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Stability of an ionization front in Bondi accretion

Eric Keto1‹ and Rolf Kuiper 2‹

1Institute for Theory and Computation, Harvard College Observatory, 60 Garden St, Cambridge, MA 02138, USA
2Institut für Theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle-Straße 2, D-69120 Heidelberg, Germany

Accepted 2021 October 9. Received 2021 October 9; in original form 2021 August 4

ABSTRACT
Spherical Bondi accretion is used in astrophysics as an approximation to investigate many types of accretion processes. Two-
phase accretion flows that transition from neutral to ionized have observational support in high-mass star formation, and have
application to accretion flows around any ionizing source, but the hydrodynamic stability of two-phase Bondi accretion is not
understood. With both semi-analytic and fully numerical methods, we find that these flows may be stable, conditionally stable,
or unstable depending on the initial conditions. The transition from an R-type to a D-type ionization front plays a key role in
conditionally stable and unstable flows.
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1 IN T RO D U C T I O N

Shortly after Bondi’s explanation (Bondi 1952) of his eponymous ac-
cretion flow, Mestel (1954) described a Bondi accretion flow through
a static ionization front as might exist around a compact ionizing
source. The Rankine–Hugoniot equations for the discontinuity across
the ionization front allow solutions for supersonic or subsonic relative
velocities of the front with respect to the neutral accretion flow.
However, there is a range of relative velocities, approximately around
the sound speed of the ionized gas, for which the jump conditions
result in an unphysical square root of a negative number. Thus, at that
time, the applicability of Mestel’s model was not clear. A year later,
Savedoff & Greene (1955) resolved the problematic jump conditions
with a double discontinuity made up of a shock front preceding the
ionization front.

Observations of radio recombination lines from the ultracompact
H II region, G10.6-04, matching the morphology and inward velocity
of the surrounding molecular accretion flow (Keto 2002a,b) suggest
the relevance of Mestel’s model with a molecular accretion flow
passing through the ionization front at the H II region boundary and
continuing to the star as an ionized accretion flow. This interpretation
recasts the role of an H II region around a massive accreting protostar
from a disruptor to a participant in the accretion flow. The model
is also applicable to rotationally flattened accretion flows, where the
accretion is confined about the mid-plane of the rotating system (Keto
2007).

The temporal evolution of a two-phase accretion flow is described
in Keto (2002b) as a continuous transition through steady-state
solutions parametrized by the ionizing luminosity or equivalently
the position of the ionization front. This description is adequate
assuming that the time-scale for the ionized flow to adjust to a new
steady-state solution, the fluid-crossing time, is short compared to
the time-scale for changes in the velocity of the ionization front.
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However, the velocity of the ionization front depends on the ionizing
luminosity and the ionized and neutral gas densities (Section 2.2).
These are both independent of the gas velocity in the sense that
Bondi’s solution contains an arbitrary scaling factor for the density.
Therefore, the assumption of a steady-state flow in the ionized gas
is not guaranteed. Recent numerical hydrodynamic studies found no
stable solutions and suggested that the dynamics in this model may
be inherently unstable (Vandenbroucke et al. 2019).

Owing to its simplicity and flexibility rather than astrophysical
realism,1 the spherically symmetric Bondi accretion flow has been a
useful approximation for investigations of a wide range of accretion
phenomena. The stability of two-phase Bondi accretion flows is
therefore worth understanding in order to extend the applicability
of this widely used approximation.

In this paper, we revisit the stability of an ionization front in a
Bondi accretion flow through two different numerical methods. We
follow Keto (2020) and use the method of characteristics to solve
the partial differential equation (PDE) for time-dependent Bondi
accretion within the H II region as a system of coupled ordinary
differential equations (ODEs; Section 2). We also model the entire
accretion flow from neutral to ionized, passing through the ionization
front, with a numerical hydrodynamic simulation gridded in spherical
geometry appropriate to the problem (Section 3).

In addition to the unstable solutions found in Vandenbroucke et al.
(2019), we find stable solutions with damped oscillations and con-
ditionally stable solutions with oscillations of limited amplification.
The behaviour depends on the relationship between two time-scales:
the time-scale for the H II region to change density, essentially the
fluid-crossing time; and the time-scale for the ionization front to
move to the new position of radiative equilibrium with the new
density. The oscillations result as the front overshoots its equilibrium
position.

1For example, both the self-gravity and angular momentum of the accretion
flow must be negligible.
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2 SOLUTION BY O RDINA RY DIFFERENTIAL
E QUAT I O N S

2.1 Bondi accretion

Following Bondi (1952) and Parker (1958), the Euler equation in
spherical symmetry for an isothermal gas with ∂P/∂ρ = a2 for sound
speed, a, and a gravitational force from a constant mass, M, is (Keto
2020)

∂ũ

∂t̃
= −ũ

∂ũ

∂x̃
− a2

ρ̃

∂ρ̃

∂x̃
− GM

x̃2
, (1)

where the tilde indicates a variable with dimensional units. This can
be written in non-dimensional form with the definitions as

x̃ =
(

GM

a2

)
x, ũ = au, t̃ =

(
GM

a3

)
t, and ρ̃ = ρ̃0ρ, (2)

where ρ̃0 is an arbitrary density. With these substitutions, equation (1)
becomes

∂u

∂t
= −u

∂u

∂x
− 1

ρ

∂ρ

∂x
− 1

x2
. (3)

The density may be eliminated with the help of the non-dimensional
continuity equation

ρ = λx−2u−1, (4)

where λ is the accretion rate. Then,

∂u

∂t
=

(
1

u
− u

)
∂u

∂x
+

(
2

x
− 1

x2

)
. (5)

In steady state, the time derivative on the left-hand side is zero, and
the variables can be separated and integrated,

L = log |u| − 1

2
u2 + 2 log |x| + 1

x
. (6)

In non-dimensional units, the constant of integration L = log λ is
equivalent to the energy and with a simple non-linear scaling to the
mass accretion rate.

There is only one solution that transitions from subsonic to
supersonic, the Bondi accretion flow with L = LC = 3/2 − 2 log 2.
This solution passes through a critical point, (xc, u) = ( 1

2 , 1) or
(x̃, ũ) = (GM/(2a2), a). The coefficients (equations 2) used for the
non-dimensional scaling are then, respectively, in the order listed,
twice the radial distance of the transonic critical point, the sound
speed, and twice the sound crossing time to the critical point. The
density has been eliminated from the solution, and its scaling is
arbitrary.

2.2 Ionization

The neutral accretion flow with velocity, u1(x), follows the unique
transonic steady-state solution until it reaches the ionization front at
position xf(t). Here, the flow is ionized, slowed down, and compressed
and then follows a solution of the PDE (5), for velocity u(x, t), and
energy constant,

L =
(

1

xf
+ 2 log xf

)
−

(
1

2
u2

2 (xf ) − log |u2 (xf ) |
)

, (7)

where u2(xf) is the velocity of the ionized gas at the position of the
front, xf.

In the following, the subscripts 1 and 2 indicate the neutral and
ionized sides of the front, respectively, and û a relative velocity of
the gas with respect to the front, û = ẋf − u, assuming that the gas

Figure 1. Velocity, u, as a function of position, x, in non-dimensional units
scaled on the sound speed of the ionized gas. The pink lines show the transonic
Bondi accretion flow and the Parker wind, crossing at the critical point (xc,
u) = (1/2, 1). The green lines show some examples of subsonic and supersonic
steady-state solutions. The blue and red lines show the initial conditions. The
neutral flow (blue line) passes through the ionization front to continue inwards
as an ionized accretion flow (red line). The ionization front is at position 3/8.

velocity is negative for accretion. Then the relative velocity, û2, is
found from the Rankine–Hugoniot or jump conditions for continuity
and momentum in non-dimensional form,

ρ2û2 = ρ1û1, (8)

ρ2

(
1 + û2

2

) = ρ1

(
β2 + û2

1

)
, (9)

where β = a1/a2, and the non-dimensional scaling coefficients
(equations 2) are defined with sound speed, a2. The jump conditions
are combined,

1 + û2
1

(
ρ1

ρ2

)2

−
(

β2 + û2
1

)(
ρ1

ρ2

)
= 0, (10)

and solved as a quadratic in the ratio, ρ1/ρ2. The velocity û2 in terms
of the known velocity û1 is

û2 = η ± (η2 − 1)1/2 (11)

with

η = 1

2û1

(
β2 + û2

1

)
. (12)

The positive branch, conventionally called R-type, applies when the
relative velocity, û1, is supersonic, û1 ≥ uR = 1 +

√
1 − β2 ≈ 2,

and the negative branch, D-type, when subsonic, û1 ≤ uD = 1 −√
1 − β2 ≈ β2/2. Relative velocities between uD and uR result in

an unphysical negative argument of the square root in equation (11).
The classification of ionization fronts is explained more fully in Shu
(1991) or Spitzer (1978). The initial conditions are shown in Fig. 1.

2.3 Velocity of the ionization front

The velocity of the ionization front is set by the requirement of
equality between the number of neutral atoms flowing into the front
and the number of ionizing photons arriving at the front, both per
unit time. The former depends on the relative velocity of the front
and the neutral accretion flow, as well as the neutral density. The
latter depends on the stellar rate of emission, J̃∗, less the rate of
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Ionized Bondi accretion 561

Figure 2. Velocity of the ionization front (red) and its position about equilibrium (blue), both shown relative to their respective equilibria and both in non-
dimensional units. The initial position of the front is 3/8 (left-hand panel) and 7/16 (right-hand panel) and initially out of equilibrium with the stellar flux by
2 per cent (left-hand panel) and 0.1 per cent (right-hand panel). The amplitudes of the oscillations are limited as shown in the figure (right-hand panel) and
continue at this level indefinitely.

recombinations in the H II region.(
dx̃f

dt
− ũ1 (xf )

)
rπx̃2

f

ρ̃1 (xf )

mH
= J̃∗ −

∫ x̃f

x̃∗
α

ρ̃2(x ′)
m2

H

4πx ′2dx ′,

(13)

where mH is the mass of the hydrogen atom and the type-1
recombination rate coefficient is α = 3 × 10−13 cm3 s−1. Ionization
equilibrium is explained more fully in Shu (1991) or Spitzer (1978).

This equation can be written in non-dimensional form as

(ẋf − u1 (xf )) x2
f ρ1 (xf ) = J∗ −

∫ xf

x∗
ρ2x ′2dx ′ (14)

or using the continuity equation (4) to eliminate the density as

(ẋf − u1 (xf )) = u1 (xf )

λ

(
J∗ − λ2

∫ xf

x∗
u−2

(
x ′) x ′−2dx ′

)
. (15)

In deriving the non-dimensional form, we set the density scaling
coefficient in equation (2),(

mH

αρ0

)(
a3

GM

)
= 1. (16)

The two terms in parentheses are the ratio of the recombination time
to the crossing time. Also,

J∗ =
[

1

a

1

4π

(
a2

GM

)
mH

ρ0

]
J̃∗. (17)

The right-hand side shows the ratio of the rate of ionizing photons
from the star to the rate of neutral atoms through the critical point of
the ionized Bondi accretion flow.

2.4 Time-dependent solution

The time-dependent evolution can be calculated from the PDE for the
Bondi accretion flow (5), combined with the equation for the velocity
of ionization front (15). Following the method of characteristics as
explained in Keto (2020), the PDE may be converted into two first-
order ODEs,

dx

dt
= u − 1

u
(18)

du

dt
= 2

x
− 1

x2
, (19)

to be solved with initial values, u(t, x) = u0(x) at t = 0. With
equation (15) for the position of the ionization front and its initial

condition, we have a system of three coupled ODEs. The neutral flow
upstream of the H II boundary layer, either a simple ionization front
or a combination of an ionization and a shock front, is independent of
time, and we solve only for the ionized portion of the accretion flow
and the motion of the front. Our numerical hydrodynamic simulations
described later in Section 3 model the flow in the ionized zone and
in both the pre- and post-shock neutral zones.

The system of coupled ODEs is an initial value problem (IVP),
whereas we want to solve a boundary value problem (BVP) for
the flow between the surface of the star and the time-dependent
position of the ionization front. Accordingly, at each time-step,
we remove from the calculation the characteristics represented by
equation (18) that are advected past the inner boundary, and we add
new characteristics to represent the gas flowing inwards through the
outer boundary. The initial velocities for the new characteristics are
determined from equation (11) for the combined jump conditions.
Example solutions with damped and amplified oscillations are shown
in Fig. 2.

2.5 Explanation

The oscillations are damped or amplified depending on the rela-
tionship between the phase of the oscillations of the velocity of the
front and the phase of the oscillations of its position. The chain of
causality involves several steps. The accretion flow is supersonic,
and downstream changes in the ionized portion of the flow do not
propagate to the ionization front. The neutral flow upstream is steady
by assumption. The movement of the ionization front is therefore
determined by the ionization balance, which depends on the ionized
gas density through the total recombination rate expressed by the
integral in equation (14).

The complexity arises because the motion of the front to establish
a new equilibrium changes the relative velocity of the front with
respect to the steady, neutral flow and thereby the compression
across the front and the density of the gas entering the H II region.
However, equilibrium requires a static front. Therefore, the ionized
density entering the H II region through the moving front is not
the density required for equilibrium. Advection then propagates this
non-equilibrium density through the H II region, affecting the density-
dependent recombination rate, the ionizing flux at the front, and in
turn the velocity of the front. Generally, the front position overshoots
its equilibrium, resulting in oscillations around the equilibrium
position.
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If the front is initially relatively close to the star, i.e. the H II region
is small compared to the Bondi transonic radius (e.g. xf/xc = 3/8 and
1/5 in our example ODE and fully numerical solutions, respectively),
then the advection time-scale is short, and the oscillations of the
position of the front lag the oscillations in the velocity of the front.
In this case, the overshoot works to dampen the oscillations, which
decay relatively quickly to the equilibrium position. If the H II region
is larger (e.g. xf/xc = 7/16 and 1/2 in our example ODE and fully
numerical solutions, respectively), the advection time-scale is longer,
and the oscillations of the position of the front lead those of the
velocity of the front, and the overshoot is amplified. Fig. 3 illustrates
the two cases. The arrows point to locations on the figure, where it is
easy to see that the oscillations of position and velocity are not quite
180◦ out of phase. In the case of damped oscillations, the change
in the sign of the velocity occurs just after the front has reached
its furthest deviation from equilibrium for each cycle, whereas the
opposite occurs in the case of amplified oscillations. In the two cases,
the time differences either work to dampen or amplify, respectively,
the oscillation in the next cycle.

For any set of initial conditions, there is a critical radius for
the initial position of the ionization front that determines whether
the evolution is stable or unstable. However, the critical radius is
not universal but depends on the initial conditions, in particular on
the locations of the inner and outer boundaries. At least for the
moment, this critical radius must be found numerically by following
the evolution.

2.5.1 Development of stable oscillations

If the oscillations are amplified, an ionization front starting from an
initial position where û1 ≥ uR may evolve such that û1 = uR even
if the ionizing flux, J∗, is held constant. This generally occurs in
the phase of the oscillation cycle when the position of the front
is accelerating inwards in the same direction as the accretion flow
and reducing the relative velocity of the front and the flow. If the
relative velocity, û1, were to fall below the critical velocity, uR, the
argument of the square root in equation (11) would become negative,
resulting in unphysical jump conditions across the ionization front.
This situation is resolved by the development of a shock front on
the upstream side of the ionization front as suggested by Savedoff &
Greene (1955). An ionization front at the critical relative velocity,
uR, is equivalent to a double front consisting of a D-type ionization
front with a coincident and co-moving isothermal shock. In this
equivalence, the shock slows the neutral gas entering the ionization
front to the relative velocity, uD, according to the jump conditions
across an isothermal shock,

û1s = β2/(u1 − ẋs), (20)

where û1s is the relative velocity of the neutral gas behind the shock
front and ẋs is the velocity of the shock front.

Our ODE model consists of two zones, the undisturbed neutral
accretion flow and the H II region, and does not include a post-shock,
compressed, neutral layer. If we assume that the post-shock layer
is thin so that û1f ≈ û1s, then the ionization and shock fronts need
not be coincident. If we further assume that the compression in the
post-shock layer results in the minimum pressure required to move
the shock front ahead of the ionization front at the minimum velocity
required for allowable jump conditions, then the relative velocity of
the ionized gas behind the ionization front remains at the critical
value û2f = 1 as long as the relative velocity ahead of the shock front
is within the range uD < û1s < uR.

Thus, during the phase of the oscillation when the H II boundary
is moving inwards and the upstream relative velocities are within
this range, uD < û1s < uR, the density of the ionized gas that enters
the H II region decreases less than it does when the single ionization
front structure is allowed. After a crossing time, this gas, now near
the inner boundary, dominates the number of recombinations in the
integral in equations (13)–(15) and drives the outward motion of the
ionization front less than it would without the transition to a double-
front discontinuity. Thus, if the initial conditions allow, the growth
of the amplitudes of the oscillation is limited by the development of
the double-front discontinuity.

The transition from an R-type to a D-type ionization front may
not be dramatic. In our ODE solution, we find that the front may
switch back and forth between critical and subcritical several times
per oscillation cycle, suggesting that a dense post-shock neutral layer
does not necessarily build up and persist, at least not for the initial
conditions of our example solution.

To continue the explanation, we compare the evolution of the
ionization front within a Bondi accretion flow with two different
models. First, under the right conditions, a non-linearly damped
harmonic oscillator can lead to conditionally stable oscillations.
Secondly, the ionization front in the textbook model for the pressure-
driven expansion of an H II region within a uniform-density gas also
transitions from R-type to D-type, but the conditions at the H II region
boundary are controlled in a different way (Spitzer 1978; Shu 1991).

2.5.2 Comparison with a non-linearly damped harmonic oscillator

While the evolution of the ionization front to conditionally stable
oscillations is similar to that of a forced and damped harmonic
oscillator leading to a limit cycle, the equation for the position
and velocity of the ionization front is different. The equation for
a harmonic oscillator has the general form

ẍ + b(x)ẋ + cx = f (t), (21)

where b, c, and f are arbitrary constants or functions. If the damping
term is suitably non-linear, in particular, stronger at the extrema of
the oscillations, the evolution may lead to a classic limit cycle with
conditionally stable oscillations as in the well-known van der Pol
oscillator. In contrast, equation (14) for the velocity of the ionization
front is of the form

ẋ = g(x, t) (22)

with a function g. The dependence on position is seen in the upper
limit of the integral in equation (14) and also in the velocity of
the neutral flow at the position of the front. The time dependences
result from the advection of the density across the H II region and
the position of the front. The time derivative of equation (14) for the
acceleration of the front is of the form

ẍ = h(ẋ, t). (23)

This is, of course, different from that of a harmonic oscillator
(equation 21) in that the function h(ẋ, t) depends only on time and
the time derivative of x. In particular, the restoring force proportional
to x is missing. A simple ODE for the acceleration of the ionization
front would be of the type

ẍ + h(t)ẋ = 0, (24)

with a function h. This type of equation can be solved with an
integrating factor

μ(t) = exp
∫

h(t)dt, (25)
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Figure 3. Details of Fig. 2. The arrows point to locations where it is easy to see that the change in the sign of the velocity does not occur exactly at the time that
the position of the front reaches its maximum or minimum from equilibrium. In the case of damped oscillations (left-hand panel), the oscillations of velocity lag
those in position. If the oscillations in velocity lead those in position (right-hand panel), the oscillations are amplified.

with the argument of the exponent setting a time-dependent damping
or amplification time-scale. Of course, owing to the complexity of
the equations for accretion, it is not possible to write a closed-form
equivalent of the function, h, and therefore the differential equations
for accretion cannot be solved in this way. None the less, because
equations (21) and (23) are not of the same form, the dynamics
of two-phase accretion are different from those of a non-linearly
damped harmonic oscillator.

2.5.3 Comparison with pressure-driven expansion

In the textbook model for pressure-driven expansion of an H II region
into a uniform, static gas (Spitzer 1978; Shu 1991), once the velocity
of an R-type ionization front slows to its critical value, the ionization
front transitions to a D-type with a preceding isothermal shock. In
this model, the velocity of the front is consistent with ionization
equilibrium as it is in the model for ionized accretion. However, the
subsonic, pressure-driven expansion of the H II region determines
the gas velocities across the shock and ionization fronts. In effect,
the jump conditions depend on the velocities from the inside out.
In contrast, in ionized accretion, the gas within the H II region is
flowing inwards, almost in free fall, and hydrodynamic pressure is
not effectively transmitted upstream. The jump conditions depend
on the velocities from the outside inwards with the hydrodynamic
pressure within the thin shell of post-shock neutral gas regulating the
speed of the isothermal shock. In both models, when u1f < uR and
a double-front structure is required, the result is the same – the gas
enters the H II region at the ionized sound speed with respect to the
velocity of the ionization front.

3 N U M E R I C A L H Y D RO DY NA M I C
SIMULATIONS

With the method of characteristics, we have described solutions of the
coupled ODEs for the ionized gas that result in damped oscillations
and conditionally stable oscillations for relative velocities above the
R-critical limit, û1f = uR, or as an approximation, not much below
the limit. Following the same method, we could extend the ODE
model to include relative velocities arbitrarily below the R-critical
limit by adding an additional zone to our model to calculate the
hydrodynamic evolution within the thin shell of post-shock neutral
gas ahead of the ionization front when this shell develops as a result of
the transition from an R-type to a D-type ionization front. This would
be a second IVP to be solved as a BVP with the ionization front as the

inner boundary and the shock as the outer boundary. However, with
sufficient understanding of the dynamics gained through the simpli-
fied physics described by the coupled ODEs of the two-zone model,
a better course may be a change of method to follow the evolution
with a finite-volume numerical hydrodynamical simulation.

3.1 Code

The hydrodynamical evolution for the full accretion flow, neutral
and ionized, is followed using the open-source code PLUTO version
4.1 (Mignone et al. 2007) configured for one-dimensional (1D)
simulations assuming spherical symmetry. The ionization-radiation
transport is solved using the ray-tracing module SEDNA (Kuiper &
Hosokawa 2018; Kuiper, Yorke & Mignone 2020). From the range of
hydrodynamics solvers available in PLUTO, we use the HLLC scheme
(Harten–Lax–Van Leer scheme including the contact discontinuity).
With a WENO3 interpolation scheme in space and a Runge–Kutta 3
interpolation in time, the hydrodynamics are accurate to third order
in space and time. The thermal equation of state of the gas is locally
isothermal, with the actual gas temperature as a function only of the
ionization fraction, ε,

Tgas = ε × Tion + (1 − ε) × Tneu. (26)

3.2 Initial conditions

Our initial model is chosen to be similar to that of Vandenbroucke
et al. (2019) with a fixed central mass, M = 18 M	, neutral and
ionized gas temperatures, T1 = 500 K, T2 = 8000 K, and the density
at infinity normalized to ρ∞ = 10−19 g cm−3. The neutral and ionized
sound speeds are a1 = 2.03 and a2 = 11.5 km s−1, respectively. The
Bondi radii [GM/(2a2)] for the two phases are RB1 = 1942 and RB2 =
60.5 au, respectively.

At the outer boundary of the computational domain, Rmax = 100 au,
we set the gas mass density and gas velocity to the analytical solution
of the Bondi accretion flow, specifically ρgas ≈ 2 × 10−17 g cm−3

and vgas ≈ −16.6 km s−1. At the inner boundary, Rmin, we use zero-
gradient boundary conditions, i.e. mass, momentum, and energy are
allowed to stream freely across the boundary. The spatial resolution
of the grid is uniform with 
r = 1/30 au. We ran simulations with
two choices for Rmin = 10 (same as Vandenbroucke et al. 2019), and
also at 1 au.

To develop an initial accretion flow in equilibrium, we start with
a uniform density, ρgas, equal to the value at 100 au, given above,
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564 E. Keto and R. Kuiper

Figure 4. Left-hand panel: initial steady-state solution of the ionized Bondi accretion flow. Gas mass density (left-hand vertical axis) as a function of radius
from the numerical simulation is shown as a black line overlain by an orange long-dashed line corresponding to the analytical solution. Gas velocity (right-hand
vertical axis) as a function of radius from the numerical simulation is shown as a blue line overlain by a red long-dashed line corresponding to the analytical
solution. The ionization fraction (dashed red line) jumps from 100 per cent to 0 per cent at the ionization front. Vertical dashed lines denote the location of
the initial ionization front at 30 au and the Bondi radius with respect to the ionized gas temperature at ≈61.5 au. Two movies showing the evolution of gas
mass density and gas velocity from the uniform initial condition towards the steady-state solution of the ionized Bondi accretion flow are available online. A
first movie shows the evolution from the uniform initial conditions to the steady-state solution of the neutral Bondi accretion flow. A second movie shows the
further evolution after the addition of the ionization front. In the movies, dashed lines denote the analytic solutions for the neutral and ionized flow, respectively.
Right-hand panel: evolution of the location Rf of the ionization front. The position of the ionization front as a function of time is shown from the initial conditions
(left-hand panel) for the exact equilibrium (horizontal black line at 30 au) and for a slight offset from equilibrium (red line) achieved by reducing the constant
ionizing luminosity by −0.06 per cent of its equilibrium value. Also shown is the time evolution but with the ionized gas temperature reduced by a factor of
2 to 4000 K (blue line). Four movies showing the temporal evolution of the gas mass density and gas velocity profiles for ionized gas temperatures of 8000
(equilibrium and non-equilibrium), 4000, and 2000 K are also available online.

and a uniform temperature, T1, given above. As a first step, we
let the system evolve without ionization under the gravitational
influence of the constant central mass until the flow arrives at the
single-phase Bondi transonic solution. In a second step, we add
an ionization front at a fixed position (30 and 12 au, respectively,
in our two examples discussed below). The velocity of the neutral
flow along with the gas temperatures in the two phases defines the
jump conditions at Rf. We evolve this system hydrodynamically
(without radiation transport) until another steady state is reached.
The ionizing luminosity required for equilibrium is then derived
from the density profile inside of the ionization front along with the
neutral flux through the front. We now have the initial equilibrium
state (Fig. 4) for the fully time-dependent coupled hydrodynamic and
photoionization-radiation transport problem.

3.3 Time-dependent evolution

We allow the position of the front to move in response to the
ionizing flux at the front, which is calculated as the solution of
the radiation transport problem. As shown in Fig. 4, the position of
the front does not change from the initial equilibrium. However, the
equilibrium is not stable. For example, if the ionizing luminosity is
changed by −0.06 per cent and then held constant, the position of
the front develops oscillations, shown in our Fig. 4, nearly identical
to those found by Vandenbroucke et al. (2019, their figs 6 and 8).
In this example, the front periodically reaches the inner boundary,
resulting momentarily in a fully neutral accretion flow. The H II

region immediately re-establishes itself with the position of the
front in ionization equilibrium with the density profile of the neutral
steady-state transonic Bondi solution. However, now the system is
not in hydrodynamic equilibrium because compression through the
front requires an ionized density profile consistent with a different
energy constant, L (equation 7).

This behaviour is not universal but dependent on the initial
conditions. For example, reducing the ionized gas temperature to

4000 K results in a solution that is conditionally stable in that the
maximum amplitude of the oscillations is limited, and the position
of the front oscillates closely around the equilibrium position as seen
in Fig. 4. If the ionized gas temperature is further reduced to 2000 K,
the solution remains essentially the same as the equilibrium solution.
The lower ratio of ionized to neutral sound speeds weakens the
compression across the ionization front, which ultimately lengthens
the response time of the ionization. In our ODE model, the relevant
equations are (13)–(15).

Our non-dimensional ODE solution indicates that the differences
in evolution are due to the differences in the compression of the gas at
the H II region boundary, which is set by the temperature ratio. (Our
non-dimensional solutions shown in Figs 2 and 3 have a temperature
ratio of 100.) For any temperature ratio, solutions may be stable,
conditionally stable, or unstable according to the initial position of
the front with respect to the temperature-dependent Bondi radius. For
lower temperature ratios, stable solutions are found within a wider
range in the position of the front.

We next ran two series of simulations inserting a density perturba-
tion in the neutral flow upstream of the ionization front. Each series
includes perturbations of different amplitudes, one per simulation,
with multiplicative factors between 10 and 0.001 of the neutral
steady-state transonic density. The density perturbations all have
a width of 5 au. The initial (equilibrium) position of the ionization
front is 12 au, xc/xf = 1/5. The inner boundary is 10 au in the first
series and 1 au in the second. The ionized and neutral temperatures
are 8000 and 500 K, respectively, as in the original example.

Fig. 5 shows the results. Density perturbations of any amplitude
result in oscillations of the position of the front. Density perturbations
of larger amplitude result in an initial collapse of the H II region
through the inner boundary. The collapse occurs as the initial
perturbation is advected through the ionization front and the density-
dependent recombination rate limits the number of ionizing photons
reaching the front. Once a large-amplitude perturbation has been
mostly advected through the inner boundary, the H II region is re-
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Figure 5. Temporal evolution of the location Rf of the ionization front, initially located at 12 au, for nine different initial perturbation strengths, 10.0, 3.0, 1.0,
0.3, 0.1, 0.03, 0.01, 0.003, and 0.001, times the steady-state transonic density, shown as colours on a rainbow scale ranging from red to blue, largest to smallest
perturbation strengths, respectively. The dashed horizontal line at 12 au shows the initial (equilibrium) position of the ionization front. The inner boundary
is 10 au in the example shown in the left-hand panel and 1 au in the example shown in the right-hand panel indicated by dashed lines. Two movies showing
the temporal evolution of the gas mass density and gas velocity profiles are also available online (perturbations of 0.1 and inner boundaries of 10 and 1 au,
respectively).

established, and the position of the front then oscillates around its
equilibrium value. With the inner boundary at 10 au, the oscillations
are damped resulting in a stable solution. With the inner boundary
at 1 au, the oscillations are conditionally stable with limited growth
in amplitude. Even after long evolutionary times (100 yr), these
conditionally stable oscillations never result in subsequent collapse
of the H II region. In these examples, the difference between the
stable and conditionally stable behaviour is due to the lower degree
of spherical compression with a larger inner radius resulting in more
stable behaviour. If our non-dimensional ODE examples (Figs 2 and
3) were scaled to correspond to the dimensional initial conditions of
these numerical simulations, the inner boundary in the ODE solutions
would be 9.7 au.

4 A STRO PHYSICAL IMPLICATIONS

The astrophysical applications of the instabilities in spherical ionized
accretion may be limited because of the dependence of the instability
on the spherical geometry of Bondi accretion flow and specifically
on the spherical convergence of the flow. Astrophysical accretion
flows are generally flattened in geometry due to the conservation
of angular momentum. While the density in these 2D, rotationally
flattened flows is also expected to increase at smaller radii, the 2D
geometry lacks the spherical compression of the 1D model because
the compression can be relieved by expansion of the disc scale height.
Oscillations seen in the spherical Bondi problem are not expected
nor seen in 2D and 3D numerical simulations of rotationally flattened
accretion flows with ionization (Kuiper & Hosokawa 2018; Sartorio
et al. 2019).

5 C O N C L U S I O N S

The spherical convergence in Bondi accretion causes the density to
increase rapidly at smaller radii, approximately as r−1.5 (free fall). In
a two-phase accretion flow, because the recombination rate increases
as the square of the density, the effective opacity of the H II region and
therefore the ionizing flux at the front is controlled predominately
by the higher density region at smaller radii. The ionizing flux at the
front controls the velocity of the front, which in turn determines the
compression of the flow through the H II region boundary, and with

a time lag due to advection, the density at smaller radii. The offset of
the phases of oscillations in the position and velocity of the front may
lead to either damped or growing oscillation amplitudes. Amplitude
growth may be limited by the transition of the ionization front from
R-type to D-type and back as the transition limits the velocity of the
front.
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Figure 4. Left-hand panel: initial steady-state solution of the ionized
Bondi accretion flow.
Figure 5. Temporal evolution of the location Rf of the ionization
front, initially located at 12 au, for nine different initial perturbation
strengths, 10.0, 3.0, 1.0, 0.3, 0.1, 0.03, 0.01, 0.003, and 0.001, times
the steady-state transonic density, shown as colours orange, yellow,
light green, cyan blue, light blue, dark blue, and purple, respectively.
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