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ABSTRACT
Parametric modeling of galaxy cluster density profiles from weak lensing observations leads to a mass bias, whose detailed
understanding is critical in deriving accurate mass-observable relations for constraining cosmological models. Drawing from
existing methods, we develop a robust framework for calculating this mass bias in one-parameter fits to simulations of dark
matter haloes. We show that our approach has the advantage of being independent of the absolute noise level, so that only the
number of haloes in a given simulation and the representativeness of the simulated haloes for real clusters limit the accuracy of
the bias estimation. While we model the bias as a lognormal distribution and the haloes with a Navarro–Frenk–White profile,
our method can be generalized to any bias distribution and parametric model of the radial mass distribution. We find that the
lognormal assumption is not strictly valid in the presence of miscentring of haloes. We investigate the use of cluster centres
derived from weak lensing in the context of mass bias, and tentatively find that such centroids can yield sensible mass estimates if
the convergence peak has a signal-to-noise ratio (SNR) approximately greater than 4. In this context we also find that the standard
approach to estimating the positional uncertainty of weak lensing mass peaks using bootstrapping severely underestimates the
true positional uncertainty for peaks with low SNRs. Though we determine the mass and redshift dependence of the bias
distribution for a few experimental setups, our focus remains providing a general approach to computing such distributions.

Key words: gravitational lensing: weak – galaxies: clusters: general.

1 IN T RO D U C T I O N

The abundance of clusters of galaxies at different epochs is highly
sensitive to the geometry of the Universe and to the integrated growth
rate of primordial density fluctuations (e.g. Haiman, Mohr & Holder
2001). As a consequence, number counts of galaxy clusters as a
function of mass and redshift are a powerful tool for investigating
the dark energy equation of state and other parameters of the
standard cosmological model (for a review see e.g. Allen, Evrard &
Mantz 2011), and potentially also in testing for deviations from the
predictions of general relativity on the scale of the Universe as a
whole (e.g. Rapetti et al. 2010).

The absolute calibration of mass-observable relations is an im-
portant factor in deriving accurate cosmological constraints based
on the galaxy cluster abundance. Within the framework of general
relativity, clusters of galaxies deflect light astigmatically, giving rise
to distortions in the images of background galaxies. While this effect
(weak lensing, henceforth WL) currently provides the most direct
method of calibrating cluster masses, there are various sources of
bias that must be carefully accounted for. Currently, uncertainties in
such biases contribute significantly to the overall systematic error

� E-mail: mnord@astro.uni-bonn.de

budget of mass-observable relations based on WL measurements
(e.g. Applegate et al. 2014; Mantz et al. 2014; Planck Collaboration
2016; Schrabback et al. 2018a; Bocquet et al. 2019; Dietrich et al.
2019; McClintock et al. 2019; Schrabback et al. 2021). It is thus
crucial to obtain a better understanding of the mass bias and its
dependencies. The goal of this work is to improve our understanding
of the mass bias arising due to fitting parametric radial density models
to shear profiles derived from WL measurements.

Grandis et al. (2019) estimated the expected contributions to
the systematic error budget of the absolute mass calibration in the
planned Euclid1 (Laureijs et al. 2011) and Rubin Observatory Legacy
Survey of Space and Time2 (LSST; Ivezić et al. 2019) surveys, and
predicted uncertainties on the order of 1 per cent from sources not
directly related to mass bias (accuracy of shape measurements, mis-
estimation of lensing efficiency, and uncertainties in the estimation
of contamination from cluster members). While the mass bias
modelling accuracy and uncertainty ideally need to match this
1 per cent level of systematic uncertainty in order to not degrade
the constraining power of future surveys substantially, direct current
constraints vary in the range of 3–5 per cent (e.g. Dietrich et al. 2019).

1http://sci.esa.int/euclid/
2https://www.lsst.org/
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For a perfectly centred shear profile, the mass bias can be viewed
as coming from three distinct contributions: the use of a parametric
model, the triaxial mass distribution of galaxy clusters (or the
presence of complex substructures, such as in merging systems),
and large-scale structure along the line of sight (where the latter
can be separated into correlated and uncorrelated contributions). In
addition, shear profiles are of course never perfectly centred, giving
rise to a fourth contribution related to miscentring. The latter can, as
we shall discuss, be considered as a separate problem.

Using parametric models of mass density as a function of radius
to estimate masses of galaxy clusters invariably leads to bias even
for an imagined perfectly spherical system (unless a model can be
found that perfectly matches all such systems). In general, the level
of bias will critically depend upon the radial range used for the mass
analysis, as parametric models of galaxy clusters have been found to
agree to different degrees with observations in different radial ranges.

The triaxial shapes of cold dark matter (CDM) haloes have been
found to bias spherically symmetric model fits to profiles of tangential
reduced shear profiles (King, Schneider & Springel 2001; Clowe,
De Lucia & King 2004; Oguri et al. 2005; Corless & King 2007;
Meneghetti et al. 2010), with systematic offsets of up to 50 per cent in
individual mass estimates depending on the geometry of the system.
For haloes elongated along the line of sight, masses tend to be
overestimated, while masses tend to be underestimated in haloes
with major axes approximately perpendicular to the line of sight.

Large-scale structure (henceforth LSS) along the line of sight
can be subdivided into correlated and uncorrelated contributions,
although the distinction is not straightforward. While uncorrelated
LSS can add scatter to determined masses, it is not expected to
significantly bias WL masses on average (Hoekstra 2001; Hoekstra
et al. 2011). Systematic errors due to uncorrelated LSS can thus
be decoupled from the determination of a weak lensing mass bias
distribution, assuming that it can be reliably separated from the
correlated LSS.

The projection of LSS and the effects of triaxiality are not indepen-
dent. Neighbouring haloes are generally connected by filaments, and
the direction of the major axis of a halo is correlated with the direc-
tions to massive neighbours (e.g. Zhang et al. 2009, and references
therein). Such alignments persist out to radii of approximately 100
h−1 Mpc from the cluster centre (Faltenbacher et al. 2002; Hopkins,
Bahcall & Bode 2005), suggesting an optimal integration length of
∼200 h−1 Mpc (±100 h−1 Mpc with the halo at zero) for separating
correlated and uncorrelated LSS in cosmological simulations. For
haloes with mass M500 > 1.5 × 1014 h−1 M�,3 Becker & Kravtsov
(2011, henceforth BK11) found the WL mass bias distribution to be
stable for integration lengths in a range of approximately 30–200 h−1

Mpc comoving. Here, we account only for correlated LSS, deriving
mock WL data from simulations using similar integration lengths.

At large radii, correlated matter around the cluster (correlated
haloes) contributes to the lensing profile (the so-called two-halo
term; e.g. Seljak 2000, Mandelbaum et al. 2005). In this work, we
limit the outer radius so as to make this term negligible.

While azimuthally symmetric radial models are often used in weak
lensing analyses (e.g Applegate et al. 2016; Dietrich et al. 2019),
one must carefully account for how the centre coordinate is chosen.
This choice can be made in different ways: first, the centre may be

3We define M� (generally with � ∈ {200, 500}) to be synonymous with
M�, c, the mass enclosed within the corresponding radius r�, c such that the
average mass density within this radius is equal to � times the critical density
of the Universe at the redshift of the halo, as defined in Section 2.3.

modeled directly in conjunction with the shear profile. Secondly,
it may be derived from the peak in a different observable such
as Compton-Y (Sunyaev–Zeldovich effect, also SZE; Sunyaev &
Zeldovich 1970, 1980), X-ray emissivity or some observable derived
from the distribution of cluster galaxies. Thirdly, one may use the
peak in the weak lensing convergence (derived up to a constant
from the reduced shear). Fourthly, for very massive clusters a strong
lensing-derived centre may be used for the WL analysis, as done
by, e.g. Schrabback et al. (2018b). Of course it is also possible to
combine these methods. For example, the X-ray emissivity peak,
combined with its uncertainty, may be used as a prior when fitting
for the centroid.

We define the term miscentring as the absolute projected offset
between the employed centre and the true cluster centre, where
the latter is defined as the position of the most bound particle in
the simulation, corresponding approximately to the bottom of the
gravitational well.

There are essentially two ways to account for miscentring. The
miscentring can be modeled as part of the mass bias (e.g. Bocquet
et al. 2019), or it can be treated separately in forward modeling of
masses from the shear profiles. Either way, a miscentring distribution,
corresponding to the chosen centre proxy, must be assumed. A
derivation of the latter is not trivial. In particular, such a distribution
would be expected to be anisotropic; for a merger elongated in the
plane of the sky there would be preferred directions for miscentring;
the X-ray centre, for example, would typically be in the direction of
one of the main gas clumps.

We focus on two main issues related to miscentring. First, we
analyse how a miscentring distribution derived from Compton-Y
images, similar to the ones produced by the South Pole Telescope
(SPT; Carlstrom et al. 2011), impacts the weak lensing mass bias.
Secondly, we derive centres as the peaks in the signal-to-noise ratio
(SNR) maps of the reconstructed convergence field, and compare
their performance to the analysis using SZE centres. In this context,
we also investigate the robustness of a common method for deriving
positional uncertainties in convergence-derived centre positions,
based on bootstrapping the source galaxy sample.

In recent years, significant efforts have been made towards quan-
tifying the weak lensing mass bias distribution. We summarize the
most important results of these works in the following paragraphs.

Using n-body simulations of dark matter only (DMO), BK11 first
studied the scatter and bias in WL mass measurements from Navarro–
Frenk–White (NFW; Navarro, Frenk & White 1997) reduced shear
profile fits. They took contributions from matter located within
the halo virial radius as well as correlated and uncorrelated LSS
into account, and generally found bias levels of 5–10 per cent. The
analysis showed that fitting beyond the virial radius biases masses
low due to deviations from the NFW model at large radii, e.g. from
neighbouring haloes. BK11 also considered miscentring to some
extent, and found that halo centreing errors can introduce negative
mass bias at around 5 per cent. For both correlated and non-correlated
LSS, the authors found a non-negligible contribution to the scatter,
but none to the mean bias.

Oguri & Hamana (2011) used the DMO simulations of Sato et al.
(2009) to investigate mass biases. Including scales out to many
times the virial radius, the authors fitted the simulated reduced shear
profiles with a truncated NFW model (avoiding a divergence of the
mass) plus a two-halo component (e.g. Johnston et al. 2007), which
accounts for the impact of neighbouring haloes. In two-parameter fits
(mass and concentration), the results were consistent with those of
BK11 in terms of mass, with the concentration parameter typically
being overestimated. Bahé, McCarthy & King (2012), using the
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Millennium simulation (Springel et al. 2005) to study mass biases,
found results consistent with Becker & Kravtsov (2011).

While n-body simulations modeling only dark matter are sufficient
for many purposes, the focus has been gradually shifted to hydro-
dynamic simulations to account for the baryonic component. The
inclusion of baryonic effects leads to high-mass clusters appearing
more spherical and to higher concentrations on average (Duffy et al.
2010; Bryan et al. 2013). Simulations not including active galactic
nucleus feedback suffer from overcooling. In the absence of heating
in the central region, heat dissipation is overly efficient, leading to
overestimates in stellar fractions (e.g. Borgani & Kravtsov 2011).

Henson et al. (2017) used both hydrodynamic and n-body simula-
tions to quantify how the inclusion of baryons affects the WL mass
bias, finding very similar results from both types of simulation. In
particular, a mass bias consistent with Becker & Kravtsov (2011)
was found at low masses, with the bias essentially vanishing at the
highest cluster masses.

Lee et al. (2018) used cosmoOWLS simulations (Le Brun et al.
2014), including baryons, and let both the mass and concentration
vary freely, since the concentration–mass relation is sensitive to
baryons. The results were consistent with those obtained by Henson
et al. (2017) in the sense that differences between DMO and baryonic
simulations, in terms of weak lensing mass bias, are very small.
Weak lensing masses were found to be underestimated by around
10 per cent for low-mass systems (M200 � 2 × 1014 M�), with the
bias decreasing for higher mass clusters and consistent with no bias
for the most massive systems, fully consistent with previous studies.
Importantly, Lee et al. found some dependence on the absolute
level of shape noise, which makes modeling the mass bias quite
complicated in practice. However, there was no dependence on the
noise level at the highest masses studied.

In summary, previous publications studying the mass bias have
concluded that WL masses are underestimated by 0 − 10 per cent,
with the bias generally decreasing with increasing mass, both using
DMO simulations (Becker & Kravtsov 2011; Oguri & Hamana 2011;
Bahé et al. 2012) and simulations including baryons (Henson et al.
2017; Lee et al. 2018).

In the coming years we expect that large-volume simulations
including baryons will yield WL mass bias constraints with per cent-
level accuracy and enough haloes to provide the matching precision.
We however limit the scope of this paper to DMO simulations for two
reasons. First, we seek to identify robust and general methods not
specific to any particular simulation. Secondly, the bias is sensitive to
a number of factors (including the radial range of measured shear as
well as the mass and the redshift of the cluster) that still dominate over
the small differences in bias between baryonic and DMO simulations
found by Lee et al. (2018) and Henson et al. (2017).

For the future, it will be crucial to use simulations that include
baryon physics for the determination of mass bias, as these will allow
us to simultaneously derive all relevant observables, including shear
profiles and the WL centre proxies as derived from Compton-Y and
X-ray luminosity maps. Simulations including baryons will therefore
play a crucial role in deriving spatial distributions for quantifying
biases related specifically to miscentring. This will be the subject of
a future work (Sommer et al., in preparation).

In this paper we develop, based on previous findings from the
literature, a robust scheme for determining the weak lensing mass
bias over a broad range of cluster masses and at any redshift
accessible by simulations, such that the determined mass bias is not
dependent upon the absolute noise level. We find that this is possible,
under certain conditions, for one-parameter fits, fitting only to mass,
and scaling for the concentration parameter (see Section 2.3) from

relations known from the literature. We explore some commonly used
miscentring distributions, and contrast these with the ones resulting
from using the peak of the lensing convergence as a centre proxy.
We also investigate whether the miscentring can be included in the
mass bias in a robust way. In this context, we also touch upon the
problem of deriving uncertainties on the position of the convergence
peak, and find that a traditional bootstrapping technique severely
underestimates this uncertainty.

The weak lensing mass bias is a complicated function of many
factors such as mass, redshift, the concentration–mass relation, and
the radial range of the analysis. To model it in a general way is
thus difficult. Instead, the bias is better modeled individually for
each cluster of galaxies studied, or for sub-samples of similar targets
within a survey. However, it is still useful to identify how these
factors influence the mass bias. First, this allows us to adapt the data
analysis in a way that minimizes systematic uncertainties in the bias
estimates. Secondly, it yields insight into what factors need to be
constrained more tightly (for example, the miscentring distribution)
to reduce this systematic uncertainty further.

The present work is structured as follows. We describe the
simulations, the mass selection, and the parametric models used
in Section 2. Here we also describe the Bayesian framework used
for deriving the weak lensing bias as a lognormal distribution in the
presence of noise. In Section 3 we show under what circumstances
the bias is noise independent and investigate how the bias depends
upon various factors such as mass, redshift, and the radial range of
fitting. We derive a set of lensing-based miscentring distributions and
compare these to corresponding distributions from SZE and X-ray
data. We discuss the implications of our results for WL observations
in Section 4. We offer our conclusions and summarize our findings
in Section 5.

For the majority of our results we use the cosmological model cor-
responding to the Markov chain Monte Carlo (MCMC) simulations
(described in Section 2.2), namely a flat �CDM cosmology with
h = 0.73, �m = 0.25, and �� = 0.75. Where other cosmological
models are used (because other simulations are based on different
cosmologies), we state this explicitly.

2 M E T H O D

2.1 Weak lensing formalism

Gravitational lensing by a foreground mass (the ‘lens’) at redshift
zl introduces a distortion in the images of a background (‘source’)
galaxy at redshift zs. The convergence κ(θ) = �(θ)/�crit at position
θ is the ratio of the surface mass density �(θ) and the critical density

�crit = c2

4πG

1

Dlβ
, (1)

where c is the speed of light and G is the gravitational constant. The
lensing efficiency β is defined by

β = Dls

Ds
H (zs − zl), (2)

where Ds, Dl, Dls are the angular diameter distances between the
observer and the source, the observer and the lens, and the lens and
the source, respectively. The Heaviside step function, H(x), is equal
to one for positive values of x, and zero otherwise.

In the limit of weak lensing (κ � 1), shape distortions are
characterized by the reduced shear g = g1 + ig2 at position θ

g(θ) = γ (θ)

1 − κ(θ)
, (3)
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where γ is the (unobservable) complex shear γ = γ1 + iγ2 (see e.g.
Kilbinger 2015 for a more detailed account).

For |g| ≤ 1, the reduced shear can be estimated from the ensemble-
averaged observed ellipticities4 ε = ε1 + iε2, as (Seitz & Schneider
1997)

ε = εs + g

1 + g∗εs
, (4)

where g∗ denotes the complex conjugate of the reduced shear, and εs

is the intrinsic complex ellipticity of a source galaxy. Because of the
intrinsic ellipticities εs, g is not identical to ε. However, assuming
that the source galaxies have no preferred orientation, the expectation
value of εs vanishes (〈εs〉 = 0), and it holds that 〈ε〉 = g, that is, the
ellipticity is an unbiased estimator of the reduced shear.

The dispersion of intrinsic ellipticities is known as shape noise,
distinct from uncertainties in measured ellipticities (measurement
noise). For simplicity, in this paper we bundle these sources of noise
into one entity labelled ‘shape noise’.

The shear, reduced shear and ellipticity can be decomposed into
tangential (subscript t) and cross (subscript x) components through

(·)t = −(·)1 cos(2φ) − (·)2 sin(2φ); (5a)

(·)x = +(·)1 sin(2φ) − (·)2 cos(2φ), (5b)

where (·) denotes any of g, γ , and ε, and φ is the azimuthal angle
with respect to a chosen centre.

For an azimuthally symmetric or azimuthally averaged projected
mass distribution, we can write the tangential shear as a function
of projected radius r as (e.g. Kaiser, Squires & Broadhurst 1995;
Wright & Brainerd 2000)

γt(r) = κ̄(< r) − κ̄(r), (6)

where κ̄(< r) is the mean convergence inside radius r, and κ̄(r) is
the azimuthally averaged convergence at radius r. Equivalently, in
terms of the surface mass density,

γt(r) = �(< r) − �(r)

�crit
. (7)

2.2 Simulations

The analysis in this work is based on the Millennium XXL simula-
tions (henceforth MXXL; Angulo et al. 2012), starting with cut-
outs of massive haloes (with a selection described below) from
snapshots at z = 0.25 and z = 1.0. Particles were extracted from the
simulation in a box of 3 × 3 × 200 (h−1Mpc)3 (comoving) around
each halo centre (corresponding to the most bound particle in the
halo). Shear and convergence images were calculated by projecting
particle masses on to a plane. For massive haloes, mass distributions
were projected along three mutually orthogonal axes to allow for
a larger effective sample size. We did not make use of ray-tracing
algorithms. Uncorrelated large-scale structure is thus not accounted
for in our analysis.5

For comparison, we also made use of the simulations from BK11,
in particular the snapshot at z = 0.25, for comparison with the MXXL

4We define ellipticity as ε = (a − b)/(a + b) × e2iφ for elliptical isophotes
with minor-to-major axial ratio b/a and position angle φ.
5When comparing to real data, it would be necessary to either include
the uncorrelated LSS directly in the simulation, or to add it as a separate
component (with zero expectancy) to the error budget. Here care must be
taken because the two components may have different radial weights.

snapshot at (approximately) the same redshift. The BK11 data were
extracted from a line-of-sight integration length of 400 h−1 Mpc
(comoving), twice the value we used for MXXL. In the mass range
under consideration, BK11 found minimal differences in the mean
and the scatter of the weak lensing bias between the two integration
lengths considered here.

The MXXL haloes were originally selected by M200, using the
lower mass threshold of M200 = 3.5 (1.5) × 1014 h−1 M� at z =
1.0 (0.25). In our analysis pertaining to M500, we subselected haloes
from the original M200-selected sample such that the resulting sub-
sample is also 95 per cent complete in M500. In order to probe to
lower values of M500, we additionally selected MXXL haloes above
a threshold of M500 = 1.4 × 1014 h−1 M� in both redshift snapshots.
To avoid an unnecessarily large number of haloes, the latter was
done on a limited volume, consisting of 8.3 (1.2) per cent of the
total MXXL volume at z = 1.0 (0.25). While this procedure leads
to a somewhat unusual selection function, it yields a near-complete
(≥ 95 per cent) mass selection for both overdensities.

Because the BK11 sample was selected in M500, we selected the
most massive haloes from this simulation, such that the completeness
is greater than 95 per cent. The key properties of the simulations,
including the number of haloes used for estimating the WL bias for
M500 and M200, are summarized in Table 1.

Shear and convergence fields are computed from the projected
mass distribution on a grid with a resolution of 4 arcsec. The shear
fields can be used in different ways to mimic realistic observations.
The latter consists of a number of background galaxies, which when
ignoring magnification are expected to randomly sample the shear
field. We limit the analysis to a radial dependence originating from
a constant density of galaxies in the sky plane, which we can adjust
to approximately correspond to real observations. We do not take
magnification into account, as this is a second-order effect.

We sample from the shear image to simulate background galaxies
at a chosen fixed number density6 (number per angular area on the
sky), and transform the shear at each randomly chosen coordinate
to reduced shear (ellipticity). In the latter step, for simplicity we
choose a constant lensing efficiency β corresponding to the mean
background source redshift of a given observation. This choice has
no direct bearing on our results, as the lensing efficiency only affects
noise properties, and not the magnitude of the weak lensing mass
bias itself.

2.3 Parametric model

Due to the mass-sheet degeneracy (Gorenstein, Falco & Shapiro
1988; Schneider & Seitz 1995), a direct reconstruction of the
projected mass distribution in the sky plane is in general only possible
up to a constant. For this reason, one typical approach to determining
the mass of a cluster of galaxies with gravitational lensing involves
the fitting of a parametric model to a binned profile of tangential
reduced shear. A common choice by observers is the NFW profile
(Navarro et al. 1997), which provides a good match both to DMO
(Bullock et al. 2001; Prada et al. 2012; Meneghetti et al. 2014; Klypin
et al. 2016; Gupta et al. 2017) and hydrodynamical (Balmès et al.
2014; Tollet et al. 2016) simulations.

6By default, galaxies are expected to be randomly positioned on the sky.
However, some observational setups may lead to a radius-dependent source
density (e.g. Schrabback et al. 2018a), which can be accounted for in our
setup.
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Table 1. Simulations used in this work, and the corresponding number of selected haloes for
M500 and M200 in each simulation snapshot, as well as the corresponding mass ranges.

Simulation Snapshot Redshift z Number of haloes Mass range
M200 M500 M200 M500

(log10(M200[M�]))

MXXL 41 0.989 6300 4235 14.68−15.68 14.28−15.20
MXXL 54 0.242 10800 7565 14.31−15.74 14.28−15.56
BK11 141 0.245 471 731 14.70−15.34 14.45−15.10

While it has been suggested that the Einasto profile (Einasto 1965)
yields better fits to the mass distributions of simulated haloes, in
particular at high redshifts (e.g. Child et al. 2018), Henson et al.
(2017) showed that this makes little difference for the bias in WL
masses. The reason for this is that the central region of clusters is
typically excised when fitting to a radial model (e.g. to mitigate the
effects of miscentring), effectively eliminating most of the difference
between the Einasto and NFW profiles (that are largest close to the
centre).

While there are many alternative models for the outer density of
a halo (see e.g. Tavio et al. 2008; Diemer & Kravtsov 2014, and
references therein), we shall exclusively use the NFW profile in
this work as it is the most commonly used model in weak lensing
analyses. This does not pose a limitation, as the methods described
can be generalized to any radial profile of tangential shear.

The NFW profile is parameterized by

ρ(r) = ρcrit δc(
r
rs

)(
1 + r

rs

)2 , (8)

where r is the (three-dimensional) physical radius, ρcrit is the
critical density of the Universe at the redshift of the cluster, δc is
a dimensionless parameter characterizing the density, and rs is a
characteristic radius. We define the halo concentration c� as

c� ≡ r�/rs, (9)

where r� is the radius within which the mean density is equal to
ρcrit�, and we employ � ∈ {200, 500}. The corresponding mass
inside r� is given by

M� = � ρcrit
4π

3
r3
�. (10)

Combining this result with the alternative expression for the mass
obtained by integrating equation (8) leads to

δc = �

3

c3
�

f (c�)
, (11)

where f (c�) ≡ ln(1 + c�) − c�/(1 + c�). Combining the above
equations leads to an expression for the NFW density profile in
terms of the mass and the concentration parameter as

ρ(r) = M�

4πf (c�)

1

r
(
r + r�

c�

)2 . (12)

This expression now depends only on mass and concentration,
allowing for a relatively simple approach to mass modeling.

To compare the thus defined NFW model to data, the former must
be projected on to the sky plane. The mass surface density is

�(R) = 2
∫ ∞

0
ρ
(√

R2 + z2
)

dz, (13)

where R is a projected radius and z is in the direction of the line
of sight. Exact analytic expressions for the projected surface density

and shear of the NFW profile are provided in Bartelmann (1996) and
Wright & Brainerd (2000).

The immediate goal of weak lensing surveys of clusters being
the accurate determination of masses, the concentration parameter
is often marginalized over in practice. At low SNRs, the degeneracy
between the parameters makes it more practical to use a one-
parameter fit, in which case a (redshift-dependent) concentration–
mass relation is used. While many such relations exist, numerical and
observational studies alike have found a weak mass dependence of the
concentration parameter, as well as a large scatter (e.g. Bullock et al.
2001; Duffy et al. 2008; Prada et al. 2012; Bhattacharya et al. 2013;
Dutton & Macciò 2014; Ludlow et al. 2014; Diemer & Kravtsov
2015; Ludlow et al. 2016; Shan et al. 2017; Diemer & Joyce 2019;
Ragagnin et al. 2019).

As long as the mass bias can be determined accurately from
simulations, it does not matter in principle what concentration–
mass relation is used; choosing a suitable constant value for c�

is also a valid approach as long as data and simulations are treated
equivalently. In practice, a useful consideration amounts to finding
an operating point at which the combined systematic and statistical
uncertainty of the determined mass is as small as possible. As we
shall see in Section 3.3, this choice is critically dependent on the
radial range of the fit as well as on the mass and redshift, in addition
to being dependent on the specific concentration–mass relation under
consideration.

2.4 Adding noise

As one aim of this paper we want to investigate whether conditions
exist under which the weak lensing mass bias is independent of
the absolute noise level. We describe here how we add noise to
the simulated shear measurements. Because the shear images are
extracted from the simulations, correlated LSS is already included.
We thus add random shape noise, with zero mean and with variance
σ 2

s , to each tangential shear bin according to

σ 2
s = σ 2

e

ngalA
, (14)

where σ e is the intrinsic shape noise, which we assume to be the
same for all lensed sources, ngal is the surface density of background
galaxies on the sky, and A is the angular area of the annulus. For
simplicity we assume a constant surface density, that is, we disregard
magnification as well as observational effects such as blending by
cluster galaxies. In general, we assume an intrinsic shape noise of
σ e = 0.25, which is close to typical values for both ground-based
and space-based observations.

In our method, the tangential ellipticies of the galaxies are given
equal weights, and only the number of galaxies in a bin is important
for the uncertainties of the binned data. While it is also possible
to fit directly without binning the ellipticities, Bahé et al. (2012)
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1132 M. W. Sommer et al.

showed explicitly that this choice of method has no bearing on the
determination of the WL mass bias.

2.5 Mass bias modeling

For forward modeling of a given weak lensing observation, we seek
to determine the probability of measuring a weak lensing mass MWL

by fitting a shear profile to a radial model given a true mass MT. That
is, we seek to determine the probability P(MWL|MT). We define the
linear bias as

bWL ≡ MWL

MT
, (15)

where both masses are evaluated at the same spherical overdensity
�. It is important to realize that while for an individual halo bWL

is just a number, our goal is to determine the distribution of bWL

from an ensemble of simulated haloes. Traditionally, a lognormal
distribution has been assumed (e.g. Lee et al. 2018; Schrabback et al.
2018a; Dietrich et al. 2019), i.e.

ln

(
MWL

MT

)
∼ N

(
lnμ, σ 2

)
, (16)

where N (lnμ, σ 2) is the normal distribution with mean ln μ and
variance σ 2. Note that with this definition, the variance σ 2 is native
to log-space, while the mean μ is native to the linear space of bWL.
In this sense, μ is related to the expectation value of bWL, but the
full distribution must be taken into account in modeling the bias of
actual observations; μ is not generally the mean of bWL for a sample
of haloes.

Given a set of simulations with known MT and making the
lognormal assumption, the task of finding P(MWL|MT) becomes
estimating the probability

P (μ, σ |ĝ) ∝ P (ĝ|μ, σ )P (μ, σ ) (17)

where ĝ is the observed reduced shear, and P(μ, σ ) is the prior on
the parameters of the lognormal distribution. We use a top-hat prior
with 0.01 < σ < 10 and 0.5 < μ < 2.

2.5.1 Single halo

We consider first a single simulated halo. Marginalizing the factor
P (ĝ|μ, σ ) over MWL, we may write

P (ĝ|μ, σ ) ∝
∫

MWL

P (ĝ,MWL|(μ, σ )) dMWL

∝
∫

MWL

P (ĝ|MWL)P (MWL|(μ, σ )) dMWL, (18)

where we have also used the fact that given MWL, ĝ and (μ, σ ) are
conditionally independent so that P (ĝ|MWL, (μ, σ )) = P (ĝ|MWL).

The first probability inside the integral of equation (18) is obtained
from fitting the simulated reduced shear profile with the model
prediction given MWL. Specifically,

P (MWL|ĝ) ∝ P (ĝ|MWL)P (MWL), (19)

where the prior P(MWL) does not need to be the same for all haloes
in the sample, but needs to be chosen carefully as we shall see
below. We can use different approaches for estimating P (ĝ|MWL):
sampling by MCMC or using a grid-search on MWL with step δMWL

in linear mass (if a concentration–mass relation is assumed). While
both approaches are equally valid, we use MCMC sampling in this
work.

The second probability in the integrand is the lognormal distribu-
tion, which is given by (16). Explicitly, this probability is

P (MWL|(μ, σ )) = 1

bWL

√
2πσ 2

exp

(
− (ln bWL − lnμ)2

2σ 2

)
. (20)

To evaluate the integral over the product of the two probabilities, we
use the approximation

P (ĝ|μ, σ )grid
∝∼

Np∑
k=1

P (Mk|μ, σ )P (Mk|ĝ)
1

P (Mk)
δMWL (21)

for the grid-search method with Np the number of sampled points
and δMWL the mass step size of the grid, and

P (ĝ|μ, σ )MCMC
∝∼ 1

Ns

Ns∑
k=1

P (Mk|μ, σ )
1

P (Mk)
Mk (22)

for the MCMC method with Ns the number of samples in the Markov
Chain. Here, Mk is the weak lensing mass corresponding to sample
k.

We call attention to a few subtleties at this point. First, the
sampling in weak lensing mass does not need to extend to negative
masses,7 as the lognormal part of the integrand is undefined for
such masses. We explore the validity of the lognormal assumption in
Section 3. Secondly, because the prior P(MWL) is taken into account
in equations (21) and (22), we can choose it freely when fitting for
P (ĝ|MWL). We discuss this point in some detail in Section 2.5.3.

2.5.2 Sample of haloes

Having worked out the formalism for a single halo, we move on
to a sample of Nc haloes. We define the likelihood L(μ, σ ) for an
ensemble of haloes from equation (17)

P (μ, σ |ĝ) ∝ P (ĝ|μ, σ )P (μ, σ ) ≡ L(μ, σ )P (μ, σ ), (23)

where

L(μ, σ ) =
Nc∏
i=1

Pi(ĝi |(μ, σ )), (24)

where Pi(ĝi |(μ, σ )) is given for an individual halo by equations (21)
and (22). Now let Mij be the jth MCMC sample of weak lensing mass
from halo i, and bij the corresponding linear bias. For the MCMC
method we shall then have

L(μ, σ ) =
Nc∏
i=1

{
1

Ns(i)

Ns (i)∑
j=1

[
Mij

P (Mij )

1

bij

√
2πσ 2

×

exp

(
− (ln bij − lnμ)2

2σ 2

)]}
, (25)

where Ns(i) is the number of samples for halo i (which does not
necessarily need to be the same for all haloes).

2.5.3 Choice of mass prior

Having derived the basic formalism for the likelihood of a given
lognormal distribution of the bias, we turn our attention to the choice
of the mass prior, P(MWL). At high statistical noise, some of the
simulated haloes will up-scatter enough that the overlap between

7Negative masses are permissible in principle, namely as noisy measurements
of mass when the relative mass uncertainty is comparable to one.
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P (ĝ|MWL) and P(MWL|(μ, σ )) becomes very small. Because the
extreme tails of a distribution are never sampled by a Markov
chain with a finite number of steps, this can lead to the likelihood
contribution from these targets being severely underestimated, with
the end result of overestimating σ and underestimating μ. An
uninformed prior on mass is therefore not ideal, and would require
millions of samples per halo even at SNR levels of 2−3 (while many
haloes in our analysis in fact have SNRs less than 2).

While a prior proportional to inverse mass (corresponding to an
uninformed prior on the logarithm of mass) may somewhat relieve
this problem, we have found that this is not optimal. Instead we
use the information on true masses and define the prior in terms of
the bias bWL. Because we multiply the resulting distribution with a
lognormal, we have found that a prior that is itself lognormal works
quite well. While μ and σ are not known a priori, we can still identify
a relevant range for these parameters and choose the lognormal prior
accordingly. In Section 3.1 we describe a method to test for the
robustness of the mass prior. We set

P (ln bWL) ∼ N
(

lnμprior, σ
2
prior

)
, (26)

which for a halo with index i can be converted to a prior on weak
lensing mass Mi using equation (15) and the knowledge of the true
mass MTi. We have found that the choice (ln μprior, σ prior) = (0.0, 0.5)
works well for typical bias distributions reported in the literature (e.g.
Becker & Kravtsov 2011; Lee et al. 2018). With 10 000 samples per
halo, we can accurately reproduce input distributions in the range
−0.2 < ln μ < 0.2 and 0.1 < σ < 0.4 as discussed in Section 3.1.

2.6 Miscentring distributions

We explain here how we derive empirical noise-dependent miscen-
tring distributions from the peaks of recovered convergence SNR
images. This analysis is restricted to the z = 1 snapshot of the MXXL
simulation,8 using a lensing efficiency of 0.3. We use an idealized
square field of view with a side of 6.4 arcmin, approximately
mimicking a 2 × 2 mosaic with HST-ACS, and a shape noise σ e =
0.25 for each lensed galaxy.

We construct shear catalogues with different noise levels by
varying the galaxy number density. For the main analysis, we use
a value of 20 arcmin−2 for all fields, which approximately matches
the setup for two-filter HST/ACS mosaics and clusters in the redshift
interval 0.7 < z < 1 in Schrabback et al. (2021).

For the convergence reconstruction, we use a grid-based Wiener
filter approach as described by McInnes et al. (2009) and Simon,
Taylor & Hartlap (2009). We use the implementation from the latter
reference, employing the measured ellipticity two-point correlation
function (e.g. Bartelmann & Schneider 2001) for the computation of
the Wiener filter for each halo.

While the convergence can only be determined up to a constant
due to the mass-sheet degeneracy (see Section 2.3), this has no
bearing upon the miscentring distribution as it does not change the
position of peak in the SNR image. Because it does play a role in the
determination of the SNR at the peak, however, we set the average
convergence in each target field to zero.

We randomize the data in three different ways in order to derive
SNR images:

8We do not consider the redshift dependence of the miscentring distribution
in this work.

(i) Randomization by phase. This approach rotates the phase of
each ellipticity by adding a random angle between 0 and π .

(ii) Randomization by position. Because we do not take magni-
fication into account and have a constant galaxy density across the
field, we can also bootstrap by randomly changing the position of
each galaxy in the shear catalogue.

(iii) Randomization by galaxy selection. This approach differs
from the previous two in that it preserves the halo signal. It works
by randomly sampling each shear catalogue with replacement (boot-
strapping), as often employed in lensing analyses (e.g. Schrabback
et al. 2018a).

Note that (i) and (ii) yield noise images, through which the actual
reconstructions are divided. For each of the three randomization
schemes, we make 400 randomized images of each field. In addition,
we make 400 independent noise realizations of each field, to serve as a
reference. In total, we thus make 1600 convergence reconstructions
for each target. In order to reduce the computing time, we only
process every fourth halo (in the order of descending M200).

SNR images were made, for each randomization method, by
computing the standard deviation in each 4 arcsec × 4 arcsec image
pixel across all 400 realizations (also for method (iii)). We find that
the randomization method plays a very small role in determining
the SNR, as reported in Section 3.4.1. From here on, we work with
positionally randomized ellipticities.

We searched for the peak SNR inside a 2 arcmin radius from the
known simulation centre. This approach is not quite realistic, as there
is no such known starting point in real observations. We discuss this
problem in Section 4.3. Miscentring distributions, with respect to
true halo centres, were derived from the recovered convergence SNR
peaks, binning by SNR at the peak position.

At this point, we also investigated whether the SNR images
produced by bootstrapping can be used to get a reliable estimate
of the uncertainty in the convergence peak position. In each field, we
measured the mean and median offset from the nominal position for
each of the 400 bootstrapped realizations, and compared these values
to those obtained from the reference (independent noise realizations)
over the full sample as a function of SNR.

3 R ESULTS

We begin this section by showing that the chosen mass prior is
robust. Using that information, we show that with our simulation
setup, the resulting bias distribution is noise independent, allowing
us to directly estimate the bias distribution and test the validity of the
assumption of this distribution being lognormal. We then move on to
investigating the dependence on radial range, on the concentration–
mass relation and on miscentring. We show that when including
miscentring in the bias estimation, the resulting distribution is far
from lognormal.

3.1 Robustness of the mass prior

The mass prior is based on the true mass of each halo in the
simulation, as described in Section 2.5. To test the robustness of
this mass prior and to contrast it with an inverse mass prior, we carry
out a set of simplistic Monte Carlo simulations.

We draw artificial samples from a hypothetical sample of 50 000
haloes at fixed mass M0. To mimic a mass bias, each individual mass
is first offset from the nominal mass using a lognormal distribution
(Section 2.5) with (ln μ0, σ 0) = (0.0, 0.5). Additionally, we impose
a measurement error on the biased mass using a normal distribution
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with mean zero and variance σ 2
f = f M0, where f is varied in the

range 0.01 to 2. For each halo, we draw 1000 samples centred on
the ‘measured’ mass (the ‘best fit’) from a Normal distribution with
variance σ f. With these data, we repeatedly use equation (25) with
different mass priors and different values of f.

To quantify the robustness of the priors in terms of how well we
can reproduce σ 0 and μ0 using the likelihood function given by
equation (25), we compute the relative quantities

θμ = μ − μ0

μ0
(27)

and

θσ = σ − σ0

σ0
. (28)

We test three different priors: a top-hat prior, an inverse mass prior
(corresponding to an uninformed prior in the logarithm of the mass),
and the lognormal prior, based on the known masses as described in
Section 2.5.3. We judge the merit of each prior based on a 5 per cent
systematic deviation in the mean μ of the bias distribution bWL.

With increasing fractional uncertainty f, we find that μ increases
and eventually diverges, as σ decreases and similarly diverges. The
top-hat mass prior performs poorly, with a systematic error in μ of
−5 per cent at f = 0.4, and diverging at higher values of f. Corre-
spondingly, the scatter σ is overestimated by a relative +8 per cent
at f = 0.4. The inverse mass prior slightly improves the situation,
with a corresponding systematic of (−5 per cent, +8 per cent) in (μ,
σ ) occurring approximately at f = 0.8. The most robust results are
achieved using the lognormal mass prior, where the systematic errors
in μ and σ remain below 1 per cent and 2 per cent, respectively, at
f = 1 (corresponding to a SNR of 1).9 We use this mass prior in the
following.

3.2 Noise level independence

We move on to show that the mass bias distribution is independent
of the absolute noise level of the simulated measurements, under
the assumption of an underlying lognormal distribution. To this end,
we divide the MXXL sample at z = 1 into mass bins. Because the
samples are not uniformly distributed in mass, we define the mass
bins so as to include approximately similar numbers of haloes (such
that uncertainties will be of similar magnitude). The mass bins are
listed in Table 2.

We estimate the bias distribution for each mass bin at different
noise levels, as described in Section 2.4. In the particular case of a
noiseless realization, we cannot use equation (14). Instead, we use
weights to ensure that the radial bins of reduced shear are weighted
the same way as in the presence of noise. We quantify the noise level
relative to a reference level, defined as having a surface density Ngal =
10 arcmin−2 with a shape noise σ e = 0.25 at a lensing efficiency β =
0.3.

At zero noise, we can test for log-normality in the bias distribution
of each mass bin by directly applying equation (15) with no need for
fitting for the distribution parameters.

As the distributions do not appear exactly lognormal (Fig. 1),
we re-sample the haloes in each mass bin to mimic lognormal
distributions. In particular, we construct an empirical, parameter-
free model of each distribution and sample from it so as to obtain

9This holds under the assumption that the underling distribution is indeed
lognormal. Distributions with wide tails would require another approach,
such as importance sampling.

Table 2. Mass bins used in the analysis. Numbers in parentheses indicate
the number of haloes in each bin. The bins in M200 and M500 are defined
independently, and bins with the same bin number do not necessarily
correspond to recomputing the mass limits from one over-density to the
other.

Bin no. log10(M200[M�]) log10(M500[M�])

MXXL at z = 1.0

0 14.68 − 14.71 (1323) 14.28 − 14.37 (531)
1 14.71 − 14.73 (840) 14.37 − 14.60 (512)
2 14.73 − 14.76 (1119) 14.60 − 14.64 (975)
3 14.76 − 14.80 (933) 14.64 − 14.69 (864)
4 14.80 − 14.85 (819) 14.69 − 14.85 (1110)
5 14.85 − 15.00 (1062) 14.85 − 15.20 (243)
6 15.00 − 15.28 (204) −

MXXL at z = 0.25

0 14.31 − 14.55 (600) 14.28 − 14.43 (589)
1 14.55 − 14.78 (600) 14.43 − 14.44 (590)
2 14.78 − 14.95 (600) 14.44 − 14.55 (225)
3 14.95 − 15.02 (1428) 14.55 − 14.82 (210)
4 15.02 − 15.05 (1602) 14.82 − 14.87 (612)
5 15.05 − 15.09 (1734) 14.87 − 14.92 (1076)
6 15.09 − 15.14 (1521) 14.92 − 14.96 (1293)
7 15.14 − 15.20 (1119) 14.96 − 15.03 (1416)
8 15.20 − 15.30 (981) 15.03 − 15.13 (930)
9 15.30 − 15.40 (411) 15.13 − 15.20 (348)
10 15.40 − 15.74 (204) 15.20 − 15.56 (276)

BK11 at z = 0.25

0 14.70 − 14.80 (233) 14.45 − 14.55 (322)
1 14.80 − 14.92 (141) 14.55 − 14.75 (308)
2 14.92 − 15.34 (97) 14.75 − 15.10 (101)

the largest possible sample of haloes consistent with a lognormal
distribution. The latter is defined by the sample mean and sample
variance of the measured distribution at zero noise.

At each noise level and for each mass bin, we construct the
relative quantities θμ and θσ , defined in Section 3.1, where the
reference values μ0 and σ 0 now come from the lognormal distribution
constructed from the noiseless case as described above. At a given
noise level, we combine all θ by considering their uncertainties as
two-sided Gaussians. The results are shown in Fig. 2. Our results are
consistent with no additional bias in the distribution parameters μ and
σ , provided that the underlying distribution is lognormal. Using the
original underlying distributions, which are not perfectly lognormal,
results in an over-estimation of σ of up to ∼20 per cent of its value at
zero shape noise for both M200 and M500. Given typical levels of σ ,
the result is not significant. The mean bias μ is consistent to within
1 per cent, independently for all our bins and for both values of �,
when the original distributions are used.

Our results suggest that the bias determination is independent
of the absolute noise level, provided that the bias distribution is
lognormal (as discussed above, the bias distribution is very close to
being lognormal in the case of no miscentring). This has the fortunate
side effect that we can model the distribution directly using noiseless
simulations. We will make use of this in the next subsection. In order
to rule out that this result is a statistical fluke, we have verified it for
all the results presented in the following.

3.3 Mass bias dependencies

While the WL bias distribution is independent of the absolute noise
level, it is dependent on a number of factors, such as mass and
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Weak lensing mass modeling bias 1135

Figure 1. Actual versus re-sampled bias distributions at zero noise in bins
of M200 (top) and M500 (bottom) for the z = 1 MXXL snapshot. Solid lines
indicate the actual distributions; dotted lines represent the corresponding
lognormal distributions with the same mean and variance.

redshift, the radial range in which the NFW profile is fit, and the
choice of concentration–mass relation. We investigate some of these
dependencies here in order to show some general trends, and to give
a general idea of how the data analysis can be optimized so as to
minimize the bias amplitude (deviation from 1) and scatter in the
WL bias.

To this end, we start by defining a fiducial setup, from which
we then deviate in a number of ways to investigate the general de-
pendencies. Our fiducial setup uses the concentration–mass relation
of Diemer & Kravtsov (2015), with the corrected parameter set of
Diemer & Joyce (2019). The radial range of the fit is from rmin =
0.5 Mpc to rmax = 3.5 Mpc (physical), with 15 radial bins. Based on
the results of Section 3.2, we use noiseless simulations. We set the
lensing efficiency β to a constant value of 0.3 at z = 1 and 0.7 at z =
0.25.

3.3.1 Mass and redshift

Becker & Kravtsov (2011) modeled the mass bias from a set of
simulated weak lensing observations as a power law, with the
independent variable being the true mass and the dependent variable
the measured mass, and included a lognormal scatter term. We follow
a similar approach here. However, while this method naturally allows
for a first-order estimate of a mass dependence in the bias (through a
slope different from unity), we seek to have a more flexible constraint

on the mass dependence, and model it in discrete bins instead. In that
sense, our method is similar to that of Lee et al. (2018), although we
do not allow the concentration parameter to vary freely.

Fig. 3 shows the mass dependence of the bias parameters μ and
σ in three different simulation snapshots. First, we compare MXXL
snapshot 54 to BK11 snapshot 141 (both at z = 0.25). The MXXL
snapshot was divided into 11 bins in M200 and M500, while the smaller
BK11 snapshot was divided into three mass bins for both over-
densities. The direct comparison is limited by the number of targets
in the BK11 simulation, resulting in a fractional uncertainty in μ of
2.4 per cent for the bin with the highest M200. Within this uncertainty,
the results are in reasonable agreement. For M500, the scatter σ is
somewhat lower in the MXXL simulation.

We also show a comparison of the two redshift slices of the MXXL
simulations in Fig. 3. Investigating the z = 0.25 snapshot for our
fiducial analysis, we find that mass estimates are biased low more
strongly at higher masses compared to lower masses, while the scatter
of the bias distribution increases with mass. At redshift 1, this trend
vanishes. However, as we shall see in Section 3.3.3, this is more
a consequence of the chosen concentration–mass relation than a
statement about WL bias in general.

3.3.2 Radial range

Because of discrepancies between simulated haloes and the NFW
profile close to the halo centre, we expect that the minimum radius
limiting the mass fit from reduced shear will have a considerable
impact on the mass bias. We vary the inner radius rmin in the range
0.2–0.8 Mpc while keeping the outer radius rmax constant at the
fiducial value. The results are shown in Fig. 4. As expected, the mean
bias increases with decreasing rmin, with a simultaneous increase in
the scatter. The trend is present in the full range of masses, though the
picture is not completely clear for M500 except at the highest masses.

3.3.3 Concentration–mass relation

Because we use a concentration–mass relation to avoid the degen-
eracy in the NFW model, the bias distribution will also depend on
the choice of such a relation. In Fig. 5 we compare the results from
some of the concentration–mass relations mentioned in Section 2.3,
specifically those of Duffy et al. (2008), Prada et al. (2012), Diemer &
Kravtsov (2015), and Ludlow et al. (2016). In addition, we also
consider two cases with constant c200.

While this comparison is by no means exhaustive, it underlines the
importance of considering this aspect, as the mean bias for M200, for
example, varies between 0.9 and 1.1 at high mass depending on the
relation used. Notably, the differences between the various relations
considered here are largest at high mass when M200 is considered,
while the discrepancies are larger at the low masses when considering
M500. We speculate that this may be an artefact of using a constant
outer radius regardless of the mass range considered, which will have
very different effects depending on which overdensity is considered.

3.4 Convergence SNR miscentring distributions

In this subsection we describe the miscentring distributions resulting
from using the peak of the reconstructed convergence SNR image
as the estimator for the halo centre. Naturally, such distributions are
critically dependent on the noise level. We quantify this dependence
in terms of the peak SNR.
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Figure 2. Relative bias in the two parameters of the estimated bias distribution, using the MXXL snapshot at z = 1. Results were combined for all mass bins at
each relative noise level. A noise level of 1 means a background galaxy surface density of 10 arcmin−2 and a shape noise of 0.25. Green triangles were generated
with an underlying lognormal distribution (see text). Red squares were generated with the original underlying bias distribution of the simulation. Left: M200.
Right: M500.

Figure 3. Log-normal bias distributions from the BK11 and MXXL simulations at z = 0.25, and for the MXXL simulation at z = 1.0. Simulated haloes were
binned by the true mass. For these results, the default setup was used, with the concentration–mass relation of Diemer & Kravtsov (2015) (corrected parameter
set of Diemer & Joyce (2019)), the radial range 0.5−3.5 Mpc (physical), and no miscentring. Left: M200. Right: M500. The y-axes are not identical for M200 and
M500.

3.4.1 Convergence SNR estimation

Comparing the three randomization methods described in Section 2.6
(random phase, random position, bootstrapping) to the reference
(independent noise realizations), we find that all methods yield
SNR values very close to the reference. On average, the bootstrap-
ping method overestimates the SNR by around 5 ± 0.3 per cent,
randomization of ellipticity phases underestimates the SNR by
0.7 ± 0.3 per cent, and the randomization of positions is consistent
with the reference (+0.3 ± 0.2 per cent). For the following results,
we rely on the phase randomization technique, as it can be used also
in case of a variable galaxy density in the field.

3.4.2 Convergence peak miscentring distributions

Binning the fields by peak SNR and measuring the offsets of each
peak from the nominal position (the centre of the halo as defined

by the most bound particle in the simulation) yields empirical
miscentring distributions for convergence-derived centroids. We
limit the offset to a maximum of 2 arcmin at z = 1. The resulting
miscentring distributions are shown in Fig. 6. We compare the results
to a miscentring distribution derived from simulated SZ centres,
described in Section 3.5 and in detail by Schrabback et al. (2021).
For this comparison, the latter distribution has been averaged over
empirical parameters such as SNR and the observed SZ core size.

For comparison, we also show the offset distribution of a virtually
noiseless simulation (using each pixel in the simulation of reduced
shear as a source galaxy, and with no added shape noise). The latter
distribution, peaking at around 5 arcsec, arises due to projection
effects (the simulated haloes are not spherically symmetric). Even at
low SNR (2–3 at the convergence peak) the miscentring distribution
peaks at a lower offset than the corresponding SZ derived distribution;
however, it also shows a wide tail with a significant fraction extending
well beyond the maximum SZ derived offsets. For SNR greater than
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Weak lensing mass modeling bias 1137

Figure 4. Bias distributions as a function of mass at z = 1 (MXXL simulation) for different radial fit ranges. The legend in each panel indicates the inner radius,
while the outer radius was kept constant at the default value of 3.5 Mpc. Left: M200. Right: M500. Markers have been slightly offset from the centres of the mass
bins for ease of viewing. The y-axes are not identical for M200 and M500.

Figure 5. Bias distributions as a function of mass at z = 1 (MXXL simulation) for different concentration–mass relations, and for two cases of constant
concentration c = c200 in the NFW model. The radial fit range of the reduced shear is 0.5−3.5 Mpc. Left: M200. Right: M500. As in the fiducial setup, we have
used the updated parameters from Diemer & Joyce (2019) for the Diemer & Kravtsov (2015) model. Markers have been slightly offset from the centres of the
mass bins for ease of viewing. The y-axes are not identical for M200 and M500.

4, the convergence peak is clearly preferred in terms of positional
accuracy.

3.4.3 Positional uncertainty in convergence images

The position of the peak in the convergence SNR image has an
associated uncertainty with respect to the position of the bottom
of the gravitational potential. Bootstrapping by selecting random
entries from the background galaxy catalogue yields an estimate
of this uncertainty. Here, we test the robustness of this estimate by
comparing it to the spread in position from the reference simulations,
where each SNR image comes from an independent noise realization.
For simplicity, we characterize the positional distribution by the
average offset from the nominal position across all noise realizations
of a target field.

For each target field, we then compute the ratio of averages (from
bootstrapping versus from independent noise realizations). In Fig. 7,
we show this ratio as a function of peak SNR. While there is a large

spread in the ratio, we see a clear tendency of overestimating the
centroid uncertainty at low SNR. In fields with a SNR greater than 6
at the peak of the convergence, we find that this bias vanishes.

3.5 Including miscentring in the bias estimation

Thus far, we have considered only perfectly centred haloes for the
determination of the WL mass bias distributions, in the sense that we
have used the position of the most bound particle in the simulation
for the construction of each reduced shear profile. We now turn our
attention to how the bias distribution changes when miscentring is
directly included in the analysis. As in the previous subsections, we fit
azimuthally symmetric NFW profiles to the reduced shear images;
however, we centre the profiles on a coordinate randomly chosen
from one of several miscentring distributions. We do not consider
the approach of leaving the centre coordinate free to vary in the fit.

It is conceivable that a large miscentring correlates with large
deviations from an azimuthally symmetric NFW profile, in particular
in the case of merging haloes, and this may have a non-negligible
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1138 M. W. Sommer et al.

Figure 6. Miscentring distributions derived from using the convergence SNR
peak in 500 simulations at z = 1, binned by peak SNR (green). In the bottom
panel, we show the miscentring distribution in the ideal case of noiseless
simulations (blue), where the distribution arises purely by projection effects.
In all panels, the averaged SPT-SZ miscentring distribution described in
Section 3.5 is indicated (black).

Figure 7. For individual simulated clusters (green squares), we show the
ratio of derived (from bootstrapping) to expected (from the reference sample)
average positional offsets of the convergence peak from the mean position
of the latter across all bootstraps/realizations, as a function of SNR. The
black points with error bars indicate averages in SNR bins. Vertical error
bars indicate standard deviations in bins, while horizontal error bars show the
binning by SNR.

effect on the mass bias of individual haloes. We do not consider
such effects in this work, as in particular we have no information
about SZE or X-ray peaks or centroids from the n-body simulations
employed.

In addition to the miscentring distribution from convergence
centres (previous subsection), we use two specific miscentring
distributions derived for typical SZE observations and for typical X-
ray centre determinations of SZE-selected haloes. Both distributions
pertain to the same mass selection of simulated haloes, similar to the
mass range considered in this work. The distributions were derived
based on the Magneticum Pathfinder Simulation (Dolag, Komatsu &
Sunyaev 2016), and are described in detail by Schrabback et al.
(2021). We summarize the most important points here. To replicate

Figure 8. Integrated miscentring distributions used and derived in this work.
The plot shows the probability of the miscentring offset being greater than
a radial coordinate (evaluated here at redshift z = 1.0). The transformation
between physical and angular coordinates is valid for z = 1. For comparison,
we also show the two physical radii at which we cut off the inner part of
the shear profile in this work. Distributions from convergence peaks (derived
in Section 3.4.2) are shown as solid lines for different ranges of SNRs. The
sharp cutoffs at low signal-to-noise are artificial; the search for a peak was
limited to a radius of 2 arcmin.

the observing conditions of the SPT-SZ survey, thermal SZE light-
cones were built, from which mock SPT observations were extracted.
In each mock, contributions from primary CMB anisotropies, the SPT
beam and transfer function (Schaffer et al. 2011), and instrumental
noise were accounted for. Cluster candidates were identified with the
approach adopted for SPT clusters (e.g. Staniszewski et al. 2009).
Different cluster core sizes θ c were adopted, in line with the SPT
data analysis. While there is a dependence on this parameter for the
miscentring distribution, this dependence is much weaker than the
difference between the SZE and convergence miscentring distribu-
tions, and is neglected in this work. The resulting sample of SPT-like
selected clusters was used to characterize both the SZE and X-ray
miscentring distributions. Cut-outs of X-ray surface brightness maps
were produced at the point of the deepest potential of each halo. The
X-ray miscentring distribution was then derived as the distribution of
the projected offsets between the peak of the X-ray surface brightness
maps and the position of the deepest potential in the halo.

We also investigate the effects of using the peak of the convergence
SNR (SNR). The associated miscentring distributions are derived as
a function of SNR in Section 3.4.2. Our simulated weak lensing data
have the same noise properties for all clusters in terms of source
density, shape noise, average lensing efficiency, and field size. In
order to compute the SNR images we can therefore re-use noise
images, reducing processing time. To this end, we derive a mean
noise image from 100 randomly chosen halo fields, and apply this
average to all fields to construct SNR images. We centre each shear
profile on the convergence SNR peak inside a search radius of 2
arcmin, while for the SZE and X-ray miscentring modes we generate
random instances of the corresponding distributions.

The characteristics of the miscentring distributions are shown
in Fig. 8. While the X-ray distribution is tighter than the SZE
distribution overall, it has a much wider tail. The miscentring
distributions from convergence centring are inferior to both X-ray
and SZE miscentring at low SNR.
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Weak lensing mass modeling bias 1139

Figure 9. Weak lensing mass bias distributions (histograms) from noiseless simulations in the presence of miscentring, from the MXXL simulation at z =
1 and for M200. Top: SZE miscentring. Bottom: X-ray miscentring. Each panel represents a different radial range for the mass fit from reduced shear. Line
histograms represent perfectly centred haloes, with dashed curves representing corresponding lognormal distributions with the same mean and sample variance.
Filled histograms indicate bias distributions including miscentring. For ease of viewing, all histograms were cut at ln (μ) = −2, and all lower values of μ are
indicated by a light outlined bar (positive μ) and a dark filled bar (negative μ, corresponding to fitted negative masses). The y-axis scale is arbitrary.

It is natural to expect that masses will be additionally biased
low when halo centres are randomly offset using a miscentring
distribution, while the scatter of the mass bias distribution is expected
to increase due to the additional scatter introduced by the miscentring.
In the case of using the convergence peak for the centring, however,
due to the correlation of convergence and reduced shear, the situation
is not as clear, and at least from the inner part of the shear profile one
would expect masses to be overestimated as shear and convergence
are not independent.

As we have seen, the inner and outer limiting radii of the shear
profile fit play a prominent role in the mass bias. With miscentring,
naturally, we expect this effect to be amplified.

We investigate the effects of the various modes of miscentring by
generating shear and convergence from the MXXL simulations at
z = 1, using different noise levels and different radial ranges for the
mass fits.

In Figs 9 and 10 we show how the WL mass bias distribution from
noiseless mass fits are affected by miscentring in different radial fit
ranges. Here we show the distributions for all masses, excluding the
first and last mass bin. Clearly none of the distributions are truly
lognormal. The non-miscentred distributions are in all cases close
enough to lognormal that the discrepancy in the mean and the median
of ln b is at the sub-per cent level. The bias distributions from miscen-
tred haloes generally show deviations on the order of several per cent.
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1140 M. W. Sommer et al.

Figure 10. As Fig. 9, but for M500.

In the mass fitting we have included ‘negative’ masses10 by allowing
a negative sign in the normalization of the density profile (keeping
c� positive). These occur in a small percentage of the miscentred
haloes, and must necessarily be excluded when comparing means
and medians in log-space. Equivalently, one may restrict the analysis
to non-negative masses, yielding a bi-modal distribution with a sharp
peak at vanishing mass.

We next investigate the noise dependence of the mass bias
parameters in the presence of the various types of miscentring.
While we established that the mass bias distribution is essentially
independent of noise for perfectly centred haloes (Section 3.2), the

10While negative masses are unphysical, large-scale underdensities along
the line of sight to the cluster can lead to measured shear profiles that are
negative in some or even all bins of the shear profile. This is especially true
when miscentring is present.

same is not necessarily the case when we fit a lognormal distribution
to an underlying distribution that is in fact not lognormal.

At redshift 1, we compute the mass bias for two radial ranges of
reduced shear, namely 0.5−2.3 Mpc and 0.5−1.1 Mpc. In Figs 11
and 12, we show the bias parameters μ and σ , relative to their
noiseless counterparts, as a function of the relative noise level. As
expected, with no miscentring (top rows in each panel) the results
are consistent with no mass dependence, since the distributions are
close to lognormal. The X-ray and SZE miscentring distributions
introduce up to ∼6 per cent and ∼20 per cent discrepancy in the
mean bias and bias scatter, respectively. Especially pronounced is a
systematic decrease in the scatter (around 10 per cent at intermediate
mass) in the X-ray miscentring case.

As we might expect, the mean bias increases sharply with increas-
ing noise in the convergence SNR peak miscentring scenario, as
the miscentring distribution is dependent on the noise level (which
is not the case for the SZE and X-ray miscentring distributions).
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Weak lensing mass modeling bias 1141

Figure 11. Weak lensing mass bias mean (top) and scatter (bottom), relative to the corresponding values derived from noiseless realizations, as a function
of the relative noise level, from the z = 1 slice of the MXXL simulation and for M200. The reduced shear was fitted in two different radial ranges: 0.5−2.3
Mpc (black dotted lines) and 0.5−1.1 Mpc (red dashed lines). The noise level is normalized to one at shape noise 0.25 and a background galaxy density of 10
arcmin−2. Columns represent mass bins, with the mid-point of each bin indicated on top (Log10(M200[M�])). In each sub-figure, the top row represents perfectly
centred haloes, the second and third rows were realized using SZE and X-ray miscentring distributions, respectively, and the bottom row was realized using the
convergence SNR peak in each halo realization for centring.
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Figure 12. As Fig. 11, but for M500.

Simultaneously, the scatter decreases sharply. These effects decrease
with increasing mass. This is expected, since the SNR of the kappa
images also increases with mass, yielding a centre proxy closer
to the true centre (the bottom of the gravitational potential). With
increasing noise, the convergence peak will shift in a direction which

increases the measured (noise-boosted) tangential reduced shear.
Thus we naturally expect a measurement that is biased high. We
see no indication of significant systematic differences between M200

and M500 with respect to the parameters of the bias distribution for
the different miscentring scenarios.
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4 D ISCUSSION

4.1 Bias level and scatter

Previous studies have generally found that WL masses are biased
low by ∼ 5 − 10 per cent on average, with the bias decreasing with
increasing mass (Becker & Kravtsov 2011; Oguri & Hamana 2011;
Bahé et al. 2012; Henson et al. 2017; Lee et al. 2018). We find
some results consistent with this tendency; however, in general
we find large differences depending on the radial range and the
concentration–mass relation used. For our fiducial radial range of
0.5−3.5 Mpc, we found results consistent with less negative bias at
high mass for some of the concentration–mass relations in regards to
both M500 and M200. The choice of concentration (whether constant
or bound to the mass) will lead to different slopes in the mass
dependence contingent upon the choice of overdensity, which is
also obvious from our results (see Fig. 5). The level of scatter is less
sensitive to the choice of concentration–mass relation and the radial
range, changing by at most 2–3 per cent (with respect to a mean bias
of 1) over the range of masses considered.

A detailed comparison with previous publications in terms of
the bias level and scatter is in most cases neither possible nor
appropriate, considering the many differences in the experimental
setup. In particular, the bias distribution is critically dependent upon
the radial range considered, and upon the choice of concentration
in the NFW density profile. While we have exclusively considered
NFW mass profiles in this work, it would be expected that a different
mass model would similarly result in bias distributions different
from those presented here. Conversely, given a set of observations
it is straightforward to model the mass bias distribution by applying
the same model to both data and simulations.

Oguri & Hamana (2011) and Lee et al. (2018) did not use
concentration–mass relations, making it difficult to investigate a
noise dependence in the bias distribution to high accuracy, especially
at low mass, requiring very large numbers of haloes in the simulation.
While Lee et al. did find a noise dependence under the assumption
of a lognormal bias distribution, we speculate that the origin of this
behaviour may actually be due to deviations from the lognormal
distribution. Another possible explanation would be that at high
noise levels, the tails of the probability distributions for masses of
individual haloes are not sufficiently sampled. Such effects could be
amplified when fitting for mass and concentration, as these can be
highly degenerate. However, it cannot be ruled out that non-linear
aspects of the fitting introduce a real noise dependence in the bias.
The existence of such a dependence would make the modeling of the
bias on observations rather complicated.

We perform a direct comparison with the results of (Grandis et al.
2021, henceforth G21), using a near-identical setup. Using a constant
concentration of c200 = 3.5, a fit range of 0.5−2.58 Mpc/h at redshift
z = 0.24 (from hydro-dynamical simulations) and a minimum mass
of M200 = 2.85 × 1014 M�/h, G21 found ln μ = −0.033 and σ =
0.19, with virtually no mass dependence. Reproducing the relevant
parameters in our analysis at a similar redshift using MXXL snapshot
54 (BK11 snapshot 141), combining all our mass bins above the
minimum mass, we find ln μ = −0.028 ± 0.005 (−0.016 ± 0.012
from BK11), in agreement with G21, and a slightly higher scatter
σ = 0.22 ± 0.005 (0.24 ± 0.01 from BK11). Using mass bins,
we see no significant change of μ with mass, although σ shows a
slight increasing trend with increasing mass. At the lowest masses
our results from MXXL are consistent with the results of G21. We
speculate that the small differences seen in the scatter arise due to
differences between the n-body simulations used here and the hydro-
dynamical simulations used by G21.

4.2 Noise independence of the mass bias

One main result of our paper is that under the assumption of a
lognormal bias distribution and under the use of a concentration–
mass relation, the weak lensing mass bias distribution can be modeled
to within a few per cent independently of the absolute noise level
in the reduced shear. In the following, we identify three principal
consequences of this finding.

First, the noise can be set to a level low enough that (i) the
resulting mass distributions can be well approximated with Nor-
mal distributions and (ii) individual mass uncertainties (translated
into individual bias uncertainties using the true masses) are much
narrower than the distribution of all biases. We can thus forgo the
somewhat complicated recipe, outlined in Section 2.5, of fitting
for the bias distribution, and instead look at the latter directly
to understand its properties (such as whether it is, in fact, well
approximated by a lognormal). For lognormal distributions, we can
then directly find the parameters μ and σ . Recalling that μ is defined
as the expectancy value of the distribution of bWL = MWL/MT, we
take μ = exp(ln bWL), while we take σ as the standard deviation
of ln bWL. Although expected, we have verified explicitly that this
yields the same values of μ and σ as the explicit fitting method as
the relative noise level approaches zero. Alternative distributions,
involving more parameters, can in principle be modeled as linear
combinations of lognormal distributions (unless negative masses
must be taken into account, as can be the case when including broad
miscentring distributions, as seen in Section 3.5), and can therefore
by our argument be modeled without adding noise to the reduced
shears.

Secondly, choosing a low enough absolute noise level (or in
practice setting the noise to zero and using weights to mimic relative
differences of uncertainty between radial bins of reduced shear), the
uncertainties in μ and σ depend only on the number of haloes in a
mass and/or redshift bin. This fact allows us to estimate the number
of haloes needed to reach a certain level of statistical uncertainty,
which propagates as a systematic uncertainty in the subsequent
determination of a mass calibration from observations. In particular,
we consider an ensemble of n haloes in a mass bin at a chosen
redshift, from which we estimate μ and σ as μ̂ and σ̂ . Let δln μ and
δσ denote the uncertainties in the estimators. These are given by

δlnμ = σ√
n

≈ σ̂√
n

(29)

and

δσ ≈ σ

√
1

2(n − 1)
≈ σ̂√

2n
, (30)

where the approximations are valid for reasonable estimates of σ and
sufficiently large n (e.g. Evans, Hastings & Peacock 1993). With a
typical estimate of σ around 0.25 and with n = 100, δln μ ≈ 0.025, and
because exp (x) ≈ 1 + x for small |x|, this translates into a relative
uncertainty in μ of around 2.5 per cent. Reaching an accuracy of
1 per cent is thus possible only with hundreds of simulated haloes.
This poses a challenge, especially in the context of high mass and
hydrodynamical simulations with high resolution.

Thirdly, because the bias of each halo can be estimated indepen-
dently, it is not strictly necessary to bin the simulation data by redshift
and/or mass; instead we can fit some function (e.g. a power law, if
applicable) to the full set of data and estimate a functional form for
the mass and redshift dependence of the bias distribution.
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4.3 Convergence centres

As noted in Section 3.5, using the convergence SNR peak for
centreing results in a large positive bias at high noise. This is indeed
expected, since we are centring the reduced shear profile on a positive
noise peak of the reconstructed convergence, which itself is computed
from the noisy reduced shear and thus not independent of it. The
effect is less pronounced at high mass, as the SNR improves with
a higher signal at constant noise. As the mean bias increases with
increasing noise, the bias scatter decreases. This is explained by the
fact that the scatter is defined in the space of ln bWL, where bWL is
the bias distribution.

BK11 found that halo centring errors can introduce negative mass
bias at around 5 per cent when using halo centres from convergence
peaks, but did not consider noisy reconstructions of the convergence.
Indeed, we find a small negative mean bias when using convergence
SNR peaks computed from noiseless reduced shear fields, but with
increasing noise the bias quickly becomes positive and reaches levels
of up to 50 per cent for weak lensing observations comparable to our
setup unless extremely massive clusters are studied. Considering
the low but wide tails of the derived miscentring distributions for
convergence centres, we infer that this method is not viable at
convergence peaks below a peak SNR of 4. We have not investigated
whether the use of an integrated signal-to-noise measure might
improve the situation; such an endeavor is made difficult by the high
correlation between pixels in the reconstructed convergence image
after Wiener-filtering.

In deriving the convergence-based miscentring distributions, we
defined a search radius of 2 arcmin around the most bound particle
in the simulation. Analysing actual observations with a similar
approach, defining the search radius in terms of the peak in the SZE
Comptonization or the X-ray emissivity, could of course lead to the
identification of a local convergence peak farther from the unknown
bottom of the gravitational well. We performed a rudimentary test for
this effect by repeating the analysis of Section 3.4.2, simulating SZE
centres using the miscentring distribution described in Section 3.5.
For a peak SNR greater than 4, we found no measurable difference
in the resulting miscentring distributions.

In Section 3.4 we derived the SNR-dependent distributions using
a constant number density and a constant level of shape noise. Thus,
the differences in SNR largely come about because of differences
in mass, albeit with considerable scatter due to differences in
morphology. As a cross-check, we also tested setups with half
or double the noise level and repeated the analysis in terms of
miscentring distributions in bins of SNR. Again, we found no
discernible effects in the shape and peak positions of the resulting
distributions, suggesting that our approach is applicable for different
noise levels. The convergence peak centres show by far the strongest
dependence on the noise level. Hence, a very careful matching of
the noise and mass properties is needed between the real data and
simulations if this approach is to be used.

4.4 Consequences for weak lensing analyses

There is no straightforward recipe for easily estimating the mass bias
for a given weak lensing observation of a given galaxy cluster or
sample of galaxy clusters. As we have shown, the bias is indeed
critically dependent on the concentration–mass relation chosen,
as well as on mass, redshift, and the radial range in which the
mass is constrained from the reduced shear field. Within certain
limits, however, it is possible to choose the data analysis in such a
way as to minimize these dependencies so that the determination

of the bias can be done in fewer mass bins or modeled only
at the extremes of the redshifts under consideration. Among the
concentration–mass relations we have investigated in this paper, it is
clear that the model of Diemer & Kravtsov (2015) (with the corrected
parameters set of Diemer & Joyce 2019) produces a relatively weak
mass dependence. Perhaps surprisingly, the same is the case when
using a constant concentration of c = 4 over the considered mass
range. The inner fit radius, rmin, also plays an important role. For
M200, intermediate values around 0.5 Mpc produce only moderate
mass dependence (with respect to the mass bias mean), while both
higher and lower values introduce stronger dependencies up to
several per cent. With M500 the situation is not as clear, though our
results consistent with little or no mass dependence (in the range
investigated) at rmin = 0.5 Mpc within the uncertainties of these
measurements.

We have seen that the lognormal distribution is not necessarily
a good approximation to the mass bias distribution if significant
miscentring is present. In this case the mass bias distribution cannot
be modelled using noiseless simulations in a straightforward way.
While a non-parametric model of the bias distribution is possible in
principle, it cannot be ruled out that an additional dependence on the
noise level would need to be taken into account when additionally
accounting for miscentring. Alternatively, it is possible to include
miscentring in the shear profile model prediction (e.g. George et al.
2012). This is complicated by the fact that the actual amount of
miscentring is often poorly constrained for an individual cluster.
However, a useful approach to approximately accounting for the
net impact of miscentring on a cluster population has recently been
described by Grandis et al. (2021).

5 SU M M A RY A N D C O N C L U S I O N S

We summarize our methods and main results as follows:

(i) We use n-body simulations to study the weak lensing mass
bias using an azimuthally symmetric model for the reduced shear.
While in this work we make use of the NFW model, our methods
can be adapted to any radial mass model. Further, we assume a
concentration–mass relation for our analysis.

(ii) To model the effects of miscentring, we adopt various mod-
els for miscentring distributions, including X-ray and SZE offset
distributions based on hydrodynamical simulations. From the DMO
simulations, we also derive miscentring distributions between the
peak in the convergence reconstruction and the 3D halo centre, which
depend on the noise level in the reduced shear measurements.

(iii) Under the assumption of a lognormal distribution of the weak
lensing mass bias, we use a Bayesian framework for estimating the
two parameters of the bias distribution in the presence of shape noise.

(iv) An important result of this work is the empirical observation
that in the presence of an underlying bias distribution that is in
fact lognormal, this distribution can be accurately determined from
simulations without the need to add shape noise in the analysis. This
simplifies the problem of computing the distribution, and makes its
determination possible with fewer simulated haloes.

(v) We find that in the presence of miscentring, the bias dis-
tribution is not lognormal. In particular, the dislocation in the
estimated centre may lead to negative mass estimates even in the
absence of shape noise. The resulting bias distribution cannot be
captured by the lognormal model. We propose that, given a suitable
miscentring distribution, the bias problem be separated from the
miscentring problem. Finding accurate miscentring distributions for
various observing strategies will be an important task for upcoming
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Weak lensing mass modeling bias 1145

large surveys of galaxy clusters, which require highly accurate weak
lensing mass estimates.

(vi) The weak lensing mass bias is dependent on mass and redshift,
but also upon observational parameters such as the inner and outer
radii of the reduced shear profile. In addition, the bias will vary
with the choice of mass density model, including the choice of a
concentration–mass relation. For this reason, the most viable solution
may still be to model the bias of each halo in a sample individually.
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