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Deprojection of external barred galaxies from photometry
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ABSTRACT
The observations of external galaxies are projected to the 2D sky plane. Reconstructing the 3D intrinsic density distribution of a
galaxy from the 2D image is challenging, especially for barred galaxies, but is a critical step for constructing galactic dynamical
models. Here, we present a method for deprojecting barred galaxies and we validate the method by testing against mock images
created from an N-body simulation with a peanut-shaped bar. We decompose a galaxy image into a bulge (including a bar) and
a disc. By subtracting the disc from the original image a barred bulge remains. We perform multi-Gaussian expansion (MGE) fit
to each component, then we deproject them separately by considering the barred bulge is triaxial while the disc is axisymmetric.
We restrict the barred bulge to be aligned in the disc plane and has a similar thickness to the disc in the outer regions. The 3D
density distribution is thus constructed by combining the barred bulge and the disc. Our model can generally recover the 3D
density distribution of disc and inner barred bulge regions, although not a perfect match to the peanut-shaped structure. By using
the same initial conditions, we integrate the orbits in our model-inferred potential and the true potential by freezing the N-body
simulation. We find that 85 per cent of all these orbits have similar morphologies in these two potentials, and our model supports
the orbits that generate a boxy/peanut-shaped structure and an elongated bar similar to these in the true potential.
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1 IN T RO D U C T I O N

A large fraction of disc galaxies (30–65 per cent) have bars with
various strengths in the central regions (Eskridge et al. 2000;
Menéndez-Delmestre et al. 2007; Barazza, Jogee & Marinova 2008;
Aguerri, Méndez-Abreu & Corsini 2009; Gadotti 2009; Erwin 2018).
In the case of face-on and moderately inclined galaxies, bars appear
as non-axisymmetric perturbations in the surface density maps. For
the edge-on or highly inclined galaxies, bars are detectable by
particular kinematic signatures, e.g. a positive correlation between
mean velocity and the third Gauss–Hermite moment h3 (Bureau
& Athanassoula 2005; Li et al. 2018). Bars can redistribute the
angular momentum and energy of the disc material, so they drive the
morphological evolution of disc galaxies (Weinberg 1985; Debattista
& Sellwood 1998; Athanassoula 2003; Kormendy & Kennicutt
2004). They are well known to play a major role in the secular
galaxy evolution (Friedli & Benz 1993; Sheth et al. 2005; Gadotti
2011; Masters et al. 2011).

A bar has been included in the dynamical models for Milky Way
by the Schwarzschild orbit-superposition method (Zhao 1996; Wang
et al. 2013) and the made-to-measure (M2M) method (Hunt, Kawata
& Martel 2013; Long et al. 2013; Portail et al. 2015, 2017). There
are several commonly used implementations of the Schwarzschild’s
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orbit-superposition method for external galaxies by taking different
assumptions of their geometries: they could be spherical (Richstone
& Tremaine 1985; Breddels et al. 2013; Kowalczyk, Łokas & Valluri
2017), axisymmetric (Cretton et al. 1999; Gebhardt et al. 2000;
Valluri, Merritt & Emsellem 2004) or triaxial (Cappellari et al. 2006;
Van den Bosch et al. 2008; Zhu et al. 2018b). However, bar shapes
and the figure rotation are not included explicitly in these models.

A major goal of dynamical modelling is to obtain the underlying
mass distribution, including the central supermassive black hole
mass, the stellar mass profile, and the dark-matter halo profile.
However, without including the bar properly, these results could
be significantly biased (Brown et al. 2013). Dynamical modelling of
external barred galaxies are still in the early stage. Blaña Dı́az et al.
(2018) made a triaxial bulge/bar/disc M2M model for M31 taking
an N-body model which generally matches the bulge properties
of M31 as an initial condition of the M2M algorithm. A bar has
been included in the recently developed Schwarzschild code, SMILE
(Vasiliev 2013) and FORSTAND (Vasiliev & Valluri 2020), which
are, however, only applied to mock data created from a simulation
by using its real 3D density distribution. Estimating the 3D density
distribution of a real-barred galaxy is a key step still missing before
we can create proper dynamical models to a real barred galaxy from
observations in a general sense.

It is non-trivial to obtain the intrinsic 3D density distributions
from the 2D images on the observational plane for triaxial systems,
and even for axisymmetric systems when not observed edge-on
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(Rybicki 1987). Several approaches are developed to make the 3D
deprojection feasible. One of such approaches is to consider ellipsoid
luminosity density profiles for stellar systems with ellipsoidal radius

of m =
√

x2 + y2

p2 + z2

q2 , which requires the axial ratios q ≤ p ≤ 1.
The parameters could then be derived by fitting the projected model
to the observed image (Contopoulos 1956; Stark 1977; Binney 1985).
However, these methods are not able to reproduce isophotal twists
and ellipticity variations along the radius. Non-parametric deprojec-
tions are also attempted (Magorrian 1999; Bissantz & Gerhard 2002),
but they are complicated and require considerable time to converge.
Multi-Gaussian expansion (MGE) (Bendinelli 1991; Monnet, Bacon
& Emsellem 1992; Emsellem, Monnet & Bacon 1994a; Cappellari
2002) is an efficient method to describe the surface brightness of a
2D image and deproject it to the 3D luminosity density distribution.
It can reproduce isophotal twists and ellipticity variations along the
radius for a triaxial rigid body. In addition, the gravitational potential
and force components can be computed based on the 3D density
distribution derived from this method (Van den Bosch et al. 2008).
MGE has been widely used in dynamical models for different types
of galaxies (e.g. Emsellem et al. 1994b; Cretton & van den Bosch
1999; Cappellari 2008; Zhu et al. 2018a), but not yet including bars
explicitly.

A popular method of deprojecting barred galaxies is to describe
their face-on view by analytical, image stretching, or Fourier-based
methods (Gadotti et al. 2007; Noordermeer & van der Hulst 2007;
Li et al. 2011), then adopting a scale height for the vertical profile
to construct the 3D density distribution (e.g. Weiner, Sellwood &
Williams 2001). This approach works for galaxies with moderate
inclination angles (<60◦) and the vertical thickness of the bar
is a significant source of uncertainties (Zou, Shen & Li 2014;
Fragkoudi et al. 2015). The 3D intrinsic shape of bars can also
be obtained with some statistical approaches (Méndez-Abreu et al.
2010; de Lorenzo-Cáceres et al. 2019). Méndez-Abreu et al. (2018)
developed an approach to derive the intrinsic shape of bulges/bar
based on the geometric information extracted from 2D photometric
decomposition. They assume a bulge/bar is a triaxial ellipsoid that
shares the same equatorial plane as an oblate disc. They use this
method to estimate the intrinsic axes ratios of 83 barred galaxies
from CALIFA survey, and they find that 68 per cent of bars in
their sample are prolate-triaxial ellipsoids and 32 per cent are oblate-
triaxial ellipsoids (Costantin et al. 2018).

In this paper, we present an efficient way of deprojecting barred
galaxies based on the MGE algorithm, and validate the method by
applying it to mock images created from a simulation. We first
create mock images with different projection angles as described
in Section 2. We introduce our deprojecting approach for barred
galaxies in Section 3. For verification of our model, in Section 4,
we calculate the potential, force and analyse the orbital structures
according to the 3D density distribution from our model, and compare
with those from the original simulation. In Section 5, we summarize
and list the main conclusions of our work.

2 TH E MO C K DATA

We use an influential N-body simulation of a Milky Way-like galaxy
from Shen et al. (2010). It has a central bar-shaped structure that
matches many observed properties of the Milky Way (Qin et al.
2015). The total stellar mass of the simulation is 4.25 × 1010M�
with 106 equal-mass particles. A rigid pseudo-isothermal DM halo

potential is adopted � = 1
2 V 2

0 ln
(

1 + r2

R2
c

)
, in which the scale

velocity and scale radius are V0 = 250 km s−1 and Rc = 15 kpc,

Table 1. Mock data sets with different viewing angles of θ true and ϕtrue.
Inclination angle θ true is the orientation of the disc, θ true = 90◦ means edge-
on and θ true = 0◦ means face-on. ϕtrue describes the orientation of the bar,
ϕtrue = 90◦ means side-on and ϕtrue = 0◦ means end-on. To keep the disc
major axis aligned with x

′
-axis, we have ψ true = 90◦ for all cases.

Name θ true (◦) ϕtrue (◦)

I1 60 −45
I2 60 −90
I3 60 0
I4 80 −45
I5 80 −90
I6 80 0

respectively. The bar has a half-length of ∼4 kpc and rotates with a
pattern speed of �p ∼ 39 km s−1 kpc−1 (corotation radius ∼4.7 kpc).
The end-to-end separation between the outer two edges of the X-
shaped structures is ∼4 kpc along the major axis and ∼2.4 kpc along
the vertical minor axis (Li & Shen 2012).

Throughout the paper, we use the coordinate (x, y, z) to describe
the intrinsic 3D structure, where x, y, z are aligned with the long,
intermediate, and short axes of the galaxy, respectively. While we use
the coordinate (x

′
, y

′
) to describe the projected structure to the 2D

observational plane, and z
′
is along the line of sight. The orientation

of a projection is specified by the viewing angles (θ , ϕ, ψ). θ and ϕ

give the orientation of the line of sight with respect to the principal
axes of the object. For instance, projections along the intrinsic major,
intermediate, and minor axes correspond respectively to (θ = 90◦, ϕ

= 0◦), (θ = 90◦, ϕ = 90◦), and (θ = 0◦, ϕ = 0◦,..., 90◦). The angle
ψ is required to determine the rotation of the object around the line
of sight (see fig. 2 in de Zeeuw & Franx 1989).

The two coordinate systems are related as (Binney 1985)⎛
⎝x ′

y ′

z′

⎞
⎠ = R · P ·

⎛
⎝x

y

z

⎞
⎠ , (1)

where matrix P is responsible for the projection on to the sky plane
defined as

P =
⎛
⎝ − sin ϕ cos ϕ 0

− cos θ cos ϕ − cos θ sin ϕ sin θ

sin θ cos ϕ sin θ sin ϕ cos θ

⎞
⎠, (2)

and matrix R expresses the rotation around the line of sight by angle
ψ :

R =
⎛
⎝sin ψ − cos ψ 0

cos ψ sin ψ 0
0 0 1

⎞
⎠. (3)

To simplify the description of multiple components of a galaxy,
we always align the major axis of the disc with x

′
-axis and minor

with y
′
. Note that this could be different from the natural coordinate,

i.e. y
′
aligning with north, when dealing with real observational data.

Here ψ is defined from the y
′
axis, thus we always have ψdisc = 90◦

for the disc aligned in this way.
To create a mock image, we project the simulation snapshot to

the observational plane with certain viewing angles. We put it at a
distance of 41 Mpc and then create a surface brightness map with a
spatial resolution of 1 arcsec pixel−1. At this distance, 1 kpc equals
5 arcsec. We produce several mock images from the simulation
adopting different viewing angles of θ and ϕ as listed in Table 1,
which are labeled as true values. To keep the disc major axis aligned
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Deprojection of barred galaxies 6211

Figure 1. 2D surface brightness profiles of Panel (a) original mock galaxy I1,
Panel (b) GALFIT exponential disc of the best-fitting model, Panel (c) barred
bulge which is obtained by subtracting the GALFIT disc from the original
image, Panel (d) the GALFIT elliptical bulge (Sérsic profile).

with x
′
-axis, all of our mock galaxies have ψ true = 90◦. Each mock

image will be taken as an independent galaxy from observation. In
the following sections, we will illustrate our deprojection model with
the mock galaxy I1.

3 D E RO J E C T I O N

Here, we give a step-by-step description of our method. We first
decompose the galaxy to a bulge and a disc by using GALFIT (Peng
et al. 2010). Secondly, we fit the bulge and the disc using 2D MGE
separately. Then, we deproject each component individually from
2D MGE to 3D MGE. Finally, the deprojected galaxy is simply the
sum of the axisymmetric disc and the triaxial bulge. Meanwhile, the
bulge major axis is restricted to be aligned in the disc plane.

This method allows different intrinsic shapes for the two compo-
nents. And we have the freedom to align the bulge in the disc plane
with different position angles.

3.1 2D bulge-to-disc decomposition

We use GALFIT 3.0.51 to decompose the surface brightness map of
our mock galaxy into 2D elliptical bulge and disc. Poisson noise is
taken as the uncertainty of the image, which is used to weight the
data points in GALFIT fitting.

We use a standard exponential profile to describe the surface
brightness of a disc:

�(r ′) = �0 exp

(
− r ′

rs

)
, (4)

where rs is the scale length of disc and r ′ =
(
x ′2 + y′2

q2
d

) 1
2
, (x

′
, y

′
) are

aligned with the major and minor axis of the disc, and qd is the axial
ratio.

1https://users.obs.carnegiescience.edu/peng/work/galfit/galfit.html

Figure 2. Surface brightness profile along the major axis. The blue and green
dashed curves are the exponential disc and the elliptical bulge from GALFIT,
while the black solid curve indicates the sum of them. The red dots are the
data of the mock galaxy I1.

We use a Sérsic function to describe the surface brightness of an
elliptical bulge:

�(r ′) = �e exp

[
−κ

((
r ′

re

) 1
n

− 1

)]
, (5)

where re is the effective radius (or half-light radius), �e is the surface
brightness at the effective radius re, and n is called the ’Sérsic index’,
which controls the concentration of the profile. When n is small, it
has a shallow inner profile and a steep truncation at a large radius.
Inversely, When n is large, it has a steep inner profile and a highly
extended outer wing. κ is not a free parameter, it coupled to n by
γ (2n; κ) = 1

2 �(2n), � and γ are the Gamma function and lower
incomplete Gamma function, respectively. Here, r

′
is defined as

r ′ =
(

x2
p + y2

p

q2
b

) 1
2

. (6)

qb = b/a, where b and a are the minor and major axis of the elliptical
bulge in the observational plane, respectively. xp and yp are aligned
with the major and minor axis of the elliptical bulge, respectively

xp = x ′ cos
(
90 − ψ

proj
bar

) + y ′ sin
(
90 − ψ

proj
bar

)
yp = −x ′ sin

(
90 − ψ

proj
bar

) + y ′ cos
(
90 − ψ

proj
bar

)
, (7)

where ψ
proj
bar is the position angle of the elliptical bulge measured

counterclockwise from the y
′
-axis.

Fig. 1 presents the 2D surface brightness profile of Panel (a) the
mock galaxy I1, Panel (b) GALFIT exponential disc, Panel (c) barred
bulge, which is the residual of subtracting GALFIT disc from the
original image, Panel (d) GALFIT elliptical bulge. The radial profiles
of the surface brightness along the major axis is presented in Fig. 2.
The sum of an exponential disc and an elliptical bulge gives a
reasonable fit to the image, although the model is slightly dimmer in
the regions of 40 � R � 70 arcsec, and brighter at R � 70 arcsec.
Our best-fitting parameters are rs = 20.90 arcsec, �0 = 11.63 mag
arcsec−2, qd = 0.51 for the disc component and n = 1.093, re = 5.88
arcsec, �e = 11.69 mag arcsec−2, qb = 0.46, and ψ

proj
bar = 71◦ for
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Table 2. Details of MGE fit for the disc component in Fig. 3(a). j is the
number of each individual Gaussian for which, Lj is the central flux in the
unit of (L� pc−2), σ ′

j presents the size in the unit of (arcsec), q ′
j indicates the

flattening. Position angles of all disc Gaussians components are fixed to be
90◦.

j Lj (L� pc−2) σ ′
j (arcsec) q ′

j ψ ′
j (◦)

1 39.380 2.400 0.547 0
2 42.381 5.671 0.558 0
3 48.220 9.592 0.554 0
4 54.451 14.300 0.555 0
5 74.615 21.589 0.557 0
6 55.593 34.948 0.551 0
7 10.840 54.956 0.568 0

the elliptical bulge. Note that we have ψdisc = 90◦, thus the position
angle of the bar is −19◦ different from the disc.

3.2 2D MGE fit to the bulge and disc

We then separately fit 2D MGEs to (i) the 2D surface decomposed
disc and (ii) the residual barred bulge mock image obtained by
subtracting the disc model from the original mock image. This is
done with the MGEFIT software from Cappellari (2002).2 The MGE
describes the surface brightness (in the unit of Lsunpc−2 converted
from surface brightness in the unit of mag arcsec−2) written as
(Cappellari 2002):

�
(
R′, θ ′) =

N∑
i=0

Lj

2πσ ′2
j q ′

j

exp

[
− 1

2σ ′2
j

(
x ′2

j + y ′2
j

q ′2
j

)]
, (8)

with (j refers to each Gaussian).

x ′
j = R′ sin

(
θ ′ − ψ ′

j

)
, y ′

j = R′ cos
(
θ ′ − ψ ′

j

)
, (9)

where (R
′
, θ

′
) are polar coordinates in the sky plane. Lj indicates

the observed total luminosity, q ′
j is the projected flattening and we

assume 0 � q ′
j � 1, σ ′

j is the scale length along the projected major
axis, and ψ ′

j is the position angle measured counterclockwise from
the y

′
-axis to the major axis of each Gaussian component. We denote

ψ ′
j = ψ + ψ ′

j , (10)

where ψ ′
j is the isophotal twist of each Gaussian that can be

measured directly.
For the disc component, we always have ψ ′

j = ψdisk = 90◦ by
aligning its major axis with x

′
, and ψ ′

j = 0◦ for all Gaussian com-
ponents by assuming an axisymmetric oblate shape. While for the
barred bulge component which may be triaxial, the isophotal twist of
each Gaussian component is allowed to be different. Here we measure
twists with respect to the disc position angle (ψ ′

j = ψ ′
j − ψdisk).

Details of fitting are presented in Tables 2 and 3, respectively. Results
are shown in Fig. 3. There are weak signals of possible spurs which
are offset from the major axis of the inner region of the barred bulge
in Fig. 3(b) (black solid line contours). The offset-spurs are isophotal
signatures corresponding to the vertically boxy/peanut part of the bar
in moderately inclined barred galaxies (Erwin & Debattista 2016).

3.3 Construction of 3D MGE density

We first deproject each component from 2D MGE surface brightness
to 3D intrinsic density distribution separately, then add the 3D density

2http://www-astro.physics.ox.ac.uk/∼mxc/software/

Table 3. Details of MGE fit for the barred bulge component in Fig. 3(b).
ψ ′

j shows the isophotal twist with respect to the disc.

j Lj (L� pc−2) σ ′
j (arcsec) q ′

j ψ ′
j (◦)

1 1666.431 0.864 0.544 −27.796
2 7924.190 2.136 0.593 −17.000
3 1256.558 4.848 0.480 −17.000
4 1907.776 6.499 0.480 −28.000
5 117.221 10.212 0.600 −28.000

Figure 3. Panel (a): the contours of the disc image (black solid line),
overplotted with contours of the best-fitting MGE without twist between
different Gaussians (red dashed line). Panel (b): the MGE fit including twist
for the barred bulge.

distributions of the two components together for a whole galaxy. An
oblate shape and a triaxial ellipsoid are used to describe disc and
barred bulge, respectively. The intrinsic coordinate system denoted
by (x, y, z) is aligned with the galaxy’s principal axes.

The triaxial MGE luminosity density is defined as (Cappellari
2002)

ρ(x, y, z) =
N∑

j=0

Lj

(σj

√
2π)3qjpj

× exp

[
− 1

2σ 2
j

(
x2 + y2

p2
j

+ z2

q2
j

)]
, (11)

where N is the number of Gaussian functions. pj = Bj/Aj and qj

= Cj/Aj are the axial ratios. Aj, Bj, and Cj are the intrinsic major,
intermediate, and minor axes of the Gaussians, respectively.

3.3.1 Deprojection of barred bulge: triaxial case

A deprojection could be understood as a transformation between two
coordinates as following:⎛
⎝x

y

z

⎞
⎠ = R−1 · P−1 ·

⎛
⎝x ′

y ′

z′

⎞
⎠ . (12)

From parametric equation (8), we have the parameters
(Lj , q

′
j , σ

′
j ,ψ ′

j ) for each Gaussian from observations. Given a set
of viewing angles (θ , ϕ, ψ), we can infer the intrinsic quantities (σ j,
pj, qj) through the following equations (Van den Bosch et al. 2008):

1 − q2
j

= δ′
j

[
2 cos 2ψ ′

j + sin 2ψ ′
j (sec θ cot ϕ − cos θ tan ϕ)

]
2 sin2 θ

[
δ′
j cos ψ ′

j

(
cos ψ ′

j + cot ϕ sec θ sin ψ ′
j

) − 1
] , (13)
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p2
j − q2

j

= δ′
j

[
2 cos 2ψ ′

j + sin 2ψ ′
j (cos θ cot ϕ − sec θ tan ϕ)

]
2 sin2 θ

[
δ′
j cos ψ ′

j

(
cos ψ ′

j + cot ϕ sec θ sin ψ ′
j

) − 1
] , (14)

uj = 1

q ′
j

√
p2

j cos2 θ + q2
j sin2 θ

(
p2

j cos2 ϕ + sin2 ϕ
)
, (15)

where uj = σ ′
j /σj , δ′2

j = 1 − q ′2
j , and ψ ′

j = ψ + ψ ′
j . Note that, in

principle, the absolute value of the position angle ψ of a triaxial
structure could be a free parameter, however, the relative difference
of position angle of the Gaussians ψ ′

j are measured directly from
the MGE fitting.

All Gaussians are supposed to have the same viewing angles
(θ , ϕ, ψ), the allowed viewing angles is thus the intersection of
these allowed for each Gaussian component. The allowed range of
viewing angles are restricted by the Gaussian with the minimum
of flattening q ′

j and the maximum difference of twist ψ ′
j among

the Gaussians (Cappellari 2002; Van den Bosch et al. 2008). To
avoid non-physical restriction on the allowed viewing angles caused
by a particular Gaussian, we avoid the Gaussians with too small
q ′

j and too large ψ ′
j difference, when the error does not change

significantly during the MGE fitting (see fig. 1 in Van den Bosch et al.
2008).

We emphasize that if we consider the barred bulge and disc as
one rigid body, deprojection is impossible due to the large difference
between ψ ′

j of the barred bulge Gaussians and disc Gaussians.
Therefore, we need to deproject the barred bulge and disc separately.

3.3.2 Deprojection of disc: axisymmetric case

We consider the axisymmetric oblate shape for the disc. We always
align the disc major axis with x

′
-axis, thus we have ψdisc = 90◦ and

ψ ′
j = 0 for all Gaussians of the disc. For an axisymmetric oblate

system ϕ is irrelative, therefore equations (13) and (14) are simplified
to

q2
j = q ′2

j − cos2 θ

sin2 θ
, pj = 1. (16)

and

σj = σ ′
j , (17)

where (θ > 0◦) is the inclination angle of the disc, qj is the
intrinsic flattening and q ′

j is the observed flattening of each Gaussian
component in the disc. Axisymmetric MGE deprojection above is
only valid up until (cos2 θ < q ′2

j ) for all Gaussian components. It
means the minimum inclination is imposed by the flattest Gaussian
in an axisymmetric MGE fit.

In addition, the intrinsic flattening q of discs in late-type galaxies
have a narrow distribution centred at q ∼ 0.26 (Rodrı́guez & Padilla
2013). We can roughly derive the inclination of the disc with its
observed flattening qobs, by assuming an intrinsical flattening of 0.26
from equation (16). We denote the disc inclination angle derived in
this way as θderive

disk .

3.4 Allowed viewing angles

Fig. 4 shows the allowed viewing angles (θ versus ϕ) of the galaxy
by combining the disc and barred bulge. In Fig. 4(a), we show
the allowed regions of viewing angles for the barred bulge, which
are intersections of the allowed viewing angles of each individual
Gaussian in the barred bulge.

Then, we consider the major axis of the barred bulge is aligned in
the disc plane. Thus, the inclination angle of the barred bulge should
be the same as the disc. This combination narrows down the allowed
inclination angle θ , as shown in Fig. 4(b).

The intrinsic position angle ψ of an isolated triaxial system is
unknown as discussed in Van den Bosch et al. (2008). However, in
our case, we have a reference disc which is aligned as ψdisc = 90◦.
For the barred bulge fixed in the disc plane, we restricted it to be

|ψbar − 90◦| ≤ 5◦. (18)

Note that it is ψ ′
j = ψbar + ψ ′

j that goes into equations (13)–
(15), the large isophotal twist between the barred bulge and disc
is considered in ψ ′

j (see Table 3).
We can further constrain the inclination angle θ with the disc

as shown in Fig. 4(d), based on what we roughly derived in
Section 3.3.2:

|θ − θderive
disk | ≤ 10◦, (19)

The last constraint we consider refers to the scale height of the
disc and barred bulge. We consider similar thickness of the disc and
the barred bulge at outer regions of the barred bulge:

|(σq)disk − (σq)bar| ≤ 10 per cent (σq)bar. (20)

Where (σq)bar, and (σq)disc indicate size and flattening of the
outermost barred bulge Gaussian and a Gaussian of the disc that has
a roughly similar size. We consider (σq)bar of outer most Gaussian
of the barred bulge (fifth Gaussian in Table. 3) to be close to (σq)disc

of the 4th Gaussian of the disc (in Table. 2). The allowed regions
of viewing angles after imposing all the constraints are shown in
Fig. 4e.

3.5 3D density distribution

We compare the model inferred density distribution with the true
density distribution of the simulation. In Fig. 5(a), we show the
surface density distribution of the simulation projected on the x−y,
x−z, and y−z planes. In Fig. 5(b), we show one model chosen from
the allowed regions of viewing angles with (θ , ϕbar, ψbar) = (58◦,
−47◦, 92◦). We emphasize that θ is the same for the disc and the
barred bulge as we align the barred bulge in the disc plane. Any ϕ is
allowed for disc because it is assumed to be an oblate axisymmetric
structure. We always have ψdisc = 90◦ because the disc major axis
is aligned with the x

′
-axis in the observational plane. The residual

between the true and model inferred density distribution is shown in
Fig. 5(c).

The 3D density distribution from our model generally matches the
original simulation, with a triaxial barred bulge located at the centre
of a disc. We obtain the bulge-dominated area along each principal
axis (xbulge, ybulge, zbulge) as (∼ 4, ∼ 2, and ∼ 0.78 kpc) for the mock
galaxy I1, and (∼ 3.85, ∼ 2, and ∼ 0.65 kpc) for our model inferred
density (see Appendix D for details). Our model does not have spiral
structure. And the disc in our model is not thin enough in the outer
regions, which is a common issue for disc deprojections if not seen
perfectly edge-on. Our model also does not match the peanut shape
of the barred bulge seen edge-on.

The resulting density distributions for other mock galaxies (I2–
I6) are shown in Appendix A. The deprojection of discs are hard
for galaxies with low-inclination angles due to lack of information
about the disc’s intrinsic shapes, thus we do not try the method for
galaxies with θdisc � 45◦, while it is easier for edge-on galaxies. In
contrast, the deprojection of barred bulges prefer galaxies with lower
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Figure 4. The parameters space of allowed viewing angles θ versus ϕ for the deprojection of barred bulge + disc. Plots from left- to right-hand side: Panel (a)
all the allowed viewing angles of the barred bulge, Panel (b) orientations which are also allowed for the disc, Panel (c) the additional constraint of |ψbar − 90◦|
≤ 5◦, Panel (d) the additional constraint of |θ − θderive

disk | ≤ 10◦, and Panel (e) add the last constraint that outer barred bulge and the inner disc share the similar
scale height. The grey lines show the true value of θ true = 60◦ and ϕtrue = −45◦ for the mock galaxy I1. Red dot in last panel indicates a model with (θ = 58◦,
ϕbar = −47◦, ψbar = 92◦) from the final allowed angles.

Figure 5. Comparison of the model inferred density distribution of mock galaxy I1 with the simulation. Panel (a): surface density distributions of the simulation
projected on x−y, x−z, and y−z planes. Panel (b): surface density distributions of a model with (θ = 58◦, ϕbar = −47◦, ψbar = 92◦). Dashed lines in both
panels mark the full length of the bar in simulation (∼ 8 kpc). Panel (c): the residuals of (a) and (b).

inclination angles, in which the shapes of the barred bulges are better
revealed.

Overall, our method works reasonably well to match the basic
shapes of disc and barred bulge for galaxies with moderate inclination
angles and with different bar orientations, although the intrinsic shape
of the barred bulge is harder to find when it is projected nearly end-on.

4 V ERIFICATION O F THE DEPROJECTED
M O D E L

Before this model-inferred 3D density distribution could be used to
build the gravitational potential of a dynamical model, we have to
figure out how much uncertainty/bias the model might introduce. We
use AGAMA3 (Vasiliev 2019) to calculate the potential, forces, and
orbits with our model inferred 3D density and then compare to those
calculated with the true density distribution of the simulation. We
illustrate the results with mock galaxy I1.

4.1 Potential

To obtain the gravitational potential given a density distribution, a
numerical integration is required to solve the Poisson equation.

∇2�(x) = 4πGρ(x). (21)

We freeze the N-body system at the snapshot that is chosen and
calculate potential from the particle distribution using multipole

3https://github.com/GalacticDynamics-Oxford/Agama

expansion of spherical harmonics (Binney & Tremaine 2008). A
similar method is adopted to compute the potential of model-inferred
3D density distribution given by Fig. 5(b). The true and model
potentials in 2D planes of x−y, x−z, y−z, and along each principal
axis are presented in Figs 6(a) and (b), respectively. The relative
difference of the model and true potentials is less than 10 per cent in
all regions.

4.2 Force

The force is the derivative of potential at each position.


F = −∇�, |FT | =
√

F 2
x + F 2

y + F 2
z . (22)

Figs 7(a) and (b) show the total force in the planes of x−y, x−z, y−z,
and force components along each axis for the true and model derived
densities, respectively. The relative difference is less than 15 per cent
in all components and the maximum error occurs around the central
point with 20 per cent.

4.3 Orbital analysis

We further check if the potential derived from our model can support
the key orbital families of the bar. A rigid pseudo-isothermal DM
halo potential (as described in Section 2) is added to the true
and model potential, respectively. The scale velocity and scale
radius are adopted as Vc = 250 kms−1 and Rc = 15 kpc, respectively.
We randomly select 15 000 initial conditions corresponding to the
positions and velocities of particles from the snapshot at t = 2.4 Gyr.
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Figure 6. Comparison of potentials of Panel (a) – the simulation in 2D planes and along the principle axes (solid black lines) and Panel (b) – our deprojected
3D model. Panel (c) – the residuals of Panels (a) and (c).

Figure 7. Force comparison of Panel (a) the simulation in 2D planes and along principle axes (solid black lines) and Panel (b) is our deprojected 3D model.
Panel (c) is the residuals of Panels (a) and (b).

We choose particles inside the corotation radius (R < 4.7 kpc), then
integrate the orbits in our model inferred potential and in the true
potential.

AGAMA uses a modified version of the eight-order Runge–Kutta
integrator DOP853. We calculate the orbits for the chosen initial
conditions in a rotating frame. So the appropriate Coriolis and
centrifugal pseudo-forces are taken into account and determined by
the bar pattern speed �p. We adopt �p = 39 km s−1 kpc−1, which is
the true pattern speed of the simulated bar (Shen 2014).

4.3.1 Typical orbit families

First, we visually check if orbits with the same initial conditions are
similar in the true and model potentials. Here, orbits are integrated
for 2.5 Gyr. In the true potential, the time period of a circular
orbit at the end of the bar region is around 0.1 Gyr. Among the
15 000 selected orbits, we randomly plot 200 orbits with the same
initial conditions in both potentials. Then, we check the similarity
in appearance of the true and model orbits in x−y, x−z, and y−z

planes. Orbits with similar trajectories are considered as the matched
ones. We repeat this process a few more times and average the
percentage of matched orbits in each selection. Generally, we con-
clude that 85 per cent of all orbits in our model sample are visually
matched with those in the true potential and around 15 per cent are
unmatched.

The most important bar supporting orbit families are prograde
x1 family, which are elongated along the major axis of the bar.
x1 orbits in bars originate from the same parent as the box orbit
family in triaxial potentials (Contopoulos 1980; Schwarzschild 1982;
Martinet & de Zeeuw 1988; Valluri et al. 2016). Other periodic orbit
families in the bars are prograde x2 and unstable x3 orbits, which are
elongated perpendicular to the bar and primarily found at small radii.
In addition, retrograde x4 orbits are also perpendicular to the bar and
become nearly round at larger radii.

Some typical cases of matched orbits are shown in Fig. 8. The
orbits calculated in the true simulated and our model potential are
shown in black and blue respectively. The orbits in Figs 8(a) and (b)
are elongated along the bar major axis. They are x1 and box orbit
parented by x1 orbits, respectively. While the orbits in Figs 8(c) and
(d) are retrograde x4 orbits that are elongated perpendicular to the
bar. In true and model potentials, we did not find prograde x2 and
unstable x3 families in the inner region of the bar, similar to Valluri
et al. (2016).

There are a few types of resonant orbits usually found in the N-
body bar models: the orbits with (�x, �y, �z) = (3: −2: 0) called
‘fish/pretzel’ (Valluri et al. 2016), the orbits with (�x, �z) = (1: 2)
known as ‘banana’ (Pfenniger & Friedli 1991), and the orbits with
(�x, �y, �z) = (3: 0: −5) called ‘brezel’ (Portail et al. 2015). The
latter two types are proposed as the backbone of X-shaped structure
(Patsis, Skokos & Athanassoula 2002; Portail et al. 2015).
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Figure 8. Typical matched orbits in the true potential (black), and in our model (blue), plotted in the x−y, x−z, and y−z. Each pair of orbits is calculated with
the same initial conditions.

We find a few resonant orbits (< 2 per cent) in the bar regions of
our simulation. Fig. 8(e) shows a banana orbit in x−z plane that is
well matched in the true and model potentials. Some other types of
resonant orbits can also be found in our model, but they could be
originated from a different starting point than that similar orbit in
the real potential (see Appendix B). Some of the apparently chaotic
orbits can sweep similar regions in the true and model potential, as
shown in Fig. 8(f).

4.3.2 Frequency analysis and orbit classification

Frequency analysis of orbits was first introduced by Binney &
Spergel (1982, 1984) and later developed by Laskar (1990,1993a).
It is a powerful way to understand the features of orbits in
large samples. The fundamental orbital frequencies are obtained
via Fourier transform of their position and velocity coordinates.
A long-time integration for orbits is required to get an accu-
rate frequency map (e.g. 20−50 orbital periods) (Valluri & Mer-

ritt 1998; Valluri et al. 2016). We integrate the orbits in our
samples for 13 Gyr. Then we use the NAFF software4 (Val-
luri & Merritt 1998; Valluri et al. 2016) to compute the fun-
damental frequencies and perform automated bar orbit classifi-
cation. Our computation is done in the Cartesian coordinates,
which enables better classification of the bar orbits than in
the cylindrical coordinates (see appendix B in Valluri et al.
2016).

Frequency maps of our samples are shown in Fig. 9. The top and
bottom rows are true and model orbits, respectively. The first column
from the left- to right-hand panel represent the frequency maps of
all the 15 000 orbits in our sample. The frequency map of orbits in
our model has generally the same features as that of orbits in the
true potential, except there is a small frequency offset for the peak
number density. The peak number density in frequency map of orbits

4https://bitbucket.org/cjantonelli/naffrepo/src/master/
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Figure 9. Cartesian frequency map coloured by number density, for orbits that are integrated for 13 Gyr in true potential (top row) and our model (bottom row).
Columns from the left- to right-hand panels: frequency map for all orbits, boxes, retrograde x4, short-axis tubes (SAT) excluding retrograde x4, long-axis tubes
(LAT), and disc orbits. The total number of all orbits is 15 000.

Table 4. Classification of 15 000 selected orbits in the true and
our model potentials. Orbits are classified into boxes, retrograde
x4, SAT excluding retrograde x4, LAT, and disc orbits. The
bottom part of the table presents the fraction of orbits that have
chaotic features in general.

Class/type True Model

Boxes 55.2 per cent 51.7 per cent
Retrograde x4 17.4 per cent 18.3 per cent
SAT 6.5 per cent 7.4 per cent
LAT 2.3 per cent 1.6 per cent
Disc orbits 18.6 per cent 21 per cent
Sum 100 per cent 100 per cent
Chaotic 16 per cent 17.6 per cent
Regular 84 82.4 per cent

in the true potential is around �x/�z = 0.65, �y/�z = 0.87 and for
orbits in our model potential is around �x/�z = 0.60, �y/�z = 0.80.

We classify the orbits in our samples into boxes, retrograde x4,
SAT, LAT, and disc orbits. We emphasize here SAT refer to all z-tube
orbits excluding the retrograde x4. The frequency maps of each class
of orbits are shown in Fig. 9 from the second to the fifth columns
(left- to right-hand side), respectively. Comparison of fractions of
different classes of orbits in our model and in the true potential are
shown in Table 4. Box orbits contribute more than 50 per cent of the
orbits, while retrograde x4 orbits contribute ∼18 per cent. The SAT
and LAT orbits have lower fractions. The orbital fractions in the true
potential and in our model are generally consistent with each other.
We use (Rapo > 4 kpc) to determine the disc orbits, which means the
orbits with apocenter radii larger than half-length of the bar (4 kpc).
The contributions of disc orbits are 18.6 per cent in the true potential
and 21 per cent in our model potential.

We use the frequency drift parameter to determine the chaotic
orbits (Valluri et al. 2010). In this method, the orbital time series are
divided into two equal parts and the orbital fundamental frequencies
are computed for each time segment. Since regular orbits have time-
independent frequencies, the change in the frequency measured in
the two time segments can be used to determine the diffusion rate
in frequency space (Laskar 1993b; Valluri & Merritt 1998). The
frequency drift for each frequency component �i (i = x, y, z) can be

computed as (Valluri et al. 2010)

log10 (fi) = log10

∣∣∣∣�i (t1) − �i (t2)

�i (t1)

∣∣∣∣ . (23)

The frequency drift parameter log10(f) is defined as the value
associated with the fundamental frequency �i with the largest
amplitude in the Fourier spectrum. A larger frequency drift parameter
indicates the orbit to be more chaotic. To separate chaotic orbits from
regular orbits in frozen N-body potentials, log10(f) >−1.2 is a good
empirical choice as tested in Valluri et al. (2010). This is also a good
choice for our samples (see Appendix C).

Overall 16 per cent of all orbits in the true potential and
17.6 per cent in our model potential have chaotic features. The
contributions of all types of orbits in our model potential are similar
to these in the true potential.

4.3.3 Structures constructed with orbits

To check if the structures could be built with the orbits in our model,
we store each orbit in equal time-steps and sum up the density of the
15 000 selected orbits.

The top rows in Fig. 10 show surface densities in x−z and x−z

planes constructed with orbits in the true potential. The bottom rows
are with the orbits in the model potential. Columns from the left-
to right-hand sides are surface densities built by all orbit, boxes,
retrograde x4, SAT, LAT, and disc orbits, respectively. In general, the
structures generated by our model orbits are similar to the real ones.
The retrograde x4 orbits support a structure perpendicular to the bar
in face-on view, while the SAT orbits support a structure elongated
along the bar in the face-on map and a boxy/peanut-shaped structure
in the edge-on map. The LAT orbits support a structure elongated
perpendicular to the bar in the face-on map and an X-shaped structure
in the edge-on map. As we discussed in Section 3, the boxy/peanut-
shaped structure is missing in our model inferred density distribution,
however, as shown in the bottom panel of Fig. 10, the combination of
SAT and LAT orbits in our model potential could still support such
a boxy/peanut-shaped structure in the x−z plane.

In summary, we find that our model potential can support the major
orbits families in a boxy/peanut-shaped bar. Although the fractions
of various types of orbits in our model potential slightly differ from
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Figure 10. Projected surface density in x−y and x−z plane extracted from the 15 000 selected orbits in true potential (top rows) and model potential (bottom
rows). Columns from the left- to right-hand sides: surface densities for all orbits, boxes, retrograde x4, SAT excluding retrograde x4, LAT, and disc orbits.

those in the true potential, we still have all types of orbits that could
build the backbone of the bar.

5 C O N C L U S I O N S

We present a method of deprojecting 2D image of a barred galaxy
to construct its 3D intrinsic density distribution. We adopt a two-
step process, first, we decompose the galaxy into an elliptical, Sersic
bulge, and a flat, exponential disc. By subtracting the disc from the
original image, we get a barred bulge, then we fit the barred bulge
and the disc separately with MGE and deproject the 2D MGE to get
3D intrinsic density distribution.

We assume the disc is axisymmetric, the barred bulge is triaxial,
and the major axis of the barred bulge is aligned in the disc plane.
Additional constraints are imposed to narrow down the parameter
space of allowed viewing angles: (a) The position angle of the barred
bulge is restricted to be close to that of the reference disc, subtracting
the apparent difference ψ

′
measured from MGE fitting. (b) the

inclination angle of the disc is restricted to be close to the value
obtained by assuming an intrinsic flattening of qint = 0.26, (c) the
intrinsic scale height of the outer barred bulge is assumed to be
similar to the disc in the same region.

By combining the 3D density distribution of a barred bulge and a
disc, we construct the 3D density distribution of the whole galaxy.
We validate the method by applying it to mock images created from
a simulated barred galaxy. By comparing with the true simulation,
we find that:

(1) In general, the 3D density distribution from our model matches
the true simulation, with a triaxial barred bulge located at the centre
of a disc. However, our model does not match the boxy/peanut shape
of the bulge when seen edge-on. Meanwhile, the disc in our model
does not have spiral structure. And the disc is not very thin at the outer
regions in our model, which is a common issue for disc deprojection
if not seen edge-on.

(2) We verify this method by comparing the potential and force
inferred from the model constructed 3D density to the true value of
the simulation. The residuals of subtracting the model potential from
the true one can be up to 10 per cent in an extended region within
the barred bulge. While the difference in forces can be as large as
15 per cent in the barred bulge region and 20 per cent around the
very centre.

(3) We find that 85 per cent of our sample orbits, including the
major families of bar-supporting orbits, resonant and chaotic orbits,
in the model potential turn out to be very similar to those in the true
potential. The unmatched 15 per cent are mostly chaotic or resonant
orbits, their morphologies are easily altered due to small differences
in the gravitational field.

(4) The orbits in the model inferred potential distribute similarly
in the frequency maps as those in the true potential. We classify
orbits into boxes, retrograde x4, SAT excluding retrograde x4, LAT,
and disc orbits. The contributions of different classes of orbits in our
model potential are close to these in the true potentials. The SAT in
our model build an elongated bar with box/peanut-shaped structure,
and the LAT build a X-shaped structure. These match perfectly the
structures in the true potential.

We have shown that this method can construct 3D density of
barred galaxies from their 2D images, Although our model inferred
density does not match the boxy/peanut shape exactly, the potential
still supports the major orbit families reproducing the boxy/peanut-
shaped and X-shaped structures. The fractions of orbits that building
the backbone of bar in our model slightly differ from those in the
true potential. In a dynamical model, we have the freedom of giving
different weights to different orbits by fitting the data. Thus the
fraction of bar-supporting orbits in our model should not in principle
matter once we have sampled all typical orbits. In the future, we
will test to construct Schwarzschild/M2M models of nearby barred
galaxies.
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Software: AGAMA (Vasiliev 2019), ASTROPY (Astropy Collabora-
tion et al. 2013, 2018), GALFIT (Peng et al. 2010), MGEFIT (Cappellari
2002), MATPLOTLIB (Hunter 2007), NUMPY (Harris et al. 2020),
PHOTUTILS (Bradley et al. 2016), NAFF (Valluri & Merritt 1998;
Valluri et al. 2016), SCIPY (Virtanen et al. 2020).
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APPENDIX A : D EPRO JECTION O F MORE
CASES WITH DIFFERENT ORIENTATIONS

To show the effectiveness of our method for galaxies with various
observational orientations, we obtain the 3D density maps for mock
galaxies with different viewing angles as listed in Table 1. The results
are shown in Figs A1 and A2. The first and second columns show
the mock images and deprojected density maps, respectively. The
3D density inferred for these galaxies generally match the true 3D
density distribution of the simulation well, in a similar manner to I1

which we described in detail.

Figure A1. Deprojection of more mock galaxies, with different angles of
ϕbar: Panel (a) – Mock data I2; Panel (b) – mock data I3. Dashed lines mark
the full length of the bar in simulation (∼ 8 kpc).

Figure A2. Deprojection of edge-on mock galaxies with different angles of
ϕbar: Panel (a) – Mock data I4; Panel (b) – mock data I5; and Panel (c) – mock
data I6. Dashed lines mark the full length of the bar in simulation (∼ 8 kpc).

MNRAS 508, 6209–6222 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/508/4/6209/6406500 by guest on 17 April 2024

http://dx.doi.org/10.3847/1538-4357/ab5fe0
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1093/mnras/stt1537
http://dx.doi.org/10.1093/mnras/213.3.451
http://dx.doi.org/10.1086/318289
http://dx.doi.org/10.1093/mnras/283.1.149
http://dx.doi.org/10.1038/s41550-017-0348-1
http://dx.doi.org/10.1093/mnras/stx2409
http://dx.doi.org/10.1088/0004-637X/791/1/11


Deprojection of barred galaxies 6221

APPENDIX B: UNMATCHED ORBITS

Fig. B1 shows some typical unmatched orbits. The first row shows the
orbits which are boxes in x−y plane under the true and model poten-
tials, while in x−z plane they have different shapes. In Fig. B1(a), our
model potential generates a brezel orbit while it happens inversely in
Fig. B1(b). Also in Figs B1(c) and (d), the fish orbit is generated once
in our model and once in the true potential for different starting points.
The third row shows the orbits which have different trajectories in
all planes. Around one-third of visually chaotic orbits follow totally
different trajectories in the true and model potentials, Fig. B1(e)

shows such an example. Overall most of the unmatched orbits are
from chaotic or resonant orbits.

APPENDI X C : C HAOTI C ORBI TS CRI TERIO N

We examined if log10(f) > −1.2 used in Valluri et al. (2010, 2016)
is a fair criterion to define chaotic orbits in our potential. In Fig. C1,
we show the histogram distribution of log10(f) for the orbits in
our model and in the true potential, which are similar to each other,
especially at the high end with log10(f) > −1.2. We thus conclude
it is a fair criterion.

Figure B1. Typical unmatched orbits in the true potential (black), and in our model (blue), plotted in the x−y, x−z, and y−z. Each pair of orbits is calculated
with the same initial conditions. Resonant orbits and chaotic orbits are easy to be unmatched, they are sensitive to the minor changes of the potential.
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Figure C1. Distributions of frequency drift parameter log10(f) for 15 000
orbits in the true (red) and model (blue) potentials. The dashed line indicates
the threshold value of log10(f) = −1.2. Orbits with log10(f) > −1.2 are
classified as chaotic orbits.

A P P E N D I X D : ME A S U R E M E N T O F T H E
BU L G E - D O M I NAT E D R E G I O N

Fig. D1 shows the surface density distribution along the three
principal axes, blue is the simulation, and orange is our model
inferred density from mock galaxy I1.

It is not straightforward to determine the bar size in three directions
for a given density. To quantitatively compare the bulge-dominated
region in simulation and in our model inferred density, we use the
surface density of the disc in our model as a reference. We define the
bulge-dominated region along each direction as the positions where
2 × �disc = �total. We obtain (xbulge, ybulge, zbulge) as (∼ 4 ∼ 2, and ∼
0.78 kpc) for the simulation and (∼ 3.85, ∼ 2, and ∼ 0.65 kpc) for
our model inferred density. Figure D1. Surface density distribution of the simulation (blue) and our

model for mock galaxy I1 (orange); along the major axis (top panel),
intermediate axis (middle panel), and minor axis (bottom panel). The green
solid line and dashed line indicate �disc and 2 × �disc of our model. We define
the bulge-dominated region at the radius where �total = 2 × �disc. The blue
and orange vertical lines mark the size of the bulge-dominated region in the
simulation and in our model, respectively.
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