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A B S T R A C T 

We develop a sophisticated model of fast radio burst (FRB) observations, accounting for the intrinsic cosmological gas distribution 

and host galaxy contributions, and give the most detailed account yet of observational biases due to burst width, dispersion 

measure, and the exact telescope beamshape. Our results offer a significant increase in both accuracy and precision beyond 

those previously obtained. Using results from ASKAP and Parkes, we present our best-fitting FRB population parameters in a 
companion paper. Here, we consider in detail the expected and fitted distributions in redshift, dispersion measure, and signal 
to noise. We estimate that the unlocalized ASKAP FRBs arise from z < 0.5, with between a third and a half within z < 0.1. 
Our predicted source-counts (‘log N –log S ’) distribution confirms previous indications of a steepening index near the Parkes 
detection threshold of 1 Jy ms. We find no evidence for a minimum FRB energy, and rule out E min > 10 

39.0 erg at 90 per cent 
C.L. Importantly, we find that abo v e a certain DM, observational biases cause the Macquart (DM–z ) relation to become inverted, 
implying that the highest-DM events detected in the unlocalized Parkes and ASKAP samples are unlikely to be the most distant. 
More localized FRBs will be required to quantitatively estimate this effect, though its cause is a well-understood observational 
bias. Works assuming a 1–1 DM–z relation may therefore derive erroneous results. Our analysis of errors suggests that limiting 

factors in our analysis are understanding of FRB spectral behaviour, sensitivity response of search experiments, and the treatment 
of the repeating population and luminosity function. 
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 I N T RO D U C T I O N  

ast radio bursts (FRBs) are radio transients of millisecond du- 
ation and extragalactic origin (Lorimer et al. 2007 ; Thornton 
t al. 2013 ). Their progenitors are unknown, with v ery man y
roduction mechanisms propoed (Platts et al. 2019 ). FRB surv e ys
re providing increasingly large statistics with which to study the 
RB population (Bhandari et al. 2018 ; Shannon et al. 2018 ; The
HIME/FRB Collaboration 2021 ), including a handful of localized 
RBs (Tendulkar et al. 2017 ; Bannister et al. 2019 ; Prochaska
t al. 2019b ; Ravi et al. 2019 ; Marcote et al. 2020 ). Furthermore,
acquart et al. ( 2020 ) have used localized FRBs as probes of the

osmological distribution of ionized gas, illustrating their utility for 
osmological studies (McQuinn 2014 ; Masui & Sigurdson 2015 ; 
aleb, Flynn & Stappers 2019 ; Madhavacheril et al. 2019 ). Of the key
uestions surrounding FRBs, this work focuses on FRB population 
tatistics. 

Studies of the FRB population are important both for understand- 
ng the nature of FRBs themselves, and their use as cosmologi- 
al probes. Typical fitted parameters include the FRB luminosity 
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unction, e.g. minimum and maximum energies, and its shape; 
RB spectral properties; and the source evolution. Studies including 
epeating FRBs must also fit the distribution of repetition rates and
llow for time dependence between bursts from a single object. 

Linking FRB observations to the underlying true FRB population 
o we ver is dif ficult. Connor ( 2019 ) re vie w pre vious methods of
tudying the FRB population, and emphasize that accurate esti- 
ates require accounting for the sensitivity effects of telescope 

eamshape, intrinsic burst width, and the dispersion measure dis- 
ribution p (DM | z) for a given redshift. In short, one must integrate
 v er known or hypothesized intrinsic distributions of these variables,
odel observational biases, and then attempt to match observations. 
oing so improperly will produce biased results. 
In what is usually seen as a different line of inquiry, cosmological

tudies using FRBs take advantage of their dispersion measure (DM), 
hich integrates the column density of ionized gas along their line
f sight. This encodes information on the diffuse gas in voids and
alactic haloes which is otherwise difficult to study. Macquart et al.
 2020 ) have recently used the localized FRB population to constrain
he total baryon density of the Universe and the degree of feedback. In 
hat work, the authors analyse the probability distribution of observed 
ispersion measures, DM, given the redshift z of identified FRB host
alaxies, p ( z, DM). This controls somewhat for the effects of the
opulation of FRBs, which primarily affects the redshift distribution 
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 ( z). The authors do note ho we ver the potentially biasing effects
f the FRB population as observed by FRB surveys, although a
omprehensive treatement of such biasing effects is not performed
ue to the intrinsic error in using a small sample size (5–7). Many
osmological studies (such as helium reionisation) require many
RBs to both exist and be detectable at a redshift of z ∼ 4 (Caleb
t al. 2019 ), which is well beyond the most distant localized FRB to
ate at z ∼ 0.6 (Law et al. 2020 ). 
Fundamentally, both lines of inquiry aim to study the intrinsic

istribution of FRBs in z–DM space, p (DM, z). The only difference
s the aspect of interest: population studies try to resolve a redshift
istribution p ( z) and treat the distribution p (DM | z) as a nuissance
istribution, while cosmological studies aim to resolve p (DM | z)
nd attempt to remo v e the p ( z) factor. The y are thus fundamentally
oupled problems. Unbiased estimates of the cosmological distri-
ution of ionized gas require knowing the FRB population and the
onsequent biasing effects on measured dispersion measures; and
nderstanding the FRB population requires knowing the dispersion-
easure distribution and its biasing effects on the measured lumi-

osity function. 
Caleb et al. ( 2016 ) provide the first comprehensive model of ob-

ervational biases on a simulated burst population, and FRBPOPPY
Gardenier et al. 2019 ) is being developed to include such effects.
o date ho we ver, only Luo et al. ( 2020 ) have used this approach

o fit population parameters. The authors study a sample of FRBs
etected in the ∼1 GHz band from Parkes, the Upgraded Molonglo
ynthesis Telescope (UTMOST), the Australian Square Kilometre
rray Pathfinder (ASKAP), Arecibo, and the Greenbank Telescope

GBT). The authors e v aluate the v alidity of their model using
ULTINEST (Feroz, Hobson & Bridges 2009 ), which applies

 Bayesian framework, and find a peak FRB luminosity L 

∗ of
 . 9 + 11 . 9 

−1 . 7 10 44 erg s −1 , a dif ferential po wer-la w inde x of −1 . 79 0 . 31 
−0 . 35 ,

nd a volumetric rate of 3 . 7 + 5 . 7 
−2 . 4 10 4 Gpc −3 yr −1 abo v e 10 42 erg s −1 . 

In this work, we significantly impro v e upon FRB population
odels in the following manner: 

(i) using an unbiased sample of FRBs from ASKAP and Parkes; 
(ii) using seven localized FRBs detected by ASKAP; 
(iii) correctly accounting for the full telescope beamshape; 
(iv) using the measured signal-to-noise ratio in probability esti-
ates; 
(v) including the intrinsic spread in the cosmological DM contri-

ution due to large-scale structure and galaxy haloes; 
(vi) and allowing for redshift evolution of the FRB event rate per

omoving volume. 

As with other population models, to make the problem tractable,
e assume that the cosmological rate evolution, host galaxy DM

ontrib ution, b urst width, and burst energy distributions are all in-
ependent; and that FRB observations are random and uncorrelated,
.e. we do not model rapidly repeating FRBs. 

We begin by describing the ingredients to our model: a model of
he DM distribution of FRBs as a function of redshift (Section 2),
ased on the model of Macquart et al. ( 2020 ); the intrinsic properties
f FRBs, such as their burst width and the luminosity function,
sing a standard power-law description (Section 3); and the influence
f observational effects such as beamshape and search sensitivity
Section 4). The method to combine these to calculate the expected
 z -DM’ distribution for observed FRB surv e ys is giv en in Section 5.
n Section 6, we describe the data from ASKAP and Parkes to which
e fit our model using maximum-likelihood methods. The best-
tting FRB population parameters, and their uncertainties, are given

n a companion paper (James et al. 2021a ). In this work, we present
NRAS 509, 4775–4802 (2022) 
etailed comparisons to the observed DM, redshift, and signal-to-
oise ratio distributions in Section 8, where we test for goodness
f fit and search for deviations from expectations. Section 9 shows
ur estimates for the expected z –DM distribution of FRBs detected
y ASKAP and Parkes. We summarize our results in Section 10.
e attach in appendices a discussion of neglected effects in our
odelling, and extra data for alternative source evolution scenarios. 

 DI SPERSI ON  MEASURE  DI STRI BU TI ON  

he distribution of dispersion measure, DM, of FRBs from a given
edshift z , p (DM | z ), is of both intrinsic interest, and is a nuissance
actor in calculating the properties of the FRB population itself.
ere, we use the method and parameters of Macquart et al. ( 2020 ).
e model the DM of an FRB as 

M = DM ISM 

+ DM halo + DM cosmic + DM host , (1) 

ith respective contributions from the Milky Way’s interstellar
edium (ISM), it’s halo, the cosmological distribution of ionized gas,

nd the FRB host. In this work, we divide this into an ‘extragalactic’
ontribution, 

M EG ≡ DM cosmic + DM host , (2) 

nd a ‘local’ contribution, 

M local ≡ DM ISM 

+ DM halo . (3) 

he ‘local’ contribution is subtracted from FRB observations, and
hus all comparisons between expectations and measurements are
ade in terns of DM EG . This model slightly differs from that in
acquart et al. ( 2020 ), who model both DM host and DM halo using

he same nuisance term, DM X . The distinction becomes important at
arge redshifts. 

.1 DM ISM 

e use the NE2001 model (Cordes & Lazio 2002 ), 1 to estimate
he Galactic contribution to dispersion measure. Since DM is an
ngredient in the calculation of detection efficiency (see Section 4.2),
he full integral for the FRB rate e xtends o v er the pointing direction
s a function of Galactic coordinates, as discussed in Section A2
nd equation (A1). Since most FRBs and FRB searches have been at
igh Galactic latitudes, ho we ver, we use the mean value DM ISM 

to
alculate the sensitivity for each surv e y, while using the individual
alues DM ISM 

when calculating FRB likelihoods. 

.2 DM halo 

he exact contribution of the Milky Way halo to DM is uncertain,
ith estimates of order 10–80 pc cm 

−3 (Prochaska & Zheng 2019 ;
eating & Pen 2020 ). FRBs have been observed down to a DM
f little more than 110 pc cm 

−3 (CHIME/FRB Collaboration et al.
019a ) and 114 pc cm 

−3 (Shannon et al. 2018 ), fa v ouring the middle
f this range and consistent with current estimations based on the full
et of observed DMs (Platts, Prochaska & Law 2020 ). We therefore
se a value of DM halo = 50 pc cm 

−3 in our default model. 
Deviations between our assumed values for DM ISM 

and DM halo 

ill be absorbed into our model for the host galaxy contribution. 

https://readthedocs.org/projects/ne2001/
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Figure 1. Distribution p (DM | z) of observation-independent DM parameters, 
DM cosmic only (top), and also including the best-fitting distribution for DM host 

derived in James et al. ( 2021a ) (bottom), as a function of redshift z, showing 
contours. 
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.3 Cosmological DM 

e caution that symbols E , F , and α have different definitions in this
ection than in the remainder of this work. The notation regarding 
M cosmic is derived from Macquart et al. ( 2020 ), and we preserve it

or ease of reference to that work. 
The ‘cosmological’ contribution to DM, DM cosmic , can be under- 

tood as the DM incurred when an FRB is emitted at z at a random
oint in the Universe and propagates until the current epoch, z = 0.
 parametrization based on detailed simulations (McQuinn 2014 ) is 
iven in Macquart et al. ( 2020 ), as a function of burst redshift z, as 

M cosmic = 〈 DM cosmic 〉 � DM 

(4) 

 ( DM cosmic | z) = 

p ( � DM 

| z) 

〈 DM cosmic 〉 . (5) 

The expected value < DM cosmic > is calculated as per Ioka ( 2003 )
nd Inoue ( 2004 ): 

〈 DM cosmic 〉 = 

∫ z 

0 

c ̄n e ( z ′ )d z ′ 

H 0 (1 + z ′ ) 2 E( z) 
, (6) 

( z) = 

√ 

�m 

(1 + z ′ ) 3 + �� 

, (7) 

sing the mean density of ions, n̄ e , and cosmological parameters 
ele v ant for the range 0 ≤ z ≤ 5: H 0 = 67.4 km s −1 Mpc −1 , and
atter and dark energy densities �m 

= 0.315 and �� 

= 0 . 685 for a
ritical density Universe. See Macquart et al. ( 2020 ) and references
ontained therein for further details – cosmological parameters are 
aken from Planck Collaboration et al. ( 2018 ). 

The probability of deviations from the mean, p ( � DM 

), is given by 

( � DM 

) = A� 

−β

DM 

exp 

[ 

−
(
� 

−α
DM 

− C 0 

)2 

2 α2 σ 2 
DM 

] 

, (8) 

ith α = 3, β = 3, and C 0 being numerically tuned such that the
xpectation value of the distribution is unity. The degree of feedback 
 is reflected in the choice of σ DM 

= Fz −0.5 . In this work, we fix F
 0.32 based on results of (Macquart et al. 2020 ). 
The resulting distribution of DM cosmic , p (DM cosmic | z) is shown in

ig. 1 . 

.4 DM host 

he contribution of the FRB host galaxy (including the local environs 
f the FRB itself) to DM is highly uncertain. Some FRBs, most
otably FRB 121102 and FRB 190608, show a large excess DM 

eyond what is expected from cosmological and MW contributions, 
hich cannot be explained by passage through an intervening galaxy 

long the line of sight (Spitler et al. 2014 ; Chatterjee et al. 2017 ;
ardy et al. 2017 ; Tendulkar et al. 2017 ; Chittidi et al. 2020 ). Yet

s noted in Section 2.2, many FRBs do not allow for a great deal
f excess DM. Macquart et al. ( 2020 ) generically model this large
pread using a lognormal distribution 

( DM 

′ 
host ) = 

1 

DM 

′ 
host 

1 

σhost 

√ 

2 π
exp 

[
− ( log DM 

′ 
host − μhost ) 2 

2 σ 2 
host 

]
. (9) 

e also correct the host contribution for redshift via 

M host = 

DM 

′ 
host 

1 + z 
. (10) 

In this work, we use μhost and σ host as free parameters. Thus un- 
ertainties in other DM contributions – including from our assumed 
alue of feedback F – will be absorbed into these quantities. 
.5 The intrinsic z –DM grid 

he probability distribution of observation-independent factors, 
M cosmic + DM host , is given in Fig. 1 . In this work, a linear grid

n both z and DM space is used, with 1200 DM points spaced from
–7000 in intervals of 5 pc cm 

−3 , and 500 in redshift from 0.01–5.
RBs have their nominal local contributions, DM local subtracted from 

heir observed values of DM prior to e v aluating their likelihood on
his grid. In this model, only a small fraction of FRBs will have a
M very much larger than the mean. In particular, for z < 1.5, the
ajority of the spread in DM comes from the host galaxy, rather than

he cosmological contribution. 

 FRB  POPULATI ON  

.1 Energetics 

ur model of the FRB population 
 is consistent with that used in
he literature. We adopt a power-law distribution of burst energies E
etween E min and E max with integral slope γ . We use ‘burst energy’ as
he isotropic equi v alent energy at 1.3 GHz, and assume an ef fecti ve
andwidth of 1 GHz when converting between ‘per Hz’ and total
uantities. If FRBs are beamed into a characteristic solid angle �FRB ,
hen all energies in this work should be scaled down by a factor
MNRAS 509, 4775–4802 (2022) 
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Figure 2. Relative rate of FRB detections in z–DM space when ignoring 
beamshape and burst width effects for the best-fitting FRB population 
parameters presented in James et al. ( 2021a ). All observational biases from 

Section 4 have been ignored, and a constant detection threshold of 1 Jy ms 
is used. The Macquart relation, approximated by DM = < DM cosmic > + 

exp ( μhost ), is also shown. The contours represent 50 per cent (dotted), 
90 per cent (dash–dotted), and 99 per cent (dashed) of the FRB population. 
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FRB (4 π ) −1 – but the true FRB rate will increase by an identical
actor. 

In this model, the probability of a burst occurring abo v e a threshold
 th is a piecewise function 

( E > E th ) = 1 ( E th < E min ) 

( E > E th ) = 0 ( E th > E max ) 

( E > E th ) = 

(
E th 
E min 

)γ

−
(

E max 
E min 

)γ

1 −
(

E max 
E min 

)γ otherwise . (11) 

bserv ations sho w no e vidence for a minimum FRB energy, and
ndeed the event rate is generally insensitive to E min for γ > −1.5
Macquart & Ekers 2018b ). Thus, we use a very low value of
 min = 10 30 erg, which is several orders of magnitude below the
inimum detected burst energy of all known FRBs – including SGR

935 + 2154 at 10 34 –10 35 erg (The Chime/Frb Collaboration 2020 ;
ochenek et al. 2020 ) – and treat this as a fixed parameter. We

e-examine this assumption in Section 8.3. 
Several other authors have used a Schechter function to model

he FRB luminosity function (Lu & Piro 2019 ; Luo et al. 2020 ),
hich adds an exponential cut-off of the form exp ( −E / E max ) to the

uminosity function of equation (35). This is neither observationally
or theoretically moti v ated – the form of the Schechter function
s used to model galaxy luminosities – and adds computational
omplexity, b ut a v oids the unphysicality of a sharp cut-off. A
reliminary investigation showed that using the Schechter function
rovided ef fecti vely identical fits to the data. We therefore advocate
or the simple power-law model out of simplicity. 

To calculate E th , we convert between FRB energy E and observable
uence F using 

( F ) = 

4 πD 

2 
L ( z) 

(1 + z) 2 + α
�νF , (12) 

here α is the spectral index ( F ∝ να), and �ν the bandwidth (here
e use 1 GHz). Macquart et al. ( 2019 ) fit α to 23 FRBs detected
y ASKAP in Fly’s Eye mode, finding α = −1 . 5 + 0 . 2 

−0 . 3 . Thus, we use
 default value of α = −1.5. We return to the interpretation of α
hortly. 

.2 Population evolution 

he rate of FRBs per comoving volume will likely be a function
edshift. While FRB host galaxies do not appear to be drawn from
 population sampled proportionally to their star-forming activity
Safarzadeh et al. 2020 ), they certainly are not exclusively associated
ith very old galaxies in which star-forming activity has ceased

Bhandari et al. 2020a ; Heintz et al. 2020 ). We therefore adopt the
pproach of Macquart & Ekers ( 2018b ) and generically model the
opulation evolution of FRBs as being to some power of the star-
ormation rate, i.e. 

 ( z ) = 


 0 

1 + z 

(
SFR ( z ) 

SFR (0) 

)n 

, (13) 

ith 
 0 – and hence 
 ( z) – taking the units of bursts per proper
ime per comoving v olume, i.e. b ursts yr −1 Mpc −3 . The factor of (1
 z) −1 converts between proper time in the emission and observer

rames. We take SFR( z) from Madau & Dickinson ( 2014 ) 

FR ( z) = 1 . 0025738 
(1 + z) 2 . 7 

1 + 

(
1 + z 
2 . 9 

)5 . 6 . (14) 
NRAS 509, 4775–4802 (2022) 
his model is useful in that n can be scaled as a smooth parameter.
o we ver, it does not accurately model the source evolution should
RB progenitors originate from e.g. binary mergers with long delay

imes, as investigated by Cao, Yu & Zhou ( 2018 ). 
The total FRB rate in a given redshift interval d z and sky area d �

ill also be proportional to the total comoving volume d V , 

d V 

d �d z 
= D H 

(1 + z ) 2 D 

2 
A ( z ) 

E( z) 
, (15) 

or angular diameter distance D A , Hubble distance D H = c / H 0 , and
cale factor E ( z) from equation (7). 

Applying this model with the best-fitting FRB population param-
ters derived in our accompanying work to the DM-distribution
f Section 2 with a nominal threshold of 1 Jy ms produces the
istribution of FRBs shown in Fig. 2 . This ignores the important
bservational biases to be introduced in Section 4, and hence
 quantitative analysis of the implications are left to Section 8.
o we ver, it is clear that while at least 90 per cent of FRBs will

ollow a 1–1 DM–z relation (the Macquart relation; Macquart et al.
020 ), a significant minority will lie well abo v e the DM–z curve.
ndeed the highest DM events in a large sample are not likely to be
he most distant. Consider DM ≥ 3000 pc cm 

−3 in Fig. 2 . Such events
an be produced by z ∼ 3.2 lying on the Macquart relation. Ho we ver,
hey must be the most intrinsically luminous FRBs to be detectable.
t z ∼ 1.6, observations probe a factor of ∼4 further down the energy
istribution, allowing a greater number of events to be visible, and its
igh-DM tail may dominate the DM ≥ 3000 pc cm 

−3 event rate. This
ffect becomes more important for steeper luminosity distributions
large ne gativ e γ ) – this plot uses γ = −1.2. 

.3 Interpretation of α

an y FRBs hav e a limited band occupanc y (originally noted for
RB 121102 by Law et al. 2017 ), in which case the notion of a
pectral index for an individual FRB has little meaning. In this case,
he results of Macquart et al. ( 2019 ) can be interpreted as meaning
ither that there are more low-frequency FRBs, or that low-frequency
RBs are stronger. For an experiment with bandwidth similar to or

art/stab3051_f2.eps
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ess than that of the FRB bandwidth (which is the case with the
ata used here – see Section 6), the latter interpretation behaves 
dentically to that of broad-band bursts defined by a spectral index. 
o we ver, the interpretation of an FRB population with a frequency-
ependent rate does not. We denote this interpretation as the ‘rate 
nterpretation’ of α, and that of Macquart et al. ( 2019 ) as the ‘spectral
ndex’ interpretation. 

Under the spectral index interpretation of F ( ν) ∼ να , a ne gativ e α
ncreases the detection threshold E th at high z due to the k -correction
actor of (1 + z) −α through equation (12). This in turn decreases the
ate by a factor (1 + z) γα when E th < < E max through equation (11).
nder the rate interpretation, the FRB population itself behaves as 
 


 ( z, ν) = 
 ( z) να , and the k -correction therefore directly changes
he rate, adding an additional factor of (1 + z) α to equation (13).
herefore, when γ = −1, and E th < < E max , the two interpretations
re identical. The situation becomes less simple near E max , which 
s frequency dependent under the spectral index interpretation, and 
onstant under the rate interpretation – and the true behaviour may 
e more complicated than either result. 
Ultimately, we expect further observational data to be required to 

iscriminate between the two scenarios, and consider both equally 
lausible for the time being. In this work, we present results using
he spectral-index interpretation, but give additional data for the rate 
nterpretation when constraining FRB population parameters. 

 DETEC TION  T H R E S H O L D  –
B SERVATIONA L  BIASES  

RB surv e ys usually calculate the fluence threshold abo v e which
RBs would be detected using the radiometer equation, referenced 

o a 1 ms duration burst, using the sensitivity of the telescope at beam
entre. This readily calculable value represents an unrealistic ideal. 
ursts of longer duration will be harder to detect due to increased
oise, while those viewed away from beam centre will be seen at less
ensitivity. Furthermore, incoherent dedispersion searches will not 
erfectly match the shape of an FRB to the time–frequency resolution 
f the search, resulting in a lower detection efficiency. 
In this work, we model the ef fecti ve fluence threshold F th as a

unction of nominal fluence threshold at 1 ms F 1 , beam sensitivity
 (normalized to a maximum of 1), and an efficiency factor due to
urst duration, η, as 

 th = 

F 1 

ηB 

. (16) 

his results in a theoretical distribution of bursts in z –DM space, p ( z,
M), as 

( z, DM ) = 

∫ 
d B 

∫ 
d ηp( z, DM | F th ( η, B )) �( B ) p( η) , (17) 

here p ( z, DM | F th ) is the distribution at a fixed threshold (Fig. 2 ),
( B ) is the region of sky at which the beam sensitivity is B , and
 ( η) is the probability that burst properties lead to a total detection
fficiency η. The effects of these tw o f actors are investigated in the
ollowing sections. 

.1 Beamshape 

 telescope’s beamshape is usually represented as the relative 
ensitivity B as a function of the sky position � relative to boresight,
 ( �), such that B (0) = 1. The beamshape is often approximated as
 Gaussian or Airy function, although precise measurements of B 

an become important when attempting to localize FRBs detected 
n multiple beams, or estimating the relative rate of single- versus
ultiple-beam detections (Vedantham et al. 2016 ; Macquart & Ekers 

018b ). 
For the purpose of estimating the number of FRBs detected, 

o we ver , the ‘in verse beamshape’, �( B ), which describes the amount
f sky � viewed at any given sensitivity B , becomes more relevant
James et al. 2019a ). Most calculations of FRB rates have character-
zed a telescope beam as viewing out to the FWHM at full sensitivity,
.e. �( B ) = �FWHM 

δ( B − 1) (e.g. Thornton et al. 2013 ; Bhandari et al.
018 ). Others have used a Gaussian approximation for the beamshape 
e.g. Lawrence et al. 2017 ), which is equi v alent to �( B )dlog B =
onst. We here analyse the sufficiency of these approximations, using 
or the Gaussian approximation σ = (FWHM/2)(2log 2) 0.5 , where 
he full width at half maximum (FWHM) assumes an airy disc, i.e.
PBW = 1.22 λ/ D for wavelength at central frequency λ and dish
iameter D . 
ASKAP FRB observations have varied the observation frequency 

nd configuration of beams formed from ASKAP’s phased array 
eeds (PAFs). Ho we v er, the majority of both fly’s e ye and incoherent
um observations have used the ‘closepack36’ configuration at a 
entral frequency of 1.296 GHz. We therefore use the beamshape 
erived in James et al. ( 2019a ). In the case of the Parkes multibeam,
e use a central frequency of 1.382 GHz, and the simulations of
. Bannister (published as Vedantham et al. 2016 ) and A. Dunning

referenced as ‘pri v ate communication’ by Macquart & Ekers 2018a ), 
hich produce equi v alent results for �( B ). This also allows us to

onclude that while the ability to localize FRBs detected in multiple
eams may be limited by systematic uncertainties in the beamshape 
Macquart & Ekers 2018a ), the inverse beamshape B ( �) is robust
gainst such certainties, since it does not care about where on the sky
n y giv en patch of sensitivity is located. 

Fig. 3 shows the resulting ‘inverse beamshape’ function �( B ). This
s compared to the equi v alent �( B ) when using the Gaussian and

FWHM 

approximations. Since implementing the full function �( B ) 
n the calculation of the z –DM distribution is numerically e xpensiv e,
e investigate the accuracy of reducing �( B ) to a small number of
alues. A set of such values is also shown in Fig. 3 . The accuracy
MNRAS 509, 4775–4802 (2022) 
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Figure 4. Top: dependence of expected FRB DM distributions (pc cm 

−3 ) 
on beamshape models for three different FRB surv e ys. The beamshape 
models considered are shown in Fig. 3 : the ‘FWHM’ approximation, the 
‘full’ beamshape �( B ), a numerical approximation used in ‘this work’, and 
a Gaussian beamshape. All curves for each telescope are normalized such 
that the distribution for the full beamshapes peaks at unity. Bottom: the 
difference between the ‘full’ beamshape and that found when using the 
‘FWHM’, ‘approx.’, and Gaussian approximations. 

Table 1. Percentage errors in the total FRB rate and mean DM value, DM , and 
maximum deviation | δDM | max , when using different beam approximations 
when compared to that found for the full beamshape function �( B ), for each 
of three FRB surv e ys considered. 

Surv e y Approximation Rate DM | δDM | max 

ASKAP/FE FWHM + 76 + 6 0 .1 
This work + 17 + 0.2 0 .009 

Gauss + 513 −3 0 .07 

ASKAP/ICS FWHM + 73 + 8 0 .11 
This work + 5.8 + 0.2 0 .005 

Gauss + 440 −4 0 .08 

Parkes/Mb FWHM + 20 + 14 0 .15 
This work + 2.8 + 0.2 0 .005 

Gauss + 160 + 1 0 .011 
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f all approximations is assessed against the full beamshape, by
omparing the total predicted number of events and the mean value
f DM to those calculated for the full beamshape, and also assessing
he maximum difference between the p (DM) curves, as shown in
ig. 4 . Table 1 lists the resulting errors. This is e v aluated for the
est-fitting set of parameters found in our accompanying paper –
o we ver , a brief in vestigation has shown that results are not sensitive
o the assumed parameters within a reasonable range. 

We find that using five values of B for ASKAP, and ten for Parkes,
chieves an approximate DM distribution with an error in p (DM)
f less than 1 per cent, and an error in the mean value DM of only
.2 per cent. In contrast, using the FWHM approximation, which
s the standard in the current literature, results in O ∼10 per cent
eviations in the DM distribution and its mean value, and pushes
he mean towards higher values. The total expected detection rate
ound when using the FWHM approximation is almost double that
hen found when using the full ASKAP beam, but there is only a
0 per cent excess for Parkes. When assuming Gaussian beams, a
uge excess in the total rate of ASKAP bursts is predicted, since
his does not account for the closely packed, and thus o v erlapping,
NRAS 509, 4775–4802 (2022) 
eams. We note that uncertainties in the true ASKAP beamshape due
o the calibration procedure (see James et al. 2019a ) are less than the
rrors introduced by our numerical approximation. 

In the case of P arkes/Mb, the e xcess rate when using a Gaussian
eam is due to outer beams being less sensitive than the central
eam at which the sensitivity is usually calculated. However, the
aussian beam approximation accurately estimates DM and the

hape of p (DM) distribution. This suggests that even very complex
eamshapes, such as that of the Canadian Hydrogen Intensity
apping Experiment (CHIME), could be included in our model

n a relatively simplified manner. 

.2 Detection efficiency 

e model the threshold at which an FRB of fixed fluence F can be
etected as scaling with the square root of its ef fecti ve width, w eff ,
elative to the nominal width of 1 ms, using an efficiency factor η: 

≡ F 1 

F th ( w eff ) 
(18) 

= 

( w eff 

1 ms 

)−0 . 5 
. (19) 

he ef fecti ve width is modelled as per Cordes & McLaughlin ( 2003 ),
eing a function of its intrinsic duration w int , scattered width w scat ,
M smearing within each frequency channel w DM 

, and the time-
esolution of the search w samp : 

 eff = 

√ 

w 

2 
int + w 

2 
scat + w 

2 
DM 

+ w 

2 
samp . (20) 

ften, the scattered width and intrinsic width are indistinguishable,
nd their separation only becomes important for telescopes observing
t different frequencies. We therefore define the ‘incident’ width,
 inc , as 

 

2 
inc = w 

2 
int + w 

2 
scat . (21) 

n alternative model is presented by Arcus et al. ( 2021 ), which is
ased on fits to simulated ASKAP and Parkes FRBs. Since it is
ot clear how the fit parameters translate to the general case, and
ecause we wish to present a broadly scalable model, we do not use
heir formulation. We remark rather that the widely used model of
quation (19) should be investigated further. 

In order to model the distribution of w inc , p ( w inc ), we use a
ognormal distribution, 

( w inc )d w inc = 

w inc 

log σw (2 π ) 0 . 5 
e 

− 1 
2 

(
log w inc −log μw 

log σw 

)2 

. (22) 

e do not include any DM or z dependence in the width distribution
see Appendix A3 for further discussion on this topic. 
Unlike Luo et al. ( 2020 ), we do not include fits of the model

arameters μw and σw as part of our general fitting process. Rather,
e use the low correlation between μw , σw , and other parameters to
rst fit for these values using a preliminary parameter set, and then
heck that the fit is still valid for the final parameter set presented in
ur companion paper (James et al. 2021a ). 
Arcus et al. ( 2021 ) use equation (21) to model the observed width

istribution p ( w inc ) of ASKAP and Parkes FRBs, finding μw =
.67 ms and σw = 2.07. We instead use equation (21) to model the
ntrinsic width distribution, and vary μw , σw until the simulated width
istribution of the ASKAP/FE surv e y matches the parametrization
f observed widths by Arcus et al. ( 2021 ). We obtain μw = 5.49
nd σw = 2.46, and then proceed to use these values in further
alculations to optimize FRB population parameters. This is shown

art/stab3051_f4.eps
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Figure 5. The effect of intrinsic burst width on surv e y sensitivity. Blue: 
intrinsic distribution of burst widths w int (peak set to unity). Orange/green/red: 
the simulated width distributions expected from the three FRB surveys after 
accounting for observational bias. Two normalizations are shown: the upper 
curv es hav e been normalized to a peak probability of unity, for comparison 
with the fit to observed values by Arcus et al. ( 2021 ) (shown in black); 
while the lower curves are normalized relative to the rate for w = 0, and 
thus illustrate the relative reduction in event rate as a function of intrinsic 
width. The upper curves for ASKAP/FE and ASKAP/ICS coincide almost 
identically with the results of Arcus et al. ( 2021 ). 

Table 2. The effects of different assumptions on the intrinsic burst width 
distribution at 1.3 GHz for three FRB surv e ys. Giv en are the total detection 
rate (normalized to a rate of unity at w = 0), and mean DM DM . The width 
distributions are parametrized via equation (21), with given values of μw 

and σw corresponding to no intrinsic width, the observed width distribution 
of Arcus et al. ( 2021 ), when accounting for observational bias to find the 
intrinsic distribution, and when numerically approximating ( ∼) the intrinsic 
distribution with a few characteristic values. 

Parameter μw σw ASKAP/FE ASKAP/ICS Parkes 

Rate 0 0 1 1 1 
2 .67 2 .07 0.46 0.51 0.20 
5 .49 2 .46 0.27 0.30 0.11 

∼5 .49 ∼2 .46 0.27 0.30 0.11 

DM 0 0 263 371 488 
2 .67 2 .07 286 397 724 
5 .49 2 .46 293 401 726 

∼5 .49 ∼2 .46 292 400 724 
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n Fig. 5 . The effect on the predicted DM distributions is given in
ig. 6 ; the effect on total rates, and mean estimated DM values, given

n Table 2 . Finally, we re-e v aluate the fits using the final optimal
et of parameters we present in our companion paper (James et al.
021a ). 
Comparing the intrinsic (blue) and observed (black, coloured) 

istributions in Fig. 5 , modelling the intrinsic FRB rate, and account-
ng for observational bias, correctly reproduces the observed FRB 

idth distribution as estimated by Arcus et al. ( 2021 ). The effect of
bservational bias is clearly reflected in the total expected FRB rate, 
ith high-width bursts much less likely to be detected. The magnitude 
f this ef fect, sho wn in Table 2 , depends on the significance of the
ther terms in equation (19). When the time resolution is poor ( w samp 

arge), the effect of a large intrinsic width is less – thus the reduction
n rate for ASKAP is less than that for Parkes surveys. A second-
rder effect is that more-sensitiv e surv e ys, which probe further into
he Universe and see FRBs with on-average higher DMs, are also
ess sensitive to w int , since w DM 

is larger. Hence, the reduction in
ate for ASKAP/ICS is slightly lower than for ASKAP/FE, while the
reatest effect is for the Parkes/Mb survey, where the intrinsic FRB
idth reduces the number of detected FRBs by a factor of 10. 
A consequence of this is that the true number of high-width FRBs

ill be very difficult to estimate, so that our lognormal model is
f fecti vely untested beyond w = 10 ms. Thus while we estimate that
SKAP/FE and ASKAP/ICS miss ∼70 per cent of FRBs due to

heir intrinsic width, and Parkes/Mb 90 per cent, we do not consider
his quantitatively reliable – there may be virtually any number 
f high-width events remaining to be detected. We note that The
HIME/FRB Collaboration ( 2021 ) find evidence for an intrinsically 

arge population of FRBs with scattering width at 600 MHz between
0 and 100 ms (approximately between 4 and 40 ms after scaling to
SKAP/Parkes frequencies using τ scat ∼ ν−4 ) which is also poorly 

onstrained due to selection effects. 
Whatever the lost rate, losses will preferentially arise from the 

earby Universe where w DM 

is low. Including the width distribution 
herefore increases the mean expected DM, DM . This effect is small
 ∼10 per cent) for ASKAP observations, but more significant for
arkes ( ∼30 per cent). 
Finally, we note that while including the width distribution is 

learly very important, the details matter less. Using the parameters 
f Arcus et al. ( 2021 ), or approximating the true distribution with
 small number of points for computational efficiency, produces 
n almost identical value of DM . This also means that the loss of
fficiency to high-width bursts for the HEIMDALL 

2 search pipeline 
ound by Gupta et al. ( 2021 ) – which is commonly used in Parkes
RB searches – is insignificant to our modelling. 

.3 Numerical implementation 

he inte grals o v er B and η in equation (17) are numerically ex-
ensiv e. Furthermore, we hav e shown abo v e that approximating the
eamshape with 5–10 values, and the width distribution with five, 
llows for a very good approximation to the continuous distributions. 
herefore, we approximate these continuous distributions with these 
iscrete distributions, i.e. 

( B) ∼
N B ∑ 

i 

�i δ( B − B i ) (23) 

 ( η( DM, w )) ∼
N w ∑ 

i 

p i δ( η( DM, w w ) − η( DM, w i )) , (24) 

ecalling that η is a function of both DM and w through equation (18)
nd (19). Therefore, the z –DM distribution of equation (17) becomes
 weighted sum o v er individual distributions at fixed observational
hresholds, 

( z, DM ) = 

N B ∑ 

i= 1 

N w ∑ 

j= 1 

p 

(
z, DM , F th ( B i , η( DM , w j )) 

)
�i p j . (25) 

his implementation is available at GITHUB (Prochaska et al. 2019a ;
ames, Prochaska & Ghosh 2021b ). 

 M E T H O D O L O G Y  

he ingredients described abo v e are implemented in PYTHON . Here,
e describe its ef fecti ve implementation, which is identical in
MNRAS 509, 4775–4802 (2022) 
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pproach to the method proposed by Connor ( 2019 ) and implemented
y Luo et al. ( 2020 ), even if the exact details differ. 
We consider FRB data from some number of independent FRB

urv e ys. The total likelihood L of the outcome of multiple indepen-
ent FRB surv e ys is simply a product of their individual likelihoods,
 i , 

 = 

N surv e ys ∏ 

i 

L i , (26) 

or surv e ys i = 1. . . N surv e ys . We describe L i as the product of three
ndependent terms: 

 i = p n ( N i ) 
N i ∏ 

j= 1 

p dmz ( DM j , z j ) p s ( s j | DM j , z j ) . (27) 

ere, p n is the probability of detecting N i FRBs in surv e y i , while
 dmz is the likelihood of the j th FRB from surv e y i being detected
ith dispersion measure DM j and, when applicable, at redshift z j .
e also include the probability p s of an FRB being detected with

uence F a factor s abo v e the fluence threshold F th given it was
bserved with properties DM j , z j . Each of these terms is described
ndependently below. 

It is also possible to separate further terms in equation (26). As
oted by Vedantham et al. ( 2016 ), for a multibeam instrument, the
elative likelihood of a single- versus multibeam detection, and
he relative likelihood of detection in different beams of varying
ensitivity, are functions of the FRB fluence distribution. Such
easures are only rele v ant when the true FRB fluence F cannot

e resolved, as is common with FRB detections by the Parkes
ultibeam. When F can be reconstructed, as is the case for CRAFT
RB detections with ASKAP (Shannon et al. 2018 ), then the surv e y
cceptance to that particular FRB can be calculated exactly, and p ( s )
n equation (26) can be written in terms of p ( F ). Similarly, we will not
nclude the observed value of an FRB’s width when e v aluating p dmz 

nd p s , with only the o v erall width distribution being accounted for.
e consider that adding such terms will yield only a small increase

n analytical power for resolving the FRB population, at the cost of a
arge increase in complexity. Thus they are ignored – ho we ver we do
cknowledge that we are discarding a small amount of information
y doing so. 

.1 Probability of N detections, p n ( N ) 

gnoring the correlations caused by repeating FRBs (see the discus-
ion in Section 5.4), the total number of observed FRBs in survey i ,
 i comes from a Poisson distribution, 

 n ( N i ) = 

〈 N i 〉 N i exp ( −〈 N i 〉 ) 
N i ! 

, (28) 

here < N i > is the expectation value of N i . The calculation of < N i >

s the heart of the problem that we address in this work, since it
ust necessarily incorporate all rele v ant properties that affect the

etection rate. 
Combining the dependencies in Sections 2–4, < N i > is calculated

s 

〈 N i 〉 = T i R i , (29) 

 i = 

∫ 
d z 
 ( z ) 

d V ( z ) 

d �d z 

∫ 
d DM p( DM | z) 

×
∫ 

d B �( B) 
∫ 

d wp ( w ) p ( E > E th ( B, w , z, DM )) . (30) 
NRAS 509, 4775–4802 (2022) 
ere, T i is the surv e y duration, which multiplies a rate R i to produce
he total expected number of bursts. 
 ( z) is the FRB source evolution
unction (equation (13)), d V ( z)/d �/d z is the comoving volume per
teradian per redshift interval from equation (15), p (DM | z) is the
xtragalactic DM distribution found by convolving equation (5) and
9) (shown in Fig. 1 ); �( B ) is the beamshape discussed in Section 4.1
nd approximated as per equation (22); p ( w) is the width distribution
f equation (21), discretized as per equation (23); and p ( E > E th ) is
he cumulative energy function of equation (11). The dependency of
his threshold E th on the parameters ( B , w, z, DM) is encapsulated in
quations (12), (16), and (18). 

F or some surv e ys, no controlled surv e y time T i is available, and
his term is simply set to unity in equation (26). Ho we ver, R i can
e calculated regardless of knowledge of T i . For those surv e ys with
nown T i , the most likely value of the lead constant in the population
unction of equation (14), 
 0 , can be estimated without recalculating
he integral of equation (29). 

.2 Calculating p dmz 

he probability of an FRB being observed with a given dispersion
easure DM and redshift z is given by the appropriate integrand of

quation (29) 

 dmz = R 

−1 
i 
 ( z ) 

d V ( z ) 

d �d z 
p( DM | z ) 

∫ 
d B �( B ) ∫ 

d wp ( w ) p ( E > E th ( B, w , z, DM )) . (31) 

or FRBs with no measured host redshift, the rele v ant quantity is 

 dm 

= 

∫ 
p dmz d z, (32) 

nd p dm 

replaces p dmz in equation (26). The rate R i is used as a
ormalizing factor in equation (30), so that ∫ ∫ 

p dmz d DM d z = 

∫ 
p dm 

d DM = 1 . (33) 

he shape of p dmz in z–DM space is a primary quantity of interest in
his work. 

.3 Calculating p s (s) 

he measured fluence F of an FRB also holds information on the
RB population. Ho we v er, in man y telescope systems – and notably
or Parkes (Macquart & Ekers 2018a ) – F is not directly measured,
ince the location of the FRB in the beam is not known. Furthermore,
e are interested in p ( F | F th ), i.e. the probability of measuring F given

n FRB has been detected at threshold F th , which itself has complex
ependency through equation (16). 
This difficulty can be o v ercome by noting that the signal-to-noise

atio, SNR, is a readily observable parameter for an FRB, and most
RB-hunting systems use a well-defined threshold SNR, SNR th , to
istinguish FRBs from noise. As per James et al. ( 2019b ), who base
heir work on Crawford, Jauncey & Murdoch ( 1970 ), we define 

 ≡ SNR 

SNR th 
(34) 

= 

F 

F th 
, (35) 

here F th is the fluence threshold to that FRB. As detailed in
ection 4, F th is a function of the burst DM, width, and the location

n which it is observed by the telescope’s beam, so that neither
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erm in equation (33) is kno wn. Ho we ver, the ratio is preserved in
he measurable quantities of equation (33), making s a very useful
bservable. 
The probability p ( s ) of observing s in the range s to s + d s given

hat an FRB has already been observed is 

 s ( s| DM , z) = 

R 

−1 
i 

p dmz 

 ( z ) 

d V ( z ) 

d �d z 
p( DM | z ) ∫ 

d B �( B ) 
∫ 

d wp ( w ) 
d p ( sF th ) 

d s 
, 

p s ( s| DM ) = 

R 

−1 
i 

p dm 

∫ 

 ( z ) 

d V ( z ) 

d �d z 
p( DM | z )d z 

∫ 
d B �( B ) 

∫ 
d wp ( w ) 

d p ( sF th ) 

d s 
(36) 

or localized and unlocalized FRBs, respectively. In the integrands, 
 ( sF th ) is the probability of detecting a fluence F = sF th in an interval
etween s and s + d s , where F th depends on B , w, and DM as per
quation (16). 

The probability p ( sF th ) can be found from equation (11). Given
hat such an FRB has been observed at all, the integral distribution of
 given that an FRB has been detected can be found by replacing E th 

ith E and E min with Ex . Differentiating by E produces the probability
mplitude 

d p( E obs | E th ) 

d E 

= 

γ

E th 

(
E 
E th 

)γ−1 

1 −
(

E max 
E th 

)γ

= 

γ

E th 

s γ−1 

1 −
(

E max 
E th 

)γ . (37) 

he value of E th can be found as a function of z by inserting F th into
quation (12); thus p ( sF th ) is equi v alent to p ( sE th ( z, F th )). Relating
 p /d E from equation (35) to the required d p /d s of equation (34)
roduces 

d p( E obs | E th ) 

d s 
= 

d p( E obs | E th ) 

d E 

d E 

d F 

d F 

d s 
(38) 

= 

d p( E obs | E th ) 

d E 

E th 

F th 
F th (39) 

= γ
s γ−1 

1 −
(

E max 
E th 

)γ . (40) 

Inserting equation (36) into equation (34), and integrating over the 
ppropriate dimensions, produces the desired p s . 

.4 What about repeating FRBs? 

y writing the individual burst probabilities as being independent 
n equation (26), and assuming that the number of detected bursts
ollows a Poisson distribution in equation (27), we ignore the 
otential of FRBs to repeat. While the fraction of the FRB population
hich is observed to repeat is a current topic of debate, it is

ertain that many do. Formally, the FRB population described in 
ection 3 represents all bursts , rather than all FRB emitters, and

he summation of equation (26) runs o v er all detected bursts. The
istinction becomes irrele v ant for distant, rarely repeating sources 
or which only ever zero or one bursts will be observ ed. F or bright,
earby repeaters, the probability of having such an object in a 
urv e y’s field of view is rare, especially when burstiness and/or
eriodicity is included (Oppermann, Yu & Pen 2018 ; Chime/Frb 
ollaboration et al. 2020 ; Cruces et al. 2020 ; Rajwade et al. 2020 ),
nd an observation of zero bursts will be more likely than that
stimated by equation (27). Conversely, the probability of observing 
any bursts will also be high, with observations of single bursts

eing much rarer than otherwise expected. 
We note that the only FRB surv e y to ev er observ e an FRB repeat

n an unbiased way are the observations by CHIME (CHIME/FRB
ollaboration 2019b , c ; Fonseca et al. 2020 ) – all other repeating
RBs have been discovered in targeted follow-up observations. 
his suggests that the majority of FRB observations can safely be
lassified as being in a ‘one burst per progenitor’ re gime, re gardless
f the true fraction which are actually repeating objects. For these, our
pproach should be valid. We revisit this assumption in Section 8.4. 

 SURV EYS  

stimates of the FRB population have been made using data from
any telescopes, which are often drawn from FRBCAT (Petroff 

t al. 2016 ). Due to the large number of FRBs the y hav e detected
nd published, results from Parkes and ASKAP remain the most 
mportant, and we focus on these instruments here. Other important 
nstruments we wish to examine in future works include the Upgraded 

olonglo Observatory Synthesis Telescope (UTMOST), and the 
anadian Hydrogen Intensity Mapping Experiment (CHIME). 
The sensitivity of an FRB surv e y – and hence the functions p N ,

 zdm 

, and p s from Section 5 – depends on the local contribution to
M, and hence varies with the value of DM ISM 

. Since this fluctuates
ointing-by-pointing, in theory these functions must be recalculated 
or every single pointing direction, which becomes computationally 
rohibiti ve. Ev aluating p zdm 

and p s ho we ver for the measured DM EG 

nd s of an FRB is much quicker. This moti v ates grouping FRB
bservations not just by telescope, but also by other observational 
roperties, such as Galactic latitude. Here, we use five groups, as
escribed below. 

.1 P ark es 

ll Parkes FRBs published so-far have used the multibeam (‘Mb’) 
eceiv er (Stav ele y-Smith et al. 1996 ). Ho we ver, a ne w ultra-wideband
eceiver is now in place (Hobbs et al. 2020 ), which is being used
or FRB searches and follo w-up observ ations. We therefore refer to
esults from Parkes as ‘Parkes/Mb’ to distinguish this from future 
orks. 
For the Parkes multibeam, nominal sensitivity to a burst at beam

entre is F 1 = 0.5 Jy ms to a 1 ms duration burst (Keane et al.
017 ) – this is an approximation, since different FRB searches used
lightly dif ferent v alues of SNR th . We neglect the ef fect of 1-bit
ampling with early searches for FRBs with Parkes, which would 
av e slightly de graded the sensiti vity of these observ ations. These
nd other properties are summarized in Table 3 . 

Of the many Parkes FRB discoveries, we consider only those by the
igh Time Resolution Universe (HTRU; Keith et al. 2010 ; Thornton

t al. 2013 ; Petroff et al. 2014 ; Champion et al. 2016 ) and Surv e y for
ulsars and Extragalactic Radio Bursts (SUPERB; Keane et al. 2017 ;
handari et al. 2018 ) collaborations to have an unbiased estimate
f observation time, T i . This is because their observation time and
ointing directions were pre-determined, and the results published 
egardless of outcome. Other results suffer from publication bias 
hereby non-detections are less likely to be published. Thus, while 

heir disco v ery can contribute to individual FRB likelihoods via p dmz 

nd p s , no well-defined observation time T i exists for use in equation
29), and the term p i ( N i ) must be neglected in equation (26). Thus
hey cannot contribute to estimates of the total FRB rate. 
MNRAS 509, 4775–4802 (2022) 
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Table 3. Observational properties of follow-up observations, for ASKAP Fly’s Eye (FE) and incoherent sum 

(ICS) modes (Shannon et al. 2018 ; Bannister et al. 2019 ); the Parkes multibeam (MB) receiver (Keane et al. 
2017 ); and the Greenbank Telescope’ s (GBT’ s) 820 MHz primary focus and L -band receivers (Kumar et al. 2019 ). 
From left to right: the telescope and receiver names, the central frequency ν̄ and total bandwidth �ν, time- and 
frequency- resolutions δt and δν, and nominal sensitivity to a 1 ms duration burst. 

Telescope N FRB T obs (h) ν̄ �ν δt δν F 1 

Mode (MHz) (MHz) (ms) (MHz) (Jy ms) 

ASKAP/FE 20 26 616 1296 336 1 .2565 1 21 .9 
ASKAP/ICS 7 N/A 1315 336 1 .2565 1 4 .4 
Parkes/Mb 13 3946 1382 337 .1 0 .064 0.39 0 .5 

Table 4. Properties of fast radio bursts detected by the Parkes multibeam 

system, and used in this work. Given is the original FRB designation; 
measured total DM and DM ISM 

estimated by the NE2001 (Cordes & Lazio 
2002 ) in pc cm 

−3 , and ratio of measured to threshold SNR. Entries with a ‘ ∗’ 
indicates that this value is approximate; ‘ † ’ are discussed in text. 

Parkes: total T obs = 164.4 d 
FRB DM DM ISM 

s Ref. 

110214 168.9 32 1.44 Petroff et al. ( 2019 ) 

110220 944.4 36 5.44 Thornton et al. ( 2013 ) 
110627 723 48 1.22 
110703 1103.6 33 1.78 
120127 553.3 33 1.22 

090625 899.55 32 2.8 Champion et al. ( 2016 ) 
121002 1629.18 72 1.6 
130626 952.4 65 2 
130628 469.88 52 2.9 
130729 861 32 1.4 

151230 960.4 48 1.7 Bhandari et al. ( 2018 ) 
160102 2596.1 36 1.6 

Parkes: unnormalized observation time 
FRB DM DM ISM 

s Ref. 
010305 350 44 1.02 ∗ Zhang et al. ( 2020a ) 
010312 1187 51 1.1 ∗ Zhang et al. ( 2019 ) 
010724 375 45 200 † Lorimer et al. ( 2007 ) 
131104 779 71 3.06 Ravi, Shannon & Jameson ( 2015 ) 
140514 562.7 36 1.6 Petroff et al. ( 2015 ) 
150807 266.5 38 5 ∗ Ravi et al. ( 2016 ) 

180309 263.52 46 241.6 † Osłowski et al. ( 2019 ) 
180311 1570.9 46 1.15 
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Since the distribution of DM ISM 

affects telescope sensitivity, sur-
 e ys at low Galactic latitudes have significantly reduced sensitivity
ompared to those at high latitudes, and the full distribution of time
pent at each DM ISM 

must be accounted for. In particular, DM ISM 

will
ary significantly for each pointing at low latitudes, making estimates
umerically taxing. We therefore include only FRBs detected at mid
19.5 ◦ < | b | < 42 ◦) and high (42 ◦le | b | ≤ 90 ◦) Galactic latitudes. This
riteria leaves 12 FRBs detected in a total of 164.4 d by HTRU and
UPERB (Bhandari et al. 2018 ), and another 8 FRBs by other groups
ith no reliable observation time. A full list is given in Table 4 . 
Early searches for FRBs with Parkes used a sparse grid of DMs

nd arri v al times, resulting in sensitivities that would fluctuate by
15 per cent (Keane & Petroff 2015b ). This was corrected with the

se of HEIMDALL , 3 which has been used to (re)process the data from
TRU and SUPERB. While early HTRU searches extended only to
M = 2000 pc cm 

−3 (Thornton et al. 2013 ), latter searches extended
his to 5000 pc cm 

−3 ; and while the SUPERB ‘F’ pipeline looks for
 http:// sourceforge.net/ projects/heimdall-astro/ 

f  

o  

o  
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RBs with DM ≤ 2000 pc cm 

−3 , the SUPERB ‘T’ pipeline extends
he search to 10 000 pc cm 

−3 . Thus we treat all Parkes FRB searches
s fully co v ering DM space. 

Two FRBs deserve special mention. Both 010724 and 180309
aturated the primary beam, with their detection SNR being a lower
imit on their true SNR in an idealized linear system. In the case
f 010724, Lorimer et al. ( 2007 ) use the effect of this burst on the
bsolute normalization of the data in the analog stage to estimate a
ux of 40 Jy o v er the time resolution of 5 ms, i.e. a total fluence of
00 Jy ms; we find their other estimate, of 20 Jy using the multibeam
eamshape, to be less reliable for reasons discussed in Macquart &
kers ( 2018a ). Assuming a 1 Jy ms threshold, this yields s = 200 for
 5 ms burst. For 180309, Osłowski et al. ( 2019 ) find an SNR of 2416
sing data from a simultaneous pulsar folding system, yielding s =
41.6. Both these numbers have sizeable errors on them, ho we ver, to
eave out the most powerful FRBs would skew the data. An alternative
ould be to allow lower limits on s to be included in the likelihood

nalysis, ho we ver this has not yet been implemented. 

.2 ASKAP 

he Commensal Real-time ASKAP Fast Transients (CRAFT) group
av e performed sev eral FRB surv e ys with ASKAP. The majority of
SKAP FRBs have been observed in single-antenna (‘Flye’s Eye’, or

FE’) mode during the ‘lat50’ surv e y, i.e. while observing Galactic
atitudes of | b | = 50 ◦ ± 5 ◦ (Bannister et al. 2017 ; Shannon et al.
018 ). Twenty FRBs have been initially reported (Bhandari et al.
019 ; Macquart et al. 2019 ), with a total recorded data time of 1274.6
ntenna-days duration (James et al. 2019a ). A further six FRBs have
een detected in a variety of surv e ys (Bhandari et al. 2019 ; Macquart
t al. 2019 ; Qiu et al. 2019 ), of which four satisfy the Galactic latitude
equirement. These are listed in Table 5 . We err on the side of caution
nd do not assume a kno wn observ ation time for this last category,
ince several other FRB searches outside the lat50 surv e y hav e been
erformed and were not reported. As with Parkes, p i ( N i ) in equation
26) is only e v aluated for the former category. 

All ASKAP/FE searches have used the same time/spectral resolu-
ions and almost identical frequency ranges, as given in Table 3 . The
eamshape and threshold for this surv e y are giv en in James et al.
 2019a ). 

ASKAP has recently been observing in incoherent sum mode
ICS), with voltage buffers used in offline analysis to localise FRBs to
ub-arcsec precision (Bannister et al. 2019 ). Follow-up observations
ith radio and optical instruments have determined the redshifts of

he host galaxies of each FRB, allowing the DM–z grid to be directly
robed for the first time. This mode has undergone an extended
eriod of commissioning, with the number of telescopes, observation
requency, and time resolution of the search all varying. The total
bservation time is difficult to estimate, again precluding the use of
bservation time in this surv e y’s likelihood calculation. A compre-

http://sourceforge.net/projects/heimdall-astro/
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Table 5. As per Table 4 , for ASKAP/FE observations. 

ASKAP/FE: T obs = 1274.6 d 
FRB DM DM ISM 

s Ref. 

170107 609 .5 37 1.68 Bannister et al. ( 2017 ) 
170416 523 .2 40 1.38 Shannon et al. ( 2018 ) 
170428 991 .7 40 1.11 
170707 235 .2 38.5 1.00 
170712 312 .8 35.9 1.34 
170906 390 .3 38.9 1.79 
171003 463 .2 40.5 1.45 
171004 304 .0 38.5 1.15 
171019 460 .8 37 2.46 
171020 114 .1 38.4 2.05 
171116 618 .5 35.8 1.24 
171213 158 .6 36.8 2.64 
171216 203 .1 37.2 1 ∗
180110 715 .7 38.8 3.75 
180119 402 .7 35.6 1.67 
180128.0 441 .4 32.3 1.31 
180128.2 495 .9 40.5 1.01 
180130 343 .5 38.7 1.08 
180131 657 .7 39.5 1.45 
180212 167 .5 30.5 1.93 

ASKAP/FE: unnormalized time 
FRB DM DM ISM 

s Ref. 
180417 474 .8 26.1 1.84 Agarwal et al. ( 2019 ) 

180515 355 .2 32.6 1.27 Bhandari et al. ( 2019 ) 
180324 431 64 1.03 Macquart et al. ( 2019 ) 
180525 388 .1 30.8 2.88 

Table 6. As per Table 4 , for ASKAP/ICS observations, with redshift z 
included. 

ASKAP/ICS: unnormalized time 
FRB DM DM ISM 

s z Ref. 

180924 362 .4 40.5 2.34 0 .3214 Bannister et al. ( 2019 ) 
181112 589 .0 40.2 2.14 0 .4755 Prochaska et al. ( 2019b ) 

190102 364 .5 57.3 1.38 0 .291 Macquart et al. ( 2020 ) 
190608 339 .5 37.2 1.79 0 .1178 
190611.2 322 .2 57.6 1.03 0 .378 
190711 594 .6 56.6 2.64 0 .522 

190714 504 .7 38.5 1.19 0 .209 Heintz et al. ( 2020 ) 

h
a  

i  

t  

a
2

7

7

W  

E  

m
d
m  

v
fi

Figure 6. Effect of using different distributions of the intrinsic width 
w int on the expected DM distribution of FRBs, p (DM), from the FRB 

surv e ys considered here: ASKAP/FE (left-most), ASKAP/ICS (centre), and 
Parkes/Mb (right-most). Assuming no intrinsic width (blue solid), using a 
lognormal distribution of widths with parameters from Arcus et al. ( 2021 ) 
(green dotted), using a lognormal distribution with parameters derived in 
this work (red dashed), and numerically approximating the latter (black dot–
dashed). The distributions are normalized to a peak of unity for illustrative 
purposes. 
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ensive analysis would involve recalculating the z–DM grid for each 
nd ev ery observ ed burst. F or reasons of computational efficienc y, we
nstead use mean observation parameters to e v aluate the likelihood on
his grid. This precludes the use of FRB 191001, which was detected
t a lower frequency during commensal observations (Bhandari et al. 
020b ). The remaining seven FRBs used are given in Table 6 . 

 INITIAL  RESULTS  

.1 Calculations 

e use a brute-force approach to find the best-fitting values of
 max , α, γ , n , μhost , σ host , and e v aluate equation (25) o v er a
ultidimensional cube of parameter values. The resulting likelihood 

ependence on each is calculated for single (pairs of) parameters by 
arginalizing o v er the remaining fiv e (four) parameters. That is, the

alue taken is the maximum likelihood found when the remaining 
ve (four) values are varied o v er their full range. 
In this work, we use a frequentist approach to setting confidence 
imits. Confidence intervals are determined using Wilks’ theorem 

 ( log L max − log L ) ∼ χ2 
ndf , (41) 

here χ2 
ndf is a chi-square distribution with ndf degrees of freedom, 

ere equal to the number of parameters which have not been
arginalized o v er (either one or tw o throughout this w ork; Wilks

962 ; James 2006 ). The 51 FRBs used in this work should satisfy the
arge- N limit required for equation (37) to be valid. We do however
nvestigate the validity of this test in an extreme case in Appendix A6,
nd generate Bayesian confidence intervals in Appendix A7, which 
urn out to be narrower than those calculated using a frequentist
pproach. 

.2 Parameter degeneracy 

its to data taken at a single frequency suffer from a de generac y in
he fitting parameters between E max , α, and n . This is shown in Fig. 7 ,
hich plots the variation of the marginalized likelihood o v er these
arameters. The data shows a small preference for large, ne gativ e
alues of α – preliminary investigations covered −8 ≤ α ≤ 0 – with 
o distinct maximum being found. For these final computations, we 
estrict α to the range −2.5 ≤ α ≤ 1 for reasons which will be
iscussed below. 
The reason for this de generac y is that these three parameters are

trongly related to the high-DM, high- z cut-off in the observed FRB
istribution. This is restricted by the lack of ASKAP/ICS-localized 
RBs at high redshifts, and by the number of high-DM FRBs detected
y ASKAP/FE and Parkes multibeam observations. Having a steep 
pectral inde x (v ery ne gativ e value of α) pro vides a mechanism to
educe the expected number of FRBs via the k -correction, and is both
onsistent with, and requires, a higher value of E max . Similarly, it also
llows for a rapidly evolving population with redshift (high n ), due
o suppression by the k -correction. A very large number of high- z 
 vents, or large v alue of E max , is excluded when α is near zero. This
MNRAS 509, 4775–4802 (2022) 
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Figure 7. De generac y of the marginalized likelihood with α. Top: depen- 
dence of E max , bottom: dependence on n . The contours give the 68, 90, and 
95 per cent confidence limits. The step-like behaviour in E max is due to coarse 
gridding. 

d  

α

 

o  

r  

a  

i  

v
 

s  

a  

q

7

I  

b  

w  

c  

4

i

w  

b
 

M  

F  

d  

n  

t  

a  

t
 

b  

p  

t  

l  

i  

o  

o  

p
 

A  

p  

w  

s  

a  

n  

r  

r  

r  

i  

f  

−  

n  

t  

i

7

F  

t  

r
 

A
2  

fl  

e  

e  

o  

s
 

C
>  

o  

a
c  

r  

r  

M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/4/4775/6412545 by guest on 09 April 2024
e generac y was also noted by Lu & Piro ( 2019 ), who by default use
= −1.5. 
Without further data at different frequencies, or a prior on any

f these three parameters, this de generac y cannot be broken. All
esults from the literature on E max and n derive from similar analyses
s in this work, albeit with simpler methods, and are therefore not
ndependent. We therefore investigate other evidence for plausible
alues of α, in order to break this near de generac y. 

There are two broad methods for measuring α: searching for
pectral dependence in the FRBs detected by a single experiment,
nd comparing FRB rates between experiments with different fre-
uencies. We discuss results from both below. 

.3 Spectral dependence from ASKAP FRBs 

n an analysis of 23 ASKAP FRBs detected in the 1147–1483 MHz
and, Macquart et al. ( 2019 ) found the summed power was consistent
ith α = −1 . 5 + 0 . 2 

−0 . 3 . 
4 This measurement was possible because of the

losely packed ASKAP beams, which allowed the FRB location
 The error is in fact almost symmetric, with single-digit rounding resulting 
n the apparently large asymmetry. 

(  

c  

h  

t  

f  
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ithin the beam to be determined, and hence spectral corrections to
e applied due to the frequency-dependent beamshape. 
It has been pointed out by the referee of this work that while
acquart et al. ( 2019 ) applied these spectral corrections to observed

RBs, they did not account for such effects to model the FRBs they
id not observe. In the spectral index interpretation of α, there is
o such effect – all FRBs are broad-band, and every measured FRB
ends to have the same spectral index. Thus, it is impossible to detect
 biased fraction, and we use a Gaussian prior of α = −1.5 ± 0.3 for
he spectral interpretation of α. 

In the rate interpretation, ho we ver, where e very FRB is narro w
and, each burst is observed according to the sensitivity at its
articular frequenc y. F or e xperiments with widely spaced beams,
he observed sky area usually scales as ν−2 , so that far-more
ow-frequency bursts would be observed even for a frequency-
ndependent rate. A similar effect, but less extreme, would be
bserved for an intermediate case where FRBs have a distribution
f spectral indices that average to α, and redder FRBs would
referentially be detected. 
The measurements of Macquart et al. ( 2019 ) were made with

SKAP, with closely spaced beams o v erlapping at the half-power
oints. To estimate the maximum possible bias from this effect,
e perform the following toy calculation. We use a Euclidean

ource-counts such that rate is proportional to beam power B 

1.5 , and
ssume that ASKAP beams are Gaussian and o v erlap at half-max
ear band centre, with width scaling inversely with the frequency
ange of Table 3 . We calculate the frequency-dependent observed
ate assuming all FRBs have a very narrow bandwidth (i.e. under the
ate interpretation), with a true α = 0. We find this effect would result
n 25 per cent more FRBs at the low-frequency end than the high-
requency end of the ASKAP band, so that one would measure α =
0.85, despite the true value being α = 0 – i.e. the measured value

eeds to have 0.85 added to it to to obtain the true value. Applying
his correction to the results of Macquart et al. ( 2019 ) in the rate
nterpretation, we use a Gaussian prior of α = −0.65 ± 0.3. 

.4 Spectral dependence from cross-experimental rates 

RB spectral dependence can also be derived by comparing detec-
ions and non-detections between different instruments, with several
esults published in the literature. 

Sokolowski et al. ( 2018 ) performed shadowing observations of
SKAP with the Murchison Widefield Array (MWA) at 170–
00 MHz, with their non-detections being inconsistent with the high
uences predicted by α = −1 . 5 + 0 . 2 

−0 . 3 . Those authors suggest possible
xplanations as a higher (less ne gativ e) value of α; missing the
mission due to the small 30 MHz bandwidth and low FRB band
ccupancy; synchrotron self-absorption in the emission region; and
catter broadening at low frequencies. 

Using the then-non-detection of FRBs at 350 MHz by the Robert
. Byrd Green Bank Telescope, Chawla et al. ( 2017 ) estimate α
 −0.3. Ho we ver, the Greenbank result is somewhat dependent

n the assumed Parkes rate and FRB scattering distribution, with
 constraint of α > −0.9 reached under different assumptions –
ompatible with the adjusted Macquart et al. ( 2019 ) value in the
ate interpretation. Farah et al. ( 2019 ) find a relati vely lo w FRB
ate using the Upgraded Molonglo Observatory Synthesis Telescope
UTMOST) at 843 MHz. A value of α > 0 would be require for
ompatibility with the Parkes and ASKAP rates. Gupta et al. ( 2021 )
ave since shown however that the UTMOST pipeline would tend
o underestimate the SNR of FRBs, which is a likely explanation
or the low rate. The CHIME/FRB Collaboration ( 2021 ) present and

art/stab3051_f7.eps
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Table 7. Summary of results and methods used by other authors in estimating FRB population parameters, compared to those of this work using the spectral 
interpretation of α with a Gaussian prior. Shown in columns 2–7 are the best-fitting parameter values and corresponding uncertainties, converted to the units 
and notation used in this work. For the sake of comparability, all limits have been converted to 1 σ standard deviations assuming that uncertainties are Gaussian 
distributed. Columns 8–11 summarize the different effects that were (Y) or were not (N) included in the modelling: accounting for instrumental beamshape, a 
distribution in dispersion measure for a given redshift, a DM-dependent telescope threshold, and a distribution of burst widths f ( w) and its corresponding effects 
on sensitivity. Note that a ‘Y’ does not necessarily mean a comparable treatment to this work. 

Author E max α γ n μhost σ host Beam DM | z η(DM) f ( w) 

Lu & Piro ( 2019 ) 43 . 1 + 1 . 1 −0 . 7 
a −1.5 b −0.6 ± 0.3 0 . 3 + 1 . 0 −1 . 1 

c N N N N N N 

Luo et al. ( 2020 ) 41 . 16 + 0 . 51 
−0 . 19 

a 0 b −0 . 79 + 0 . 16 
−0 . 18 0 b 30 b , d , e 0.17 b , d , e Y Y Y Y 

Arcus et al. ( 2021 ) 45.1 b −2 . 1 1 . 1 −1 . 4 −0 . 7 + 0 . 2 −0 . 2 1 ± 1 N N N N Y Y 

Caleb et al. ( 2016 ) 41.2 f 0 b N/A 0,1 b 100 b 0 b Y Y Y Y 

Macquart et al. ( 2020 ) N/A N/A N/A N/A 65 + 95 
−25 

e 0 . 9 + 0 . 9 −0 . 6 
e N Y N N 

This work 41 . 70 + 0 . 53 
−0 . 06 −1 . 55 + 0 . 18 

−0 . 18 
g −1 . 09 + 0 . 14 

−0 . 10 1 . 67 + 0 . 25 
−0 . 40 130 + 66 

−48 0 . 53 + 0 . 15 
−0 . 11 Y Y Y Y 

a Indicates the use of a Schechter function, with exponential decay after E max . 
b Parameter held fixed by the authors. 
c The (1 + z) β scaling used in this work is converted to n via n = 2.7 β from equation (14). 
d The host galaxy contribution is modelled according to the ‘ALGs(YMW16)’ model from Luo et al. ( 2018 ), with approximate mean ∼0.8 and standard deviation 
0.2 in log 10 DM, to which is added a ‘local’ contribution with a uniform distribution from 0–50, for a total mean of 30 and quadrature-added deviation 15, i.e. 
0.17 in log 10 . 
e These values are not explicitly quoted, and were approximately derived from plots shown in the text. f This constraint primarily arises from the prior of Macquart 
et al. ( 2019 ). 
f A lognormal luminosity function was used; here we quote the mean of 10 38.2 erg plus three standard deviations of 1 in log 10 . 
g This constraint primarily arises from the prior of Macquart et al. ( 2019 ). 
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nalyse the spectral shapes of more than 500 bursts detected by the
anadian Hydrogen Intensity Mapping Experiment (CHIME) FRB 

ystem. Their implied all-sky rate is compatible with that of Parkes 
nd ASKAP when assuming α = 0, although the range of compatible 
alues is not greatly studied, and effects due to different detection 
fficiencies are not considered. 

These results all point to a less ne gativ e value of α than found by
acquart et al. ( 2019 ). We therefore also consider a broad uniform

‘boxcar’) prior of −2.5 < α < 1.0. Ho we ver, as will be discussed
elow, we do not consider this prior as equally valid as the Gaussian
rior, and thus by default quote the former. 

.5 Validity of the priors 

e caution against taking the uniform prior as equally valid as the
aussian prior from the measurements of Macquart et al. ( 2019 ).
irst, of the Parkes, ASKAP, UTMOST, Greenbank, and CHIME 

ates used by the studies in Section 7.4, only those by CHIME have
ccounted for telescope beamshape, although beamshape effects 
re relatively small in ASKAP due to the closely packed beams. 
econdly, different telescopes have different response functions to 
RB width and DM, and scattering is greater at lower frequencies 

han at high frequencies. This effect will, in general, reduce the 
easured rate for low-frequency systems; for a given measured rate, 

he true rate will be higher, and hence the true value of α will be
ower (or more ne gativ e) than implied by count rates alone. Thirdly,
e emphasize that ASKAP FRBs are absolutely not in the narrow- 
andwidth limit used to estimate the bias in the result of Macquart
t al. ( 2019 ). Pleunis et al. ( 2021 ) find 30 per cent of FRBs to have
road-band structure, 60 per cent to be band-limited, and 10 per cent
o have complicated morphology, indicating that the truth lies in- 
etween the two extreme interpretations of α – and while the bursts 
etected by ASKAP do sho w narro w-band features, these tend to be
pread across the spectrum (Shannon et al. 2018 ). Finally, it is also
ossible that the FRB spectrum is flat below 1 GHz, and steep abo v e
t – and all the results discussed in Section 7.4 are obtained below
 GHz, and may therefore be considered irrele v ant. 
Another interesting effect is that all experiments modelled in this 
ork have broader beams at low frequency than at high. Thus, and

emaining bias in α due to low-frequency FRBs being more likely to
e detected would, to first order, be cancelled when incorporating that
ame increased chance of detection into FRB beamshape modelling. 
ndeed, the effect would go in the opposite direction: since Parkes has
 wider beam spacing, the positive detection bias to low-frequency 
RBs would be even greater than that in the ASKAP measurement
f α, so that while the true value of α might be less ne gativ e than
he one found by Macquart et al. ( 2019 ), the applicable value of α
o Parkes measurements may be more ne gativ e. Such a difference is
learly a second-order effect however. 

.6 Comparison of results 

he limits on single FRB population parameters presented in James 
t al. ( 2021a ) are obtained with this approach. We observe that while
ur prior on α shifts the preferred values of the other parameters by
mall amounts, it is not a large influence, and primarily acts to limit
ery strong source evolution models with n > 3, and no to ne gativ e
volution with n ≤ 0. Table 7 compares these results with a prior
n α to those of other authors, as well as a brief summary of which
ffects are included. 

 RESULTS  2 :  REDSHIFT  A N D  DI SPERSIO N  

EASURE  

he best-fitting parameter set (James et al. 2021a ) allows a compari-
on between the expected and observed distributions of FRBs in DM,
 , and SNR space. Ho we ver, each combination of allowed parameters
roduces a unique map of the z –DM distribution of FRBs for each
elescope. Rather than present a very large number of plots, we use
he following approach to identify a finite number of reasonable 
ossibilities. 
For each parameter, we take its value at both the upper and lower

imits of its 1D 90 per cent C.L., and choose the corresponding
alues of the other parameters. This results in 12 further parameter
MNRAS 509, 4775–4802 (2022) 
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ets, which are listed in Table 8 . For comparison, we also include
he best-fitting parameter set assuming no source evolution, and the
pper limit on E min as described in Section 8.3. 
For each of these parameter sets – including the best-fitting set
we generate the expected FRB distribution in DM–z space, and

ompare this to the observed values. All the results shown in this
ection are calculated using the spectral index interpretation of α
ith the Gaussian prior. 
In interpreting the results in this section, we caution that the data to

hich we compare e xpectations hav e been used to determine the FRB
opulation parameters, so the two are not independent. Ho we ver,
iven that only eight free parameters (the standard six, plus two for
he FRB width distribution) are used to fit multiple observables from
hree different FRB surv e ys, good agreement should not be the result
f o v erfitting, but rather indicate a genuine correspondence between
he models used in this work and reality. 

.1 Obser v ed and predicted distributions 

he predicted DM and z distributions from all 15 cases – best-
tting, no source evolution, E min , and 12 sets reflecting parameter
ncertainty – are shown in Figs 8 and 9 , respectively. In the case
f the DM distribution, data and predictions are shown individually
rom each surv e y described in Section 6, and stacked together to
llow a better comparison. For the z distribution, the only available
ata comes from ASKAP/ICS observations – ho we ver, predictions
rom each individual surv e y are also shown. 

The first question to ask is – are the best fits indeed good fits?
ur best-fitting parameter estimates (James et al. 2021a ) do not
ecessarily indicate that the modelled DM, z , and SNR distributions
re good fits to the data – merely that they are the best fits given the
orm of the model used. A by-eye analysis shows that the predictions
rom the best-fitting parameter set are indeed a good match to the
ata. Ho we ver, there appears to be an overprediction of FRBs at low
M and particularly at low redshift. This is a common feature o v er

ll the parameter sets within the 90 per cent error margins, although
he degree of peakedness near z = 0 varies greatly. 

We consider four possible explanations for this below. 

.2 Random fluctuations 

he observed deficit of low-DM and low- z FRBs may simply be
 statistical fluctuation. To e v aluate this, we perform Kolmogorov–
mirnov tests on the ASKAP ICS z distribution and total DM distri-
ution (Kolmogoro v 1933 ; Smirno v 1948 ). Predicted and measured
umulative distributions of both DM and z are shown in Fig. 10
the KS-statistic is the maximum absolute difference between the

wo curves. To e v aluate the significance of this statistic, we take
he best-fitting curves as the truth, and randomly generate 10 000
amples from each. Histogramming the results produces the expected
istributions of the KS statistic under the null hypothesis that the best-
tting prediction is true. Comparing this distribution to the observed
alue of the KS statistic in Fig. 11 shows that our observed values of
M and z are consistent with predictions, with larger values of the
S statistics observed in 7 and 42 per cent of cases for the DM and
 distributions, respectively. Performing a similar analysis using the
 = 0 distribution gi ves p -v alues of 8 and 6 per cent for the DM and
 distributions, respectively – evidently, the DM distributions of the
SKAP/FE and Parkes samples show a much better for for n > 0

han n = 0. We therefore conclude that the apparent deficit of FRBs at
ow DM and redshift compared with predictions is consistent within
tatistical fluctuations of expectations. None the less, we proceed
NRAS 509, 4775–4802 (2022) 
ith further analysis since the presence or otherwise of a minimum
nergy, or effects due to a large fraction of the population being
epeaters, is of great interest. 

.3 Evidence for a minimum energy E min 

n our standard modelling, we have set the minimum FRB energy E min 

o an extremely low value of 10 30 erg – well below the characteristic
nergies of observed FRBs, ef fecti vely making it zero. This is
ecause values of γ > −1.5 render FRB observations primarily
ensitive to E max (Macquart & Ekers 2018b ), while bursts from
RB 121102 have been observed at much lower energies than are

ikely to be probed by Parkes and ASKAP observations (e.g. Law
t al. 2017 ). 

Ho we ver, a clear possible explanation for the apparent deficit of
RBs at low DM- z is a minimum FRB energy. Such has recently been
bserved for the repeating FRB 121102 by FAST (Li et al. 2021 ),
ith the burst rate suppressed below 4 . 8 10 37 erg. Without such a

ut-off, as telescopes probe ever lower values of E in the nearby
niverse, the predicted number of FRB observations per comoving
olume will increase without limit when γ ≤ −1. If −1 ≥ γ > −1.5,
he reducing volume will somewhat compensate, and the total rate
ill remain finite. This gives rise to the sharp increase in the best fit

xpected redshift distributions near z = 0 in Fig. 9 , although such a
eak may not be present within 90 per cent error margins. 

To investigate the effect of E min , we fix the best-fitting parameters,
nd vary E min . The evolution of the likelihoods is shown in Fig. 12 .
nterestingly, the total likelihood decreases with increasing E min , with
 min = 10 39.0 erg the 90 per cent C.L. upper limit. Why? As expected

rom Figs 8 and 9 , the p ( z, DM) contribution increases with E min ,
eaking near 10 39 erg. This peak is a combination of the ASKAP/ICS
bservations strongly fa v ouring a large E min ≈ 10 40.5 erg, and the
arkes multibeam observations strongly fa v ouring E min < 10 39 erg,
ith the ASKAP/FE observations being relatively neutral until E min 

 10 40 erg. 
The reason why the Parkes observations are strongly against high

alues of E min is that sensitive telescopes with small fields of view are
ighly unlikely to observe low-DM bursts, unless the small volume
f the near Universe corresponding to such a low DM is populated by
any (necessarily low energy) FRBs. The lowest DM burst detected

y Parkes during the included surv e ys, FRB 110214, had a DM of
68.5 pc cm 

−3 (Petroff et al. 2019 ). Setting E min = 10 39.0 implies
educed FRB rates for redshifts closer than z = 0.332, assuming a
imiting fluence of 0.3 Jy ms, with those bursts that are detected likely
o have an SNR significantly greater than threshold. A redshift of z
 0.332 implies a most likely dispersion measure of approximately

22 pc cm 

−3 , being composed of a cosmological contribution of
M cosmic = 142 pc cm 

−3 , local contribution of 82 pc cm 

−3 , and
ur model best-fitting value of μhost /(1 + z) = 97.6 pc cm 

−3 . The
bservation of FRBs by Parkes with DMs below this value therefore
isfa v our a significant minimum energy E min . 
This is illustrated in Fig. 13 , where we show model predictions of

 s , and the observed values of s , for each Parkes-detected FRB. This
s done for the best-fitting model, and when using E min = 10 39.0 erg.

hile the E min model predicts that the high fluence of FRB 180309
ith a DM of ∼263 pc cm 

−3 and s = 41 is slightly more likely, it
redicts that FRB 110214, with a DM of ∼169 pc cm 

−3 , is much less
ikely to have its observed value of s = 1.44. 

In this work, we have not included E min as a global minimization
arameter due to computational constraints. Might there be some
ther combination of parameters for which a significant E min is
ound? To investigate this, we have repeated the E min optimization for
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Table 8. Parameter sets used in this work: the best-fitting values found in our companion paper (James et al. 
2021a ); sets allowing the parameter in the left-most column to take its minimum and maximum value within 90 
per cent C.L; the best-fitting parameter set when forcing n = 0, i.e. no source evolution; and a set when setting 
E min = 10 38.5 erg, but otherwise identical to the best fit. 

Set log 10 E min log 10 E max α γ n μx σ x 

Best fit 30 41 .7 − 1 .55 − 1 .09 1 .67 2 .11 0 .53 
log 10 E max 30.0 41 .6 − 1 .5 − 1 .2 2 .6 2 .0 0 .5 

30.0 42 .51 − 1 .5 − 1 .2 1 .69 2 .0 0 .5 
α 30.0 42 .0 − 1 .88 − 1 .05 1 .8 2 .0 0 .5 

30.0 42 .0 − 1 .2 − 1 .1 1 .48 2 .0 0 .5 
γ 30.0 42 .08 − 1 .5 − 1 .34 2 .02 2 .25 0 .5 

30.0 41 .92 − 1 .5 − 0 .96 1 .4 2 .0 0 .54 
n 30.0 41 .8 − 1 .5 − 1 .0 1 .11 2 .25 0 .5 

30.0 42 .0 − 1 .75 − 1 .14 2 .28 2 .0 0 .5 
μhost 30.0 42 .18 − 1 .5 − 1 .1 1 .78 1 .77 0 .59 

30.0 41 .8 − 1 .5 − 1 .1 1 .47 2 .41 0 .63 
σ host 30.0 42 .08 − 1 .5 − 1 .1 1 .6 2 .0 0 .36 

30.0 42 .0 − 1 .5 − 1 .1 1 .6 2 .0 0 .81 

n = 0 30.0 41 .6 − 1 .25 − 0 .9 0. 2 .25 0 .5 

E min 39 41 .7 − 1 .55 − 1 .09 1 .67 2 .11 0 .53 

Figure 8. Observed (histogram) and predicted (lines) distributions of DM for all surv e ys considered (upper left), and the individual Parkes multibeam (upper 
right), ASKAP Fly’s Eye (lower left), and ASKAP ICS (lower right) surv e ys. Predictions show the best fit o v er the entire parameter space, when constrained to 
no source evolution, when allowing E min to vary, and when varying parameters within their 90 per cent C.L. 
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ll parameter sets in Table 8 . Only for the parameter set minimizing
do we find a significant value of E min to be preferred, with a best-

tting value of 10 38.2 erg, and 90 per cent upper limit of 10 39.1 erg.
his makes sense, since otherwise a steep energy function would 
 v erpredict the number of near-Universe FRBs. The resulting gain
n likelihood acts to weaken our confidence in the lower limits
n γ , e.g. the 90 per cent lower limit shifts to 60 per cent 
MNRAS 509, 4775–4802 (2022) 
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Figure 9. Predicted distributions (lines) of z for Parkes multibeam (top) and 
ASKAP Fly’s Eye (middle) surv e ys, with the ASKAP ICS results (bottom) 
also showing the observed values (histogram). Predictions show the best fit 
o v er the entire parameter space, when constrained to no source evolution, 
when setting E min = 10 39 erg, and when varying parameters within their 
90 per cent C.L. 
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(belo w). Predictions sho w the best fit o v er the entire parameter space, when 
constrained to no source evolution, and when allowing E min to vary. 
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Our findings clearly do not indicate that there is no minimum
RB energy. Within the confines of our power-law model, the data
sed appear insensitive to E min < 10 37 erg, and we can only rule out
 min > 10 39.0 erg at 90 per cent C.L. – but it does run counter to

he findings of Luo et al. ( 2020 ). These authors find a most likely
inimum luminosity of 10 42 erg s −1 , which is approximately 10 39 erg

ssuming a standard 1-ms burst, although they conclude rather that
his finding is due to the limit of their sample. 
NRAS 509, 4775–4802 (2022) 
.4 Influence of repetition 

n this study, we have ignored repeating FRBs on the basis that none
f the FRBs detected by ASKAP and Parkes have been observed more
han once – even though some are known to repeat (Kumar et al. 2019 ,
020 ; Patek & Chime/Frb Collaboration 2019 ; The CHIME/FRB
ollaboration 2021 ), the surv e ys were not sensitive enough to probe

his. Ho we ver, the method of Section 5 co v ers the entirety of z –DM
pace, regardless of whether or not an FRB has been detected at
hat point. Therefore, for any hypothesized repeating FRB, there will
l w ays be a sufficiently nearby volume of the Universe where any
urv e y would be expected to detect more than one burst if the FRB
anded in its field of view. If such a repeating FRB happens to be
ocated in that volume, the observed burst rate will be greater than
xpected – but if one does not, it will be less. 

This effect is analysed in the context of Canadian Hydrogen
ntensity Mapping Experiment (CHIME) observations by Gardenier
t al. ( 2020 ), who note that the DM distribution of repeating FRBs
hould be lower than that of repeaters observed only once. While this
as not yet been observed (CHIME/FRB Collaboration 2019a , b , c ;
onseca et al. 2020 ), this may be due to a very broad distribution of

ntrinsic repetition rates (James et al. 2020b ). 
As discussed by James ( 2019 ), the ASKAP/FE observations have

eeply probed some regions of sky with over 50 antenna-days spent
n individual fields. This has allowed strong limits to be placed on
RB repetitions – but also made the observations more susceptible

art/stab3051_f9.eps
art/stab3051_f10.eps
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Figure 11. Observed value (red line) and simulated distribution (blue 
histogram) of the KS statistics for the DM (top) and redshift (bottom) 
distributions under the best-fitting hypothesis. Shown are the corresponding 
p-values to reject this hypothesis. 

Figure 12. Evolution of likelihoods as a function of minimum energy E min , 
relative to the value at E min = 10 30 erg. Shown is the total likelihood; the 
likelihood o v er all surv e ys, split into contrib utions from the z –DM distrib ution 
p( z , DM), the number of events p(N), and the signal-to-noise probability 
p(SNR). The p( z , DM) contribution is further split into components from the 
ASKAP/FE, ASKAP/ICS, and Parkes/Multibeam surveys. 

Figure 13. Likelihoods of observing FRBs with a given s , p s ( s ), as a function 
of their dispersion measure, DM, for the Parkes multibeam observations, 
weighted by s for clarity. This is calculated for best-fitting parameters using 
E min = 10 30 erg (top), and E min = 10 39.0 erg (bottom). 
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o whether or not a strong repeater at z < 0.2 was present in these
elds. We observe that the low-DM deficit is greatest in ASKAP/FE
bserv ations, and lo west for Parkes observ ations, consistent with this
rediction. 
Until more is known about the population of repeating FRBs, we

annot further quantify this effect, except to add that this effect is
uaranteed to be present to some degree (some FRBs definitely do
epeat), with its importance increasing if all FRBs are explained by
trong repeaters, and lessening as a lower fraction of all FRBs are
ue to repeaters, and those repeaters are weak. 

.5 Minimum search DM 

an y FRB surv e ys use a minimum searched DM, either to e xclude
alactic FRB candidates, or due to local RFI with intrinsic DM of 0

hat none the less contaminates searches. For example, Thornton et al. 
 2013 ) reject bursts with DM < 100 pc cm 

−3 , although in our model
earby FRBs could have a DM of as little as DM ≈ 80 pc cm 

−3 . This
ffect will sometimes therefore exclude FRBs in the very nearby 
niverse, potentially resulting in the observed deficit. 
At initial completion of this w ork, only tw o bursts – 171020 (Shan-

on et al. 2018 ) and 180729.J0558 + 56 (CHIME/FRB Collaboration
019a ) – had been reported near this limit, ho we ver during the
eferee period, Bhardwaj et al. ( 2021 ) reported an FRB with DM
7.82 pc cm 

−3 . That CHIME have only reported one such FRB from
MNRAS 509, 4775–4802 (2022) 
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Figure 14. Predicted source counts distribution, p ( s ), multiplied by s 1.5 for 
clarity, for top: ASKAP/lat50, and bottom: Parkes/Mb, according to the best- 
fitting parameter set (black solid), when setting E min = 10 39 erg (red dashed), 
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shown are lines of constant power-law slopes to guide the eye. The fluctuations 
abo v e s = 10 are due to finite gridding in z and DM. 
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everal years’ worth of observations however implies that the number
f these events is low – as are the number of FRBs predicted to be
n this range by our model. The observed deficit extends well above
00 pc cm 

−3 , so we consider this an unlikely cause. 
Could FRB search algorithms be less efficient at low DM? Tests

n Galactic pulsars have shown the FREDDA algorithm used in
SKAP FRB observations to be equally efficient ( ∼90 per cent of
ursts detected) at 67.99 as at 478.8 pc cm 

−3 (James et al. 2019a ),
nd follow-up (unpublished) studies have shown that Parkes/MB
bservations have similarly high levels of efficiency. Analysis of
istorical Parkes data by Zhang et al. ( 2020b ) has found one new FRB
t 350 pc cm 

−3 (which was too recent to include in this analysis), but
one at lower DM. We therefore do not consider a DM-dependent
earch efficiency to be a likely cause of the observed deficit. 

.6 Summary: redshift and dispersion measure distributions 

aving established the robustness of these results, we summarize the
redictions for the redshift distributions from Fig. 9 . In all scenarios,
he redshift distribution of the ASKAP/FE detections lies in the
ange z max < 0.8, and most fits find z max < 0.6. Over all parameter
ets, between 27 and 48 per cent of ASKAP/FE bursts should
riginate from within z < 0.1, confirming that these bursts are ideal
ollow-up targets due to their likely proximity. This suggests that
he limits set on the repeatability of individual FRBs by James et al.
 2020a ) are significantly stronger than published, since those authors
onserv ati vely assume maximal redshifts. It also lends additional
eight to the possible association of FRB 171020 with a galaxy at
0 Mpc by Mahony et al. ( 2018 ). 
The predicted z-distribution of Parkes bursts is significantly

roader than that of ASKAP/FE observations, although 3–20 per cent
o v er all parameter sets) of observed FRBs are predicted to being
ithin z < 0.1. 
A key test of our prediction of a large number of near-Universe

RBs will be future ASKAP/ICS detections. So-far, all bursts
etected by ASKAP’s ICS mode have been in a limited range of both
M and z, which seem to be from the central part of all predicted
istributions. Our best-fitting model predicts that 23 per cent of
SKAP/ICS localizations should lie within z < 0.1, with a range
 v er all sets of 14–33 per cent. To date, none have been observed –
ven amongst the unpublished ones not included here. 

.7 Source counts distribution 

he slope of the source counts (‘logN–logS’) distribution was one of
he first FRB observables to be analysed. Adapted from its original
se in the study of radio galaxies characterized by their flux S (Ryle
968 ), applied to FRBs, the source counts distribution is the number
 of observed FRBs as a function of fluence threshold F th . In an

nfinite Euclidean Universe, the distribution is expected to have a
orm 

( F th ) = C 

(
F th 

F 0 

)a 

, (42) 

ith a = −1.5, and C and F 0 normalizing constants. Studies using
 variety of methods, with different treatments – or neglect of –
bservational biases in F th , and using data from telescopes with
ifferent detection thresholds, found inconsistent values of a in the
ange of −0.8 ≥ a ≥ −2.6 (Vedantham et al. 2016 ; Lawrence et al.
017 ; Bhandari et al. 2018 ; Oppermann et al. 2018 ; Macquart &
kers 2018a ). James et al. ( 2019b ), re vi ving methods applied to

adio galaxy studies by Crawford et al. ( 1970 ), argue that s – defined
NRAS 509, 4775–4802 (2022) 
n equation (33) – is a bias-independent measure of the source-counts
lope, and find a = −1.18 ± 0.24 (68 per cent C.L.) for Parkes FRBs,
nd a = −2.2 ± 0.47 for ASKAP/FE FRBs, equating to a 2.6 σ
ension. This was qualitatively consistent with Macquart & Ekers
 2018b ), who argue that at high values of F th , the slope should be
uclidean ( a = −1.5), while the parameters of the FRB population
ill lead to a flattening at lower thresholds. 
Our model can be used to derive the expected distribution of s

sing equation (34), by integrating over all values of DM and z, then
onverting this differential distribution to a cumulative distribution.
he results for ASKAP/FE and Parkes/Mb observations are given in
ig. 14 . 
We immediately see that in all scenarios, ASKAP/FE observations,

ith a higher base threshold of 26 Jy ms, are expected to follow a
uclidean ( a ∼ −1.5) distribution, while near-threshold (1 ≤ s ≤ 10)
 arkes/Mb observations e xhibit a flatter source-counts inde x near a =
1.3. Different scenarios predict source-counts indices in the range
1.3 ≤ a ≤ −1.7 abo v e s = 10 for Parkes/Mb observations. The

xistence or otherwise of a minimum energy does not significantly
ffect the distribution. 

Our results in all scenarios are consistent with the findings of
ames et al. ( 2019b ), with the greatest tension – about 1.5 σ – being
etween the source-counts slope that those authors find for ASKAP
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f −2.2 ± 0.47 (68 per cent C.L.), and the approximate range of −1.4
o −1.6 found here. In particular, we also find that the source-counts
nde x for P arkes/Mb is e xpected to be flatter than for ASKAP/lat50,
nd furthermore, the apparent ‘deficit’ of FRBs with low values of s is
otentially attributable to the true behaviour of the FRB population, 
ather than statistical fluctuations or a measurement bias. This also 
uggests that the lower values of a found by previous authors –
edantham et al. ( 2016 ), Oppermann et al. ( 2018 ), and Lawrence
t al. ( 2017 ) – incorporating data from telescopes more sensitive 
han Parkes may have been correct. 

 T H E  z – D M  DISTRIBU TION  

e argue in this work that the best representation of the FRB
opulation observable by a telescope is a 2D function of extra- 
alactic (cosmological plus host) dispersion measure, and redshift. 
ecessarily, the observable fraction of this distribution is a function 
f surv e y parameters, and also local DM contribution, which reduces
ensitivity as it increases at lower Galactic latitudes. Our best-fitting 
 –DM distributions for the three surv e ys considered are plotted in
ig. 15 . 
We describe the general features of these plots. Most FRBs are 

xpected to lie near to, or below, the Macquart relation, being the
–1 correspondence of FRB redshfit with DM. This relation, with a 
lope of approximately 100 pc cm 

−3 per 0.1 in redshift, continues 
p to some maximum detectable distance, being approximately 
= 0.5, 0.85, and 2.2 for ASKAP/FE, ASKAP/ICS, and Parkes/Mb, 
especti vely. Ho we ver, the majority of FRBs will not be found near
he maximum redshift, simply because there are very many more 
RBs with lower energy, and much more of the sk y co v ered at lower
ensitivity. This is most evident with Parkes/Mb observations, where 
he most likely half of all FRB observations will arise on the Macquart
elation with z < 1. 

Off the Macquart relation, there is a significant fraction of FRBs
xpected to be found with higher than expected DMs, due to a
ombination of their host and cosmological contributions. Only our 
SKAP/ICS (localized) FRB sample has provable examples, being 
RB 190714 (504.7 pc cm 

−3 from z = 0.209) and FRB 190608
339.5 pc cm 

−3 from z = 0.1178), although a third (FRB 191001,
ith 506.92 pc cm 

−3 from z = 0.23) was excluded due to being
etected at a lower frequency. This effect is less pronounced for more- 
ensitiv e surv e ys, since e xcess host contributions are dominated
y cosmological ones. We emphasize that much of the structure 
bo v e the Macquart relation – i.e. in the high-DM region – is
oorly constrained, since our adopted lognormal distributions may 
ot reflect reality. 
At very high DMs, only near-Universe FRBs are observable, since 

 burst must be observed with very high fluence to overcome the
etection bias against high DM. The upper bound of the 99 per cent
egion (dashed lines) slopes backward, against the Macquart relation, 
ince more low-energy FRBs with large excess DM are predicted 
han high-energy FRBs lying on the Macquart relation. We do not 
 xpect our quantitativ e estimates in this region to be accurate until it
s directly probed with localized FRBs. Since the cause of this effect
s a well-understood observational bias; however, it will clearly be 
resent to some degree. 

.1 The Macquart relation 

he ‘Macquart relation’ is the general one-to-one-ness of the rela- 
ionship between redshift and DM of FRBs. It is predicted from the
istribution of baryonic matter in the Universe (Inoue 2004 ), and first
vidence for it was given in Shannon et al. ( 2018 ), by comparing the
M distributions of ASKAP/FE and Parkes/Mb populations, where 

he higher sensitivity of Parkes allowed it to probe more-distant 
RBs with higher DMs. The relation was first observed directly by
acquart et al. ( 2020 ), who showed that the redshifts of localized

RBs were consistent with the baryonic content of the Universe. 
MNRAS 509, 4775–4802 (2022) 
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For the purpose of comparing survey results, we propose a
seful distinction: the ‘weak’ Macquart relation (which might more
ccurately be titled the ‘Shannon’ relation), where telescopes with
igher sensitivity on average observe more-distant FRBs with higher
M; and the ‘strong’ version (or true Macquart relation), where the
Ms of FRBs within a surv e y are a good proxy for their redshift.
everal authors use a 1–1 z –DM relation in performing estimates of

he FRB population from the DMs of un-localized FRBs (Shannon
t al. 2018 ; Deng, Wei & Wu 2019 ; Lu & Piro 2019 ; James et al.
020a ). 
Clearly, the weak version of the relation is well-established, and

n obvious consequence of the cosmological nature of FRBs. Here,
e test the strong version, which can be readily tested by calculating 

 ( z| DM ) = 

p ( z, DM ) 

p ( DM ) 
(43) 

or a given survey. This is shown for each survey in Fig. 16 . 
In each surv e y, the Macquart relation applies up to a maximum

edshift z max , beyond which it reverses. The reversal can be intuitively
nderstood by realizing that at the maximum redshift at which an
RB can be detected, FRBs with any excess of DM cannot be
etected, due to DM smearing reducing sensitivity. Therefore, the
nly way to detect FRBs with a DM lying abo v e that e xpected from
 burst originating at z max is to have the burst originate at a nearer
edshift. As noted in Section 3 and Fig. 2 , the increased number of
RBs in the local Universe is related to the cumulative luminosity

ndex γ = −1.09, with more negative values leading to more nearby
igh-DM events. 
The reversal of the Macquart relation has several practical conse-

uences. First: for surv e ys with a large sample of FRBs, the burst with
he greatest DM will not be the most distant. An e xcellent e xample
f this phenomenon is FRB 170428 (ASKAP; Shannon et al. 2018 ),
hich is most likely to originate below z = 0.3, rather than the value
f z ∼ 1 expected from the Macquart relation. FRB 160102, observed
y Parkes, is another likely candidate. The implication is that works
sing a 1–1 DM–z relation will vastly o v erestimate the maximum
RB energy, since they will necessarily attribute a large distance and

herefore high energy to the highest DM event, which may in fact be
uite local. 
A key test of this reversal would be the detection of an FRB with

M � 1000 pc cm 

−3 by ASKAP in ICS mode, and its subsequent
ocalization to a redshift z � 0.6. Again, we note that this reversal of
he Macquart relation will al w ays be present to some extent, since it
s fundamentally due to observational effects which are known and
nderstood – it is merely the extent of this effect, and the DM for
n y giv en surv e y abo v e which it occurs, that is currently uncertain, 

Finally, we note that the existence of FRBs with very high DMs
as raised the possibility of using FRBs to probe for the signature of
elium reionization (Deng & Zhang 2014 ; Caleb et al. 2019 ; Linder
020 ). While this is by no means ruled out, it emphasizes that doing
o will require FRBs to be localized, since simple measures of FRB
roperties as a function of DM will yield a very large scatter in
edshifts, and hence reduced statistical power. 

0  C O N C L U S I O N  

e have developed a precise model of FRB observations, including
bservational biases due to the full telescope beamshape, degradation
n efficiency due to DM, and intrinsic burst width. None of these
ffects are fundamentally new; many others should take credit for
ighlighting their importance, and Luo et al. ( 2020 ) should be
ttributed with a first analysis using these techniques. Here, we have
NRAS 509, 4775–4802 (2022) 
mpro v ed upon this method by using an unbiased data sample, adding
e w observ ations of localized FRBs, studying the effects of source
volution, including the likelihood of the observed signal strength,
nd improving the beam model. We show that ignoring, or incorrectly
odelling, these factors leads to significant biases in the expected

edshifts of observable FRBs. 
We have also highlighted how uncertainties in the spectral index α,

nd indeed even in the interpretation of α as either a true FRB spectral
ndex or a frequency-dependent rate, is a systematic uncertainty in
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he modelling, and resolving this question should be a focus of
uture research. We suggest treating both interpretations of α as 
eing equally plausible for the time being. 
We have used our approach to model FRB observations with 

SKAP in both fly’s eye and incoherent sum mode, and Parkes 
ultibeam observations. We have carefully selected our data to 

nsure it is not biased due to under-reporting of observation time, or
ue to large local DM contributions reducing sensitivity . Crucially , 
e have included a sample of localized FRBs from ASKAP for which

he redshift of the host galaxies is measured. 
The z, DM, and SNR distributions of FRBs predicted by our 

est-fitting population estimates, presented in James et al. ( 2021a ), 
re tested against observations. We find no evidence for, and some 
vidence against, a lower bound to the FRB energy distribution, 
lthough we only exclude E min ≥ 10 39.0 erg (90 per cent C.L.).
o such minimum energy is expected for the magnetar-origin 
ypothesis, which links the observed extragalactic FRB population 
o radio bursts from magnetar flares in our own Galaxy. 

Our model also allows us to make inferences on the redshifts of the
n-localized samples of FRBs detected by ASKAP and Parkes. We 
nd these to be somewhat lower than expected from the Macquart 
elation, and indeed that the highest-DM events are likely not the 
ost distant, due to observ ational ef fects causing an inversion of

he Macquart relation, and the relatively steep best-fitting value 
f the FRB energy distribution. The ability of this model to place
riors on the expected redshift of FRBs given their measured DMs
ill also aid FRB localization efforts, especially for those bursts –

uch as FRB 171020 – which have uncertain, but promising, host 
ssociations. 

For the first time, we have incorporated the measured signal-to- 
oise ratio s into FRB population modelling, allowing the use of this
bservable to constrain population parameters, and to predict the 
ource-counts (‘logN–logS’) distribution. In all scenarios, we find a 
teepening of this distribution from Parkes to ASKAP, consistent with 
he predictions of Macquart & Ekers ( 2018b ) and the observations
f James et al. ( 2019b ). 
Anomalies between observations and our model include a lack of 

SKAP incoherent sum (localized) FRBs within z < 0.1, an o v er
under) prediction of FRBs from Parkes multibeam (ASKAP fly’s 
ye) observations, and an overprediction of low-DM bursts. None 
f these have a high statistical significance – ho we ver, we identify
everal potential explanations for these discrepancies. These are a 
pectral break in the FRB luminosity function, and the influence of
he repeating FRB population. We recommend future works attempt 
o impro v e this modelling, and also impro v e understanding of the
pectral beahviour of FRBs. 

Future observations of localized FRBs with very large excess 
Ms, and/or from the local Universe, would verify predictions from 

his work. FRB surv e ys with v ery sensitiv e radio telescopes such
s the Five-hundred-meter Aperture Spherical Telescope (FAST), 
r repeating previous Parkes and ASKAP surv e ys at different 
requencies, would help to further constrain FRB population models. 
n particular, the application of this model to the large sample of
ursts observed by CHIME would be particularly useful, although 
t would then need to be adapted to include repeating FRBs. We
lso aim to investigate improved numerical/computational methods 
o speed up calculations to allow the inclusion of further data. 

C K N OW L E D G E M E N T S  

his research has made use of NASA’s Astrophysics Data System 

ibliographic Services. This research made use of PYTHON libraries 
ATPLOTLIB (Hunter 2007 ), NUMPY (van der Walt, Colbert & 

aroquaux 2011 ), and SCIPY (Virtanen et al. 2020 ). This work was
erformed on the GPU Supercomputer for Theoretical Astrophysics 
esearch (gSTAR) national facility at Swinburne University of 
echnology. gSTAR is funded by Swinburne and the Australian 
o v ernment’s Education Inv estment Fund. This w ork w as supported
y resources provided by the Pawsey Supercomputing Centre with 
unding from the Australian Go v ernment and the Go v ernment of

estern Australia. This research was partially supported by the 
ustralian Go v ernment through the Australian Research Council’s 
isco v ery Projects funding scheme (projects DP180100857 and 
P210102103). 

ATA  AVAI LABI LI TY  

he data underlying this article will be shared on reasonable request
o the corresponding author. 

EFERENCES  

garwal D. et al., 2019, MNRAS , 490, 1 
rcus W. R., Macquart J.-P., Sammons M. W., James C. W., Ekers R. D.,

2021, MNRAS , 501, 5319 
annister K. W. et al., 2017, ApJ , 841, L12 
annister K. W. et al., 2019, Science , 365, 565 
handari S. et al., 2018, MNRAS , 475, 1427 
handari S. et al., 2020a, ApJ , 895, L37 
handari S. et al., 2020b, ApJ , 901, L20 
handari S., Bannister K. W., James C. W., Shannon R. M., Flynn C. M.,

Caleb M., Bunton J. D., 2019, MNRAS , 486, 70 
hardwaj M. et al., 2021, ApJ , 910, L18 
ochenek C. D., Ravi V., Belov K. V., Hallinan G., Kocz J., Kulkarni S. R.,

McKenna D. L., 2020, Nature , 587, 59 
aleb M., Flynn C., Bailes M., Barr E. D., Hunstead R. W., Keane E. F., Ravi

V., van Straten W., 2016, MNRAS , 458, 708 
aleb M., Flynn C., Stappers B. W., 2019, MNRAS , 485, 2281 
ao X.-F., Yu Y.-W., Zhou X., 2018, ApJ , 858, 89 
hampion D. J. et al., 2016, MNRAS , 460, L30 
hatterjee S. et al., 2017, Nature , 541, 58 
hawla P. et al., 2017, ApJ , 844, 140 
HIME/FRB Collaboration, 2019a, Nature , 566, 230 
HIME/FRB Collaboration, 2019b, Nature , 566, 235 
HIME/FRB Collaboration, 2019c, ApJ , 885, L24 
hime/Frb Collaboration, 2020, Nature , 582, 351 
hittidi J. S. et al., 2020, preprint ( arXiv:2005.13158 ) 
ho H. et al., 2020, ApJ , 891, L38 
onnor L. et al., 2020, MNRAS, 499, 4716 
onnor L., 2019, MNRAS , 487, 5753 
ordes J. M., Lazio T. J. W., 2002, preprint ( ar Xiv:astr o-ph/0207156 ) 
ordes J. M., McLaughlin M. A., 2003, ApJ , 596, 1142 
rawford D. F., Jauncey D. L., Murdoch H. S., 1970, ApJ , 162, 405 
ruces M. et al., 2020, MNRAS , 500, 448 
ay C. K. et al., 2020, MNRAS , 497, 3335 
eng W., Zhang B., 2014, ApJ , 783, L35 
eng C.-M., Wei J.-J., Wu X.-F., 2019, J. High Energy Astrophys. , 23, 1 
arah W. et al., 2018, MNRAS , 478, 1209 
arah W. et al., 2019, MNRAS , 488, 2989 
eroz F., Hobson M. P., Bridges M., 2009, MNRAS , 398, 1601 
onseca E. et al., 2020, ApJ , 891, L6 
ardenier D. W., van Leeuwen J., Connor L., Petroff E., 2019, A&A , 632,

A125 
ardenier D. W., Connor L., van Leeuwen J., Oostrum L. C., Petroff E., 2021,

A&A, 647, A30 
upta V. et al., 2021, MNRAS , 501, 2316 
ardy L. K. et al., 2017, MNRAS , 472, 2800 
eintz K. E. et al., 2020, ApJ , 903, 152 
MNRAS 509, 4775–4802 (2022) 

http://dx.doi.org/10.1093/mnras/stz2574
http://dx.doi.org/10.1093/mnras/staa3948
http://dx.doi.org/10.3847/2041-8213/aa71ff
http://dx.doi.org/10.1126/science.aaw5903
http://dx.doi.org/10.1093/mnras/stx3074
http://dx.doi.org/10.3847/2041-8213/ab672e
http://dx.doi.org/10.3847/2041-8213/abb462
http://dx.doi.org/10.1093/mnras/stz804
http://dx.doi.org/10.3847/2041-8213/abeaa6
http://dx.doi.org/10.1038/s41586-020-2872-x
http://dx.doi.org/10.1093/mnras/stw175
http://dx.doi.org/10.1093/mnras/stz571
http://dx.doi.org/10.3847/1538-4357/aabadd
http://dx.doi.org/10.1093/mnrasl/slw069
http://dx.doi.org/10.1038/nature20797
http://dx.doi.org/10.3847/1538-4357/aa7d57
http://dx.doi.org/10.1038/s41586-018-0867-7
http://dx.doi.org/10.1038/s41586-018-0864-x
http://dx.doi.org/10.3847/2041-8213/ab4a80
http://dx.doi.org/10.1038/s41586-020-2398-2
http://arxiv.org/abs/2005.13158
http://dx.doi.org/10.3847/2041-8213/ab7824
http://dx.doi.org/10.1093/mnras/stz1666
https://arxiv.org/abs/astro-ph/0207156
http://dx.doi.org/10.1086/378231
http://dx.doi.org/10.1086/150672
http://dx.doi.org/10.1093/mnras/staa3223
http://dx.doi.org/10.1093/mnras/staa2138
http://dx.doi.org/10.1088/2041-8205/783/2/L35
http://dx.doi.org/10.1016/j.jheap.2019.05.001
http://dx.doi.org/10.1093/mnras/sty1122
http://dx.doi.org/10.1093/mnras/stz1748
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://dx.doi.org/10.3847/2041-8213/ab7208
http://dx.doi.org/10.1051/0004-6361/201936404
http://dx.doi.org/10.1093/mnras/staa3683
http://dx.doi.org/10.1093/mnras/stx2153
http://dx.doi.org/10.3847/1538-4357/abb6fb


4796 C. W. James et al. 

H
H
H
I
I
J  

J
J
J  

J
J
J  

J  

K
K
K
K
K
K
K
K
L  

L
L
L
L
L  

L
L
L  

M
M
M
M  

M
M
M  

M
M
M
M
M
M
O
O
P
P
P
P
P
P
P  

P
P
P  

P
P

Q  

Q
R
R
R
R
R
S  

S
S
S
S
S
T
T
T
T
v  

V
V
W  

Z  

Z
Z
Z

A

H  

b

A

T  

d  

a  

o  

a  

a  

fi  

s  

w  

C  

fl  

w
 

v  

s  

t  

r  

l  

e  

J  

o
 

z  

p  

e  

d  

w  

M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/4/4775/6412545 by guest on 09 April 2024
essels J. W. T. et al., 2019, ApJ , 876, L23 
obbs G. et al., 2020, Publ. Astron. Soc. Aust. , 37, e012 
unter J. D., 2007, Comput. Sci. Eng. , 9, 90 

noue S., 2004, MNRAS , 348, 999 
oka K., 2003, ApJ , 598, L79 
ames F., 2006, Statistical Methods in Experimental Physics: 2nd Edition,

World Scientific, Singapore 
ames C. W., 2019, MNRAS , 486, 5934 
ames C. W. et al., 2019a, PASA , 36, e009 
ames C. W., Ekers R. D., Macquart J.-P., Bannister K. W., Shannon R. M.,

2019b, MNRAS , 483, 1342 
ames C. W. et al., 2020a, MNRAS , 495, 2416 
ames C. W. et al., 2020b, ApJ , 895, L22 
ames C., Prochaska J., Macquart J.-P., North-Hickey F., Bannister K.,

Dunning A., 2021a, MNRAS 
ames C. W., Prochaska J. X., Ghosh E. M., 2021b, zdm, https://zenodo.org

/r ecor d/5213780#.YRxh5BMzZKA 

eane E. F., Petroff E., 2015a, MNRAS , 447, 2852 
eane E., Petroff E., 2015b, MNRAS, 447, 2852 
eane E. F. et al., 2017, MNRAS, 473, 116 
eating L. C., Pen U.-L., 2020, MNRAS , 496, L106 
eith M. J. et al., 2010, MNRAS , 409, 619 
olmogorov A., 1933, G. Ist. Ital. Attuari., 4, 83 
umar P. et al., 2019, ApJ , 887, L30 
umar P. et al., 2021, MNRAS, 500, 2525 
awrence E., Vander Wiel S., Law C., Burke Spolaor S., Bower G. C., 2017,

AJ , 154, 117 
aw C. J. et al., 2017, ApJ , 850, 76 
aw C. J. et al., 2020, ApJ , 899, 161 
i D. et al., 2021, Nature, 598, 267 
inder E. V., 2020, Phys. Rev. D , 101, 103019 
orimer D. R., Bailes M., McLaughlin M. A., Narkevic D. J., Crawford F.,

2007, Science , 318, 777 
u W., Piro A. L., 2019, ApJ , 883, 40 
uo R., Lee K., Lorimer D. R., Zhang B., 2018, MNRAS , 481, 2320 
uo R., Men Y., Lee K., Wang W., Lorimer D. R., Zhang B., 2020, MNRAS ,

494, 665 
acquart J.-P., Ekers R. D., 2018a, MNRAS , 474, 1900 
acquart J.-P., Ekers R., 2018b, MNRAS , 480, 4211 
acquart J.-P., Koay J. Y., 2013, ApJ , 776, 125 
acquart J.-P., Shannon R. M., Bannister K. W., James C. W., Ekers R. D.,

Bunton J. D., 2019, ApJ , 872, L19 
acquart J. P. et al., 2020, Nature , 581, 391 
adau P., Dickinson M., 2014, ARA&A , 52, 415 
adhavacheril M. S., Battaglia N., Smith K. M., Sievers J. L., 2019,

Phys. Rev. D , 100, 103532 
ahony E. K. et al., 2018, ApJ , 867, L10 
arcote B. et al., 2020, Nature , 577, 190 
asui K. W., Sigurdson K., 2015, Phys. Rev. Lett. , 115, 121301 
cQuinn M., 2014, ApJ , 780, L33 
ichilli D. et al., 2018, Nature , 553, 182 
urdoch H. S., Crawford D. F., Jauncey D. L., 1973, ApJ , 183, 1 
ppermann N., Yu H.-R., Pen U.-L., 2018, MNRAS , 475, 5109 
słowski S. et al., 2019, MNRAS , 488, 868 
atek C., Chime/Frb Collaboration, 2019, Astron. Telegram, 13013, 1 
etroff E. et al., 2014, ApJ , 789, L26 
etroff E. et al., 2015, MNRAS , 447, 246 
etroff E. et al., 2016, Publ. Astron. Soc. Aust., 33, e045 
etroff E. et al., 2019, MNRAS , 482, 3109 
lanck Collaboration VI, 2018, A&A, 641, A6 
latts E., Weltman A., Walters A., Tendulkar S. P., Gordin J. E. B., Kandhai

S., 2019, Phys. Rep. , 821, 1 
latts E., Prochaska J. X., Law C. J., 2020, ApJ , 895, L49 
leunis Z. et al., 2021, preprint ( arXiv:2106.04356 ) 
rochaska J. X., Simha S., Law C., Tejos N., Neeleman M., 2019a, FRB,

https://zenodo.org/r ecor d/3403651#.YRxkcBMzZKA 

rochaska J. X. et al., 2019b, Science , 365, aay0073 
rochaska J. X., Zheng Y., 2019, MNRAS , 485, 648 
NRAS 509, 4775–4802 (2022) 
iu H., Bannister K. W., Shannon R. M., Murphy T., Bhandari S., Agarwal
D., Lorimer D. R., Bunton J. D., 2019, MNRAS , 486, 166 

iu H. et al., 2020, MNRAS , 497, 1382 
ajwade K. M. et al., 2020, MNRAS , 495, 3551 
avi V., Shannon R. M., Jameson A., 2015, ApJ , 799, L5 
avi V. et al., 2016, Science , 354, 1249 
avi V. et al., 2019, Nature , 572, 352 
yle M., 1968, ARA&A , 6, 249 
afarzadeh M., Prochaska J. X., Heintz K. E., Fong W.-. fai ., 2020, ApJ, 905,

L30 
hannon R. M. et al., 2018, Nature, 562, 386 
mirnov N., 1948, Ann. Math. Stat. , 19, 279 
okolowski M. et al., 2018, ApJ , 867, L12 
pitler L. G. et al., 2014, ApJ , 790, 101 
tav ele y-Smith L. et al., 1996, Publ. Astron. Soc. Aust., 13, 243 
endulkar S. P. et al., 2017, ApJ , 834, L7 
he Chime/Frb Collaboration, , 2020, Nature , 587, 54 
he CHIME/FRB Collaboration, 2021, preprint ( arXiv:2106.04352 ) 
hornton D. et al., 2013, Science , 341, 53 
an der Walt S., Colbert S. C., Varoquaux G., 2011, Comput. Sci. Eng. , 13,

22 
edantham H. K., Ravi V., Hallinan G., Shannon R. M., 2016, ApJ , 830, 75 
irtanen P. et al., 2020, Nat. Methods , 17, 261 
ilks S., 1962, Mathematical Statistics. John Wiley and Sons Ltd, New York

hang S. B., Hobbs G., Dai S., Toomey L., Stav ele y-Smith L., Russell C. J.,
Wu X. F., 2019, MNRAS , 484, L147 

hang S. B. et al., 2020a, ApJS , 249, 14 
hang S. B. et al., 2020b, ApJS , 249, 14 
hu W., Feng L.-L., Zhang F., 2018, ApJ , 865, 147 

PPENDI X  A :  N E G L E C T E D  EFFECTS  

ere, we discuss effects that affect search sensitivity which have
een neglected in this work. 

1 Fine sensitivity effects 

he precise sensitivity of an incoherent FRB search to an FRB
epends not only on the ‘coarse’ effects of effective pulse width, but
lso the exact alignment of a burst with the time–frequency binning
f the data compared to the FRB arri v al time, and the DMs which
re searched compared to the exact DM of the FRB. This effect is
nalysed by Keane & Petroff ( 2015a ) for early FRB search methods,
nding fluctuations of up to ±15 per cent, although in current FRB
earch methods fluctuations are at the level of a few percent. This
as also found to be the case for an internal investigation into the
RAFT FRB searches with ASKAP for Shannon et al. ( 2018 ), with
uctuations of ±3 per cent. Such effects are thus ignored in this
ork, and likely should be in all future works. 
The presence of radio-frequency interference (RFI) during obser-

ations can result in a loss of effective bandwidth – and hence sen-
itivity – via v etoed frequenc y channels; loss of ef fecti ve observing
ime if the RFI results in FRBs being completely unobservable; and
educed sensitivity to FRBs in a certain parameter space (particularly
ow-DM or high-width FRBs). The sensitivity of ASKAP to such
ffects has been studied using pulsar calibration observations by
ames et al. ( 2019a ), finding a typical 10 per cent loss of ef fecti ve
bservation time and ∼10 per cent fluctuation in sensitivity. 
Further details of search pipelines can effect burst sensitivity. The

ero-DM subtraction method – i.e. subtracting the mean detected
ower prior to dedispersion – will reduce sensitivity to low-DM
vents and very bright bursts, although typically only if the total
ispersion sweep across the detection bandwidth is low. For instance,
e have found a few percent bias in the estimated SNR for ASKAP
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earches when the expected SNR is greater than 100. An analysis 
f the HEIMDALL software – used in most Parkes FRB searches 
using real-time injected FRBs by Gupta et al. ( 2021 ) finds a

0 per cent reduction in SNR compared to expectations. This mostly
ffected bursts with widths abo v e 20 ms ho we ver, and we find in
ection 4 our estimates of the DM–z distribution to be insensitive to

he population of very wide bursts. For ASKAP, the expected SNR of
ulsar bursts was found by Shannon et al. ( 2018 ) to be within a few
ercent of that found by the Fast Real-time Engine for Dedispersing 
mplitudes (FREDDA) algorithm used by the CRAFT collaboration. 
onetheless, for future precision cosmological studies, the response 
f FRB detection systems should be quantified in more detail. 
We also note that in this work we use SNR as the true SNR

f the FRB, when by definition this has a 1 σ error of unity.
urdoch, Crawford & Jauncey ( 1973 ) find that for SNR above

ix, the measured SNR can be approximated as the true SNR for
tatistical purposes, and so we have here ignored this effect, rather 
han marginalising o v er it. Possible non-linearities between FRB 

uence and SNR become important at high SNR, e.g. as found for
RB 180309, which saturated the Parkes digitiser system and may 
ave had a true SNR as high as 2616 (Osłowski et al. 2019 ). Ho we ver,
hese effects can be corrected-for offline; care must be taken ho we ver
o use the corrected values for model e v aluation. Small ef fects are
lso possible at lower SNR, e.g. as found for high-width FRBs at
TMOST (Gupta et al. 2021 ). 
Our beamshape model for Parkes uses the mean observation 

requency, while for ASKAP it is uniformly weighted o v er all
requencies. A preference for e.g. low-frequency bursts would result 
n a slight increase in the surv e y ef fecti ve area for both instruments,
ith only the difference in increase being relevant when estimating 
opulation parameters other than the absolute FRB rate. We con- 
ider this a third-order effect for the frequencies and bandwidths 
onsidered here. 

Finally, we have not discussed errors in F 0 . The absolute scale of
he mean ASKAP threshold was calculated by James et al. ( 2019a )
y referencing observations to Parkes, and using Hydra A as an 
bsolute flux calibrator. Thus we expect errors in flux calibration 
or Parkes and ASKAP to be linked, and cancel to first order.
o we ver, indi vidual antenna sensiti vity for ASKAP was found to
ary by ∼±5 per cent , and this is similar to the level of uncertainty
ound when performing calibration observations for Bannister et al. 
 2019 ). Perhaps the largest source of uncertainty in F 0 comes from
he quoted threshold of 0.5 Jy ms for Parkes, which has an inherent
ounding uncertainty of ±10 per cent , and thus a corresponding rate 
ncertainty of ±15 per cent for a cumulative source counts index of 
1.5 (see Section 8.7). 

2 Pointing 

ere, we treat a given FRB survey as having a constant local
M component, DM local = DM MW 

+ DM host . This is because a
reater local DM reduces sensitivity to extragalatic FRBs due to 
M smearing. 
When this effect becomes significant, this requires extending the 

ntegral in equation (29) to 

< N i > = 

∑ 

k 

T i,k 

∫ 
d z 
 ( z ) 

d V ( z ) 

d �d z 

∫ 
d DM EG p( DM EG | z) 

×
∫ 

d B �( B ) 
∫ 

d wp ( w ) p ( E > E th ) , (A1) 

 th ∼ E th ( B, w, z, DM = DM EG + DM local , k ) , (A2) 
here T ik is the total time spent observing at DM local = DM local,k . 

3 Scattering 

n Section 4, we combine the intrinsic b urst width w int and scatter -
roadening width w scat into the incident width w inc . Ho we ver, while
 int can reasonably be assumed to be independent of other FRB
roperties, it is plausible that w inc will be correlated with both DM
nd/or z, and it will certainly be frequency dependent. This is due to
nterstellar scattering, which is implicitly included through modelling 
f observed FRB widths, but is not explicitly accounted for as per
.g. Caleb et al. ( 2016 ). We largely a v oid this question in this work
y choosing surv e ys of similar frequency – ho we ver, we consider
vidence for such a correlation here. 

Most FRB searches have time resolutions in the range of 100 μs–
 ms, and resolving scattering tails from the intrinsic burst structure
s difficult: Qiu et al. ( 2020 ) are able to do this for only six of
he 33 FRBs observed at the typically 1.26 ms real-time resolution
f ASKAP FRB searches. The broader time-frequency structure 
 xhibited by man y repeating FRBs (CHIME/FRB Collaboration 
019c ; Fonseca et al. 2020 ; The CHIME/FRB Collaboration 2021 )
o we ver can often be resolved at these resolutions (e.g. Hessels et al.
019 ), while observations down to 10 μs have revealed a 1 GHz
cattering time of only 24 μs in FRB 121102, which is obtained
ndirectly from the measured scintillation bandwidth (Michilli et al. 
018 ). 
The most reliable way to resolve these two contributions is to

se time–frequency data at the Nyquist resolution. ASKAP (Cho 
t al. 2020 ; Day et al. 2020 ) and UTMOST (Farah et al. 2018 ,
019 ) have analysed such data for six FRBs each. Bursts were found
o have strong sub-burst structures down to 50 μs. Scattering was
onclusively measured for a total of four ASKAP FRBs, being in the
ange 40 μs–3.3 ms at 1.27 GHz, while for 181112, it was at most
0 μs. UTMOST FRBs had 835 MHz scattering times of 4 μs–30 ms,
ith one upper limit at 0.2 ms. 
Clearly, there is a broad distribution of FRB intrinsic widths and

cattering times. There are general effects that this distribution can 
ave on the DM–z distribution of FRBs. 
The most complicated potential interaction of scattering and the 

ntrinsic width is one that is dependent on the exact position of the
RB in DM–z space. 
If indeed FRBs do arise from two source populations with different

osmological evolutions or different host galaxy properties, or else- 
ise one population of objects with properties that age on cosmo-

ogical time-scales, the intrinsic width distribution may have some 
M–z dependence. This possibility should not be ignored. Ho we ver, 

he most likely redshift dependence arises from the scattering term. 
Theoretical studies have examined expectations for scattering 

f FRBs during cosmic propagation, with effects attributed to the 
ntergalactic medium (IGM), intracluster medium (ICM), and the 
aloes and interstellar medium (ISM) of intersected galaxies. 
The general form of the redshift dependence is analysed by 
acquart & Koay ( 2013 ), finding that scattering due to the IGM
ill increase as (1 + z) 2 to z � 1, and as (1 + z) 0.2 − 0.5 for z �
. This is in contrast to the contribution from hosts, which scales
s (1 + z) −3 . Results on the absolute magnitude of the scattering
epend on the assumed minimum and maximum length-scales of 
he turbulence. Macquart & Koay ( 2013 ) argue that for realistic
urbulence parameters, the total amount of scattering from the IGM 

nd ICM is expected to be low, at � 1 and � 5 ms at 300 MHz,
espectively. Zhu, Feng & Zhang ( 2018 ) simulate FRBs propagating
n a clumpy IGM. Examining the dependence of the mean scattering
MNRAS 509, 4775–4802 (2022) 
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ime ̄τ on DM, they find ̄τ ∼ DM 

1 −2 for voids, clusters, and filaments
 v er a range of simulation parameters. They also conclude that
nreasonably high turbulence scales would be required to achieve
cattering values comparable to that observed in FRBs. 

In some cases, FRBs localizations have been sufficient to identify
ntersections of the line of sight with Galactic haloes, placing upper
imits on the degree of scattering caused by such intersections
Prochaska et al. 2019b ; Connor et al. 2020 ). 

Qiu et al. ( 2020 ) find no evidence however for a DM-dependence of
cattering. Both measurements and expectation therefore suggest that
he observed distribution of scattering arises from the host galaxies.

e do not ho we ver attempt to model this in this work, since the (1 +
) 2 reduction in width at high redshift will be in any case insignificant
gainst the DM smearing effect. A full model of scattering will
o we ver become important when including observations o v er a wide
requency range. 

4 Influence of specific parameters 

his work uses measured FRB detection numbers, dispersion mea-
ures, redshifts, and strengths from three different FRB searches. It
s useful to probe the influence of each of these on our o v erall result.
his also places an absolute limit on the aforementioned effects
iscussed in Appendix A – no matter how untrustworthy we consider
he number of FRBs detected, the information contained in detection
umbers will still be better than no information at all. 
To do so, we show in Fig. A1 our confidence limits for each

arameter, both with (top) and without (bottom) our prior on α, when
emoving the likelihood corresponding to p N (equation 27), p DMZ 

equation 30), p s (equation 34), and when removing ASKAP/FE,
SKAP/ICE, and Parkes/Mb observations. We do this under the

pectral index interpretation of α – results are similar under the rate
nterpretation. 

Unsurprisingly, the most dramatic effect occurs when removing
nformation on measured DM and z. In this limit, we do not find
ower bounds on E max in the range log 10 E max [erg] > 40, and limits
n other parameters are very broad. This is not a very interesting,
nformativ e, or une xpected result, and we ignore the ‘No p DMZ ’ in
he follo wing discussion. Ho we ver, the fact that some constraints are
one the less derived is evidence for the source-counts distribution
f FRBs containing useful information (Macquart & Ekers 2018b ). 
For all other parameters, we obtain a variety of modified limits.

learly, the ASKAP/ICS sample is most constraining to E max , while
ithout the ASKAP/FE sample, the constraints are narrower. This

s natural, since the ASKAP/FE sample probes the most intrinsi-
ally luminous bursts, without which a fit for a narrow population
istribution is possible. 
The slope of the cumulative luminosity function γ is constrained

o by flat by p n , without which a steeper (lower) value would
e obtained, while both the Parkes/Mb sample, and p snr , prevent
at (higher) values. This is a very interesting result. As noted in
ur companion paper, our best fit underpredicts the number of
SKAP/FE FRBs (13.9 versus 20 in 1274.6 d), and overpredicts

hose for Parkes/Mb (17.3 versus 12 in 164.4 d). One would expect
hat removing either Parkes/Mb or p n would have a similar effect by
emoving this tension. Ho we ver, removing Parkes/Mb also removes
he Parkes DM distribution. This then suggests that the Parkes
M distribution is indicative of a steep source-counts spectrum,
hereas the number of FRBs detected by Parkes is indicative of
 flat spectrum. We do not have a full solution to this quandry,
lthough it is clearly related to the discussion in Section 8. We do not
NRAS 509, 4775–4802 (2022) 
laborate further, since this discrepancy is of only marginal statistical
ignificance. 

Perhaps our most significant result – strong evidence for source
volution with redshift, i.e. n > 0 – is most strongly disfavoured by p n ,
uch that when this is remo v ed, we prefer a strongly evolving popula-
ion. Remo ving an y of the three FRB surv e ys, or p snr , simply results
n mildly less evidence for n > 0 – there is no single result strongly
a v ouring n > 0. We thus conclude that our conclusion on n robust,
specially considering uncertainties discussed in Appendix A1. 

Our host galaxy parameters, μhost and σ host – recall these are in log
M space – are most affected by the highest and lowest sensitivity

urv e ys, ASKAP/FE and P arkes/Mb . W ithout these observations,
ery low values of μhost (and hence very large values of σ host )
ecome possible. This validates the use of DM distributions only
hen studying these parameters. Neither p snr nor p n have a large

ffect. 
Are the changes when ignoring measurements indicative of

tatistical robustness? The most statistically significant change in
est-fitting values occurs when ignoring p n . This, predictably, is
elated to the low number of bursts observed by Parkes/Mb relative to
SKAP/FE compared to expectations discussed above, which alone

rgues against source evolution. The best-fitting value when ignoring
 n predicts that Parkes/Mb surveys should have observed fives times
s many FRBs as ASKAP/Fe, as opposed to the 60 per cent (12/20)
bserved. We do not consider it possible that any of the fine sensitivity
ffects discussed in this Appendix could be responsible for a factor of
 reduction in observable bursts at Parkes. Furthermore, ignoring p n 
a v ours a very steep luminosity function ( γ = −1.4), which will tend
o counteract the effect of the best-fitting strong source evolution ( n
 3.2). In isolation, these values are inconsistent with those found
hen including p n at approximately the 99 per cent level, although

ncluding trial factors due to looking at the effects on five parameters
hen excluding six subsets of data reduces this significance to the
0 per cent level (since parameters are correlated, it is difficult to
uote precise statistical significances). We thus interpret the large
hanges in best-fitting values of γ and n when excluding p n as being
ue to the fit trying to account for anomalies in the z –DM distributions
reviously discussed in Section 8.1. 

5 Influence of uncertainty in P ark es sensiti vity 

o provide a more realistic estimate of potential systematic effects,
e perform two tests. First, we test the effect of a systematic

rror in FRB detection threshold, as might occur if the reduced
NR found for UTMOST (Gupta et al. 2021 ) also applied for
ark es. We tak e a more extreme value, and artificially increase

he Parkes/Mb detection threshold F 0 by 60 per cent to 0.8 Jy ms.
econdly, we assume all Parkes measurements below a SNR of 16

o be untrustworthy, as suggested by Macquart & Ekers ( 2018a )
nd James et al. ( 2019b ), and discussed in Section 8.7. As well as
lso raising the detection threshold to 0.8 Jy ms, this remo v es sev en
RBs – six during the normalisable observation time – from the
nalysis. Interestingly, removing six of twelve normalisable FRBs is
xactly what is predicted from unbiased observations of a Euclidean
ource-counts distribution, where N FRB ∝ SNR 

−1 . 5 
th , since (16/10) −1.5 

 0.49. This suggests that any observational bias was present only
n the less systematic FRB searches with Parkes. Re-running the fit
ptimization under the ‘rate’ assumption on α (because numerical
 v aluation is quicker), the best-fitting values of the fit parameters are
hown in Table A1 . 

Increasing the Parkes threshold to 0.8 Jy ms has almost negligible
mpact on the parameter estimates. We attribute this to the change
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Figure A1. Resulting 68, 90, and 95 per cent confidence limits (respectively: blue, upper; green, middle; red, lower) on individual parameters under the spectral 
index interpretation of α, using in descending order: all available information, removing information on the number of detected FRBs, their DMs and redshifts, 
their measured signal-to-noise ratios, and data from ASKAP/FE, ASKAP/ICS, and Parkes/MB, respectively. Top: using a prior on α; bottom: no prior on α. 
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n threshold being small compared to the difference in sensitivity 
etween Parkes and ASKAP observations. This highlights the utility 
f fitting data from telescopes with very different thresholds. Setting 
NR th = 16 ho we ver has a greater impact: a flatter luminosity
unction is preferred, as is a reduced n . With a uniform prior on α,
he source evolution ( n ∼ 0) is preferred, although with a Gaussian
rior on α, evolution consistent with the star formation rate ( n ∼ 1)
s fa v oured. 
s

In general, varying these two systematics produces effects of 
maller size than the 68 per cent parameter confidence intervals. 
xcept in the case that the Parkes suffered from missing FRBs below
NR th = 16, and the measurements of Macquart et al. ( 2019 ) are
omehow flawed, would the our main conclusion on the evolving 
ature of the FRB population be affected. 
Note that confidence intervals will be correlated between columns 

n Table A1 , and are shown to e v aluate the importance of these
ystematics against random variation. 
MNRAS 509, 4775–4802 (2022) 
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Table A1. Comparison of best-fitting parameter values to those calculated assuming an increase in the Parkes FRB detection 
threshold, F 

Pks 
th , to 0.8 Jy ms; and when also e xcluding P arkes FRBs with SNR < 16 from the analysis. Shown are results calculated 

under the ‘rate’ approximation to α, both with and without a prior on α = −1.5 ± 0.3. Errors correspond to 68 per cent confidence 
intervals calculated using Wilks’ theorem. 

Uniform prior on α Gaussian prior on α
Parameter Best fit F 

Pks 
th = 0 . 8 Jy ms SNR 

Pks 
th = 16 Best fit F 

Pks 
th = 0 . 8 Jy ms SNR 

Pks 
th = 16 

log 10 E max 42 . 19 + 0 . 14 
−0 . 24 41.44 + 0 . 28 

−0 . 06 41.40 + 0 . 08 
−0 . 02 41 . 70 + 0 . 53 

−0 . 06 41.40 + 0 . 30 
−0 . 02 41.40 + 0 . 14 

−0 . 02 

γ −1.09 + 0 . 11 
−0 . 08 −1.11 + 0 . 14 

−0 . 17 −0.92 + 0 . 16 
−0 . 16 −1.09 + 0 . 14 

−0 . 10 −1.11 + 0 . 13 
−0 . 14 −0.95 + 0 . 20 

−0 . 14 

n 2.27 + 0 . 25 
−0 . 45 2.00 + 0 . 36 

−1 . 64 0.06 + 1 . 52 
−0 . 30 1.67 + 0 . 25 

−0 . 40 1.58 + 0 . 36 
−0 . 30 1.15 + 0 . 48 

−0 . 36 

μhost 2.07 + 0 . 18 
−0 . 20 2.20 + 0 . 16 

−0 . 18 2.23 + 0 . 11 
−0 . 16 2.11 + 0 . 18 

−0 . 20 2.20 + 0 . 16 
−0 . 16 2.20 + 0 . 14 

−0 . 18 

σ host 0.52 + 0 . 17 
−0 . 10 0.48 + 0 . 14 

−0 . 09 0.46 + 0 . 17 
−0 . 07 0.53 + 0 . 15 

−0 . 11 0.48 + 0 . 14 
−0 . 09 0.51 + 0 . 15 

−0 . 11 
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Figure A2. Upper: histogram of the values of E max which maximise the 
likelihood, E 

best 
max , compared to the simulated true E 

true 
max , when varying E max 

only, and using a Monte Carlo sample of FRBs as per Appendix A6. Lower: 
dif ferential and cumulati ve distributions of the test statistic D compared to 
the predicted χ2 

1 distribution from Wilks’ theorem. 
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In concluding this section, we remind readers that the F 

Pks 
th =

 . 8 Jy ms case is larger than we consider plausible, while the
NR 

Pks 
th = 16 case discards a significant fraction of data from the

ost sensitive FRB sample; thus we expect the true systematic errors
n our analysis to be less than the variation evident in Table A1 . None
he less, since p n is an important constraint on FRB parameters,
mpro v ed modelling may be needed of the P arkes e xperiment to
 v oid uncertainties limiting the accuracy of future, otherwise more-
recise calculations. 

6 Validity of statistical assumptions 

n this work, We have by default used a frequentist approach
o setting confidence intervals. This is more typical of the par-
icle physics community, where the validity of models are e v al-
ated using maximum likelihood methods. Here, we have taken
his approach, and in voked W ilks’ theorem in setting confidence
ntervals. 

A more robust approach would be to use Monte Carlo methods
o set these intervals. This would involve, for each combination of
arameters: 

(i) For each parameter set p set , generating ‘pseudo-experiments’
y sampling FRBs from the simulated distributions in z , DM, s
pace for each of the ASKAP/FE, ASKAP/ICS, and Parkes/Mb
xperiments; 

(ii) e v aluating the likelihood of each FRB sample using the
arameter set it was generated with, and the parameter set p max 

aximizing the likelihood for the actual, observed FRBs; 
(iii) include p set in a C per cent confidence interval if at least
 per cent of all Monte Carlo FRB samples from p set had a likelihood
ifference between p max and p set less than or equal to the observed
alue. 

Such a procedure would, ho we ver, be too computationally com-
lex for this multidimensional space. Rather, we test the validity of
ilks’ theorem for this particular data sample in one dimension, by

arying E max only. We choose E max because the sharp drop in the
ikelihood distribution below the observed energy of localized FRBs
akes this the least well-behaved parameter. To further simplify

he problem, we only generate pseudo-experiments at one simulated
ruth, being the set p max reported for the best-fitting with a Gaussian
rior on α given in Table A1 (and in our companion paper). We do
ot vary the number of observed FRBs N FRB , and simply re-generate
he properties z, DM, and s for each FRB. We then e v aluate these
hile varying E max , and measure the test statistic 

 = 2 log 
(
� 
(
E 

best 
max 

)
/� 

(
E 

true 
max 

))
. (A3) 
NRAS 509, 4775–4802 (2022) 
he resulting distribution of best-fitting E max values, E 

best 
max , and the

istribution of D , are given in Fig. A2 , upper and lower respectively,
sing 10 4 pseudo-experiments. 
From Fig. A2 (upper), E 

best 
max is clearly biased towards low values.

his is expected, since the fit naturally prefers values of E max only
arginally abo v e the highest observ ed FRB energy. The MC never

enerates FRBs with energy abo v e E 

true 
max , but can generate samples

ith FRBs with lower energy. Thus, the distribution of E 

best 
max is
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able A2. Ranges for the uniform priors on parameters used in the calcula-
ion of Bayesian confidence intervals. In all cases other than α, the likelihood
s negligible outside the interval. 

arameter Min Max 

og 10 E max 41 43.4 
−2.50 1.0 
−0.5 −1.5 

 −2 5 

host 0.5 2.75 

host 0.2 1.1 

imilarly shaped to the likelihood function � ( E max ) when e v aluated
n actual data, but skewed in the opposite direction. 
According to Wilks’ theorem, D should follow a χ2 

1 distribution. 
t is evident from Fig. A2 (right) that while the shapes are similar, the
rue distribution of D is significantly skewed to the right compared 
o the expectation. The cumulative distributions illustrate that the 
onfidence intervals calculated using Wilks’ theorem may therefore 
uffer from underco v erage. 

We note that we have tested Wilks’ theorem for the most extreme
ase. Our confidence intervals, when marginalized o v er other param- 
ters, should be more trustworthy than indicated by Fig. A2 . None the
ess, we proceed to calculate Bayesian confidence intervals to assess 
he sensitivity of our conclusions to the statistical method used. 
able A3. Bayesian confidence limits on single parameters, with both a uniform p
f α (see Section 3). The best-fitting value is quoted such that the posterior probabi

Uniform prior on α

arameter Best fit 
68 per cent 

C.L. 
90 per cent 

C.L. 
95 per cent 

C.L. 
99.7 per ce

C.L. 

og 10 E max 42 .01 + 0 . 28 
−0 . 23 

+ 0 . 50 
−0 . 36 

+ 0 . 61 
−0 . 43 

+ 0 . 69 
−0 . 47 

− 1 .08 + 0 . 12 
−0 . 11 

+ 0 . 22 
−0 . 18 

+ 0 . 26 
−0 . 22 

+ 0 . 30 
−0 . 24 

 1 .94 + 0 . 45 
−0 . 53 

+ 0 . 71 
−0 . 96 

+ 0 . 83 
−1 . 20 

+ 0 . 90 
−1 . 35 

host 2 .08 + 0 . 19 
−0 . 24 

+ 0 . 32 
−0 . 48 

+ 0 . 38 
−0 . 64 

+ 0 . 43 
−0 . 76 

host 0 .54 + 0 . 21 
−0 . 13 

+ 0 . 40 
−0 . 18 

+ 0 . 48 
−0 . 19 

+ 0 . 52 
−0 . 19 

able A4. As per Table A3 , assuming the rate interpretation of α (see Section 3). 

Uniform prior on α

arameter Best fit 
68 per cent 

C.L. 
90 per cent 

C.L. 
95 per cent 

C.L. 
99.7 per ce

C.L. 

og 10 E max 41 .40 + 0 . 59 
−0 . 20 

+ 0 . 77 
−0 . 20 

+ 0 . 88 
−0 . 20 

+ 0 . 96 
−0 . 20 

− 1 .09 + 0 . 13 
−0 . 12 

+ 0 . 23 
−0 . 18 

+ 0 . 28 
−0 . 22 

+ 0 . 32 
−0 . 24 

 1 .27 + 0 . 47 
−0 . 66 

+ 0 . 71 
−1 . 13 

+ 0 . 81 
−1 . 33 

+ 0 . 91 
−1 . 42 

host 2 .16 + 0 . 16 
−0 . 23 

+ 0 . 28 
−0 . 46 

+ 0 . 34 
−0 . 61 

+ 0 . 38 
−0 . 73 

host 0 .50 + 0 . 18 
−0 . 10 

+ 0 . 36 
−0 . 15 

+ 0 . 46 
−0 . 17 

+ 0 . 51 
−0 . 18 
7 Bayesian confidence intervals 

 Bayesian posterior probability distribution on a single parameter 
i in a parameter set � θ can be calculated by integrating the likelihood
unction � , weighted by appropriate priors, o v er all dimensions except
 : 

( θi ) = 

∫ 
� ( � θ ) p( � θ) d � θ�= i . (A4) 

e choose as our priors uniform distributions in μhost and σ host 

which are already defined in log–space), γ , and n , and log-uniform
riors in E max , in the ranges shown in Table A2 . As previously, we
ake both uniform and Gaussian priors on α. 

The result using the spectral (rate) interpretation of α is plotted 
n Fig. A3 (Fig. A4 ). Confidence intervals are constructed by
ncluding regions of parameter space with the greatest p ( θ i ) until
he desired level of confidence is reached. These intervals are also
isted in Table A2 . We observe that Bayesian confidence intervals
re generally more constraining than those calculated using Wilks’ 
heorem in the frequentist approach. Thus, while it is possible that
he latter intervals do suffer from underco v erage, the y are none the
ess more conserv ati ve than the intervals which would be generated
sing the more standard Bayesian approach, as used by e.g. Luo et al.
 2020 ). 
rior and Gaussian prior on α, calculated assuming the spectral interpretation 
lity is maximized. 

Gaussian prior on α
nt 

Best fit 
68 per cent 

C.L. 
90 per cent 

C.L. 
95 per cent 

C.L. 
99.7 per 
cent C.L. 

41 .74 + 0 . 40 
−0 . 07 

+ 0 . 64 
−0 . 12 

+ 0 . 75 
−0 . 14 

+ 0 . 83 
−0 . 15 

− 1 .08 + 0 . 13 
−0 . 11 

+ 0 . 22 
−0 . 18 

+ 0 . 27 
−0 . 22 

+ 0 . 30 
−0 . 24 

1 .60 + 0 . 34 
−0 . 35 

+ 0 . 58 
−0 . 59 

+ 0 . 69 
−0 . 71 

+ 0 . 76 
−0 . 80 

2 .10 + 0 . 18 
−0 . 24 

+ 0 . 31 
−0 . 47 

+ 0 . 37 
−0 . 62 

+ 0 . 42 
−0 . 73 

0 .53 + 0 . 20 
−0 . 13 

+ 0 . 39 
−0 . 17 

+ 0 . 48 
−0 . 19 

+ 0 . 52 
−0 . 19 

A lower limit on log 10 E max [erg] of 41.2 has been assumed. 

Gaussian prior on α
nt 

Best fit 
68 per cent 

C.L. 
90 per cent 

C.L. 
95 per cent 

C.L. 
99.7 per 
cent C.L. 

41 .40 + 0 . 56 
−0 . 20 

+ 0 . 75 
−0 . 20 

+ 0 . 87 
−0 . 20 

+ 0 . 95 
−0 . 20 

− 1 .09 + 0 . 13 
−0 . 11 

+ 0 . 23 
−0 . 18 

+ 0 . 28 
−0 . 21 

+ 0 . 32 
−0 . 24 

0 .85 + 0 . 29 
−0 . 32 

+ 0 . 54 
−0 . 54 

+ 0 . 64 
−0 . 66 

+ 0 . 71 
−0 . 74 

2 .16 + 0 . 16 
−0 . 21 

+ 0 . 28 
−0 . 43 

+ 0 . 34 
−0 . 58 

+ 0 . 38 
−0 . 69 

0 .49 + 0 . 18 
−0 . 10 

+ 0 . 35 
−0 . 15 

+ 0 . 45 
−0 . 17 

+ 0 . 51 
−0 . 18 
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Figure A3. Bayesian confidence intervals on parameters E max , α, γ , n , μhost , σ host when marginalized o v er the other five, under the spectral index interpretation 
of α, using a Gaussian (orange, lower) and uniform (blue, upper) prior on the spectral index α. Calculation results are given by points, with lines drawn using 
cubic spline smoothing. Vertical lines are single-parameter intervals at the labelled degree of confidence calculated. 

Figure A4. As per Fig. A3 , except calculated using the rate interpretation of α. 
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