) at t/2π > 300
shows a telltale kr = 0 (i.e. radially elongated perturbation pattern)
signature of the lower m = 8, 9, 10, 12 modes inside the star, which do
not have a counterpart with matching pattern frequencies outside the
star, see Fig. C2. We speculate that this departure from the theoretical
expectation may be at least partly caused by the non-uniform surface
density distribution in the inner disc.

In other cases the apparent lack of the disc counterpart for a mode
may be caused by its overlap with some other modes, complicating
its identification. This is likely the case for the upper m = 19 mode
with �p ≈ 0.65 in the M = 15 run shown in Fig. C5: this mode
is obvious inside the star (note its non-zero kr there), whereas it
is hardly visible in the disc. However, Fig. C6(d) shows that this
mode is in fact also present in the disc (at r = 1.2, albeit with
a substantially reduced amplitude) with the same �p; it is hard to
detect by eye in simulation snapshots because of its interference with
other modes in the disc. This comparison demonstrates the benefits
of automatic mode detection procedure that we employ in analysing
our simulations.

We now examine how the mix of modes detected by our automated
analysis compares with the dispersion relations derived in Belyaev
et al. (2013a) and this work, see Sections 3.1 and 3.2.

8.1.1 Dispersion relation for acoustic modes

Fig. 2 displays the (m, �p) pairs for the modes found by our automatic
mode detection procedure in runs with different values of M . Some
of these modes are truly global (green stars), i.e. they are detected as
a wave pattern with the same m and �p at the same interval of time
both inside the star and in the disc (at r = 1.2). In most cases modes
are found only in the disc (yellow pluses) or only in the star (blue
circles), a possibility that we mentioned earlier.

We also display in red the dispersion relations (9) for the lower
modes (dot-dashed) and (A2) for the upper modes (dotted). Note that
equation (9) depends on a parameter r0 (specific for each M ), which
we fix by aligning the lower mode dispersion relation curves with
the clusters of (m, �p) points in Fig. 2; this procedure is not very
straightforward for M = 14, 15, see panels (k) and (l). We also note
that the dispersion relation (A2) assumes that a plateau in �(r) has
already developed near the stellar surface (see Fig. 5a), so that the
epicyclic frequency is κ ≈ 2�; this may not be true early on in the
simulation. The ‘height’ of this plateau at late times �max, i.e. the
maximum value of �, is shown by the horizontal dashed curves.

In general we see good correspondence between the dispersion
relations and the detected modes, as typically a significant number
of (m, �p) points fall on top of the red curves. These modes often
cover a significant range of azimuthal wavenumbers (e.g. the lower
modes in panels (f) or (h)), and sometimes come in clusters, i.e. are
grouped in m (e.g. m = 10 − 16 in panel (e), or m = 21 − 26 in
panel (g)). Such groupings likely result from the non-linear evolution
of a single dominant mode: non-linear distortion of a perturbation
profile, natural for even moderately strong acoustic waves that we
see in our runs, transfers power to other modes, primarily to those
with similar m. This likely explains the slow but persistent changes
in the modes that we observe: as the acoustic waves are dispersive,
the new modes produced as a result of the non-linear evolution of
a parent mode eventually lose coherence with it, smearing out the
original wave packet. Thus, the finite lifetime of the modes that we
see in our runs should not come as a surprise.

At the same time, there are some modes that do not line up with
the red curves. Many of them are simply not the usual upper and
lower acoustic modes, see e.g. Section 8.2. But many others end up
being the higher order azimuthal harmonics of the primary modes. To
illustrate that we show the harmonics of the main dispersion relation
branches with twice and three times higher azimuthal wavenumber
m and the same �p as black dotted and dot-dashed curves in Fig. 2.
One can see that in some cases the modes lying on the main branch
of the dispersion relation have counterparts with the same �p at or
close to one of the higher order branches of that dispersion relation.
Clear examples of this can be seen in panel (b) for the lower modes
with �p ∈ (0.45, 0.55), and in panel (g) for the upper modes with �p

∈ (0.5, 0.6). Such higher order azimuthal counterparts of the modes
naturally result from the non-sinusoidal shape of the wave packets
with certain azimuthal periodicity.

For almost all values of M we also see some modes that stay
close to the �p = �max horizontal dashed line. These modes must
be trapped in the innermost part of the disc where at late times �(r)
features a plateau with �(r) ≈ �max. They are likely related to the
vortensity structures forming in this part of the disc – vortices or rolls,
which are passively advected with the fluid at almost constant orbital
frequency �max. Stability of �max (see Fig. 5) should help these
modes maintain their coherence over long intervals of time, which
may have important implications for the variability associated with
the BL (such as dwarf nova oscillations); this issue will be explored
in a future work. Also, for M < 8 some lower modes feature �p

exceeding �max; these modes must have been present in the disc
early on, when the �(r) profile was still close to Keplerian.

Finally, panels (e) and (f) of Fig. 2 compare two simulations with
the same Mach number M = 9 but different resolutions. The higher
resolution run M09.HR.r.a (8192 × 8192) appears to show no disc
modes, in contrast with the run M09.FR.r.a (4096 × 4096), which
reveals a number of both global and disc-only modes. However, this
outcome is caused simply by the difficulty of mode detection by our
automated mode-finding algorithm in the higher resolution run: by
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examining its outputs by eye we do find a number of disc modes,
which simply fluctuate a bit more than is allowed by our software
to register them as waves with a well-defined �p (see Appendix B2
for details).

8.2 Other disc-only modes

Next we briefly discuss a couple of other wave structures that are
seen in our simulations and cannot be classified as upper or lower
modes (or their harmonics). These modes are present only in the disc,
with no counterpart inside the star.

8.2.1 Resonant modes

One type of such waves are the relatively low-m modes in the disc
trapped in the resonant cavity near the star; for this reason these waves
may be confused with the usual lower modes. However, unlike the
lower modes they (1) do not have a strong counterpart with the same
m inside the star, (2) usually do not exhibit densely criss-crossed
pattern, and (3) obey a very different dispersion relation, as we show
next. The difference in appearance between the two types of modes
can be easily spotted in Fig. C3 for M = 12, where a strong lower
mode is present in panels with t/2π = 150−450, whereas at t/2π =
550 there is a strong m = 7 disc-only mode with no crossings of the
incoming and outgoing wakes, trapped at r < 1.25.

This type of mode manifests itself also at other values of M : as a
strong m = 2 mode forM = 6 (at t/2π = 325 − 425), confined to r <

2.5; as a m = 6 mode for M = 9 (at t/2π = 400−450), confined to r
< 1.3 (although strongly disturbed by the m = 5 vortex-driven mode);
and a m ≈ 20 mode at M = 15 (at t/2π = 275−756), confined to
r < 1.17. We also find this mode to persist in our very long M = 9
run, where it dominates as either m = 3 or m = 4 pattern for more
than 2000 orbits.

Such modes were previously described in Belyaev et al. (2012),
who traced their origin to a geometric resonance for a trapped
acoustic wave: if, after multiple reflections off the stellar surface
and the Inner Lindblad Resonance, the density wave closes on itself
(after its azimuthal phase wraps around the star q times, where q is
a small integer), then this reinforces its strength and gives rise to a
stable mode. Mathematically, Belyaev et al. (2012) have shown that
this leads to a relationship between m and �p for these modes, which
can be cast as

q
π

M = 1

�(R�)R�

∫ rILR

R�

dr

√
m2

[
�(r) − �p

]2 − κ2(r), (20)

where rILR is given by equation (12). It was also shown in that work
that such resonant modes indeed obey the dispersion relation (20),
see their fig. 18 in Belyaev et al. (2012).

One could turn the integral relationship between m and �p in
equation (20) into an approximate algebraic one by dropping the κ2

term; this is equivalent to approximating rILR ≈ rc and is accurate
for m  1, see equation (12) and Fig. 1(b). Then one finds

mM ≈ qπ

[
2 + �p

�K (R�)
− 3

(
�p

�K (R�)

)1/3
]−1

. (21)

As M in our runs increases, we find the resonant mode wavenumber
m to increase as well. As a result, equation (21) predicts that �p for
this mode should also increase with both its m andM , see figs 17 and
18 of Belyaev et al. (2012). This leads to narrowing of the resonant
cavity for this mode as M goes up, just as we find in our runs.
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Figure 9. Dispersion relation (21) for the resonant modes for q = 2, plotted
together with the (mM,�p) values for the resonant modes identified in our
simulations, shown with points coloured by their value of M . The bright
magenta points correspond to the M = 8 simulation, which show the largest
deviation from the trend. See Section 8.2.1 for details.

One can see that m andM enter equation (21) only in combination
mM . This allows us to plot the dispersion relation (21) as a single
curve in (mM,�p) coordinates for runs with different M . We do
this in Fig. 9, where we also plot (mM,�p) points for all resonant
modes that we were able to reliably identify in our simulations. One
can see that with q = 2 the dispersion relation (21) fits the simulation
results quite well. The only exception are the two occurrences of the
resonant mode in our M = 8 run, for which a different value of q
might have worked better as we see multiple crossings of resonant
modes in this run (usually we see only a single crossing). Note that q
= 2 that we find in this work is different from q = 1 found in Belyaev
et al. (2012), not clear why.

The dispersion relation shown in Fig. 9 is clearly different from
that of the lower modes, for which �p always decreases with m, see
Fig. 2. This is despite the fact that the two types of modes have similar
morphological appearance and are confined to a resonant cavity in
the disc; they also have a similar effect on the angular momentum
and mass transport in the disc (Coleman et al., in preparation).

On the other hand, the dispersion relation (7) for the upper acoustic
mode (as well as its more refined version A2) leads to �p increasing
with m, similar to the behaviour predicted by the equation (21). For
that reason, in Fig. 2 we often find the (m, �p) pairs for the resonant
modes to lie close to the main branch of the upper mode dispersion
relation, e.g. see m = 2, �p ≈ 0.15 resonant mode for M = 6 in
Fig. 2(b), or m = 6, �p ≈ 0.5 resonant mode for M = 9 in Fig. 2(e).

8.2.2 Low-m, kr = 0 modes

As mentioned in Section 5.1, our fiducial M = 9 run shows yet
another disc-only mode with m = 2, �p ≈ 0.15, between roughly
150 and 400 orbits in Fig. 3. It has a very unusual appearance, with kr

= 0 and azimuthally extended perturbation pattern (i.e. not a narrow
feature), confined to r � 2.2, which is close to the rILR for this mode.
Its perturbation also undergoes a flip by π in azimuthal phase at r ≈
1.5. Vortensity maps in Fig. 3 show no structures in ζ at this radius
or beyond it.

The emergence of this mode is not unique to the run M09.FR.r.a
displayed in Fig. 3, as we observe it in several other M = 9 runs
with different kinds of initial perturbation. The low m and �p of
this mode places it very close to the main branch of the upper mode
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Figure 10. Histogram of the azimuthal wavenumber m for the dominant
modes identified in simulations with different values of Mach number M.
For eachM there are three histograms with arbitrary horizontal displacement.
Left-hand panel (yellow-orange): dominant star-only modes. Middle (blue-
indigo): dominant disc-only modes. Right-hand panel (pink-purple): global
modes. For each M the dominant modes are defined as the three modes with
the highest time-integrated power, volume averaged over a specific region.
For some values of M we have multiple simulations, so the numeric value of
the corresponding bin reflects the number of runs, in which the mode meets
the aforementioned criteria. The dotted line corresponds to M = m which
qualitatively follows the trend seen in the data. See Section 8.3 for details.

dispersion relation (A2), see Fig. 2(e). This is not surprising since
that dispersion relation was derived assuming kr = 0 (see Section A),
which is true at all r for the m = 2 mode that we see. At the moment
we do not have an explanation for the origin or properties of this
unusual disc-only mode.

8.3 Dominant modes as a function of M

Given that we have BL simulations for every integer value of M
between 5 and 15, we can explore how the azimuthal periodicity
of the modes that we detect changes with M . In general, we find
that a particular mix of modes that exist at different times in a given
simulation is pretty stochastic. This means that a different realization
of the same simulation, especially with the different model of initial
noise introduced to trigger the instability (Section 4.2), would result
in a somewhat different outcome in terms of the mode types and
azimuthal wavenumbers m. The only notable exception are ourM =
12 simulations, in all of which we robustly see the m = 16 lower mode
with a pattern speed �p = 0.45 dominating both inside and outside
of the star over hundreds of orbits. Resolution of the simulations also
plays a role, see Figs 2(e) and (f), but the differences there often
depend on the performance of our mode-finding analysis software,
see Section 8.1.1.

On the other hand, we do observe certain trends with M . In
particular, Fig. 2 reveals that the lower modes – (m, �p) points aligned
with the lower mode branches – are more common for M ≤ 12,
whereas the upper modes start showing up in noticeable clusters
along the upper dispersion relation branches for M ≥ 9.

To examine possible trends with M at a more quantitative level,
we carried out the following exercise. First, we compute the power
in all modes with m < 32 for the variable vr

√
� and then integrate it

over time for t/2π > 100 and over radius in three distinct domains:
‘star’ defined as r < 1, ‘disc’ defined as 1 < r < 2.2, and ‘global’
defined as r < 2.2, i.e. ‘disc+star’. In a given domain, the three modes
with the highest time- and radius-integrated power are considered to

be the dominant mode. These data are summarized in Fig. 10, where
the histograms of different colour characterize the distribution of m
for the dominant modes in three respective regions for all M .

By examining this figure we find that at each M there is a substan-
tial spread in the values of m, even in a given domain. This spread
is caused by a number of factors: stochasticity of the mix of modes,
different types of modes involved (e.g. upper, lower, disc-only),
resolution, etc. Also, we have reasonably representative statistics
on the distribution of m only for M = 6, 9, 12, for which there are
multiple runs with different initial conditions and resolutions; for
most other values of M only a single run is available.

Qualitatively, there is an overall trend of increasing the dominant
mode wavenumber m with growing Mach number M. Just as a
guide, dotted line in Fig. 10 shows a linear relation m = M . This
line does not represent a fit of any kind and is merely shown to
guide the eye. One conclusion that we can draw from this exercise is
that a complete characterization of the mix of the dominant modes
operating in the vicinity of the BL may require a substantially larger
number of simulations than we have presented in this work.

8.4 Sensitivity to numerical parameters

Our simulation suite allows us to probe the sensitivity of the
results to certain numerical inputs for some values of M , namely
the initial noise pattern used to trigger the sonic instability in
the BL (Section 4.2) and resolution (Section 4.3), see Table C1
(sensitivity to boundary conditions has been already discussed in
Sections 4.3,6.3,6.4).

When comparing the simulations with the different forms of the
initial noise (run at the same resolution and M ), we generally do not
find strong differences or trends with the noise pattern. For M =
6, 9 the qualitative behaviour of the simulations remains the same,
although, as we alluded to in Sections C1,8.3, the detailed outcomes
of individual simulations are stochastic. And all M = 12 runs are
similar to one another even at the quantitative level, see Section C3.

Resolution has a more substantial effect on our results. ForM = 9
it affects azimuthal wavenumber m of the dominant modes, with m
increasing with resolution. For example, in simulations with the same
block random initial condition ‘r.a’, we find that the dominant lower
mode has m = 7 at lowest resolution (2048 × 2048), increasing to
m = 19 in the fiducial resolution (4096 × 4096) case, and reaches
m = 26 at the highest resolution (8192 × 8192). The transitions
between the different types of modes described in Section 5.1 are
captured quite reliably between the high and fiducial resolution cases,
suggesting that their results are converged at least at the qualitative
level, but less so at the lowest resolution.

The dependence on resolution is stronger in the M = 6 simu-
lations. In particular, high resolution (2048 × 2048) M = 6 runs
demonstrate the early development of the low-m (m = 2, 3) resonant
modes, typically around t/2π = 200, while the low resolution
(1024 × 1024) runs either do not show these modes at all, or exhibit
them very late. Thus, high resolution is clearly necessary for revealing
important features of the BLs with low M .

8.5 Comparison with the existing studies

A number of past studies of the BLs, both (semi-)analytical (Kip-
penhahn & Thomas 1978; Narayan & Popham 1993; Popham
et al. 1993) and numerical (Kley & Lin 1996; Armitage 2002;
Steinacker & Papaloizou 2002; Balsara et al. 2009; Hertfelder & Kley
2017), postulate some form of local shear stress to enable angular
momentum transport inside the BL. Since in practice transport in the
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BL is mediated by the global acoustic modes (Belyaev et al. 2012,
2013a), these studies cannot be directly compared to our work.

Our study goes beyond (in ways already discussed in Section 4.4)
the similar past work of Belyaev et al. (2012, 2013a, b) and
Hertfelder & Kley (2015b), who also simulated BLs mediated by
the acoustic waves. We explore a larger set of Mach number values,
use higher resolution and longer run times, and carry out an extensive
exploration of the sensitivity of our results to resolution and initial
conditions. We also provide a very careful analysis of our results
and extensively study the harmonic content of our simulations. All
this led to new important findings such as the vortex-driven modes
(Section 6), one-armed spirals (Section 6.4), and so on.

Belyaev (2017) considered a different way of exciting acoustic
modes in the disc, namely by coupling them to the incompressible
inertial waves inside the star. Our use of the globally isothermal
equation of state precludes us from exploring this possibility, which
should be addressed by future simulations with more sophisticated
treatment of gas thermodynamics.

Finally, in their 3D, unstratified MHD simulations Belyaev &
Quataert (2018) found that acoustic waves do not efficiently remove
angular momentum from the accreting gas in the BL, causing a dense
belt of rapidly spinning material to form near the stellar equator.
While this is an important issue, which should be addressed in the
future using stratified MHD simulations with realistic thermodynam-
ics, Belyaev & Quataert (2018) do find acoustic waves to be active
in the disc, which is what our study focused on.

8.6 Observational implications

Observational implications of the wave-driven angular momentum
transport in the BL have been previously discussed in Belyaev et al.
(2012, 2013a). One of them is the modification of the spectral
signature associated with the energy dissipation in the BL. While the
energy conservation implies that the total amount of energy released
by the accreted matter must be large, a particular band in which the
associated emission is released should be dramatically affected by
the global nature of the angular momentum and energy transport by
the acoustic modes. This is likely to have important ramifications for
the so-called ‘missing boundary layer’ problem (Ferland et al. 1982).

Long-lived mode patterns that we see in our simulations should
also lead to characteristic variability associated with them. This work
opens up new possibilities in this regard, by revealing the existence
of the vortex-driven modes and one-armed spiral arms in the disc.
Both of them may affect the light curves of objects accreting through
the BL in characteristic ways. These (and other) implications of the
wave-mediated accretion through the BL will be further investigated
in the upcoming work.

9 SU M M A RY

In this paper, first in a series, we presented a suite of global, 2D,
hydrodynamic simulations of the BLs using simple thermodynamics
(globally isothermal) and encompassing both the outermost layers of
the accreting object and a substantial region of the inner disc. Using
this data set we carried out a systematic exploration of the different
waves that emerge in the disc in the vicinity of the BL (and regulate
its properties), as a function of Mach number of the system M . Our
key results can be summarized as follows.

(i) We discover a new class of modes that are triggered by the
emergence of non-axisymmetric, localized vortensity structures in
the vicinity of the BL. These vortex-driven modes are quite prominent

in many of our simulations. We argue that their parent vortices
result from the Rossby wave instability, triggered by the vortensity
production near the BL driven by the non-linear damping of acoustic
modes.

(ii) In many simulations we observe multiple near-BL vortices to
merge into a single one, giving rise to a prominent global, one-armed
spiral density wave in the disc. Such structures may naturally cause
periodicity of the BL emission.

We can also make the following statements about the wave patterns
emerging in our runs.

(i) Different types of modes can easily co-exist in the inner disc.
They have finite life times, although some of them can operate for
hundreds of orbits. While some of the modes that we see are global,
i.e. operate both in the disc and the star, others are star-only or
disc-only modes.

(ii) We compared characteristics of many different modes identi-
fied in our simulations with their analytical dispersion relations and
found good agreement.

(iii) With rare exceptions, a particular mix of modes that we find
in our runs (with slightly different initial conditions) is somewhat
stochastic. As the Mach number of our simulations changes we find
the mix of near-BL modes to evolve, with the azimuthal wavenumber
of the dominant modes showing tendency to increase with M .

Our results pave the way for future efforts to explore angular
momentum and mass transport, as well as the associated evolution
of the disc in the vicinity of the BL, driven by the modes identified
in this study.
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APPENDI X A : D I SPERSI ON R ELATI ON FO R
THE U PPER MODES

Belyaev et al. (2013a) derived a dispersion relation for modes with
arbitrary degree of winding, given by their equation (A16). It assumes
globally isothermal equation of state and constant � in the disc. The
degree of winding is quantified by the parameter n = rkr; for tightly
wound waves n  1 and one recovers the usual WKB relation (10).
However, for the upper modes kr → 0 as r → R�, so that n = 0.
In this limit the dispersion relation (A16) of Belyaev et al. (2013a)
becomes

[
�(R�) − �p

]2 = c2
s

R2
�

+ κ2(R�)

m2
− 2

m2

c2
s

R2
�

�(R�)

�(R�) − �p
, (A1)

where we also set r → R�; in the limit m  1 we recover equation (7).
Note that the relation (A1) is real, whereas for general n �= 0 the
equation (A16) of Belyaev et al. (2013a) is not.

Equation (A1) is a cubic in �p, which can be solved for �p(m).
However, a simpler procedure is to solve for m(�p):

m2 = κ2 (rf ) r2
f

[
� (rf ) − �p

] − 2c2
s � (rf )

r2
f

[
� (rf ) − �p

]3 − c2
s

[
� (rf ) − �p

] , (A2)

where in simulation units cs = M −1, and rf is a fiducial radius
chosen (instead of R�) to correspond to the maximum of � in the
time- (for t/2π > 100) and azimuthally averaged simulation data.
Typically rf is very close to R�.

Note that at late times �(r) develops a plateau near r = R� ≈ rf

because � drops in this region, see equation (8). As a result, �(rf)
< �K(rf) and κ(rf) �= �K(rf). If � is truly constant over some radial
interval near the BL then κ(rf) ≈ 2�(rf). While this approximation
is very accurate at rf (where � takes its peak value) we still compute
κ directly from the time-averaged simulation data to draw the upper
mode dispersion relation in Fig. 2 using the equation (A2).

A P P E N D I X B: D E TA I L S O F T H E N U M E R I C A L
A NA LY S I S TO O L S

B1 Runtime fourier analysis

To save on disc space we modified the FFT module of
Athena++ (designed to solve Poisson’s equation for self-gravity,
and to inject turbulence) to perform FFT on the fluid variables in the
azimuthal (ϕ) direction only and save the m = 0 through 31 modes
as a function of r to file (saving us a factor of 32/nϕ in disc space).
We save two separate sets of these FFT files at a cadence of �t =
10−1/2π , resulting in 20 outputs per (inner) orbit. These two sets of
FFT files are identical but temporally offset from each other by δt =
10−2/2π . This enables us to perform finite differences to estimate the
time derivative of the (complex) phase (ϕ) to order δt�t. This offset
strategy also saves disc space by enabling us to resolve mϕ̇ < 1/δt

without needing 100 FFT files per orbit. To further expedite post-
processing we binned these results by orbit (using the mean data
value within that bin). The standard deviation within each bin is used
as an error estimate for that data. While the majority of our FFT
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diagnostics in this paper use the Fourier transform of vr

√
�, the

FFTs of several other variables are also computed.

B2 Automated mode detection

We make use of these FFT data sets to automatically detect stable
modes in our runs. The first step in this process is to bin the FFT data
into 10 orbit chunks (10 data points per chunk), making the data a
function of t, r, m. The first 30 orbits of data are discarded as they
are sensitive to the initial conditions. We then focus on two radial
locations, r1 = (rmin/2 + 1)/2 and r2 = 1.2 and preform an error
weighted radial mean over ±5 radial grid cells about these radii of
interest. Within each 10-orbit chunk we preform linear regression of
�p(t) (for each m, ri). We discard data (by 10 orbit chunk) with mean
values �p > 1 or �p < 0, and further filter out data with |∂�p/∂t|
> (2 × 10−4, 4 × 10−4), or standard deviation from the linear fit
>(1 × 10−4, 2 × 10−4) for r = (r1, r2), respectively. Remaining
data where three adjacent 10-orbit chunks have passed the filtering
process are considered stable modes. If the same modes are detected
at all considered radii, with overlapping times, they are classified as
global modes.

B3 Details of the time-averaging procedures in mode figures

Here we summarize the technical details of various averaging and
smoothing procedures that were used in analysing the data and pro-
ducing various plots. All of the coloured lines in Figs 4, C2, C4, and
C6 correspond to a specific mode, which is shown in the same colour
in all four panels of a given figure. Five of these lines correspond to the
five modes with the highest time (after the first 30 orbits) and space
integrated amplitude. Where applicable, an additional sixth mode that
is classified as a global mode at some point during the simulation
is also drawn. The data shown in these four figures are variance-
weighted means (using the variance of a given quantity within a one-
orbit bin; see Section B1) of the data in the radial direction, ±5 and
±30 grid points for r < 1 and r > 1, respectively. Finally, the data are
convolved with a symmetric triangular window in the time domain
of width 20 orbits. This window function is chosen for its simplicity
and to suppress leakage of power to high frequencies in comparison
to a rectangular window. We also ran a few tests to examine
the impact of various window functions and saw no appreciable
difference.

A P P E N D I X C : MO R P H O L O G I C A L
C H A R AC T E R I Z AT I O N O F WAV E ST RU C T U R E S
FOR D IF F EREN T M

Here we provide the description of the wave patterns emerging in
our simulations for different values of M , similar to Section 5.1.

C1 Other M = 9 and similar runs

In addition to the run M09.FR.r.a described in Section 5.1, we
have also carried out 14 more M = 9 runs to test the sensitivity
of outcomes to our adopted resolution and initial conditions. With
very few exceptions, all these runs show the behaviour similar
to M09.FR.r.a: a long period of the lower m ≈ 19−21 mode
dominance, almost always in conjunction with the m = 2, kr =
0 pattern in the disc. In the last 200–300 orbits of these runs we
quite robustly find the large scale m = 4−6 spiral arms in the disc
(Section 6) co-existing with the high m ∼ 20−28 upper mode inside

Figure C1. Same as Fig. 3 but for the M = 6 run M06.HR.r.a (note a
different radial range in the left-hand and central columns chosen for better
illustration of important features). Time corresponding to each snapshot is
indicated at the top. See Section C2 for details.

the star. Also, in more than 50 per cent of the runs, after t/2π =
300−400, we see an m = 4−7 disc mode confined to the vicinity
of the stellar surface (Section 8.2.1) and superposed on the other
modes.

We also ran one of our M = 9 simulations for much longer than
the nominal duration of 600 orbit, up to t/2π = 3780, to explore
the long-term evolution of the disc+star system. Up to t/2π = 600
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Figure C2. Same as Fig. 4, but for the M = 6 simulation M06.HR.r.a.

the evolution followed the usual pattern of other M = 9 runs, and
then the system settled into a state (lasting until t/2π ∼ 3000) with
the high-m upper mode dominating inside the star, whereas an m
= 3−4 resonant mode trapped near the stellar surface (discussed in
Section 8.2.1) dominated in the disc. Then another re-arrangement
happens, with a sequence of mergers of several global spirals into
a single narrow one-armed spiral, followed by the development
of a strong, stable m = 13 lower mode. This is how this long
simulation ends, giving us a hint of the complicated long-term
evolution mediated by the instabilities in the BL.

We have also carried out M = 10 and 11 runs with the same
initial conditions as the M = 9 run described in Section 5.1. They
show an evolutionary sequence very similar to that in M = 9 runs.
The only notable feature worth mentioning is the appearance of a
small number of narrow vortex-driven spiral arms in the beginning
of the M = 11 run, illustrated in Fig. 6; their origin is discussed in
Section 6.

C2 M = 6 and other low-M runs

Some features of the behaviour of the disc–star system for M = 6
have been discussed in previous studies (Belyaev et al. 2012, 2013a),
although those simulations were typically not advanced for as long
as our current runs. Here we describe the details of a M06.HR.r.a run
performed at the resolution of 2048 × 2048.

In the beginning, at t/2π = 25, this run features a strong upper m
= 7 mode, see Fig. C1(a). This mode is rather short lived and goes
away already by t/2π = 50, yielding to the lower mode with m =
10−11 and �p ≈ 0.47. In the disc it can be traced until t/2π � 200
in the form of criss-crossing leading and trailing spirals confined to
a resonant cavity, r � 1.7−2. Multiple shocks associated with this
mode rapidly drive a substantial re-arrangement of the disc � and �

profile near the star, similar to Fig. 5. Inside the star this lower mode

Figure C3. Same as Fig. 3 but for the M = 12 simulation M12.FR.r.a.
Note a very different radial extent (r < 1.7) of the Cartesian maps chosen to
illustrate the most important structures. See Section C3 for details.

dominates until the end of the run, with m slowly evolving from 11 to
9, see Figs C1 b & C2. This evolution is in agreement with Belyaev
et al. (2012, 2013a).

Around t/2π = 225 (Fig. C1c) a new feature emerges: in the disc
an m = 2 mode replaces the lower m = 9−10 mode (which still
persists in the star). The low �p ≈ 0.15 of this mode (Fig. C2d)
places its corotation radius at rc ≈ 3.5, while its ILR is at rILR ≈
2.3, see equation (12). Most of the mode power is concentrated at r
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Figure C4. Same as Fig. 4, but for the M = 12 simulation M12.FR.r.a.

� 2.5, which is compatible with it being trapped interior to the rILR.
Despite its radial confinement close to the star, this mode is not a
lower mode: its location in the dispersion relation (an orange cross
in the lower left-hand corner of Fig. 2b) is far from the lower mode
branch. In fact, it falls near the upper mode branch of the dispersion
relation, but this mode’s morphology is also incompatible with the
classical upper mode behaviour, e.g. its kr(r) is non-zero as r → 1.
This mode is discussed in more detail in Section 8.2.1, where we
show that it has the same nature as the m = 6 mode confined to the
inner disc in theM = 9 run described in Section 5. Similar persistent
low m = 2−3 patterns in the disc have been previously reported in
Belyaev et al. (2012). The m = 2 mode persists almost until the end
of the simulation, when it becomes more chaotic and a strong m = 1
perturbation (discussed in Section 6) develops on top of it.

Other runs carried out for similar values of M ranging from 5 to 8
paint a picture similar to the M = 6 case: lower modes dominating
inside the star and the trapped low-m modes (e.g. m = 2 for M = 5
and m = 4 for M = 8) dominating in the disc, typically with very
low �p allowing them to extend far out.

An interesting exception is the M = 7 case, in which the disc
is dominated for the majority of the run by a small number, 2–5,
of global vortex-driven spiral arms (see Fig. 6d), similar to what
is observed in the end of M = 9 run described in Section 5.1 (
see Section 6 for a discussion). This run also features a superposed
prominent m = 16 lower mode (twice the m of the lower mode
dominating inside the star) locked in the resonant cavity 1 < r � 1.8,
which makes the M = 7 run look even more distinct from M = 6
or 8 simulations. These observations demonstrate that a particular
mix of modes emerging in simulations is not a strictly monotonic
function of M .

Figure C5. Same as Fig. 3 but for the M = 15 simulation M15.FR.r.a.
The radial range (r < 1.4) is considerably smaller in Cartesian maps. See
Section C4 for details.

C3 M = 12 runs

Runs at Mach number M = 12 (performed at the resolution of
4096 × 4096) show surprisingly little variation in the outcomes,
regardless of the initial conditions. Below we will briefly describe
the evolution of the system in the M12.FR.r.a simulation.

In the beginning (at t/2π = 50) a lower m = 9 mode dominates
inside the star, see Fig. C3. At the same time, in the disc we see
multiple global spiral arms, which are atypical for lower modes

MNRAS 509, 440–462 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/1/440/6396757 by guest on 25 April 2024



Modes in the boundary layer 461

10−4

10−3

A
m

pl
it

ud
e

(a)r = 0.97

100 200 300 400 500
Time/2π

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

d

(c)

7

8

9

12

13

19

(b)r = 1.20

100 200 300 400 500
Time/2π

(d)

Figure C6. Same as Fig. 4, but for the M = 15 simulation M15.FR.r.a.

but are very similar in appearance to the disc modes present in the
beginning of the M = 9 run, see Fig. 3(Ab), (Ac) and Section 6.

By t/2π = 125−150 perturbation pattern changes and the domi-
nance switches to the global lower m = 16 mode. This mode has a
low �p ≈ 0.45, which guarantees a substantial radial extent of the
resonant cavity in which the mode is trapped: its corotation radius is
rc ≈ 1.7. This mode is very stable and persists roughly until t/2π =
450, see Fig. C3.

Beyond that point, by 550 orbits, the lower m = 16 mode fades
away, and the dominant mode inside the star becomes the m = 11
lower mode with �p ≈ 0.65 and ILR at rILR ≈ 1.25. However, in
the disc we do not find 11 criss-crossing waves confined between the
star and rILR, as one would expect for a global m = 11 mode. Instead,
we see an m = 7 perturbation pattern confined to 1 < r � 1.2. This
is quite reminiscent of the situation described in Section C2, where
we found the disc to feature an unusually low-m mode (m = 2 in that
case) trapped near the stellar surface, simultaneously with a higher-m
lower mode inside the star.

In addition to the m = 7 mode trapped near the star, Fig. C3 l,o,r
also reveals presence of the large-scale global spiral arms extending
to the outer boundary of our domain. Although somewhat less

coherent, these spirals are similar to the spiral arms found closer
to the end of M = 9 run, see Fig. 3. They are discussed further in
Section 6.

Remarkably, all other M = 12 runs show very similar regular
behaviour, down to minor details: a dominant m = 9 lower mode with
high �p ≈ 0.8 in the beginning, changing around t/2π = 125−175
to lower m = 16 mode confined between r = 1 and r ≈ 1.5−1.6.
Only the time at which m = 16 lower mode fades away shows some
variation, roughly between t/2π = 400 and 550.

The regular and stable behaviour exhibited by M = 12 runs is
rather unique. The M = 10, 11 runs exhibit the behaviour which is
much closer to M = 9 simulations. At the same time M = 13, 14
runs are also very different from M = 12 ones, and resemble M =
15 run, see next.

C4 M = 13 − 15 runs

Simulations for M = 13 − 15 have resolution 8192 × 8192 and
initial conditions (‘r.a’) identical to those used in the M = 6, 9, 12
runs discussed earlier. We describe their outcomes using theM = 15
run M15.FR.r.a, see Fig. C5.

Pretty much all the time since the start of the simulation, after
the sonic instability reaches saturation, and until the very end, the
star supports a strong upper mode with m varying between 12 and
25 at different moments of time (e.g. m = 19 for t/2π > 200),
see Fig. C6. In the disc we see a set of global spiral arms, but their
number (which evolves in time) does not coincide with the azimuthal
wavenumber m of the upper mode present in the star (it is typically
lower than m); thus, they cannot be the manifestation of a global
upper mode in the star–disc system (see Section 6 for a discussion
of their origin). At later times the arms become less coherent and
only one or two reasonably strong arm-like structures are present
in the end of the simulation (accompanied by numerous weaker
arms).

Also, after ∼275 orbits the disc exhibits multiple crossing wakes
with positive and negative kr, locked inside the resonant cavity near
the stellar surface, at 1 < r � 1.17. Despite the appearance similar to
the lower mode in the disc, we interpret these waves to be the high-
M analogues of the low-m modes trapped near the stellar surface
that we saw in other runs at lower M, see Figs C1 (m = 2 after
300 orbits for M = 6), C1 (m = 7 at 550 orbits for M = 12), and
Section 8.2.1. A notable difference with the lower-M runs is that
for M = 15 the azimuthal wavenumber of these wakes is around
20, much higher than at lower M .

A very similar evolutionary sequence is observed in the M =
13, 14 runs – persistent dominance of the upper modes inside the star,
evolving pattern of the global spirals in the disc, multiple crossing
wakes at r � 1.2. The only notable trend that we see is the increase
of the azimuthal wavenumber of the observed features with growing
M , see Section 8.3.
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Table C1. See Section 4.2 for descriptions of seed type.

Name M Rmin NR Nϕ Seed type

M05.FR.mix.a 5 0.608 1024 1024 block-phased-mixed
M05.FR.r.a 5 0.608 1024 1024 block-random

M06.FR.mix.a 6 0.691 1024 1024 block-phased-mixed
M06.FR.prime.a 6 0.691 1024 1024 prime modes
M06.FR.r.a 6 0.691 1024 1024 block-random
M06.FR.random.a 6 0.691 1024 1024 globally random
M06.HR.mix.a 6 0.691 2048 2048 block-phased-mixed
M06.HR.mix.b 6 0.691 2048 2048 block-phased-mixed
M06.HR.prime.a 6 0.691 2048 2048 prime modes
M06.HR.r.a 6 0.691 2048 2048 block-random
M06.HR.r.b 6 0.691 2048 2048 block-random
M06.HR.r.c 6 0.691 2048 2048 block-random

M07.FR.r.a 7 0.752 2048 2048 block-random

M08.FR.r.a 8 0.799 2048 2048 block-random

M09.LR.mix.a 9 0.834 2048 2048 block-phased-mixed
M09.LR.mix.b 9 0.834 2048 2048 block-phased-mixed
M09.LR.prime.a 9 0.834 2048 2048 prime modes
M09.LR.r.a 9 0.834 2048 2048 block-random
M09.LR.r.b 9 0.834 2048 2048 block-random
M09.LR.r.c 9 0.834 2048 2048 block-random
M09.LR.random.a 9 0.834 2048 2048 globally random
M09.FR.mix.a 9 0.834 4096 4096 block-phased-mixed
M09.FR.mix.b 9 0.834 4096 4096 block-phased-mixed
M09.FR.prime.a 9 0.834 4096 4096 prime modes
M09.FR.r.a 9 0.834 4096 4096 block-random
M09.FR.r.b 9 0.834 4096 4096 block-random
M09.FR.r.c 9 0.834 4096 4096 block-random
M09.FR.random.a 9 0.834 4096 4096 globally random
M09.HR.r.a 9 0.834 8192 8192 block-random

M10.FR.r.a 10 0.861 4096 4096 block-random

M11.FR.r.a 11 0.882 4096 4096 block-random

M12.FR.mix.a 12 0.899 4096 4096 block-phased-mixed
M12.FR.prime.a 12 0.899 4096 4096 prime modes
M12.FR.r.a 12 0.899 4096 4096 block-random
M12.FR.r.b 12 0.899 4096 4096 block-random
M12.FR.random.a 12 0.899 4096 4096 globally random

M13.FR.r.a 13 0.913 8192 8192 block-random

M14.FR.r.a 14 0.924 8192 8192 block-random

M15.FR.r.a 15 0.933 8192 8192 block-random

This paper has been typeset from a TEX/LATEX file prepared by the author.
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