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ABSTRACT
Astronomical intensity interferometry enables quantitative measurements of the source geometry by measuring the photon fluxes
in individual telescopes and correlating them, rather than correlating the electromagnetic waves’ amplitudes. This simplifies
the realization of large telescope baselines and high angular resolutions. Imaging Atmospheric Cherenkov Telescopes (IACTs),
intended to detect the optical emission of γ -ray-induced air showers, are excellent candidates to perform intensity correlations
in the optical at reasonable signal-to-noise ratios. The detected coherence time is on the scale of (10−12)–(10−15) s – depending
on the optical bandwidth of the measurement – which challenges the detection system to work in a stable and accurate way. We
developed an intensity interferometry set-up applicable to IACTs, which measures the photocurrents from photomultipliers and
correlates them offline, and as such is designed to handle the very large photon rates provided by the telescopes. We present
measurements in the lab simulating starlight using a xenon lamp and measured at different degrees of temporal and spatial
coherence. Necessary calibration procedures are described with the goal of understanding the measurements quantitatively.
Measured coherence times between 5 femtoseconds (corresponding signal-to-background ratio 5 × 10−7) and 110 femtoseconds
(signal-to-background ratio 10−5) are in good agreement with expectations, and so are the noise levels in the correlations,
reaching down to 6 × 10−8, after measurements between 30 min and 1 h.
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1 IN T RO D U C T I O N

In high resolution astrophysics, multiple telescopes are combined to
form an interferometric array in order to overcome the diffraction
limit of a single telescope (Monnier 2003). Conventionally, the
technique of amplitude interferometry is exploited to observe the
first-order correlation pattern of the astronomical light source.
Prominent examples in the optical/infrared regime are VLTI or
CHARA, which provide baselines between telescopes of up to 331 m
(ten Brummelaar et al. 2005). These observations are limited in the
baseline between the telescopes and therefore in optical resolution
due to atmospheric fluctuations and the difficulty of combining the
light paths of the different telescopes at the necessary subwavelength
precision.

A possible improvement in angular resolution for bright
stars/astronomical objects is the technique of intensity interferome-
try, where light intensities – the number of photons – in the different
telescopes are recorded and second-order correlations are observed
(Hanbury Brown 1956). Since the necessary precision of controlling
the different light path-lengths is related to the distance light travels
within the system’s time resolution, which for time resolutions
of some nanoseconds translates to approximately metres, above-
mentioned difficulties are strongly alleviated, allowing for kilometre
baseline interferometry in the optical band (Dravins 2016).
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Such intensity correlations were carried out first by Hanbury
Brown and Twiss with the Narrabri Stellar Intensity Interferometer
in the 1960s and early 1970s (Brown, Davis & Allen 1967; Hanbury
Brown, Davis & Allen 1974). The main challenge in intensity
interferometry is detecting the small correlation signal with a
reasonable significance ideally employing good time resolutions of
the photon signal detection and processing electronics as well as large
telescopes. Since none of these existed at the time, this technique was
not pursued further for decades (Bojer et al. 2021).

Due to tremendous improvements in technology (Dravins et al.
2013), new interest in this topic has evolved and research groups
have formed over the last years. In 2017, temporal correlation
signals of three stars have been successfully measured with the 1 m
diameter telescopes at the C2PU observatory at the Calern plateau
at nanosecond time resolution (Rivet et al. 2018). Furthermore, with
AQUEYE + and IQUEYE astronomical instruments attachable to
optical telescopes are developed for subnanosecond timing resolution
observations, which are also suited for stellar intensity interferometry
measurements (Zampieri et al. 2016).

Aiming for high-S/N measurements at short measurement times,
the use of Cherenkov telescopes for intensity interferometry is
promising (Nuñez et al. 2010). Even though they often cannot
compete in terms of timing resolution with smaller optical telescope
instruments, they have the advantage of providing huge light collec-
tion areas, enabling measurements at high photon count rates and
thus decreasing the necessary measurement time – provided that
systematic effects can be controlled.
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In 2019, intensity correlation measurements at the MAGIC
Cherenkov telescopes revealed significant photon bunching peaks
of different stars after only a few minutes of effective measurement
time (Acciari et al. 2019). In the same year, observations at the
VERITAS Cherenkov telescopes demonstrated the power of such
arrays by measuring the photon correlations of two stars, which
have also been measured by Hanbury Brown et al. (1974), at many
different projected telescope baselines. Thus, the angular diameters
of these stars were determined with increased precision compared
to the original Hanbury Brown–Twiss measurements, but more than
10 times faster (Abeysekara et al. 2020).

In preparation for a measurement campaign at such telescope
arrays, we present laboratory tests of an intensity interferometer
that can be operated at the expected high photon rates of up to GHz.

As light source, a xenon arc lamp is used providing a wide
spectrum and high colour temperatures simulating the star. Two
different pinhole sizes in front of the lamp create different spatial
coherences – simulating two different telescope baselines.

Correlation measurements are carried out using a beam splitter
between the two photodetectors and a 2 nm FWHM (full width at
half-maximum) optical filter. This filter width is an intermediate ap-
proach. Smaller optical filters typically are used in non-astronomical
intensity interferometry as well as in the previously mentioned
stellar intensity interferometry measurements with smaller optical
telescopes, which results in an increased temporal coherence of the
light. However, since optics need to be precisely adjusted for narrow
optical filters, which is very challenging at Imaging Atmospheric
Cherenkov Telescopes, 2 nm is rather narrow (but still reasonable)
compared to the filter widths used at the MAGIC (36 nm) and
VERITAS (13 nm) telescopes (Acciari et al. 2019; Abeysekara et al.
2020). An additional measurement with a 36 nm filter, the same as
used in MAGIC, has also been performed to test the set-up at very
high photon rates but small temporal coherence.

2 O BSERVA BLES

The observable in astronomical intensity interferometry is the
second-order correlation function

g(2) (r0, r1, τ ) = 〈I (r0, t) I (r1, t + τ )〉
〈I (r0, t)〉〈I (r1, t)〉 = 1 + g(2)

s (r1 − r0)g(2)
t (τ ),

(1)

where the intensities I (ri) at telescope positions ri are measured and
correlated in the time-averaged product for a given time difference τ .
g(2)

s and g
(2)
t are the spatial and temporal parts of the correlation func-

tion, respectively. The temporal correlation function is connected to
the spectrum of the observed photons via Fourier transform (Loudon
2000). When spatial coherence conditions are satisfied, an excess
of photon correlations at small time differences (|τ |�τ c ≈ 1/�ν) is
measured compared to the number of random photon correlations at
larger time differences, where τ c is called the coherence time and
�ν is the optical bandwidth of observed photons. When applying
nanometre-bandwidth optical filters, the coherence time is of the
order of τc < 1 ps, demonstrating the need of fast electronics for
detecting the correlation signal. The measured coherence time can
be defined as the integral of g

(2)
t :

τc :=
∫ +∞

−∞
g

(2)
t (τ ) dτ =

∫ +∞

−∞

(
g(2)(r0 = r1, τ ) − 1

)
dτ. (2)

According to the Van Cittert–Zernike theorem, the spatial part of
the correlation function is related via Fourier transform to the
emission profile of the source (Mandel & Wolf 1995), resulting in

high coherence for small detector separations and angular source
diameters. Changing the detector separation, meaning the telescope
baseline projected on the observation direction, allows for sampling
the spatial correlation function and drawing back to e.g. the angular
size of the source. While it is not possible for us in the laboratory to
realize baseline separation-induced spatial coherence losses, which
is desirable in order to test the behaviour of the interferometer,
we instead restrict the size of the light source by adding pinholes
of different diameters. This results in different degrees of spatial
coherence since the source extent is already (partially) resolved
within the size of the detectors.

The fluctuations of g(2)(τ � τ c) are due to random photon
correlations and can be quantified using the root mean square value
of the g(2) data points assuming Poissonian shot noise statistics

σg(2) = 1/
√

R0R1�tT , (3)

where Ri are the photon rates at detectors i, �t is the time bin width
in the measurement, and T is the integrated measurement time. We
call this fluctuation baseline fluctuation [of the g(2) function].

We have previously shown that we are able to quantitatively detect
such a correlation signal with an intensity interferometer in the lab
measuring photon rates of about 10 MHz per detector at measure-
ment times of 40 h (Zmija et al. 2020). These measurements were
performed using photon time tagging electronics, which enabled
correlations of the arrival times of photons.

Using the collection area of Cherenkov telescopes, like the High
Energy Stereoscopic System (H.E.S.S.), which is of the order of
100 m2 (Bernlöhr et al. 2003), or the future Cherenkov Telescope
Array (CTA), photon rates beyond hundreds of MHz are expected
from bright stars, strongly decreasing necessary measurement times
to a reasonable time range of a few minutes.

Using photometry calibration data given by Bessell (1979), for a
2 nm filter centred at 465 nm (B band) and a single 100 m2 telescope,
the expected rates at each photodetector after the light is split by a
beam splitter can be estimated as

R = 13.83 η 100−mV/5 GHz, (4)

where mV is the star’s apparent magnitude and η is the total efficiency,
which consists of the atmospheric transmission, telescope and set-
up transmission, and detector quantum efficiency. Estimating η =
0.1, the expected photon rate of a magnitude 0 star is 1.38 GHz
per detector, and for a magnitude 2 star it is 220 MHz. At these
rates, single-photon time tagging is technically not possible. Instead,
photon currents are recorded and correlated.

In order to prepare for a measurement campaign with such tele-
scopes, lab experiments with a new interferometer have been carried
out at up to GHz photon rates using photon current correlations in
order to determine the temporal correlation function.

3 MEASUREMENT SET-UP

Correlation measurements are done by recording the digitized
photomultiplier (PMT) currents and cross-correlating them offline
for different time differences τ to obtain the temporal second-order
correlation function g(2)(τ ).

3.1 Optical set-up

Fig. 1 shows the set-up of the interferometer used for the lab
measurements. Thermal light of the xenon lamp (XBO 75 W/2 OFR)
passes a small exit pinhole, which determines the amount of optical
coherence of photons arriving at the PMTs. Two exit pinholes of
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Figure 1. Schematic description of the set-up.

Figure 2. Gain stability of a used photomultiplier.

sizes 30 and 75μm diameter are used to create spatial coherence of
the light of g(2)

s = 0.8 and 0.36, respectively, at the interferometer.
The interferometer part consists of a lightproof stackable 2 inch-

diameter tube system to prevent straylight from entering the set-up.
An optical filter is placed in front of the 1 inch entry pinhole at
the beam splitter. An Alluxa 465-2 OD4 (Alluxa 2021) interference
filter (2 nm FWHM) and a Semrock FF01-432/36-25 (36 nm FWHM;
Semrock 2021) are used in the measurements defining the detected
wavelength spectra. The light is then split by a non-polarizing beam
splitter cube (Thorlabs BS031) and directed at 90◦ angle to the two
PMTs.

On the remaining side of the beam splitter, a halogen lamp is
placed. It is usually switched off during correlation measurements,
but is used for calibrating the set-up, as described in Section 4.3.

3.2 Photodetection

We use photomultipliers of Type Hamamatsu R11265U-300, which
have the shape of a square with 23 mm side length and >30 per cent
quantum efficiency at the measured wavelengths (Hamamatsu 2019).
The PMT signals are amplified by a factor of 10 before being
digitized. A linear response of the photomultiplier currents with
increasing photon rate is important for calibrating the interferometer.
To prevent gain drop at high photon fluxes, the last four dynodes of
the PMTs are supplied with a stabilizing voltage. The behaviour was
tested by illuminating a PMT with an LED at varying power. The
PMT was installed on one side of the beam splitter and a calibrated
photodiode on the other side, whose current was monitored. At low
photon rates and high PMT gain (900 V supply voltage), where
single-photon pulse counting in the digitized PMT data is possible,
a calibration between the diode current and the PMT rate was
performed in order to be able to calculate the PMT photon rates
in Fig. 2 from the diode current. Afterwards, the PMT gain was
decreased to 680 V, which allows for GHz rates without causing
damage to the PMT. Fig. 2 shows the obtained result demonstrating
the gain stability for photon rates of up to 5 GHz.

Figure 3. Waveforms of a low-rate (blue calibration) measurement and a
high-rate (grey correlation) measurement.

3.3 Digitizing electronics

We used an M4i.2212-x8 card from Spectrum instrumentation as
digitizer. It consists of four input channels, two of which were used
for recording the two PMT signals. It allows for 8 bit sampling
with a sampling speed of 1.25 GS s−1 – 0.8 ns time bin width,
respectively (Spectrum 2020). However, for data reduction and
increased correlation speed, only 625 MS s−1 – 1.6 ns – sampling was
used in the measurements. In view of the use in H.E.S.S. (Bernlöhr
et al. 2003) or CTA MST (Schlenstedt 2014) telescopes, which have
optical time spreads of the mirrors between ≈1 and a few ns, the
reduction of sampling speed is appropriate. For the 8 bit sampling, a
voltage range of ±200 mV was used.

4 A NA LY SI S C HAI N AND MEASUREMENT
P RO C E D U R E

4.1 Raw data correlation

Fig. 3 shows two waveforms, which describe the digitized photon
current in one PMT channel, in an arbitrary time window. The
waveform in blue was taken at a low photon rate and illustrates
the response of the photomultiplier to single photons. However, in
the correlation measurements, photon rates of several 100 MHz were
measured, resulting in a waveform where many single-photon pulses
overlap, as seen in Fig. 3 (grey).

The correlation algorithm follows the conventional (at first step
unnormalized) signal cross-correlation. For time difference τ = 0,
the data vectors A(t) and B(t) of the waveforms of the two PMTs are
multiplied, while for τ 	= 0 one channel vector is shifted by τ . The
output is an unnormalized spectrum of photon coincidences at each
time difference, which we refer to as G(2)(τ ).

G(2)(τ ) = A(t) · B(t + τ ) =
N∑

i=1

A(ti)B(ti + τ ) (5)

It already enables signal-to-noise investigations, but for obtaining
physical parameters, such as the coherence time, a normalization has
to be applied to determine g(2)(τ ) as defined in equation (1).

4.2 Offset measurement and normalization

Usually, division by the mean value of G(2) in a time range away from
the signal region (τ � τc) is an appropriate way of normalizing.
However, possible constant and rate-independent offsets in the
waveform baseline in one PMT channel add to G(2), as they are
correlated with photons and offset in the other channel, and affect
the normalization. While it is easy to get rid of such baseline offsets
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in the laboratory (e.g. by adjusting the corresponding amplifier), it
cannot be easily accounted for on site at the telescopes, where the
accessibility of the set-up is often not possible during measurements.
Constant baseline offset effects can be computed and corrected with
an additional short zero-rate offset measurement, where offsets sA

and sB are determined and subtracted. If the channel waveforms x(t) =
γ x(t) + sx consist of photocurrent γ x and artificial offset current sx,
the outcome of equation (5) for any time difference will on average
be

G(2) = T
�t

(γAγB + γAsB + γBsA + sAsB) (6)

= T
�t

(γAγB) + T
�t

(AsB + BsA − sAsB), (7)

where γ x is the mean value of γ x(t) within measurement time T and
�t is the sampling time bin width. The first term on the right-hand
side describes the correlation of photons and the second one the
contributions of offset correlations with photons and offset–offset
correlations. Since only the first term is desired, the value of the
second term is subtracted from every G(2) bin value. Afterwards,
normalization by dividing every reduced G(2) value by the reduced
G(2) mean (calculated outside of correlation region) is performed to
obtain the g(2) function.

g(2)(τ ) = G(2)(τ )

G(2)|τ�τc

(8)

We recognize an 8 bit periodic oscillation pattern in the resulting
correlation originating from the digitizer card. To correct for that,
the pattern template is extracted from the g(2) baseline averaged over
multiple 8 bit cycles and afterwards removed from every correlation
bin.

4.3 Calibration measurement

Current correlation deals with photons in a different way compared to
photon time tagging measurements, where the timestamp of arriving
photons is stored instead of waveforms. The fact that each photon
pulse seen in Fig. 3 extends over more than 30 of the 1.6 ns time
bins affects the g(2) function. It causes correlation of neighbouring
g(2) bins, decreased baseline RMS expectation values (below the
time tagging shot noise level), and generates a photon-pulse specific
shape of the bunching peak. To quantitatively determine these effects,
a short (few seconds) calibration measurement is performed before
every correlation measurement by powering the halogen lamp at low
current to achieve low-photon rate waveforms as seen in Fig. 3 (blue).

From that measurement, the average photon pulse shape as well
as the pulse height distribution of the photons is extracted. This
information is used to perform waveform simulations in order to
quantitatively study the correlation baseline fluctuations, as described
in Section 5. Further the ‘average photon charge’ – the PMT
anode charge produced by one incoming photon on average –
is calculated and used for rate determination in the correlation
measurements, where the photocurrent in both channels is measured.
The determination of the photon rates is a crucial part in order to
compare the fluctuations in the g(2) function to the statistical noise
expectation level following equation (3). When measuring stars, the
rate information will also help us to check whether the set-up on the
telescope is optimally adjusted and it allows for consistency checks
with the expected star rates.

Figs 4 and 5 show the photon pulse shapes as well as the pulse
height distributions for a set of different photomultiplier voltages.
While the pulse height distribution shows an expected dependence

Figure 4. Above: Normalized average photon pulse shape at a PMT voltage
of 850 V. Below: The differences to upper shape at other supply voltages.

Figure 5. Height distribution of single-photon electron pulses at different
PMT voltages. The peak at zero is the pedestal.

on the PMT supply voltage, the pulse shape does so only on the scale
of 1 per cent.

We use different PMT voltages in measurements at different
photon rates. While at very high photon rates the voltage needs to be
lowered to not exceed the maximum PMT current, it is beneficial to
increase the PMT voltage and therewith gain at lower rates resulting
in larger PMT pulses and clearer determination of pulse shapes and
photon rates.

The pulse height distribution in Fig. 5 resembles a Gaussian
distribution overlayed with a pedestal resulting from random noise
spikes in the waveform baseline. A Gaussian fit is applied to the
region of the curve that does not include the pedestal, in order to
model the distribution. Since positive pulse heights are unphysical,
we cut the distribution at zero in our model.

Differences in the pulse shape or the pulse height distribution
appear at different environmental parameters. We use different
PMTs (of same kind) and cable lengths from the photodetection
to the digitizing card, which both affect the parameters. We also
recognized slight changes in the pulse height distribution at different
temperatures. Hence, it is reasonable not to rely on pre-calibrated
data, but instead carry out a calibration measurement shortly before
each correlation measurement.

5 MEASUREMENT RESULTS

Three measurements were performed in total. We measured two
different spatial coherences while using the 2 nm FWHM optical
filter (30 and 75μm exit pinholes at the xenon lamp corresponding to
80 and 36 per cent spatial coherence). In each of these measurements
1 h of data were recorded. We also measured at 80 per cent spatial
coherence with the 36 nm filter for a total of 30 min. The resulting
g(2) functions (subtracted by 1) are shown in Figs 7 and 8.
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Figure 6. Average single-photon pulses in both channels and the resulting
correlation peak shape.

Figure 7. g(2) functions of 1 h measurement time for each pinhole with the
2 nm FWHM filter.

Figure 8. g(2) function of 30 min measurement time with the 36 nm FWHM
filter.

We operated the two PMTs at main voltages of 820 and 850 V,
respectively, in order to adjust them for similar gain. For each
measurement, the position of the exit pinhole w.r.t. the xenon
lamp and the interferometer was precisely adjusted in order to
maximize the photon flux from the lamp. In case of the 2 nm/30μm
measurement, photon rates of around 270 MHz in one and 300 MHz
in the other channel were recorded. This is also the order of magnitude
we expect from bright stars at medium-size Cherenkov telescopes for
a filter width of 2 nm.

A calibration measurement of 3.4 s duration was performed prior
to the correlation measurement. Fig. 6 top panel shows the average
single-photon pulse shapes in both channels. To avoid crosstalk in

Table 1. Summary of measured coherence. s is the spatial coherence factor
(0.8 for the 30μm pinhole and 0.36 for the 75μm pinhole).

Filter Pinhole Photon rates Expected s τ c Measured s τ c

2 nm 30μm 270–300 MHz 111.2 fs (112.7 ± 4.3) fs
2 nm 75μm 2–2.3 GHz 50.0 fs (51.2 ± 0.6) fs
36 nm 30μm 4.3–4.7 GHz 5.6 fs (5.9 ± 0.4) fs

the correlation peak region, the cable between PMT/amplifier and
digitizer for channel B is 30 m longer than the one for channel A.
This is why its pulse shape is spread out more than the one in channel
A. The pulse shapes are numerically correlated with each other in
order to obtain a correlation peak template (Fig. 6 bottom panel),
which we fit to the measured g(2) function. The difference between
the photon pulse shapes of channels A and B makes the peak template
look slightly asymmetrical.

For the other two measurements (2 nm FWHM/75μm pinhole and
36 nm FWHM/30μm pinhole), the photon rates were so high that
we had to decrease the PMT supply voltages to 690 and 680 V in
order not to damage them. As a result, the single-photon pulses in
the waveforms are too small to significantly distinguish them from
noise spikes, which makes former calibration procedure impossible.
Nevertheless, as indicated by Fig. 4 we assume that the pulse shapes
do not change significantly by decreasing the high voltage, nor does
the peak template. Hence, the derived peak template from the lower
rate PMT settings (Fig. 6) is used to fit all three correlation peaks in
Figs 7 and 8.

To understand whether quantitatively the correlation signal mea-
sured in the g(2) function matches expectations, we determine the
product of the coherence time τ c – as defined in equation (2) – in
combination with the spatial coherence s by integration of the fitted
curve, and compare it to the theoretical expectation derived numer-
ically using the optical filter functions and the spatial coherence
values obtained from the geometry (0.8 and 0.36). Table 1 shows
excellent agreement between measurement and expectation for all
cases. Systematic uncertainties due to the choice of fit ranges may
add of the order of 40–50 per cent of the given statistical uncertainty.

The results show that the interferometer is able to detect different
signal heights due to different spatial coherence values. It proves that
the system is able to measure the drop-off in spatial coherence when
being operated at spatially separated telescopes, which is essential
for the determination of the desired star properties.

Having validated the properties of the correlation signal, we turn
to a quantitative understanding of the background, which is the RMS
noise of the correlation. This quantity is used to check whether there
are systematic noise contributions to the correlation or whether the
system is limited by only photon shot noise. In the latter case, the
RMS behaves as given in equation (3), with the special addition of a
constant factor to the equation for current correlation analysis. The
photon pulse shapes in the waveforms extend over >30 ns and act as
a low-pass filter to the g(2) function reducing the measured RMS. In
the cases where the photon rates are low enough that the calibration
procedure described above is possible, this factor is derived through
waveform simulations, using the measured pulse shape and pulse
height distribution of the photons. This method can be compared
to the experimental way of determining this factor: assuming that
the system works on shot noise level for short measurement times
(here T ≈ 3.4 s) and calculating the average RMS factor out of
all 1048 subdivisions of the measurement. These two methods
are in agreement at the 7 per cent level, so that the experimental
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Figure 9. Measured RMS noise of g(2)(τ ) for τ � τ c for each measurement.
The dashed lines are the shot noise expectation lines.

correction factor for the RMS theory curve is also used at the high-
rate measurements, where single pulse calibration fails.

Fig. 9 shows how the RMS values of the measurements evolve
with cumulative statistics. The error band is derived by calculating
the g(2) baseline RMS in multiple subdata sets. The dashed lines
display the RMS expectation value following equation (3) including
the experimental correction factor and show good agreement for all
curves, indicating that the measurements do not show any systematic
effects on the obtained level of statistics.

However, it has to be mentioned that for the black curve this is only
true if the total observed g(2)(τ ) is not chosen longer than τ = 300 ns,
since we observed a slight, very low frequent drop in the g(2) baseline,
which likely is connected to temporal variations of the xenon lamp
power supply.

6 C O N C L U S I O N A N D O U T L O O K

We have developed an intensity interferometry system that is capable
of measuring the photon correlations of thermal light with signal-
to-background values of (10−5)–(10−7) and noise level of <10−7

at photon rates of several hundreds of MHz up to several GHz.
This enables correlation measurements of starlight with high signal-
to-noise ratios over different telescope baselines, where the spatial
coherence has a large range of values, which minimizes uncertainties
on the measured quantities, e.g. the angular diameter of a star. We
achieved a good understanding of the current correlation system to
measure the spatial coherence at different pinhole sizes (i.e. different
telescope baselines) not only relative, but on an absolute scale. We
plan to operate the interferometer in a measurement campaign at
Cherenkov telescopes using the beam splitter arrangement in at
least two telescopes, to simultaneously measure the zero-baseline
coherence as well as the reduced spatial coherence due to the
telescope separation.
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