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A B S T R A C T 

Bayesian evidence ratios are widely used to quantify the statistical consistency between dif ferent experiments. Ho we ver, since 
the evidence ratio is prior dependent, the precise translation between its value and the degree of concordance/discordance 
requires additional information. The most commonly adopted metric, the Jeffreys scale, can falsely suggest agreement between 

data sets when priors are chosen to be sufficiently wide. This work examines evidence ratios in a DES-Y1 simulated analysis, 
focusing on the internal consistency between weak lensing and galaxy clustering. We study two scenarios using simulated data in 

controlled experiments. First, we calibrate the expected evidence ratio distribution given noise realizations around the best-fitting 

DES-Y1 � CDM cosmology . Secondly , we sho w the behaviour of e vidence ratios for noiseless fiducial data vectors simulated 

using a modified gravity model, which generates internal tension in the LCDM analysis. We find that the evidence ratio of 
noise realizations generated at all confidence levels was biased towards agreement and show, with a modified gravity model, 
that the choice of prior could conceal the discrepancies between weak lensing and galaxy clustering induced by prior effects 
in unlike cosmological models, concluding that the evidence ratio in a DES-Y1 study is, indeed, biased towards agreement. 
Boundary effects can also influence conclusions about the inconsistency induced by modified gravity, even in a noiseless data 
vector simulation. 

Key words: cosmological parameters – cosmology: theory. 
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 I N T RO D U C T I O N  

ince the disco v ery of the accelerating expansion of the uni-
erse (Riess et al. 1998 ; Perlmutter et al. 1999 ), various surv e ys
ave been designed to measure the background expansion and
tructure formation of the Universe with increasing precision. The
ark Energy Task Force (DETF; Albrecht et al. 2006 ) classifies

hese surv e ys from stage I to stage IV according to their ability to
ncrease the figure-of-merit (Albrecht et al. 2009 ) of the w 0 − w a 

arametrization for the dark energy equation of state (Che v allier &
olarski 2001 ; Linder 2003 ). The community is currently analysing

he stage III surv e ys, while stage IV surv e ys, such as DESI (Levi
t al. 2019 ), Nancy Grace Roman Space Telescope (Akeson et al.
019 ), CMB-S4 (Abazajian et al. 2016 ), and Vera Rubin Telescope
egacy Survey of Space and Time (LSST; The LSST Dark Energy
cience Collaboration 2018 ) will start collecting data in the next few
ears with the potential to significantly expand our knowledge about
he early and late-time cosmos. 

Ongoing stage III surv e ys, such as the Dark Energy Surv e y (DES;
bbott et al. 2005 ), constrain the parameters of the standard model

 � CDM) with unprecedented precision. These constraints encom-
ass measurements of the cosmic microwave background (CMB;
ustermann et al. 2012 ; Thornton et al. 2016 ; Planck Collaboration
020 ), Type Ia Supernova (Scolnic et al. 2018 ; Abbott et al. 2019a ),
aryon Acoustic Oscillations (Prakash et al. 2016 ; Alam et al.
017 ; D’Amico et al. 2020 ; Ivano v, Simono vi ́c & Zaldarriaga 2020 ),
 E-mail: vivianmiranda@arizona.edu 

e  

h  

(  

Pub
eak lensing (Hildebrandt et al. 2018 ; Troxel et al. 2018 ; Hikage
t al. 2019 ; Asgari et al. 2021 ), and Galaxy clustering (Liske
t al. 2015 ; Elvin-Poole et al. 2018 ; D’Amico et al. 2020 ; Ivanov
t al. 2020 ). As demonstrated by the DETF, combining probes to
ake more meaningful statements on the physical properties of

ark energy is the most promising way forward (Eisenstein, Hu
 T egmark 1998 ; T egmark et al. 1998a ; T egmark, Eisenstein & Hu

998b ; Albrecht et al. 2006 ; Abbott et al. 2018b ; Heymans et al.
020 ). 
Ho we ver, constraining cosmological parameters through com-

ining multiple probes requires that the probes are statistically
onsistent. The presence of tensions with moderate-to-high statistical
ignificance, which can prevent data sets from being integrated, have
een observed in stage III experiments (Abbott et al. 2018a ; Douspis,
alvati & Aghanim 2018 ; Riess et al. 2019 ; Di Valentino, Melchiorri
 Silk 2020 ; Hikage et al. 2019 ; Heymans et al. 2020 ). In particular,

he current inconsistency between CMB predictions (Aghanim et al.
018 ) and local measurements of the Hubble constant, H 0 , (Riess
t al. 2019 ) is a good example of a tension that may require new
hysics to be fully resolved (Knox & Millea 2020 ; Verde, Treu &
iess 2019 ). 
The DES uses the combination of weak lensing and galaxy

lustering to break degeneracies between dark energy and other
arameters. F or e xample, the DES year one (DES-Y1) error bars
rom the cosmic shear investigation on the dark energy equation of
tate are reduced by ∼30 per cent in the combined analysis (Abbott
t al. 2018b ; Troxel et al. 2018 ). The joint analysis is only permitted,
o we ver, if the data sets are statistically consistent. In Abbott et al.
 2018b ), consistency was ascertained by the Bayesian evidence ratio,
© 2021 The Author(s) 
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 , utilizing the Jeffreys scale. Howev er, analytical e xamples show
hat the Jeffreys scale should not be used as a universal scale (Nesseris 
 Garcia-Bellido 2013 ), given that priors can al w ays be chosen to

e wide enough to enable consistency (Marshall, Rajguru & Slosar 
006 ). 
In order to make meaningful statements about consistency of data 

ets, it is important to investigate how the Bayesian evidence ratio R
s affected by the priors under consideration. These investigations are 
articularly rele v ant when tension with modest statistical significance 
s detected, e.g. the disagreement between Planck data and weak- 
ensing surv e ys o v er the value of S 8 ≡ σ8 �

1 / 2 
m 

parameter (Abbott
t al. 2018b ; Hikage et al. 2019 ; Heymans et al. 2020 ). 

Given the demanding computational costs associated with 
ayesian evidence computation (Handley, Hobson & Lasenby 2015 ), 
alibrating surv e y data concordance with simulated data is not al w ays
easible. Alternative metrics with reduced prior dependence have 
een suggested (Seehars et al. 2016 ; Handley & Lemos 2019 ). In
imple cases (e.g. multi v ariate Gaussians), these alternati ves can be
rior independent. Ho we ver, in more general cases, the interpretation 
f alternative metrics still requires careful scale calibration using 
imulated data. Yet another approach to reduce prior dependencies is 
o adopt approximations, such as the validity of the Gaussian linear 
odel (GLM), which allows Bayesian estimators to be computed 

ither analytically or from Monte Carlo Markov Chains (Raveri & 

u 2019 ). 
In this paper, we examine the Bayesian evidence ratio in the 

ontext of quantifying consistency between cosmic shear, galaxy–
alaxy lensing, and galaxy clustering in DES-Y1 data. In particular, 
e want to quantify whether cosmic shear and the combination 
f galaxy clustering and g alaxy–g alaxy lensing (so-called 2x2pt) 
an be combined into a so-called 3x2pt analysis. We test how 

his metric responds to noise drawn from the DES-Y1 covariance 
round the best-fitting cosmology at varying confidence intervals 
n � χ2 space. This first test demonstrates how ‘real’ surv e y noise
t kno wn de viations from the best-fitting cosmology propagates 
nto Bayesian estimators. We then explore how the evidence ratio 
ehaves when data vectors generated from an underlying modified 
ravity theory are fit with the standard model. When confined 
o the standard model, these modified gravity based data vec- 
ors naturally induce a tension between weak lensing and galaxy 
lustering. 

This manuscript is structured as follows: In Section 2, we define 
he tension metrics studied in this paper. In Section 3, we explain
he theoretical modelling and aspects of our simulated analyses. 
ection 4 describes our findings about Bayesian evidence ratios 
nd other tension metrics when considering noisy � CDM data 
ectors that are analysed with a � CDM model. This scenario 
orresponds to the case where realistic noise in a data vector might
e misinterpreted as a physical tension. In Section 5, we consider 
 noise free modified gravity data vector that is analysed with a
 CDM model. This scenario mimics the case where an actual 

hysical tension between the clustering and weak-lensing parts of 
he data vector exist. Four appendices offer further explanation of 
he details that are only summarized in this section. We conclude in
ection 6. 

 TENSION  METRIC  DEFINITIONS  

n this section, we briefly re vie w tension metrics and establish
onsistent notation. We start defining the posterior probability for 
 set of parameters � θ in a given model H and observed data set d as
 ( � θ | d, H). The posterior is related to the likelihood, P ( d| � θ, H), via
he Bayes’ Theorem 

 ( � θ | d, H) = 

P ( d| � θ, H) P ( � θ | H) 

P ( d | H) 
. (1) 

he prior, P ( � θ | H), describes the a priori probability distribution of
he parameters � θ within the assumed model H. The normalization 
actor, P ( d| H), is called the Bayesian evidence (Marshall et al. 2006 ).

.1 Bayesian evidence ratio 

he Bayesian evidence of M data sets � d = ( d 1 , · · · , d M 

) given a
odel H of N parameters � θ = ( θ1 , · · · , θN ) is given by 

 ( � d | H) = 

∫ 
d � θP ( � d | � θ, H) P ( � θ | H) . (2) 

n order to e v aluate the probability that experiments d 1 and d 2 are in
greement, we e v aluate the odds of hypothesis H 0 , that we can model
oth data sets with a single set of parameters, against the alternative
ypothesis H 1 , that modelling each data set with a different set of
arameters is preferable. 
These odds are defined as P ( H 0 | d 1 , d 2 ) /P ( H 1 | d 1 , d 2 ) and their

elation to the evidences P ( d 1 , d 2 | H 0 ) and P ( d 1 , d 2 | H 1 ) can be
eadily seen when applying Bayes’ theorem 

P ( H 0 | d 1 , d 2 ) 
P ( H 1 | d 1 , d 2 ) = 

P ( d 1 , d 2 | H 0 ) 

P ( d 1 , d 2 | H 1 ) 
· P ( H 0 ) 

P ( H 1 ) 
, (3) 

here P ( H i = { 0, 1 } ) are the prior probabilities of models H i={ 0 , 1 } .
he first ratio on the right-hand side of equation (3) is known as the
ayesian evidence ratio, R. If the data sets are independent, we may
xpress it as 

 = 

P ( d 1 , d 2 | H 0 ) 

P ( d 1 | H 1 ) P ( d 2 | H 1 ) 
. (4) 

The Bayesian evidence ratio generally implies agreement between 
ata sets when R � 1, while R � 1 flags the opposite. The ratio
hanges as a function of prior range, which can mimic consistency
ven in the presence of tension. 

.2 � ̄χ2 statistic 

he χ̄2 value is a statistic related to the average log-likelihood of
 chain marginalized o v er the posterior. Given the weights of each
ample i of a chain of length N , we calculate the statistic directly as 

¯ 2 
j = −2 

∑ N 

i w i ln P i 

( � d j | � θ, H 

)
∑ N 

i w i 

, (5) 

here the sample weights are defined as the ratio of the sample’s
osterior o v er the maximum sampled posterior of the chain. We
efine a statistic similar to the delta chi-squared statistic of (Marshall
t al. 2006 ) as the difference between the χ̄2 values of the joint and
ndependent data sets as: 

 ̄χ2 = χ̄2 
12 −

(
χ̄2 

1 + χ̄2 
2 

)
. (6) 

his statistic differs from that of suspiciousness (Section 2.5) in 
hich it calculates the average log-likelihood as marginalized o v er

he posterior of the samples (as opposed to the underlying probability
istribution). � ̄χ2 then tells us how likely the samples from joint and
eparate data sets correlate. 
MNRAS 509, 5218–5230 (2022) 
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.3 Generalized parameter distance 

he generalized parameter distance estimates the departure from the
ducial vector (in this case determined by the DES-Y1 best-fitting
osmology). It is determined by calculating the covariance of a chain,
ˆ 
 , and the difference in parameter space between the fiducial data

ector, � μ and the best-fitting data vector of the samples, � μBF , as 

 ≡
√ ( � μBF − � μ

)T ˆ 	 

−1 
( � μB F − � μ

)
, (7) 

.4 The kullback–leibler di v er gence 

lternatively to the evidence ratio, the Kullback–Leibler (KL)
i vergence, also kno wn as the relati ve entropy, determines ho w
arameters are constrained by the data compared to the prior
onstraints (Kullback & Leibler 1951 ). Defined as 

 i = 

∫ 
d � θP ( � θ | d i , H) ln 

[
P ( � θ | d i , H) 

P ( � θ | H) 

]
, (8) 

he KL divergence is invariant under model reparametrization and
an be interpreted as measuring the information gain when going
rom the prior distribution to the posterior. Similar to entropy,
 i ≥ 0. The KL divergence can also measure the information
ain of augmented data sets by taking P ( � θ | H) → P ( � θ | d i , H) and
 ( � θ | d i , H) → P ( � θ | d i , d new , H). The relative entropy between data
ets is the basis of a tension metric called Surprise (Seehars et al.
014 , 2016 ). Both the KL divergence and surprise computation is
on-trivial outside the Gaussian case, which limits their applicability
s a check for statistical consistency. 

.5 Suspiciousness 

uspiciousness is a tension metric that aims to alleviate the prior
ependence exhibited in the evidence ratio (Handley & Lemos 2019 ).
his metric is defined as 

ln S ≡ ln R − ln I , (9) 

here ln I is defined as the information ratio 

ln I ≡ D 1 + D 2 − D 12 . (10) 

n restricted cases (e.g. the case of flat priors imposed on a multi-
ariate Gaussian likelihood), the prior dependence in the metric is
ompletely eliminated. For this particular case, a generalization to
orrelated data sets has been found (Lemos et al. 2020 ). Details on the
umerical e v aluation of suspiciousness and the Bayesian e vidence in
 nested sampling run are shown in Appendix D. 

 M O D E L L I N G  A N D  ANALYSIS  C H O I C E S  

he theoretical modelling, covariance computation, and validation
or the DES-Y1 3x2pt analysis are described in detail in Krause et al.
 2017 ). We summarize the main modelling details briefly below. 

.1 Modelling details – obser v ables 

he DES 3x2pt data vector consists of the angular galaxy clustering
tatistic w 

i ( θ ) of galaxies in redshift bin i , the g alaxy–g alaxy lensing
tatistic γ ij 

t ( θ ) for galaxies in redshift bin i and shape measurements
or source galaxies in redshift bin j , and cosmic shear two-point
orrelations functions ξ

ij 
± ( θ ) of shape measurements for source

alaxies in redshift bins i , j . The galaxy sample used in the clustering
NRAS 509, 5218–5230 (2022) 
easurement, which also constitutes the ‘lens’ sample for galaxy–
alaxy lensing, is selected using the redMaGiC algorithm (Rozo
t al. 2016 ). Details on the DES-Y1 sample selection and redshift
alibration described in Elvin-Poole et al. ( 2018 ) and Cawthon et al.
 2018 ). For the weak-lensing galaxy sample, we adopt the DES-Y1
ETACAL source galaxy sample, for which the sample selection from

he DES-Y1 gold catalog (Drlica-Wagner et al. 2018 ) and the shear
atalog are described in Zuntz et al. ( 2018 ), and the source redshift
stimates are described in Hoyle et al. ( 2018 ), respectively. 

We denote the redshift distribution of the redMaGiC/ METACAL

ource galaxy sample in tomography bin i as n i g /κ ( z), and the angular
umber densities of galaxies in this redshift bin as 

¯ i g /κ = 

∫ 
dz n i g /κ ( z) . (11) 

ssuming a flat � CDM universe, we write the radial weight function
or clustering in terms of the comoving radial distance χ as 

 

i 
δg 

( k, χ ) = b i ( k, z( χ ) ) 
n i g ( z( χ )) 

n̄ i g 

dz 

dχ
, (12) 

ith b i ( k , z( χ )) the galaxy bias of the redMaGiC galaxies in
omography bin i , and the lensing efficiency 

 

i 
κ ( χ ) = 

3 H 

2 
0 �m 

2c 2 
χ

a( χ ) 

∫ 
d χ ′ n 

i 
κ ( z( χ ′ )) d z/d χ ′ 

n̄ i κ

χ ′ − χ

χ ′ , (13) 

here H 0 is the Hubble constant, c the speed of light, and a the
cale factor. The angular power spectra for cosmic shear, galaxy–
alaxy lensing, and galaxy clustering are calculated using the Limber
pproximation 

C 

ij 
κκ ( l) = 

∫ 
dχ

q i κ ( χ ) q j κ ( χ ) 

χ2 
P NL 

(
l + 1 / 2 

χ
, z( χ ) 

)
, 

C 

ij 
δg κ

( l) = 

∫ 
dχ

q i δg 

(
l+ 1 / 2 

χ
, χ

)
q j κ ( χ ) 

χ2 
P NL 

(
l + 1 / 2 

χ
, z( χ ) 

)
, 

 

ij 
δg δg 

( l) = 

∫ 
dχ

q i δg 

(
l+ 1 / 2 

χ
, χ

)
q 

j 
δg 

(
l+ 1 / 2 

χ
, χ

)
χ2 

P NL 

×
(

l + 1 / 2 

χ
, z( χ ) 

)
, (14) 

here P NL ( k , z) is the non-linear matter power spectrum at wave
ector k and redshift z computed via HALOFIT (Takahashi et al. 2012 ).

The angular correlation functions are calculated from the angular
ower spectra as 

ij 
+ / −( θ ) = 

∫ 
dl l 

2 π
J 0 / 4 ( l θ ) C 

ij 
κκ ( l ) , 

γ
ij 
t ( θ ) = 

∫ 
dl l 

2 π
J 2 ( l θ ) C 

ij 
δg κ

( l ) , 

w 

i ( θ ) = 

∑ 

l 

2 l + 1 

4 π
P l ( cos ( θ ) ) C 

ii 
δg δg 

( l) , (15) 

ith J n ( x ) the n -th order Bessel function of the first kind, and P l ( x )
he Legendre polynomial of order l . 

.2 Modelling details – systematics 

he DES-Y1 baseline model includes nuisance parameters to ac-
ount for uncertainties in astrophysical and observational systematic
f fects, summarized belo w. Prior distributions of our parameters are
iven in Table 1 , similar to those in DES-Y1 analyses. Parameters
ith Gaussian priors (i.e. the lens photo- z shifts, the source photo- z
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Table 1. Table with priors for the cosmological and nuisance parameters, 
similar to the adopted priors in DES-Y1. In addition, we applied flat (0.005, 
0.04) priors on �b h 2 for minimal compatibility with BBN constraints in 
CosmoLike (see Appendix A for further details). 

Parameter Prior 

Cosmology 
�m flat (0.10, 0.90) 
A s × 10 −9 flat (0.50,5.00) 
n s flat (0.87, 1.07) 
�b flat (0.03, 0.07) 
H 0 flat (55.0, 91.0) 
m ν flat (0.06, 0.93) 

Lens galaxy bias 
b i ( i = 1, 5) flat (0.8, 3.0) 

Intrinsic alignment 
A IA ( z) = A IA [(1 + z) / 1 . 62] ηIA 

A IA flat ( −5, 5) 
ηIA flat ( −5, 5) 

Lens photo- zshift 
�z 1 l Gauss (0, 0.008) 
�z 2 l Gauss (0, 0.007) 
�z 3 l Gauss (0, 0.007) 
�z 4 l Gauss (0, 0.010) 
�z 5 l Gauss (0, 0.010) 

Source photo- zshift 
�z 1 s Gauss (0, 0.015) 
�z 2 s Gauss (0, 0.013) 
�z 3 s Gauss (0, 0.011) 
�z 4 s Gauss (0, 0.022) 

Shear calibration 
m 

i ( i = 1, 4) Gauss (0, 0.023) 
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hifts, and the shear calibrations) are prior-dominated. A detailed 
alidation of these parametrizations can be found in Elvin-Poole 
t al. ( 2018 ), Krause et al. ( 2017 ), and Troxel et al. ( 2018 ). 

Photometric redshift uncertainties The uncertainty in the redshift 
istribution n is modelled through shift parameters � z , 

 

i 
x ( z) = ˆ n i x 

(
z − � 

i 
z,x 

)
, x ∈ { g , κ} , (16) 

here ˆ n denotes the estimated redshift distribution. We marginalize 
 v er one parameter for each source and lens redshift bin (nine
arameters in total), using the the priors derived in Hoyle et al.
 2018 ) and Cawthon et al. ( 2018 ). 

Multiplicative shear calibration is marginalized using one parame- 
er m 

i per redshift bin, which affects cosmic shear and g alaxy–g alaxy
ensing correlation functions via 

ξ
ij 
± ( θ ) −→ (1 + m 

i ) (1 + m 

j ) ξ ij 
± ( θ ) , 

ij 
t ( θ ) −→ (1 + m 

j ) γ ij 
t ( θ ) , (17) 

ith Gaussian priors as determined in Troxel et al. ( 2018 ) and Zuntz
t al. ( 2018 ). 

Galaxy bias The DES-Y1 baseline model assumes an ef fecti ve 
inear galaxy bias ( b 1 ) using one parameter per galaxy redshift
in b i ( k, z) = b i 1 , i.e. five parameters, which are marginalized o v er
onserv ati ve flat priors. 

Intrinsic galaxy alignments (IA) are modelled using a power spec- 
rum shape and amplitude A ( z), assuming the non-linear alignment 
NLA) model (Hirata & Seljak 2004 ; Bridle & King 2007 ) for the
A power spectrum. The impact of this specific IA power spectrum 
odel can be written as 

 

i 
κ ( χ ) −→ q i κ ( χ ) − A ( z ( χ )) 

n i κ ( z ( χ )) 

n̄ i κ

d z 

d χ
. (18) 

he IA amplitude is modelled as a power-law scaling in (1 + z)
ith normalization A IA, 0 and power-law slope αIA , which are both 
arginalized using conserv ati ve priors. 

.3 Likelihood analysis 

n the following two sections, we run multiple simulated DES-Y1 
ikelihood analyses to explore the distribution of Bayesian evidence 
atios as a function different input data vectors. The input data vectors
omputed in Section 4.1 resemble realistic noise realizations of the 
ES-Y1 surv e y assuming the DES-Y1 best-fitting cosmology. The 

nput data vectors in Section 5.1 are computed from a modified
ravity model, thereby inducing a physical tension between the weak 
ensing and the galaxy clustering part of the data vector. 

Throughout this paper, we assume that the likelihood function 
 L ) of our data vector ( D ) is well approximated by a multi v ariate
aussian 

 ∝ exp 

(
−1 

2 

[ 
( D − M ( � θ )) t C 

−1 ( D − M ( � θ )) 
] )

, (19) 

here M denotes the theory prediction or model vector. As Lin
t al. ( 2020 ) demonstrate Gaussian functional form is a acceptable
pproximation, at least for ongoing and future cosmic shear surv e ys.

We use CosmoLike (Krause & Eifler 2017 ) with CLASS (Blas,
esgourgues & Tram 2011 ; Lesgourgues 2011a ; Lesgourgues 2011b ; 
esgourgues & Tram 2011 ) to compute the fiducial data vector
nd covariance. We sample the parameter space with the Poly- 
hord (Handley et al. 2015 ) nested sampling, with an interface

mplemented in the Cobaya framework (Torrado & Lewis 2020 ), 
ssuming the CAMB (Lewis, Challinor & Lasenby 2000 ; Howlett 
t al. 2012 ) Boltzmann code. We perform e xtensiv e tests of our
ipeline that merged CosmoLike and Cobaya , further described 
n Appendices A and C. 

 E V I D E N C E  RATI O  A S  A  F U N C T I O N  O F  

OI SY  � C D M  DATA  V E C TO R S  

n this section, we analyse the distribution of Bayesian evidence 
atios for a set of realistic noise realizations of the DES-Y1 data
ectors around the DES-Y1 best-fitting � CDM cosmology. We aim 

o examine which of these noise realizations of � CDM can be flagged
s tension according to the Jeffreys scale. We also investigate whether 
oise realizations at the one σ level are more or less likely to be
lassified as tension by the Jeffreys scale compared to 3 σ and 5 σ
vents. 

We calibrate the distribution of evidence ratios for a large 
et of noise realizations around the DES-Y1 best-fitting � CDM 

osmology. The noisy data vectors are drawn from the DES-Y1 
ata covariance, not from the parameter covariance. While the data 
ovariance and parameter covariance are closely related, noise real- 
zations drawn from the low-dimensional parameter covariance map 
n to smooth modulations in the 457D data space with little scatter
rom the fiducial data vector. Our data covariance includes Gaussian 
osmic variance, shot/shape noise (for clustering/weak lensing, 
espectively), and non-Gaussian contributions to the covariance from 

he connected four-point function of the matter density field, as well
s super-sample covariance (Takada & Hu 2013 ). As the Gaussian
osmic variance terms and shape/shot noise are caused, respectively, 
MNRAS 509, 5218–5230 (2022) 
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Figure 1. The distribution of � χ2 for cosmic shear, χ2 
shear , and the 2x2pt 

(g alaxy–g alaxy lensing and galaxy clustering), χ2 
2x2 , generated using the 

DES-Y1 joint covariance matrix. We compute the 68 per cent , 99 . 7 per cent , 
and 99 . 99997 per cent confidence intervals from the generation of hundreds 
of millions of noise realizations, smoothing the contours, and defining 
confidence intervals using a KDE. The data vectors are chosen along these 
contours and are represented as coloured points. The colour-code denotes the 
log-evidence ratio of the 3x2pt evidence to the 2x2pt and shear evidences 
(cf. equation 4). Our selected points are the sample of confidence limits in all 
radial directions and we do not find radial or angular trends of the evidence 
ratio. 

Figure 2. Histogram of e v aluated log-e vidence at the 1 σ , 3 σ , and 5 σ
confidence intervals. For comparison, we include the log-evidence ratios of 
our noiseless fiducial data vector and the official DES-Y1 analysis. The mean 
log-evidence ratio of each confidence interval is represented as a dotted line, 
with the mean and scatter explicitly given for each interval in the top-right 
key. The histogram reveals that the points on each contour all have similar 
log-evidence ratio distributions. The histogram also shows that the observed 
DES-Y1 evidence ratio is rather typical and does not point to an unusual 
level of agreement between the data sets, where the Jeffreys scale declares 
the DES-Y1 log-evidence ratio to be decisive agreement. 
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y the limited number of independent Fourier modes sampled in
ach angular bin and the limited number of galaxies sampled in the
ower spectrum measurement, noise realizations drawn from the data
ovariance are nearly uncorrelated between different Fourier modes
nd provide ‘noisy’ scatter with little noticeable bias from the fiducial
ata vector. 

.1 Noise realizations of DES-Y1 data vectors 

he DES-Y1 covariance matrix for cosmic-shear, g alaxy–g alaxy
ensing, and galaxy clustering and the noiseless fiducial data vector
re e v aluated at the DES-Y1 best-fit cosmology using CosmoLike .
e use the DES-Y1 covariance matrix to generate hundreds of
illions of (Gaussian) noise realizations around the noiseless fiducial
ES-Y1 � CDM best-fitting data vector. The generation of a large

ample of noise realizations densely populates the � χ2 = ( χ2 
shear , χ

2 
2x2 )

pace around our fiducial data vector. We then applied a Kernel
ensity Estimator (KDE) to define, from the samples, confidence

ntervals of agreement. Based on these confidence regions, we select
8 data vectors that lie at the 68 per cent (one σ ), 99 . 7 per cent
three σ ), and 99 . 99997 per cent (five σ ) confidence intervals with
pproximate angular uniformity in � χ2 space. 

The KDE method, implemented with help of GetDist (Lewis
019 ) routines, approximates the probability distribution of a contin-
um of values for � χ2 from N generated samples � χ2 

i= 1 , ···, N as follows 

 ( � χ2 ) = 

N ∑ 

i= 1 

K f 

( � χ2 − � χ2 
i 

)
(20) 

here K f is a multi v ariate Gaussian kernel with zero mean and
ovariance f × ˆ C where ˆ C is the sample covariance of the � χ2 .
e found that given our large sample of computed data vectors f
0.1 is a good choice to balance smoothing and noise features in

he P ( � χ2 ) contours. Fig. 1 shows the final selection of data vectors
s seen in � χ2 space and displays the 1–5 σ confidence intervals as
etermined by our selected KDE. The angular distribution of the
elected noise realizations nicely co v ers all quadrants. Fig. 1 also
llustrates the evidence ratios of the selected data vector realizations,
pecifically the colour bar shows the natural-log ratio of the data
ector’s 3x2pt evidence to its 2x2pt and shear evidences as defined in
quation (4). 

.2 Simulated analysis of noisy data vector realizations 

sing the data vectors as generated in Section 4.1, we now investigate
hether statistical fluctuations in the DES-Y1 data vector have a high
robability of causing tension (as defined by the Jeffreys scale). 
Fig. 1 shows that there is no radial or angular dependency in

he value of the evidence ratio as a function of χ2 values in
osmic shear and 2x2. Similarly, Fig. 2 shows no differences in
he evidence ratio distribution associated with 1 σ , 3 σ , and 5 σ noise
ealizations; the histograms of evidence ratios are all centred on large
ositi ve v alues, as predicted by (Raveri & Hu 2019 ) and (Handley &
emos 2019 ), using Gaussian approximation, for wide uninformative
riors. 
The comparison between the evidence ratio and suspiciousness

cf. Fig. 3 ) shows that broad priors significantly increase the number
f noise fluctuations that are not flagged as internal tension by
vidence ratios, but they would be flagged by using suspiciousness.
t is, ho we ver, not clear that a prior independent metric, such
s suspiciousness, is necessarily more objective. While Bayesian
vidence tends to hide tensions if broad priors are chosen, it is
NRAS 509, 5218–5230 (2022) 
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Figure 3. Correlation between Bayesian evidence ratios and � ̄χ2 (left-hand panel), Bayesian evidence ratios and suspiciousness (right-hand panel), where 
the supspiciousness is the difference of the average log-likelihoods of joint and independent data sets as marginalized o v er their posterior distributions and 
� ̄χ2 is the difference of the average sampled log-likelihoods of joint and independent data sets as weighted by their posterior samples. In both the cases, the 
fit parameters of the slope are similar for 1 σ , 3 σ , and 5 σ noise realizations. For � ̄χ2 , the slope of the fit is close to the predicted for multi v ariate Gaussian 
posteriors. 
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Black diamonds are chains with DES-Y1 covariance, while blue squares 
and red triangles are chains with covariances that were divided by 20 and 50, 
respectiv ely. F or DES-Y1 chains, the posterior for many parameters are being 
pressed against the prior boundaries before inconsistencies between cosmic 
shear and 2x2pt become important, which explains the unexpected behaviour 
of evidence ratio going up as a function of 	 0 . 
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mportant to note that tensions in data are inevitably connected to 
ur prior understanding of the situation. Handley & Lemos ( 2019 )
rgue that some known tensions in cosmology would have been 
nterpreted differently, had they been observed decades ago, when 
ur prior beliefs encompassed a broader range. 
It is difficult to estimate which tension estimator is a better 

hoice. In Fig. 3 (right-hand panel), we present a comparison and 
elative calibration between evidence ratios and suspiciousness for 
he specific DES-Y1 case considered in this paper. Our results show 

ow metrics that rely, at least for Gaussian likelihoods, solely on 
he likelihood of the data differ from tension estimators that take the
ES-Y1 prior beliefs into account. 
Fig. 2 shows that the observed DES-Y1 evidence ratio does not 

oint towards an e xceptional lev el of agreement between the data
ets as would be inferred by the Jeffreys scale. Generally speaking, 
e do not find a significant difference in the evidence ratio’s mean
r variance of data v ectors dra wn from the 1 σ , 3 σ , and 5 σ noise
evel (also cf. Fig. 3 , left-hand panel). In addition, we also find that
 noisy DES-Y1 data realizations from the 1 σ confidence region of
he parameter covariance matrix can have a negative evidence ratio, 
hich would point towards a significant discrepancy. These findings 
ake it difficult to motivate the DES-Y1 Bayesian evidence ratio as
 strong indicator for significant agreement between cosmic shear 
nd 2x2. 

In the case of correlated Gaussians, the evidence ratio and 
χ2 = χ2 

12 − χ2 
1 − χ2 

2 (i.e. the maximum log-likelihoods) are lin- 
arly correlated. In our DES-Y1 posteriors, we ho we ver find that a
inear combination of the sampled log-likelihoods, defined as � ̄χ2 

equation 6), is correlated with the evidence ratio. No correlation was 
ound when comparing evidence ratios against generalized parameter 
istances. 

 E V I D E N C E  R AT I O S  WITH  INTERNA L  

ENSION  

n this section, we investigate the evidence ratio’s behaviour when 
ssuming a μ- 	 modified gravity scenario (as studied in Abbott et al.
 2019b ), Ade et al. ( 2016 ), Aghanim et al. ( 2018 ), and Simpson et al.
 2012 )) that induces tension between the weak lensing and the galaxy
lustering parts of the 3x2 data vector. Recall that 	 �= 0 only affects
osmic-shear and g alaxy–g alaxy lensing. 

.1 Modified gravity data vectors 

ollowing the definitions in Ferreira & Skordis ( 2010 ), the Poisson
nd lensing equations in Newtonian Gauge are altered in the μ- 	 
MNRAS 509, 5218–5230 (2022) 
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Figure 5. The posterior distribution of selected parameters for cosmic shear (dashed) and 2x2pt (solid) analyses, and for the default DES-Y1 covariance 
(yellow) against the case where the covariance was reduced by a factor 50 (blue). While it is true that 	 0 �= 0 predicts inconsistencies between the cosmological 
parameters in � CDM, it is difficult to see them in DES-Y1 chains. Not only are the error bars larger in DES-Y1, but the posteriors are also being squeezed 
against the prior boundaries. 
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odel as: 

 

2 � = −4 πGa 2 (1 + μ( a)) ρδ (21) 

 

2 ( � + � ) = −8 πGa 2 (1 + 	( a)) ρδ. (22) 

Similar to the � CDM case (cf. Section 4.1), we compute the μ-
 data vector at the DES-Y1 best-fitting parameter values. Specifi-

ally, we set μ( a) = μ0 �� 

( z) /�� 

and 	( a) = 	 0 �� 

( z) /�� 

, with
� 

( z) being the redshift dependent dark energy density o v er the
ritical density. No noise is added to the modified gravity data vectors.
imilar to the � CDM cases, we apply Halofit (Takahashi et al.
012 ) to compute the nonlinear matter power spectrum in the μ-
 case. The fact that Halofit does not correctly describe the

onlinear physics of μ- 	 gravity is not a significant concern for this
aper since it is not out goal to analyse actual data. Instead, our goal
NRAS 509, 5218–5230 (2022) 
s to examine changes in the evidence ratio when the data vector is
omputed from a different underlying physics than the model that is
ssumed in the analysis. 

.2 Simulated likelihood analysis – modified gravity induced 

ension 

e now investigate induced internal tensions in the case where a data
ector originating from μ- 	 gravity (see Section 5.1 for definitions)
s e v aluated in the DES-Y1 pipeline for a � CDM cosmology. We
ave generated fiducial data vectors with fixed μ = 0 and 	 ranging
rom 0 ≤ 	 0 ≤ 1. We have not added noise realizations from DES-
1 covariances; the modified gravity data vector is noise free. Fig. 4
resents a surprising behaviour of evidence ratios: the log-evidence
atio of the noiseless modified gravity data vector and our fiducial
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oiseless � CDM data vector increases as a function of 	 0 (black
iamonds). This means that the physical tension introduced by the 
odified gravity parameters in the g alaxy clustering, g alaxy–g alaxy 

ensing, and cosmic shear parts of the data vector is not identified as
uch by the Bayesian evidence ratio. 

Such unexpected behaviour of the evidence ratio can be better 
nderstood by looking at Fig. 5 . We see that several parameters are
ushing against the prior boundaries. This boundary effect reduces 
ifferences between the cosmological parameters that fit cosmic 
hear and 2x2pt at the expense of making the goodness of fit between
heory and data worse. To check that prior boundaries are indeed 
esponsible for the unusual behaviour of the evidence ratio, we re-
xamine the log-evidence ratio of the noiseless modified gravity data 
ector and our fiducial noiseless � CDM data vector by rescaling the
ovariance matrices by factors of 20 (cf. Fig. 4 , blue squares) and
0 (cf. Fig. 4 , red triangles). This rescaling procedure significantly 
educes the posterior volume, which reduces or ev en remo v es the
rior boundary effects. Indeed, the evidence ratio now decreases as 
 function of 	 0 as expected. This type of behaviour e x emplifies
he difficulties in interpreting tension metrics in realistic examples 
ithout e xtensiv e validation via simulated analyses. 

 C O N C L U S I O N  

ension metrics are an important aspect of multiprobe analyses; 
hey will be used increasingly to determine whether probes can 
e combined or whether tension across probes need to be further
xplored. Ho we ver, tension metrics themselves need to be calibrated 
y simulated analyses for each data set in order to define levels of
iscordance. 
In this work, we study the properties of several tension metrics 

or the specific case of the DES-Y1 3x2pt analysis. In Abbott et al.
 2018b ), the individual analyses of (1) cosmic shear and (2) the
 alaxy–g alaxy lensing plus galaxy clustering (so-called 2x2pt) were 
ompared and ultimately combined into a so-called 3x2pt analysis. 
oth data vectors, cosmic shear and 2x2pt, were deemed consistent 
nder an assumed � CDM model. Consistency was demonstrated 
y computing the Bayesian evidence ratio, with the result of 6.39, 
nd interpreted using the Jeffreys scale. Bayesian evidence ratios, 
o we ver, are kno wn to be prior dependent and it is important to
alibrate the computed numbers through a large suite of simulated 
nalyses. 

We run multiple simulated likelihood analyses for a DES-Y1 
osmic shear, 2x2pt, and 3x2pt data vector and find that the Bayesian
 vidence v alue obtained by DES-Y1 (6.39) is rather typical and
nternal tensions generated by noise fluctuations about the best- 
tting DES-Y1 data vector are not reflected in the interpretation 
f the evidence ratio as quantified by the Jeffreys scale. We 
hen explore evidence ratios where noiseless data vectors that are 
omputed from a μ- 	 modified gravity model are analysed with a
ipeline that assumes a � CDM model. Under these assumptions, 
 physical tension is induced between the weak lensing and galaxy 
lustering parts of the 3x2pt data vector, and we explore the Bayesian
vidence ratio behaviour as a function of increasing the strength 
f the modified gravity model (increasing 	). We demonstrate 
hat prior boundary effects can efficiently hide tensions between 
he weak lensing and galaxy clustering part of the 3x2pt data 
ector. When significantly increasing the constraining power, by 
ividing the covariance by factors 20 and 50, we show that such
oundary effects are significantly reduced and the expected tension 
ppears. 
Our findings confirm that the evidence ratio, as measured by 
he Jeffreys scale, is biased towards compatibility between the 
ata sets due to DES-Y1’s adopted priors. These wide priors were
ntentionally chosen conserv ati vely and did not take into account
rior knowledge from other experiments. Such wide priors have the 
otential to hide tensions between probes. In the near future, DES
ata quality will be superseded by stage IV experiments, in particular,
ubin Observatory’s LSST (Ivezi ́c et al. ( 2019 )), SPHEREx (Bock
 SPHEREx Science Team ( 2018 )), Euclid (Masters et al. ( 2017 )),

nd the Roman Space Telescope (Spergel et al. ( 2015 ), Eifler et al.
 2021 )). These experiments will provide an unprecedented amount 
f high-quality data that will enable not just 3x2pt analyses, as
onsidered in this paper, but a large variety of other cosmological
robes as well. Exploring tensions between probes of the same data
et and (even more interesting) between data sets will be a critical part 
f the data analysis of these missions, throughout which simulated 
nalyses to calibrate tension metrics should become a standard tool 
n precision cosmology. 
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PPENDI X  A :  PIPELINE  VA LI DATI ON  

his appendix focuses on the technical aspects of the pipeline
alibration. As shown in the main manuscript, the DES posteriors
re non-Gaussian in some dimensions, the DES priors are partially
nformati ve in se veral directions, and the likelihood is weakly con-
training. Such properties affect the required calibration of samplers’
yperparameters, such as the MultiNest ’s efficiency (Feroz et al.
013 ), given that the entire volume of the parameter space needs to
e well sampled. Indeed, regions in parameter space with low non-
egligible likelihood probabilities can contribute to the Bayesian
vidence as long as there is sufficient prior volume in which the
ik elihood tak es on these values. 

The default MultiNest configuration on DES-Y1 is: number of
ive-points n live = 500, tolerance = 0.1 and efficiency = 0.3. Fig. A1
eveals biases in the evidence values with such settings. For other
yperparameters, such as the number of live-points, changes in the
eported evidence are compatible with the quoted error bars. These
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Figure A2. The panel presents the posterior predicted by MultiNest as 
a function of the adopted efficiency hyperparameter. Table A2 shows the 
values of additional MultiNest settings. The comparison against the EMCEE 

sampler confirms that chains with high-efficiency do predict posteriors that 
are quite close to the truth. Indeed, no posterior feature stands out as being an 
outlier, something that would indicate that lower efficiency is indeed needed 
as it predicts order unity bias for the evidence (see Fig. A1 ). 
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Figure A3. The figure compares the predicted posterior for the cosmological 
parameters given by EMCEE and Metropolis–Hasting samplers. Blue shades 
on the 2D panels correspond to dashed blue lines on the 1D posterior plots. 
The two 3x2pt data vectors – DV0 and DV1 were data vectors with noise 
generated using a simulated DES-Y3 covariance. The agreement between the 
two samplers is good to cross-check, considering the pipelines are somewhat 
dif ferent: the linear po wer spectrum on EMCEE was e v aluated within CLASS 
(default CosmoLike pipeline), while for the Metropolis-Hasting, we have 
performed a merging between Cobaya and CosmoLike and used CAMB to 
calculate the matter power spectrum. 

Figure A4. The figure compares the predicted posterior for the cosmological 
parameters given by Polychord against Metropolis–Hasting. Shades on the 
2D panels correspond to dashed lines on the 1D posterior plots. The two 3x2pt 
data vectors – DV0 and DV1 were data vectors with noise generated using a 
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tatements are valid for both the shear-only and the 3x2pt analyses. 
ne prominent feature on Fig. A1 is the constant slope of the evidence 
ias as a function of the MultiNest ’s efficiency in the case of the
x2pt analysis. There is no guarantee, therefore, that e ven ef ficiencies 
f the order of 10 −4 would provide reliable results, and such settings
aise the evidence’s computational costs by one order of magnitude 
n comparison to the hyperparameter values adopted on DES-Y1. 

e emphasize that no conclusions on the general applicability of 
ultiNest can be drawn from our analysis; results are specific to 
ES-Y1. Fig. A1 also does not imply that there are no settings where
ultiNest provides unbiased evidence ratios. 
We also checked whether the detected biases on MultiNest 

eported evidences could have been identified through features in the 
osterior by-product, something that would have called the attention 
s being flagrantly corrupted. Fig. A2 shows no substantial deviations 
n the posterior as a function of the efficiency parameter, except for
light enlargement of the 2 σ contours, and we have run similar
hains using the EMCEE (F oreman-Macke y et al. 2013 ) sampler to
onfirm such statement. Comparisons between MultiNest and 
MCEE require robust calibration on both samplers, as one could 
rgue that direct comparison could point to problems in EMCEE . 

To double-check that convergence on EMCEE has been achieved, 
e have run extremely long chains to check the consistency of our

esults. Also, we have compared on Fig. A3 EMCEE against a third
ampler – Metropolis–Hasting – where the well established and 
eliable Gelman–Rubin criteria (Gelman & Rubin 1992 ) for conver- 
ence can be applied. Such a comparison also cross-checks our code 
evelopment, which unites CosmoLike and Cobaya pipelines. 1 In 
ur new code, CosmoLike receives distances, parameter values, and 
 https://github.com/CosmoLike/cocoa 

simulated DES-Y3 covariance. In both cases, the matter power spectrum was 
e v aluated using CAMB (without removing the extra Halofit factor shown 
in equation C2). 
MNRAS 509, 5218–5230 (2022) 
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Figure A5. The figure compares the predicted posterior for the cosmological 
parameter given by Polychord as a function of the hyperparameter n repeats 

written in units of the number of parameters in the chain ( n DIM 

). Blue shades 
on the 2D panels correspond to dashed blue lines on the 1D posterior plots. 
On shear-shear, the posterior shows uncertain behaviour in the case n repeats = 

n DIM 

, with no appreciable changes were seen in the range 3 < n repeats / n DIM 

< 20. This is not necessarily the case for 3x2pt data vectors, where setting 
n repeats = n DIM 

is acceptable for posteriors. 
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he matter power spectrum as function of redshift and wavenumber
nd returns the DES-Y1 data vector. This merging allowed us to
se both Polychord and Metropolis–Hasting samplers with the
ast-slow decomposition commonly adopted in CMB analyses (Neal
005 ; Lewis 2013 ), while EMCEE and MultiNest chains employ
he original standalone CosmoLike . 

It is unclear how much MultiNest ’s biases might have affected
ES-Y1 official results, and it is beyond the scope of this article to
ake such an in-depth analysis of the DES-Y1 official chains. We

o, ho we ver, belie ve that Cobaya-CosmoLike code combines the
ipeline v alidation ef fort that has been performed on CosmoLike
ith samplers that are more robust than MultiNest in e v aluating
ayesian evidence ratios. Cobaya-CosmoLike also provides
etropolis–Hasting with fast-slow decomposition that possesses

obust convergence criteria, which is hard to be assessed in EM-
EE . Indeed, the posterior comparison between Metropolis–Hasting
nd Polychord show excellent agreement, as seen in Fig. A4 .
oreo v er, Figs A5 and A6 show that Polychord ’s evidence and

osterior are robust against variations on the adopted values for its
yperparameters. 

One additional issue emerged from the comparison between CAMB
nd CLASS Boltzmann codes. While the original CosmoLike is
irectly integrated to CLASS , the Cobaya framework provided full
upport only to CAMB 2 at the time of running our simulations. Dif-
erences between CAMB or CLASS should have been negligible, but
e did detect an extra factor on the Halofit formula implemented
y CLASS . We then modified CAMB to match CLASS choices, and
e discuss this issue in greater depth on Appendix C. In addition

o that, CLASS has limitations on the �b h 2 range when dealing
 https:// github.com/CobayaSampler/cobaya/ issues/46 . 

NRAS 509, 5218–5230 (2022) 
ith BBN constraints and because of that CosmoLike does assume
he prior 0.005 < �b h 2 < 0.04. We, therefore, applied the same
rior choice in the Cobaya - CosmoLike joint pipeline. We do not
xpect such minor choices to affect the qualitative conclusions of this
ork. 

PPENDI X  B:  GAUSSI AN  APPROX IMATION  

here is a significant difference in computational costs between
unning MCMC for parameter estimation and e v aluating Bayesian
vidence with nested sampling algorithms. The possibility of as-
essing evidence ratios using MCMC samples could, therefore,
ncentivize a more widespread use of such metric, as well as make
he recalibration of the Jeffreys scale a lot simpler. Ho we ver, such
nference is generally challenging in high-dimensional spaces (see
eavens et al. ( 2017 ) and references within). Recently, Raveri &
u ( 2019 ) proposed a Gaussian approximation to the posterior that

an provide an estimate for the evidence ratio. For DES only chains,
ome partially constrained parameters are prior limited, which is an
ndication that the Gaussian approximation may fail. Nevertheless,
e tested this approximation in a few data vectors to see the potential

eward such a method could bring to the ongoing DES-Y3 analysis
nd this work. 

We have followed Raveri & Hu ( 2019 ) closely, implementing the
aussian approximation around either the best fit or the median of the
CMC chain. Initially, we have tested such a scheme in two noise

ealizations generated using an approximate DES-Y3 covariance (see
able A1 ). The use of DES-Y3 covariance matrix represents a best-
ase scenario given that more constraining data should make the
aussian expansion work better. For shear only, the approximation
oes not provide accurate Bayesian evidence ratios. Results were
ore encouraging for the 2x2pt and 3x2pt analyses, and we further

xamined such cases in eight additional noise realizations. Results
re shown in Fig. B1 . Unfortunately, there are order unit biases that
ake the adoption of this approximation in our work unfeasible for

ven the most constraining 3x2pt analysis. 

PPENDI X  C :  H A L O F I T  

ne practical issue has emerged in our sampler comparison that is
elated to implementation differences between CAMB and CLASS
odes. 3 The Cobaya pipeline version adopted in this work had only
artial support for CLASS , while CosmoLike is incompatible with
AMB . Therefore, the Metropolis–Hasting and Polychord chains
mployed CAMB to e v aluate the background comoving distances and
he non-linear matter power spectrum, while MultiNest and EM-
EE chains used CLASS . We, consequently, tested the compatibility
etween these Boltzmann codes, and discrepancies in the Halofit
ormula were spotted. 

art/stab3068_fA5.eps
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Figure A6. Polychord evidence bias as a function of the n repeats parameter (left-hand panel), number of live points (middle panel), and precision criterion 
(right-hand panel). As a simplifying assumption, the e vidence e v aluated from the chain with the highest n repeats (left-hand panel), the highest number of live 
points (middle panel), or the lowest precision criterion factor (right-hand panel) has zero bias by construction. The parameter n repeats on the left-hand panel is 
shown in units of the parameter dimension, n DIM 

. The error bars reflect Polychord ’s claimed uncertainties, and no error propagation was applied to take into 
account the error bars in the value of the unbiased evidence. Computational costs scale as O ( n repeats ) (Handley et al. 2015 ), the main bottleneck of our chains, 
so we have adopted n repeats = 3 × n DIM 

as a middle ground between accuracy and computational costs. 

Table A1. The Comparison performed between predicted Bayesian evidence evaluated using MultiNest , PolyChord , and Gaussian linear modelling of 
Metropolis–Hasting chains around either the median of the parameters or the chain best fit. MKL stands for minimum Kullback–Leibler divergence (Kullback 
& Leibler 1951 ), and in that row, we select the Gaussian approximation from the two previous cases by minimizing the KL divergence against the full posterior 
(following the recipe from (Raveri & Hu 2019 )). In all cases, the additional constraint 0.005 < �b h 2 < 0.04 were applied as an additional top-hat likelihood. 
DV0 and DV1 represent distinct noise realizations of the best-fitting data vector. 

Sampler 3 × 2pt DV0 3 × 2pt DV1 2 × 2pt DV0 2 × 2pt DV1 Cosmic shear DV0 Cosmic shear DV1 R DV0 R DV1 

GLM - Mean −306.4 −204.0 −172.4 −116.3 −154.5 −110.89 20.5 23.2 
GLM - Chain BF −307.5 −204.6 −176.4 −117.7 −142.1 −91.7 11 4.8 
GLM - MKL −306.4 −204.6 −176.4 −117.7 −154.5 −110.89 24.5 23.9 
Polychord −307.1 ± 0.4 −204.8 ± 0.4 −171.8 ± 0.4 −117.4 ± 0.4 −143.2 ± 0.3 −94.8 ± 0.3 7.9 7.4 

Table A2. Default values assumed for the internal parameters are employed 
in the multiple sampler codes which we analysed in our appendix. With 
regards to MultiNest , tolerance corresponds to the evidence tolerance 
factor , efficiency is the sampling efficiency (the variable efr ), and n live 

matches the number of live points . In addition, we set to False the boolean 
variable that sets up the constant efficiency mode . Using PolyChord , 
clustering was turned off by default, and n repeats matches the variable 
num repeats . EMCEE runs consume a fixed amount of computer resources 
to ensure that chains contain no less than 5 million samples. On the other 
hand, Metropolis–Hasting samples were running until reaching convergence 
according to the Gelman–Rubin criteria, where we find the mean and standard 
deviation of the Gelman–Rubin criteria to be 0.02 and 0.2, respectively. 

Sampler n live Efficiency Tolerance n repeats 

MultiNest (MN) 256 0.3 0.1 –
Polychord 256 – 0.05 3 × dim 
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The original Takahashi Halofit formula for the non-linear 
atter power spectrum � 

2 ( k ) = k 3 P ( k )/(2 π2 ) is given by 

 

2 ( k) = � 

2 
Q 

( k) + � 

2 
H 

( k) . (C1) 

he specific expression for � 

2 
Q 

( k) and � 

2 
H 

( k) can be found at (Taka-
ashi et al. 2012 ). Both CLASS and CAMB have updates to the
akahashi formula that aims to provide better agreement against 
osmology with massive neutrinos. We were unable to find the 
eferences in peer-re vie wed journals for such updates. One of the
ew terms is, in CLASS , the following 

 

2 
Q 

( k) → � 

2 
Q 

( k) 
{

1 + f ν
[
0 . 977 − 18 . 015 × ( �m 

− 0 . 3) 
]}

, (C2) 

ith f ν ≡ �ν / �m . In CAMB , on the other hand, the term proportional
o ( �m − 0.3) does not exists; the impact of such factor is shown on
ig. C1 . 

PPENDI X  D :  NESTED  SAMPLING  

valuation of the Bayesian evidence is possible with nested sampling 
lgorithms (Skilling 2006 ), and we will briefly re vie w them in this
ppendix. Let P ( � θ | H) be the prior distribution of the parameters �θ
ithin a model H, L be the likelihood distribution P ( � d | � θ, H), and
 be the evidence P ( � d | H). We define X ( λ) to be the fraction of the
rior volume contained within the isolikelihood contour given by 
 ( � d | � θ, H) = λ as shown below 

( λ) = 

∫ 
L >λ

d � θ P ( � θ | H) . (D1) 

Nested sampling algorithms e v aluate e vidences via the 1D integral 

 = 

∫ 1 

0 
L ( X) dX . (D2) 

his integration is performed by maintaining a set of live points, n live ,
hat samples a sequence of exponentially contracting volumes that 
espects that hard boundary L > L i at iteration i + 1. The L i value
orresponds to the lowest likelihood of all live points at iteration
 , which is subsequently discarded and replaced by another point
ith L > L i . Making this replacement efficient is the technically

hallenging part of the algorithm (see Feroz et al. ( 2013 ) and Handley
MNRAS 509, 5218–5230 (2022) 
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t al. ( 2015 ) for specific implementations). The set of discarded points
re named dead points, and the discretization of the 1D evidence
nte gral abo v e is giv en by 

 ≈ 1 

2 

∑ 

i∈ dead 

( X i−1 − X i ) × L i . (D3) 

he precise X i volumes are unknown, but can be probabilistically
stimated. To reconstruct the prior volume at the ith iteration, the
lgorithm samples the uniform distribution n live times spanning from
 to X i − 1 and retrieves the maximum prior volume (Skilling 2006 ). 
The same procedure can also be used to calculate the KL

ivergence 

 i ≈ 1 

2 

∑ 

i∈ dead 

( X i−1 − X i ) × L i 

E ln 

(L i 

E 

)
. (D4) 

his expression allows us to evaluate suspiciousness using the same
ested sampling runs that are used to calculate evidence, and we have
ross-checked our numerical results for the KL divergence against
he ANESTHETIC package (run on the same chains; Handley 2019 ).
inally, this section also shows why the evaluation of the Surprise
etric is challenging. The calculation of the relative entropy between
2 4 6 8 10
Noise Realization (3x2pt)

−2

0

2

E
vi

d
en

ce
B

ia
s

Max Like Median

−

igure B1. The panels present the comparison between the Bayesian evidence bi
vidence bias is defined as the difference for the natural logarithm of the Bayesia

estrict the analysis to g alaxy–g alaxy lensing and galaxy clustering in the right-hand
ovariance. Triangle blue points with thick error bars show the results when the G
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ata sets would require additional nested sampling runs where the
prior’ would be one of the data set’s posteriors. 

his paper has been typeset from a T E 
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X file prepared by the author. 
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as calculated using the Gaussian approximation and Polychord ’s results. 
n evidence. The left-hand panel assumed the 3x2 pt data vector, while we 
 panel. The data vectors were randomly generated using a simulated DES-Y3 
aussian approximation is made around the median of the chain, while black 
hain with the best likelihood. The error bars reflect Polychord ’s claimed 
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Figure C1. This figure compares the impact of the additional term that 
CLASS implements on the Halofit in comparison to the expression that 
CAMB assumes for the non-linear completion of the matter power spectrum. 
All MCMC chains adopted the Metropolis–Hasting sampler and CAMB code. 
Shades on the 2D panels correspond to dashed lines on the 1D posterior plots. 
The two 3x2pt data vectors – DV0 and DV1 were randomly generated around 
the default cosmology using a simulated DES-Y3 covariance. As expected, 
the posteriors differ the most on the volume of parameter space associated 
with high values for the sum of neutrino masses. Such discrepancy is also 
non-negligible on the 1D �m and H 0 marginalized posteriors. 
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