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A B S T R A C T 

The Advanced LIGO and Virgo gra vitational-wa ve observatories ha ve opened a ne w windo w with which to study the inspiral and 

mergers of binary compact objects. These observations are most powerful when coordinated with multimessenger observations. 
This was underlined by the first observation of a binary neutron star merger GW170817, coincident with a short gamma-ray 

burst, GRB170817A, and the identification of the host galaxy NGC 4993 from the optical counterpart AT2017gfo. Finding the 
f ast-f ading optical counterpart critically depends on the rapid production of a sky map based on LIGO/Virgo data. Currently, a 
rapid initial sky map is produced, followed by a more accurate, high-latenc y, � 12 h sk y map. We study optimization choices of 
the Bayesian prior and signal model, which can be used alongside other approaches such as reduced order quadrature. We find 

these yield up to a 60 per cent reduction in the time required to produce the high-latency localization for binary neutron star 
mergers. 

Key w ords: gravitational w aves – neutron star mergers. 

1

T
t
U
(  

e  

a
2
G
a  

o
&  

i
v
a  

m
o

2  

2  

e
(  

2  

m

�

s  

o
m  

n
t  

p
O
r
l  

a  

a  

‘  

o  

s
t  

M  

s
d  

i
 

t  

F
p  

t
f

©
P

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/3/3957/6409156 by guest on 10 April 2024
 I N T RO D U C T I O N  

ransient multimessenger astronomy is delivering new insights into 
he nature of compact objects, the cosmological properties of our 
niverse, and general relativity. During their second observing run 

O2), the Advanced LIGO (Aasi et al. 2015 ) and Virgo (Acernese
t al. 2015 ) detectors observed gra vitational-wa ve emission from
 binary neutron star (BNS) merger, GW170817 (Abbott et al. 
017a ). This observation coincided with a short gamma-ray burst, 
RB170817A (Goldstein et al. 2017 ), and follow-up campaigns 

cross the electromagnetic spectrum (Abbott et al. 2017b ) led to the
bservation of an optical counterpart AT2017gfo (Perego, Radice 
 Bernuzzi 2017 ; Valenti et al. 2017 ; Yang et al. 2017 ) and

dentification of the host galaxy NGC 4993. This multimessenger 
iew of the ev ent pro vided critical insights into multimessenger 
stronomy, opening a new path by which to study and understand the
ergers of neutron star binaries, short gamma-ray bursts, and their 

ptical counterparts. 
The LIGO and Virgo observatories, joined by KAGRA (Aso et al. 

013 ), have now completed their third observing run (Abbott et al.
021a ). During this observing run, open public alerts were issued (see
mfollow.docs.ligo.org), enabling numerous follow-up campaigns 
see e.g. Coughlin et al. 2019 ; Ackley et al. 2020 ; Antier et al.
020 ; Gompertz et al. 2020 ). So far, there has yet to be a bona fide
ultimessenger observation from the O3 observing run [however, 
 E-mail: gregory.ashton@ligo.org 
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ee Graham et al. ( 2020 ) and Ashton et al. ( 2020 ) for a discussion
f a speculative connection between the binary black hole (BBH) 
erger GW190521 (Abbott et al. 2020b ) and an active galactic

ucleus flare]. In preparation for the fourth observing run (estimated 
o be 2022 June), the detectors are currently being upgraded with a
rojected BNS inspiral range of 190 Mpc (The LSC-Virgo-KAGRA 

bservational Science Working Groups 2020 ). During this observing 
un, the Advanced LIGO, Virgo, and KAGRA (HLVK) network is 
ikely to observe tens of transient systems containing a neutron star
nd hundreds of BBH systems. BNS mergers are known to produce
 multimessenger counterparts (Abbott et al. 2017b ) known as a
kilonova’ (Li & Paczy ́nski 1998 ). As yet, no unambiguous detection
f a neutron star–black hole (NSBH) binary has been made; ho we ver,
uch systems may also produce an electromagnetic counterpart (Lat- 
imer & Schramm 1974 ; Li & Paczy ́nski 1998 , see also Fern ́andez &

etzger 2016 for a re vie w). As such, mergers containing a neutron
tar tend to be prioritized by follow-up campaigns; however, as 
emonstrated by Graham et al. ( 2020 ), the next big surprise may
nstead come from a BBH merger. 

Online gra vitational-wa v e searches are able to identify ev ents in
he data and analyse their significance in a time-scale of O(s) .
ollowing the identification, the event is automatically vetted and 
ublished in a GCN notification in a time-scale of O(10 s) . Optical
elescopes then perform (often automated) searches for the rapidly 
ading, time-scales of O(h) , electromagnetic transient. The ability to 
dentify the transient is highly dependent on the three-dimensional 
3D) source localization. [Here, we parametrize in terms of the 
ight ascension (RA), declination (Dec.), and luminosity distance 
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 L .] In the first three observing runs, results from two methods
or producing localizations were published. First, the low-latency
AYESTAR (Singer & Price 2016 ; Singer et al. 2016 ) algorithm
roduces a 3D localization in O(min) utilizing the maximum-
ikelihood template from the search pipelines. Secondly, the high-
atency LALINFERENCE (Veitch et al. 2015 ) algorithm uses stochastic
ampling to construct the full posterior probability distribution
nd produces results in a time-scale of O( > 12 h) . While for the
ajority of systems, differences between the low-latency and high-

atency localization are anticipated to be small (Abbott et al. 2018a ),
he high-latency localization is preferable since it can include an
mpro v ed physical description of the signal and noise. Moreo v er,
 systematic study (Morisaki & Raymond 2020 ), comparing the 
AYESTAR algorithm with a stochastic-sampling-based approach

discussed below), demonstrates that BAYESTAR can o v erestimate
he localization uncertainty when the best-fitting parameters of the
ignal are outside the online-detection-pipeline template bank. This
an happen, for example, if the online pipeline does not include the
pin precession of the source. 

Constructing the full posterior probability distribution is a com-
utationally challenging task. Stochastic sampling methods such as
arkov chain Monte Carlo (Metropolis et al. 1953 ; Hastings 1970 )

nd nested sampling (Skilling 2006 ) require ∼10 6 –10 8 e v aluations
f the likelihood to analyse gra vitational-wa ve signals (Christensen
 Meyer 1998 ; Veitch & Vecchio 2008 ). Typically, each e v aluation

f the likelihood is dominated by the time required to model the
ource. This time varies between a few milliseconds and several
ens of seconds, depending on the signal duration and sophistication
f the waveform model. As such, the wall time required to draw a
ufficient number of samples to approximate the posterior can be
etween several hours and many tens of days. A number of advances
ave been made in reducing the wall time: 

(i) Reduced-or der-quadratur e (ROQ) methods (Antil et al. 2012 ;
anizares et al. 2013 , 2015 ; Smith et al. 2016 ; Qi & Raymond
021 ) interpolate the likelihood to high accuracy and can speed
p e v aluation times by factors of se veral hundred. While ROQ-
ased methods have enjoyed considerable success (see e.g. Abbott
t al. 2020c ), they do require that the ROQ basis be pre-constructed,
ften at a significant computational cost. As such, their utility can
e limited for online production of the 3D localization if the pre-
omputed basis set does not co v er the required parameter space.
orisaki & Raymond ( 2020 ) recently demonstrated that so-called

ocused-R OQ (FR OQ), in which many bases covering narrow ranges
f the parameter space offer greater speed-ups still: with gains of up
o 10 4 seen for low-mass systems. 

(ii) Heterodyned likelihoods (Cornish 2010 , 2021 ), also known
s the relative-binning method (Zackay, Dai & Venumadhav 2018 ;
instad & Brown 2020 ), exploit the computation for likelihoods of
imilar waveforms, whose phases and amplitudes differ smoothly
ith frequency, by pre-computing frequency-binned overlaps of the
est-fitting waveform with the data. These methods do not require a
re-computation step and offer speed-ups of up to ∼10 4 in likelihood
 v aluation times. The accuracy of these approaches depends on
he expansion order: Just a few terms are required to sufficiently
pproximate the likelihood. Demonstrations of this method are very
romising, but work is needed to verify the accuracy and limitations
f the method against the full likelihood. 
(iii) Then, there is brute-force par allelization . P arallelization can

e done at the level of the likelihood itself (Talbot et al. 2019 ),
he stochastic sampler, or using multiple independent stochastic
amplers. The latter two aspects have been generously employed in
NRAS 509, 3957–3965 (2022) 
tandard inference packages (Veitch et al. 2015 ; Ashton et al. 2019 ;
iwer et al. 2019 ) using the few tens of cores available on typical
entral processing units, while Smith et al. ( 2020 ) demonstrated
he capacity to scale to the many hundreds of cores available in
igh-performance computers using the dynesty (Speagle 2020 )
ested sampling algorithm. Such approaches are useful as they do
ot require pre-computation and make no requirements about the
 aveform itself. Unlik e the other techniques to reduce wall time,

his technique is not ‘free’ (achieved through clever design) – it
equires additional computing resources. 

(iv) The RIFT family of stochastic samplers (Pankow et al. 2015 ;
ange, O’Shaughnessy & Rizzo 2018 ) employs aspects of brute-

orce parallelization (with extensions to graphical processing units;
ysocki et al. 2019 ) alongside pre-computing aspects of the wave-

orm in order to carry out inference with iterative fitting. 
(v) Significant speed-ups may be realized by the use of machine-

earning-based approaches. Such approaches do not apply the stan-
ard principles of stochastic sampling; instead, the algorithm is
re-trained on example of signals in noise and can then produce
osterior samples within a few seconds (Gabbard et al. 2019 ; Green,
impson & Gair 2020 ; Green & Gair 2021 ). Such algorithms present
 significant opportunity as they could handle non-Gaussian noise
nd arbitrarily complex waveforms by developing realistic training
ets. For these approaches, the optimizations discussed herein are not
irectly applicable, in the sense that they do not consider a specific
rior or waveform model during the analysis. Ho we ver, the lessons
earned can be applied in selecting the complexity of training data. 

(vi) Finally, there are many other approaches to speeding up
tochastic sampling such as the use of machine-learning-coupled
ested sampling (Williams, Veitch & Messenger 2021 ), adaptive
requency banding (Morisaki 2021 ), and representing the signals in
he time–frequency domain (Cornish 2020 ). 

In the fourth observing run, one (or many) of these approaches may
e used to reduce the latency of full parameter-estimation results.
o we ver, the wall time they require (or the training time in the case
f machine-learning-based approaches) still depends on the choice of
aveform model and the astrophysical prior. In this work, we study
ow to optimize the choice of model and prior to reduce the wall
ime. We will develop these ideas in the context of ROQ methods and
arallelization, but the ideas apply equally to many of the methods
isted abo v e. 

This paper is organized as follows. In Section 2, we describe the
ptimization of the prior, and then in Section 3, we validate which
f these optimizations produces acceptably small bias and calculate
he impro v ement in wall time. In Section 4, we discuss optimization
f the waveform model. In Section 5, we conclude with a discussion
n how these choices can be used during the next observing run to
inimize the time to produce localization. 

 OPTIMIZED  C H O I C E S  F O R  P R I O R S  

 compact binary coalescence signal is described by up to 10 intrinsic
arameters and 7 extrinsic parameters. The intrinsic parameters are
hirp mass M , mass ratio q , component spin magnitude ( a 1 for the
rimary hea vier -mass object and a 2 for the secondary lighter -mass
bject), and four angles describing the spin orientation ( θ1 , θ2 , φ12 ,
nd φJL ). For systems containing one or more neutron stars, the
ntrinsic parameters also include the neutron star tidal deformability
 1 and � 2 . The extrinsic parameters are the 3D localization coor-

inates (RA, Dec., d L ), the polarization angle of the source ψ , the
PS reference time t geo of the merger, the angle between the total
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Table 1. Definition of the astrophysical, low-spin ( a i < 0.05 ), zero-spin 
( a i = 0 ), and zero-spin and equal-mass ( a i = 0, q = 1 ) priors investigated 
in this work. 

Astrophysical a i < 0.05 a i = 0 a i = 0, q = 1 

a 1 [0, 0.05] [0, 0.05] 0 0 
a 2 [0, 0.05] [0, 0.05] 0 0 
q [0.125, 1.0] [0.125, 1] [0.125, 1] 1 
� 1 [0, 5000] 0 0 0 
� 2 [0, 5000] 0 0 0 

We define a i and � i to be the absolute spin magnitude and tidal deformability 
of the i th component in the binary and q ≤ 1 to be the mass ratio. For 
the astrophysical prior and low-spin prior, the spins are fully precessing 
but restricted in magnitude. For all other parameters, the priors follow the 
standard distributions described in table E1 of Romero-Shaw et al. ( 2020 ). 
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ngular momentum and the line of sight θ JN , and the binary phase φ
defined at a fixed reference frequency). [See table E1 of Romero-
haw et al. ( 2020 ) for a detailed description of these parameter and
lternativ e parametrizations.] 1 F or stochastic samplers, the number 
f likelihood e v aluations (and hence the wall time) depends on the
omplexity of the posterior. As a general rule of thumb, the number
f parameters is a good leading-order description of the complexity: 
ore parameters require more likelihood e v aluations and hence a 

onger wall time. Optimizing the choice of prior can help minimize 
he wall time while ensuring the result remains unbiased. 

First, we discuss different options for the spin prior. In an aligned-
pin prior, the source model is restricted to solutions excluding 
recession (Schmidt, Ohme & Hannam 2015 ). In a low-spin model, 
he magnitudes of the spin are restricted (typically to a dimensionless
pin of 0.05; Abbott et al. 2018b ). The upper end of the low-spin prior
orresponds to a conserv ati ve limit on the ef fecti ve spins of pulsars
n known Galactic double neutron stars that are capable of merging 
ithin a Hubble time (Zhu & Ashton 2020 ). Further, one can neglect

he effects of spin entirely. It was shown by Farr et al. ( 2016 ) that the
D localization for low-spin BNS sources is unbiased given a zero- 
pin prior. Ho we ver, black hole (BH) binaries can sustain significant
imensionless spin (see e.g. Abbott et al. 2021c ). 
Secondly, we examine the priors for tidal parameters. For BNS and 

SBH binaries, the tidal parameters are relatively poorly measured 
Abbott et al. 2018b , 2020c ). A straightforward prior choice is to
eglect tidal parameters (in effect, we set � 1 = 0 and � 2 = 0, i.e.
hat both components are BHs). The logic here is that, if we cannot
ccurately measure the tides, the tidal parameters probably do not 
ave a strong effect on the sky localization. 
Thirdly, we consider the prior for mass ratio. For the two confident

NS events in Gra vitational-Wa ve Transient Catalog 2 (Abbott 
t al. 2021a ), the masses of the two components are nearly equal.
nder the astrophysical low-spin prior, the mass ratio is constrained 

o be between 0.7–1 and 0.8–1 for GW170817 and GW190425, 
espectively (Abbott et al. 2018b , 2020c ). This suggests another 
otential prior optimization: restricting to equal-mass systems q = 1. 
We investigate these optimization strategies. In Table 1 , we list

our prior distrib utions. A precessing, b ut low-spin astrophysical 
rior captures our broad expectation for the typical population 
arameters of neutron star binaries; it is from this prior that we
raw simulation parameters. The remaining three priors combine 
ncreasing restrictions on the spin and mass ratio. For all three 
hoices, we assume zero tidal deformability: This prior optimization 
as already used during the third observing run for high-latency 3D 

ocalization. 

 VA LIDATION  O F  P R I O R  OPTIMIZATIO N  

he a i < 0.05 , a i = 0 , and a i = 0, q = 1 priors defined in
able 1 increasingly constrain the astrophysical properties of the 
ource. Almost certainly, these o v erconstrain the source properties. 
 or e xample, GW190425 shows some support for spin effects 
nd is unlikely to be equal mass while the data from GW170817
 In addition, there may be up to 20 parameters per detector to describe the 
etector calibration [see Cahillane et al. ( 2017 ) for a description, Romero- 
haw et al. ( 2020 ) for a discussion of how these are marginalized in the 
ILBY software used herein, and Payne et al. ( 2020 ) and Vitale et al. ( 2021 ) 
or new more physical approaches to marginalizing calibration uncertainty]. 
o we v er, P ayne et al. ( 2020 ) suggest that the effect of calibration uncertainty 

s likely to be negligible during the advanced-detector era, and that calibration 
ncertainty can be added to inference calculations in post-processing. 

p  

t  

t  

q  

t
i  

v  

(  

v  
o constrain the tidal deformability. The question is: Do these 
nphysical prior constraints bias the 3D sky localization? To answer 
his question, we perform tests on simulated data and look at the
ocalization of detections during previous observing runs that have 
he potential for electromagnetic counterparts. 

.1 Parameter–parameter test 

or our first test, we simulate 100 BNSs using the IMRPHE-
OMPV2 NRTIDAL waveform (Dietrich et al. 2019 ). The simulated 
ignals have spin magnitudes, mass ratios, and tidal deformability 
arameters drawn from the astrophysical prior (see Table 1 ). For the
emaining parameters, we draw them from the standard astrophysical 
istributions. 
The signals are simulated in 128 s of data using the projected

4 sensitivity coloured Gaussian noise (The LSC-Virgo-KAGRA 

bservational Science Working Groups 2020 ) for the HLV detector 
etwork. Signals with a network signal-to-noise ratio (S/N) less than 
2 are discarded, with replacement; this ensures that the injection 
et reflects the population of events from which we are likely to
bserve electromagnetic counterparts: high-S/N systems with good 
ky localization. We analyse the simulated data sets using the 
MRPHENOMPV2 (Schmidt, Hannam & Husa 2012 ; Hannam et al. 
014 ; Khan et al. 2016 ) waveform model (which excludes tidal
eformability), an ROQ basis (Smith et al. 2016 ), and the DYNESTY

ested sampling algorithm as implemented in BILBY (Ashton et al. 
020 ). The ROQ basis is limited to chirp mass values of 1.42–
.60 M �; as such, we limit the prior distribution on chirp mass (and
imilarly the distribution from which we draw simulation parameters) 
o this range. 

We find that for all choices of prior specified in Table 1 , the 3D
ocalization is unbiased. We test this using a parameter–parameter 
PP) test (Cook, Gelman & Rubin 2006 ; Talts et al. 2018 ) o v er the
00 simulated signals. In Fig. 1 , we show the results of the PP test
or the most restrictive zero-spin and equal-mass ( a i = 0, q = 1 )
rior. Qualitatively, bias manifests in a PP plot as a deviation in
he parameter curve from the diagonal: For all parameters in Fig. 1 ,
he curves remain inside the 3 σ uncertainty region. One way to
uantify the bias from a PP plot is to calculate the p -value expressing
he probability that the fraction of events in a particular confidence 
nterval is drawn from a uniform distribution. We calculate the p -
alue using the Kolmogoro v–Smirno v test as implemented in SCIPY

Jones et al. 2001 ). For the most restrictive a i = 0, q = 1 prior, the p -
alues are 0.122, 0.551, and 0.710 for Dec., d L , and RA, respectively.
MNRAS 509, 3957–3965 (2022) 
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Figure 1. A PP test of the 3D sky localization parameters of 100 sim- 
ulated BNS signals using the a i = 0, q = 1 prior. We simulate signals 
drawn from the astrophysical prior (see Table 1 ) using the IMRPhe- 
nomPv2 NRTidal waveform model and analyse the data using the IM- 
RPhenomPv2 waveform model. The grey region indicates the 1 σ , 2 σ , and 
3 σ confidence interv als. Indi vidual p -v alues for each of the 3D localization 
parameters are shown in the legend. 

Table 2. The fraction of the truth value out of 90 per cent and 68 per cent 
credible intervals for a i < 0.05 and a i = 0, q = 1 priors for the 100 simulated 
BNS signals discussed in Section 3.1. 

Model Fraction Dec . RA d L (Mpc) 

a i < 0.05 Out of 90 per cent 9 per cent 12 per cent 10 per cent 
Out of 68 per cent 32 per cent 33 per cent 31 per cent 

a i = 0, q = 1 Out of 90 per cent 13 per cent 12 per cent 9 per cent 
Out of 68 per cent 37 per cent 35 per cent 21 per cent 

T  

n
 

c  

6  

i  

6  

r  

t  

a
 

1  

(  

o  

f  

a  

t
 

q  

s  

a  

Figure 2. The S/N of simulated signals and the measured wall time in hours 
for the 100 simulated BNS events obtained using the a i = 0, q = 1 (blue) and 
a i < 0.05 (orange) priors studied in Section 3.1. All wall times are e v aluated 
on an Intel Gold 6140 CPU processor using 32 threads. 
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hat none of these p -values are small �0.05 indicates that there is
o measurable sign of bias. 
As an additional way to understand the bias, in Table 2 , we

alculate the fraction of events outside of the 90 per cent and
8 per cent credible intervals for each prior. For an unbiased
nference, we would expect the fraction out of the 90 per cent and
8 per cent credible intervals to be 10 per cent and 32 per cent,
especti vely. The dif ference then provides a quantitati ve estimate of
he bias. For the a i < 0.05 prior, this is up to 2 per cent, while for the
 i = 0, q = 1 prior, it is up to 11 per cent. 
In Appendix A, we show additional two PP plots for the a i = 0, q =

 prior for a two-detector network (Fig. A1 ) and for 500 injections
Fig. A2 ). Furthermore, in Table A1 , we list the p -values and fractions
f truth parameters that are out of the 90 per cent credible intervals,
or 50, 100, 300, and 500 injections. These illustrate that our results
re robust against the choice of detector network configuration and
he number of injections. 

To compare the wall time between the a i < 0.05 and a i = 0,
 = 1 model, in Fig. 2 , we plot the optimal S/N of the simulated
ignals and the sampling time. As expected for a nested sampling
lgorithm, the sampling time is correlated with the signal S/N.
NRAS 509, 3957–3965 (2022) 
The sampling time is generally proportional to the ratio of prior
o posterior volume (Speagle 2020 ); at a fixed prior volume, the
osterior volume decreases as the S/N increases, leading to longer
all times.] The mean sampling times for the a i < 0.05 and a i =
, q = 1 priors are ∼4.5 and 3.5 h, respectively. This demonstrates
hat, in addition to the low-spin savings already identified by Farr
t al. ( 2016 ), utilizing an equal-mass prior can provide a further
20 per cent performance impro v ement. 

.2 Implications for BNS and NSBH localization 

o date, the LIGO and Virgo detectors have observed two BNS
vents, GW170817 (Abbott et al. 2017a ) and GW190425 (Abbott
t al. 2020c ), and two NSBH events, GW200105 and GW200115
Abbott et al. 2021d ). These systems are likely to be accompanied
y a rapidly fading electromagnetic counterpart and are hence
rioritized for a follow-up by optical telescopes (Fern ́andez &
etzger 2016 ). As such, we have the most to gain in optimizing

he production of the high-latency 3D localization. 
To study our optimized priors for BNS signals, we re-analyse the

ublic data (Abbott et al. 2021b ) for the BNS events GW170817
nd GW190425 using the a i = 0, q = 1 prior and the IMR-
HENOMPV2 waveform model. In Figs 3 and 4 , we plot the sky

ocalization uncertainty from our re-analysis, the O3 low-latency
 BAYESTAR ), and the O3 high-latency ( LALINFERENCE ) results for
W170817 and GW190425, respectively. 
High-latency results better constrain the sky localization: This

an be seen in Table 3 where we report the area co v erage and
as demonstrated systematically by Morisaki & Raymond ( 2020 ).
able 3 demonstrates that the a i = 0, q = 1 prior provides an
qui v alent constraint on the sky area to the O3 high-latency results for
NS systems. We conclude then that for BNS, any method attempting

o reduce the wall time of high-latency localization results (e.g. the

art/stab2977_f1.eps
art/stab2977_f2.eps
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Figure 3. Sky location uncertainty for GW170817. We show posteriors from 

the a i = 0, q = 1 prior in green, the O3 low-latency BAYESTAR analysis 
in blue, and the O3 high-latency LALINFERENCE analysis in orange. The red 
‘plus’ is the location of the identified host galaxy (Abbott et al. 2017b ). The 
solid (dashed) line represents the 90 per cent (50 per cent) credible region. 

Figure 4. Sky location uncertainty for GW190425. We show posteriors from 

the a i = 0, q = 1 prior in green, the O3 low-latency BAYESTAR analysis in 
blue, and the O3 high-latency LALINFERENCE analysis in orange. The solid 
line represents the 90 per cent credible region. 

F  

a
 

e  

h  

s  

s  

p
m  

2
f
m  

9  

l
(

 

f  

t
s  

t
A  

a
i  

o
B

3

H
N  

s  

h  

t  

a  

(  

W  

t  

l
 

f
a  

p
e  

b  

B
d  

p

4
M

I  

w  

u  

t
a
t  

m
t
u
w  

p
 

N

(
T
t
a
i  

I
l  

∼  

u
d
m  

p
T

t  

a  

0  

d
s  

t
a  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/3/3957/6409156 by guest on 10 April 2024
ROQ method; Morisaki & Raymond 2020 ) could further gain from
n optimized choice of prior. 

The obvious concern in using an optimized prior with zero spin and
qual mass is the induced bias if the detectors observe an event that is
ighly spinning or of unequal mass ratio. We have controlled this, to
ome extent, in our PP tests (Section 3.1) by allowing our simulated
ignals to be drawn from the ‘astrophysical prior’ (cf. Table 1 ). In
articular, we consider mass ratios down to 1/8. In comparison, the 
ass ratios for two recent NSBH events are around 1/5 (Abbott et al.

021d ). The spin measurements are dominated by the contribution 
rom the more massive BHs: Whereas the dimensionless BH spin 
agnitude a 1 is constrained to less than 0.23 in GW200105 at the

0 per cent credible level, a 1 could be as high as 0.5 (though with a
arge uncertainty and still being consistent with zero) for GW200115 
Abbott et al. 2021d ). 

This suggests that the a i = 0, q = 1 prior may be appropriate
or NSBH systems, provided the mass ratio is not too extreme and
hat the BH does not have significant spin. Nevertheless, a real 
ignal that falls outside of our astrophysical prior may be one of
he most exciting opportunities for an electromagnetic follow-up. 
s such, while proposing the use of the a i = 0, q = 1 prior, we

lso recommend parallel computations be made with a broad non- 
nformative prior. In most instances, this will lead to a small amount
f wasted computation as the localization will be essentially identical. 
ut, this provides a safeguard against ‘overoptimization’. 

.3 Implications for BBH localization 

aving studied prior optimization for the localization of BNS and 
SBH e vents, we no w turn to BBH e v ents. BBH systems hav e

ignificant spin (Abbott et al. 2021c ) and have been observed with
ighly asymmetric masses (Abbott et al. 2020b , d ). This suggests that
he optimized priors may perform poorly. To test this, we apply the
 i = 0 prior to the public data (Abbott et al. 2021b ) for the GW190814
Abbott et al. 2020d ) and GW190412 (Abbott et al. 2020a ) events.

e report the credible intervals in Table 3 . For both events, we find
hat the a i = 0 prior constrains the posterior to a region almost as
arge as the O3 low-latency results. 

In Figs 5 and 6 , we show the sky localization for the a i = 0 model
or GW190412 and GW190814 and compare these to the high- 
nd low-latency results. Here we see in detail that the a i = 0 prior
erforms about as well as the low-latency localization (finding an 
xtra mode not present in the high-latency result, and overall a much
roader area). From this, we conclude that optimizing the prior for
H systems (which can exhibit significant spin and mass asymmetry) 
oes not perform as well as a high-latency analysis with a complete
rior specification. 

 OPTI MI ZI NG  T H E  C H O I C E  O F  WAV E F O R M  

O D E L  

n Section 3, we demonstrated that for BNS and NSBH signals
ith small spins and moderate mass ratios, the sky localization is
nbiased by an a i = 0, q = 1 prior. We analysed the data using
he IMRPhenomPv2 waveform approximant model, which models 
 fully precessing BBH merger. (Waveform approximants allow 

he generation of a predicted signal to within a few to tens of
illiseconds. Their computation time is typically determined by 

heir level of sophistication: Approximants that better model the 
nderlying physics typically are slower to generate.) In this section, 
e aim to investigate if simpler waveform models can be used in
lace of more physically plausible models for localization. 

In Table 4 , we provide a breakdown of the timing of the IMRPHE-
OMPV2 waveform approximant, the IMRPHENOMPV2 NRTIDAL 

used to simulate signals in Section 3.1), and the non-spinning 
aylorF2 (Buonanno et al. 2009 ) waveform, which models only 

he inspiral of non-spinning point particles. The TAYLORF2 is not 
s physically accurate as the IMRP waveforms, which include the 
nspiral, merger, and ring-down (and tidal effects in the case of
MRPhenomPv2 NRTidal ) of precessing binary systems. This 

ack of physics translates into a likelihood, which can be e v aluated
30 per cent faster than the IMRPHENOMPV2 waveform. If we are

sing a non-spinning and equal-mass prior, then the only remaining 
ifference between TAYLORF2 and IMRPHENOMPV2 is the physical 
odelling of the merger and ring-do wn. Ho we ver, the localization is

redominantly determined by triangulation from the inspiral signal. 
his suggests a further optimization: use the TAYLORF2 waveform. 
To demonstrate that such a waveform optimization does not bias 

he result, we first look at a fiducial simulated signal. We simulate
 spinning BNS (simulation parameters: q = 0.7, a 1 = 0.04, a 2 =
.01, � 1 = 1500, � 2 = 750, and d L = 150 Mpc ) in 128 s of a two-
etector network (HL) assuming O4 design-sensitivity noise. The 
ignal has a simulated network optimal S/N of ∼18. We analyse
he signal using IMRPHENOMPV2 and TAYLORF2 waveforms under 
n a i = 0, q = 1 prior and plot the 2D sky localization in Fig. 7 .
MNRAS 509, 3957–3965 (2022) 
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Table 3. The 68 per cent credible intervals for the luminosity distance ( d L ) and sky position from our optimized priors, the 
publicly available O3 low-latency software ( BAYESTAR ), and O3 high-latency software ( LALINFERENCE ). 

Parameters a i = 0, q = 1 a i = 0 O3 low latency O3 high latency 

GW170817 (BNS) d L (Mpc) 39 + 6 −9 – 40 + 8 −8 40 + 8 −14 
Area (deg 2 ) 16 – 31 16 

GW190425 (BNS) d L (Mpc) 158 + 43 
−46 – 155 + 45 

−45 156 + 41 
−41 

Area (deg 2 ) 8012 – 10183 7461 

GW190814 (BBH/NSBH) d L (Mpc) – 276 + 54 
−69 236 + 53 

−53 267 + 52 
−52 

Area (deg 2 ) – 37 38 23 

GW190412 (BBH) d L (Mpc) – 738 + 237 
−211 812 + 194 

−194 734 + 138 
−173 

Area (deg 2 ) – 142 156 110 

Below the event name, we give the credible source classification. For BNS events, we use the optimized a i = 0, q = 1 prior, 
while we use the a i = 0 for events containing a BH. We note that some of the reduction in the localization of between the 
low-latenc y and high-latenc y results for GW170817 arises from recalibration of the data from the Virgo interferometer (Abbott 
et al. 2019 ). 

Figure 5. Sky location uncertainty for GW190412 (Abbott et al. 2020a ). We 
show posteriors from the a i = 0 prior in green, the O3 low-latency BAYESTAR 

analysis in blue, and the O3 high-latency LALINFERENCE analysis in orange. 
The solid (dashed) line represents the 90 per cent (50 per cent) credible region. 

Figure 6. Sky location uncertainty for GW190814 (Abbott et al. 2020d ). We 
show posteriors from the a i = 0 prior in green, the O3 low-latency BAYESTAR 

analysis in blue, and the O3 high-latency LALINFERENCE analysis in orange. 
The solid (dashed) line represents the 90 per cent (50 per cent) credible region. 

Table 4. Per-likelihood and per-waveform e v aluation times. 

Waveform approximant Per-likelihood Per -wa veform 

e v aluation (ms) e v aluation (ms) 

IMRPHENOMPV2 NRTIDAL 93 ± 5 53 ± 4 
IMRPHENOMPV2 87 ± 6 47 ± 4 
TAYLORF2 60 ± 8 13.3 ± 0.7 

The per-likelihood captures the full cost of computing the likelihood in 
BILBY for simulated data lasting 128 s. The difference between the per- 
likelihood and per -wa veform values (which amounts to the BILBY data 
processing o v erhead) is ∼40 ms. F or the TAYLORF2 wav eform, the data 
processing o v erhead is the dominant contrib ution to the per -likelihood 
e v aluation. These timings apply only to the standard configuration (without 
any analytical marginalization). They can be drastically reduced by ROQ and 
heterodyne methods as discussed in Section 1. All timings are benchmarked 
on an Intel Core i7-7820HQ CPU @ 2.90 GHz. 

Figure 7. 2D sky localization of a simulated BNS system comparing the 
IMRPHENOMPV2 and TAYLORF2 waveform models with identical a i = 0, 
q = 1 priors. The red ‘cross’ indicates the simulated signal value. 
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his figure demonstrates that we do not see a systematic difference
etween the two waveforms, despite their differing physical assump-
ions. (The inferred luminosity distances show a similar level of
greement.) 

Both the IMRPHENOMPV2 and TAYLORF2 analyses require a
imilar number of likelihood e v aluations ( ∼30 × 10 6 ), but the
AYLORF2 run had an o v erall wall time 30 per cent less than that
f the IMRPHENOMPV2 analysis. This confirms that the reduction in
er-likelihood e v aluations demonstrated in Table 4 translates directly
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Figure 8. A PP test of the 3D sky localization parameters of 100 sim- 
ulated BNS signals using the a i = 0, q = 1 prior. We simulate signals 
drawn from the astrophysical prior (see Table 1 ) using the IMRPHE- 
NOMPV2 NRTIDAL waveform model and analyse the data using the TAY- 
LORF2 waveform model. The grey region indicates the 1 σ , 2 σ , and 3 σ
confidence interv als. Indi vidual p -v alues for each of the 3D localization 
parameters are shown in the legend. 
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nto wall time reductions. For reference, we also analyse the data with
he IMRPHENOMPV2 NRTIDAL waveform and a full prior (i.e. using 
he full range of spins and tidal parameters). Comparing the wall 
imes, the a i = 0, q = 1 TAYLORF2 analysis is 60 per cent faster. 

Finally, we verify that using TAYLORF2 does not introduce 
 bias. We repeat the PP test introduced in Fig. 1 , but use the
AYLORF2 waveform approximant to analyse the data. We report 

he results in Fig. 8 . Again, the 3D localization remains inside the
 σ uncertainty region. The p -values for Dec., d L , and RA are 0.227,
.592, and 0.203, respectively. 

 SUMMARY  

e investigate optimization choices for the Bayesian prior and 
ignal model used to produce sky localizations from ground-based 
ra vitational-wa ve observatories. The rapid production of these 
ky localizations is critical to aiding in the search for possible
ounterparts. For BNS systems (where we expect small spins and 
ear-equal mass), we demonstrate that a restrictive prior with zero 
pin and equal mass can reduce the number of required likelihood 
 v aluations and hence the wall time by ∼40 per cent . At the same
ime, we demonstrate that this optimized prior is unbiased, provided 
he signal does not have extreme spins or mass ratios. We also
emonstrate that using physically simpler waveform models provides 
qui v alent sky maps with up to a ∼30 per cent reduction in wall time.
aken together, for BNS and moderate-mass-ratio NSBH systems, 
ptimized choices of the prior and waveform can reduce the wall time
y up to 60 per cent. This efficiency saving can be directly applied to
he current stochastic sampling methods used in high latency (e.g. by 
mplementing the optimized prior in the LALINFERENCE or BILBY 

amplers). For BBH systems, we demonstrate that the same prior 
ptimizations do not apply: Zero-spin and equal-mass assumptions 
roduce poorer sky localization. 
We considered these optimization choices in the context of 
tandard stochastic sampling. As discussed in Section 1, a number 
f new ideas are being developed, which offer wall time speed-ups
p to factors of a few hundred. Prior and waveform optimization can
e applied to both heterodyning and brute-force parallelization. For 
OQ-based methods, a speed-up is achieved by reducing the size of

he basis (since it no longer needs to model unequal-mass or spinning
NS), resulting in a speed-up of the basis itself. For machine-

earning-based approaches, the optimizations described herein can be 
sed to simplify the training set used at the learning stage. Before the
ext observing run, we advocate for comparative head-to-head mock 
ata challenges to ascertain which method is the fastest and most
obust. This would include extending the studies of the optimized 
rior choices herein. 
Whichever sampling method is used during the O4 observing 

un, we advocate that for BNS and NSBH systems, two localization
nalyses be performed: (1) an optimized localization that uses a 
ero-spin and equal-mass prior (and an inspiral-only waveform if 
pplicable); and (2) a complete localization that uses a moderate-low- 
pin and unequal-mass configuration. The optimized localization can 
e produced in about half the time of the complete localization. We
nticipate that the two will differ only at the level of stochastic
ampling. Nevertheless, by running both analyses, it can be assured 
hat for systems with significant spins and highly asymmetric masses, 
n updated localization can be produced. 
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PPENDI X  A :  A D D I T I O NA L  DETA I LS  O N  T H E  

P  TEST  

ere, we present additional details of the PP test we perform for our
ptimized choice of priors. In Fig. A1 , we show the PP plot for the
NS signals using the a i = 0, q = 1 prior with a tw o-detector (HL) netw ork. 
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Figure A2. As Fig. A1 but for 500 injections. 
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able A1. The p -values and the fraction of the truth value out of 90 per cent
redible interval for Dec., d L , and RA with the 50, 100, 300, and 500 simulated
NS injections. 

p -values Out of 90 per cent 
 Dec. d L RA Dec. d L RA 

0 0.533 0.493 0.616 18 per cent 8 per cent 12 per cent 
00 0.122 0.551 0.710 13 per cent 12 per cent 9 per cent 
00 0.120 0.527 0.696 12 per cent 10 per cent 11 per cent 
00 0.168 0.678 0.603 13 per cent 9 per cent 11 per cent 

 i = 0, q = 1 prior for a two-detector (HL) network. In Fig. A2 , we
how the PP plot for the a i = 0, q = 1 prior for the HLV detector
etwork using 500 injections. Furthermore, we list the p -values and
he fractions of truth parameter values being out of the 90 per cent
redible intervals for the a i = 0, q = 1 prior, for 50, 100, 300, and
00 injections. 
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