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ABSTRACT

Bayesian evidence ratios are widely used to quantify the statistical consistency between different experiments. However, since
the evidence ratio is prior dependent, the precise translation between its value and the degree of concordance/discordance
requires additional information. The most commonly adopted metric, the Jeffreys scale, can falsely suggest agreement between
data sets when priors are chosen to be sufficiently wide. This work examines evidence ratios in a DES-Y1 simulated analysis,
focusing on the internal consistency between weak lensing and galaxy clustering. We study two scenarios using simulated data in
controlled experiments. First, we calibrate the expected evidence ratio distribution given noise realizations around the best-fitting
DES-Y1 ACDM cosmology. Secondly, we show the behaviour of evidence ratios for noiseless fiducial data vectors simulated
using a modified gravity model, which generates internal tension in the LCDM analysis. We find that the evidence ratio of
noise realizations generated at all confidence levels was biased towards agreement and show, with a modified gravity model,
that the choice of prior could conceal the discrepancies between weak lensing and galaxy clustering induced by prior effects
in unlike cosmological models, concluding that the evidence ratio in a DES-Y1 study is, indeed, biased towards agreement.
Boundary effects can also influence conclusions about the inconsistency induced by modified gravity, even in a noiseless data

vector simulation.

Key words: cosmological parameters —cosmology: theory.

1 INTRODUCTION

Since the discovery of the accelerating expansion of the uni-
verse (Riess et al. 1998; Perlmutter et al. 1999), various surveys
have been designed to measure the background expansion and
structure formation of the Universe with increasing precision. The
Dark Energy Task Force (DETF; Albrecht et al. 2006) classifies
these surveys from stage I to stage IV according to their ability to
increase the figure-of-merit (Albrecht et al. 2009) of the wy — w,
parametrization for the dark energy equation of state (Chevallier &
Polarski 2001; Linder 2003). The community is currently analysing
the stage III surveys, while stage IV surveys, such as DESI (Levi
et al. 2019), Nancy Grace Roman Space Telescope (Akeson et al.
2019), CMB-S4 (Abazajian et al. 2016), and Vera Rubin Telescope
Legacy Survey of Space and Time (LSST; The LSST Dark Energy
Science Collaboration 2018) will start collecting data in the next few
years with the potential to significantly expand our knowledge about
the early and late-time cosmos.

Ongoing stage III surveys, such as the Dark Energy Survey (DES;
Abbott et al. 2005), constrain the parameters of the standard model
(ACDM) with unprecedented precision. These constraints encom-
pass measurements of the cosmic microwave background (CMB;
Austermann et al. 2012; Thornton et al. 2016; Planck Collaboration
2020), Type Ia Supernova (Scolnic et al. 2018; Abbott et al. 2019a),
Baryon Acoustic Oscillations (Prakash et al. 2016; Alam et al.
2017; D’ Amico et al. 2020; Ivanov, Simonovié¢ & Zaldarriaga 2020),
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weak lensing (Hildebrandt et al. 2018; Troxel et al. 2018; Hikage
et al. 2019; Asgari et al. 2021), and Galaxy clustering (Liske
et al. 2015; Elvin-Poole et al. 2018; D’Amico et al. 2020; Ivanov
et al. 2020). As demonstrated by the DETF, combining probes to
make more meaningful statements on the physical properties of
dark energy is the most promising way forward (Eisenstein, Hu
& Tegmark 1998; Tegmark et al. 1998a; Tegmark, Eisenstein & Hu
1998b; Albrecht et al. 2006; Abbott et al. 2018b; Heymans et al.
2020).

However, constraining cosmological parameters through com-
bining multiple probes requires that the probes are statistically
consistent. The presence of tensions with moderate-to-high statistical
significance, which can prevent data sets from being integrated, have
been observed in stage Il experiments (Abbott et al. 2018a; Douspis,
Salvati & Aghanim 2018; Riess et al. 2019; Di Valentino, Melchiorri
& Silk 2020; Hikage et al. 2019; Heymans et al. 2020). In particular,
the current inconsistency between CMB predictions (Aghanim et al.
2018) and local measurements of the Hubble constant, Hy, (Riess
et al. 2019) is a good example of a tension that may require new
physics to be fully resolved (Knox & Millea 2020; Verde, Treu &
Riess 2019).

The DES uses the combination of weak lensing and galaxy
clustering to break degeneracies between dark energy and other
parameters. For example, the DES year one (DES-Y1) error bars
from the cosmic shear investigation on the dark energy equation of
state are reduced by ~30 per cent in the combined analysis (Abbott
et al. 2018b; Troxel et al. 2018). The joint analysis is only permitted,
however, if the data sets are statistically consistent. In Abbott et al.
(2018b), consistency was ascertained by the Bayesian evidence ratio,
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R, utilizing the Jeffreys scale. However, analytical examples show
that the Jeffreys scale should not be used as a universal scale (Nesseris
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& Garcia-Bellido 2013), given that priors can always be chosen to
be wide enough to enable consistency (Marshall, Rajguru & Slosar
2006).

In order to make meaningful statements about consistency of data
sets, it is important to investigate how the Bayesian evidence ratio R
is affected by the priors under consideration. These investigations are
particularly relevant when tension with modest statistical significance
is detected, e.g. the disagreement between Planck data and weak-
lensing surveys over the value of Sy = 03Q2)/? parameter (Abbott
et al. 2018b; Hikage et al. 2019; Heymans et al. 2020).

Given the demanding computational costs associated with
Bayesian evidence computation (Handley, Hobson & Lasenby 2015),
calibrating survey data concordance with simulated data is not always
feasible. Alternative metrics with reduced prior dependence have
been suggested (Seehars et al. 2016; Handley & Lemos 2019). In
simple cases (e.g. multivariate Gaussians), these alternatives can be
prior independent. However, in more general cases, the interpretation
of alternative metrics still requires careful scale calibration using
simulated data. Yet another approach to reduce prior dependencies is
to adopt approximations, such as the validity of the Gaussian linear
model (GLM), which allows Bayesian estimators to be computed
either analytically or from Monte Carlo Markov Chains (Raveri &
Hu 2019).

In this paper, we examine the Bayesian evidence ratio in the
context of quantifying consistency between cosmic shear, galaxy—
galaxy lensing, and galaxy clustering in DES-Y1 data. In particular,
we want to quantify whether cosmic shear and the combination
of galaxy clustering and galaxy—galaxy lensing (so-called 2x2pt)
can be combined into a so-called 3x2pt analysis. We test how
this metric responds to noise drawn from the DES-Y1 covariance
around the best-fitting cosmology at varying confidence intervals
in ¥? space. This first test demonstrates how ‘real’ survey noise
at known deviations from the best-fitting cosmology propagates
into Bayesian estimators. We then explore how the evidence ratio
behaves when data vectors generated from an underlying modified
gravity theory are fit with the standard model. When confined
to the standard model, these modified gravity based data vec-
tors naturally induce a tension between weak lensing and galaxy
clustering.

This manuscript is structured as follows: In Section 2, we define
the tension metrics studied in this paper. In Section 3, we explain
the theoretical modelling and aspects of our simulated analyses.
Section 4 describes our findings about Bayesian evidence ratios
and other tension metrics when considering noisy ACDM data
vectors that are analysed with a ACDM model. This scenario
corresponds to the case where realistic noise in a data vector might
be misinterpreted as a physical tension. In Section 5, we consider
a noise free modified gravity data vector that is analysed with a
ACDM model. This scenario mimics the case where an actual
physical tension between the clustering and weak-lensing parts of
the data vector exist. Four appendices offer further explanation of
the details that are only summarized in this section. We conclude in
Section 6.

2 TENSION METRIC DEFINITIONS

In this section, we briefly review tension metrics and establish
consistent notation. We start defining the posterior probability for
a set of parameters Gina given model H and observed data set d as
P(d|d, H). The posterior is related to the likelihood, P(d|6, H), via

PdIH)

The prior, P(§ |#), describes the a priori probability distribution of
the parameters ¢ within the assumed model . The normalization
factor, P(d|H), is called the Bayesian evidence (Marshall et al. 2006).

2.1 Bayesian evidence ratio

The Bayesian evidence OE M data sets d = (dy,--- ,dy) given a
model H of N parameters 6 = (6,, - - - , fy) is given by
PA|H) = /dép(cﬂé, H)PO|H). )

In order to evaluate the probability that experiments d; and d; are in
agreement, we evaluate the odds of hypothesis H,, that we can model
both data sets with a single set of parameters, against the alternative
hypothesis #,, that modelling each data set with a different set of
parameters is preferable.

These odds are defined as P(Hol|dy, d2)/ P(H1|d,, d>) and their
relation to the evidences P(d;, d»|Hy) and P(d;, d>|H) can be
readily seen when applying Bayes’ theorem

P(Holdy, dy) _ P(di, da|Ho) = P(Ho)
P(H\ld\,dy)  P(dy,do|Hy) P(Hy)

where P(H;— 1o,1}) are the prior probabilities of models H;_(,1}.
The first ratio on the right-hand side of equation (3) is known as the
Bayesian evidence ratio, R. If the data sets are independent, we may
express it as

P(dy, d2|Ho)

R= - dn@iito) “@
P(d|H1)P(da|H1)

3)

The Bayesian evidence ratio generally implies agreement between
data sets when R > 1, while R <« 1 flags the opposite. The ratio
changes as a function of prior range, which can mimic consistency
even in the presence of tension.

2.2 Ajx? statistic

The %2 value is a statistic related to the average log-likelihood of
a chain marginalized over the posterior. Given the weights of each
sample i of a chain of length N, we calculate the statistic directly as

ZlN w; In P,' (leé, H)
>0 wi

where the sample weights are defined as the ratio of the sample’s

posterior over the maximum sampled posterior of the chain. We

define a statistic similar to the delta chi-squared statistic of (Marshall

et al. 2006) as the difference between the x2 values of the joint and
independent data sets as:

AX* =5 — (X7 +13)- ©)
This statistic differs from that of suspiciousness (Section 2.5) in
which it calculates the average log-likelihood as marginalized over
the posterior of the samples (as opposed to the underlying probability

distribution). Ay then tells us how likely the samples from joint and
separate data sets correlate.

=2 : s)
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2.3 Generalized parameter distance

The generalized parameter distance estimates the departure from the
fiducial vector (in this case determined by the DES-Y1 best-fitting
cosmology). Itis determined by calculating the covariance of a chain,
3, and the difference in parameter space between the fiducial data
vector, zi and the best-fitting data vector of the samples, jizF, as

A= \/MBF—

2.4 The kullback-leibler divergence

SNk F — i), ™

Alternatively to the evidence ratio, the Kullback—Leibler (KL)
divergence, also known as the relative entropy, determines how
parameters are constrained by the data compared to the prior
constraints (Kullback & Leibler 1951). Defined as

P@qu
P@OIH)

the KL divergence is invariant under model reparametrization and
can be interpreted as measuring the information gain when going
from the prior distribution to the posterior. Similar to entropy,
D; > 0. The KL divergence can also measure the information
gain of augmented data sets by taking P(é |H) — P(é |d;, H) and
P(§ |di, H) — P(§ |d;, dyew, H). The relative entropy between data
sets is the basis of a tension metric called Surprise (Seehars et al.
2014, 2016). Both the KL divergence and surprise computation is
non-trivial outside the Gaussian case, which limits their applicability
as a check for statistical consistency.

D = /déP(éldi, H)1In { ®)

2.5 Suspiciousness

Suspiciousness is a tension metric that aims to alleviate the prior
dependence exhibited in the evidence ratio (Handley & Lemos 2019).
This metric is defined as

InS=InR—1Inl, ©)]
where In/ is defined as the information ratio
In/ ED1+D2—D12. (10)

In restricted cases (e.g. the case of flat priors imposed on a multi-
variate Gaussian likelihood), the prior dependence in the metric is
completely eliminated. For this particular case, a generalization to
correlated data sets has been found (Lemos et al. 2020). Details on the
numerical evaluation of suspiciousness and the Bayesian evidence in
a nested sampling run are shown in Appendix D.

3 MODELLING AND ANALYSIS CHOICES

The theoretical modelling, covariance computation, and validation
for the DES-Y1 3x2pt analysis are described in detail in Krause et al.
(2017). We summarize the main modelling details briefly below.

3.1 Modelling details — observables

The DES 3x2pt data vector consists of the angular galaxy clustering
statistic w (9) of galaxies in redshift bin i, the galaxy—galaxy lensing
statistic 1,7 (9) for galaxies in redshift bin i and shape measurements
for source galaxies in redshift bin j, and cosmic shear two-point
correlations functions £ (@) of shape measurements for source
galaxies in redshift bins 7, j. The galaxy sample used in the clustering
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measurement, which also constitutes the ‘lens’ sample for galaxy—
galaxy lensing, is selected using the redMaGiC algorithm (Rozo
et al. 2016). Details on the DES-Y1 sample selection and redshift
calibration described in Elvin-Poole et al. (2018) and Cawthon et al.
(2018). For the weak-lensing galaxy sample, we adopt the DES-Y1
METACAL source galaxy sample, for which the sample selection from
the DES-Y1 gold catalog (Drlica-Wagner et al. 2018) and the shear
catalog are described in Zuntz et al. (2018), and the source redshift
estimates are described in Hoyle et al. (2018), respectively.

We denote the redshift distribution of the redMaGiC/METACAL
source galaxy sample in tomography bin i as ng/K(z), and the angular
number densities of galaxies in this redshift bin as

e = [ dzniy o). an

Assuming a flat ACDM universe, we write the radial weight function
for clustering in terms of the comoving radial distance x as

(Z(X)) dz

a5, (k, ) = b' (k, 2(0) =~ % ot (12)

My

with bi(k, z(x)) the galaxy bias of the redMaGiC galaxies in

tomography bin i, and the lensing efficiency

3HZQ, ni(z(x' ))dZ/dx X' — X
2¢? a(X ) x'

qc(x) = (13)
where Hj is the Hubble constant, ¢ the speed of light, and a the
scale factor. The angular power spectra for cosmic shear, galaxy—
galaxy lensing, and galaxy clustering are calculated using the Limber
approximation

i, i J [+1/2
C&U)=m/dquX€AX)Hu( - /,dxo,
X X
,- 1172 j
qk(x) 1+1/2
Mm—/ (72 ) (2/“m)
qi L1/2 12
Cils, () = / o ( ) ( ) P

X
14+1/2
x(:/auo, (14)

where Py (k, z) is the non-linear matter power spectrum at wave
vector k and redshift z computed via HALOFIT (Takahashi et al. 2012).

The angular correlation functions are calculated from the angular
power spectra as

i dll ,
g, 0) = /2*]0/4(19)@],((1),

i dl
n () = /7 2(19)C5,K(1),

; 2141 i
w'(0) = Z 1 P (eos®) €3y, 1), (15)
with J,,(x) the n-th order Bessel function of the first kind, and P,(x)
the Legendre polynomial of order /.

3.2 Modelling details — systematics

The DES-Y1 baseline model includes nuisance parameters to ac-
count for uncertainties in astrophysical and observational systematic
effects, summarized below. Prior distributions of our parameters are
given in Table 1, similar to those in DES-Y1 analyses. Parameters
with Gaussian priors (i.e. the lens photo-z shifts, the source photo-z
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Table 1. Table with priors for the cosmological and nuisance parameters,
similar to the adopted priors in DES-Y 1. In addition, we applied flat (0.005,

0.04) priors on QA for minimal compatibility with BBN constraints in

CosmoLike (see Appendix A for further details).

Parameter Prior
Cosmology
Qi flat (0.10, 0.90)
Ay x 1079 flat (0.50,5.00)
ng flat (0.87, 1.07)
Q flat (0.03, 0.07)
Hy flat (55.0, 91.0)
n, flat (0.06, 0.93)
Lens galaxy bias
bi(i=1,5) flat (0.8, 3.0)
Intrinsic alignment
A1a(2) = A1al(1 +2)/1.62]MA
Ala flat (=5, 5)
A flat (=5, 5)
Lens photo-zshift
Az] Gauss (0, 0.008)
Az} Gauss (0, 0.007)
Az} Gauss (0, 0.007)
Az} Gauss (0, 0.010)
Az Gauss (0, 0.010)
Source photo-zshift
Azl Gauss (0, 0.015)
Az? Gauss (0, 0.013)
Azg Gauss (0, 0.011)
Azl Gauss (0, 0.022)
Shear calibration
mi(i=1,4) Gauss (0, 0.023)

shifts, and the shear calibrations) are prior-dominated. A detailed
validation of these parametrizations can be found in Elvin-Poole
et al. (2018), Krause et al. (2017), and Troxel et al. (2018).

Photometric redshift uncertainties The uncertainty in the redshift
distribution 7 is modelled through shift parameters A,

n(x)=n, (z—AL)), xef{g«}, (16)

where 71 denotes the estimated redshift distribution. We marginalize
over one parameter for each source and lens redshift bin (nine
parameters in total), using the the priors derived in Hoyle et al.
(2018) and Cawthon et al. (2018).

Multiplicative shear calibration is marginalized using one parame-
ter m' per redshift bin, which affects cosmic shear and galaxy—galaxy
lensing correlation functions via

£00) — (1+m') (1 +m) g ®),
y(0) — (1+m?)y"©). 7

with Gaussian priors as determined in Troxel et al. (2018) and Zuntz
et al. (2018).

Galaxy bias The DES-Y1 baseline model assumes an effective
linear galaxy bias (b)) using one parameter per galaxy redshift
bin b (k, z) = b, i.e. five parameters, which are marginalized over
conservative flat priors.

Intrinsic galaxy alignments (1A) are modelled using a power spec-
trum shape and amplitude A(z), assuming the non-linear alignment
(NLA) model (Hirata & Seljak 2004; Bridle & King 2007) for the
IA power spectrum. The impact of this specific IA power spectrum
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model can be written as
) . i d
400 — 400 — Ao EEXN & (18)

al dy
The IA amplitude is modelled as a power-law scaling in (1 + z)

with normalization Ars, o and power-law slope ays, which are both
marginalized using conservative priors.

3.3 Likelihood analysis

In the following two sections, we run multiple simulated DES-Y1
likelihood analyses to explore the distribution of Bayesian evidence
ratios as a function different input data vectors. The input data vectors
computed in Section 4.1 resemble realistic noise realizations of the
DES-Y1 survey assuming the DES-Y1 best-fitting cosmology. The
input data vectors in Section 5.1 are computed from a modified
gravity model, thereby inducing a physical tension between the weak
lensing and the galaxy clustering part of the data vector.

Throughout this paper, we assume that the likelihood function
(L) of our data vector (D) is well approximated by a multivariate
Gaussian

L exp( [(D —~M@) C (D - M(é))]), (19)

1

2
where M denotes the theory prediction or model vector. As Lin
et al. (2020) demonstrate Gaussian functional form is a acceptable
approximation, at least for ongoing and future cosmic shear surveys.

We use CosmoLike (Krause & Eifler 2017) with CLASS (Blas,
Lesgourgues & Tram 2011; Lesgourgues 2011a; Lesgourgues 201 1b;
Lesgourgues & Tram 2011) to compute the fiducial data vector
and covariance. We sample the parameter space with the Poly-
chord (Handley et al. 2015) nested sampling, with an interface
implemented in the Cobaya framework (Torrado & Lewis 2020),
assuming the CAMB (Lewis, Challinor & Lasenby 2000; Howlett
et al. 2012) Boltzmann code. We perform extensive tests of our
pipeline that merged CosmoLike and Cobaya, further described
in Appendices A and C.

4 EVIDENCE RATIO AS A FUNCTION OF
NOISY ACDM DATA VECTORS

In this section, we analyse the distribution of Bayesian evidence
ratios for a set of realistic noise realizations of the DES-Y1 data
vectors around the DES-Y1 best-fitting ACDM cosmology. We aim
to examine which of these noise realizations of ACDM can be flagged
as tension according to the Jeffreys scale. We also investigate whether
noise realizations at the one o level are more or less likely to be
classified as tension by the Jeffreys scale compared to 30 and 5o
events.

We calibrate the distribution of evidence ratios for a large
set of noise realizations around the DES-Y1 best-fitting ACDM
cosmology. The noisy data vectors are drawn from the DES-Y1
data covariance, not from the parameter covariance. While the data
covariance and parameter covariance are closely related, noise real-
izations drawn from the low-dimensional parameter covariance map
on to smooth modulations in the 457D data space with little scatter
from the fiducial data vector. Our data covariance includes Gaussian
cosmic variance, shot/shape noise (for clustering/weak lensing,
respectively), and non-Gaussian contributions to the covariance from
the connected four-point function of the matter density field, as well
as super-sample covariance (Takada & Hu 2013). As the Gaussian
cosmic variance terms and shape/shot noise are caused, respectively,
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by the limited number of independent Fourier modes sampled in
each angular bin and the limited number of galaxies sampled in the
power spectrum measurement, noise realizations drawn from the data
covariance are nearly uncorrelated between different Fourier modes
and provide ‘noisy’ scatter with little noticeable bias from the fiducial
data vector.

4.1 Noise realizations of DES-Y1 data vectors

The DES-Y1 covariance matrix for cosmic-shear, galaxy—galaxy
lensing, and galaxy clustering and the noiseless fiducial data vector
are evaluated at the DES-Y1 best-fit cosmology using CosmoLike.
We use the DES-Y1 covariance matrix to generate hundreds of
millions of (Gaussian) noise realizations around the noiseless fiducial
DES-Y1 ACDM best-fitting data vector. The generation of a large
sample of noise realizations densely populates the ¥ = (X2 ar X52)
space around our fiducial data vector. We then applied a Kernel
Density Estimator (KDE) to define, from the samples, confidence
intervals of agreement. Based on these confidence regions, we select
68 data vectors that lie at the 68 per cent (one o), 99.7 per cent
(three o), and 99.99997 per cent (five o) confidence intervals with
approximate angular uniformity in x? space.

The KDE method, implemented with help of GetDist (Lewis
2019) routines, approximates the probability distribution of a contin-
uum of values for x2 from N generated samples )*(,-2:17,,,1N as follows

N
PGH =Y K (3> = %) (20)
i=1

where Ky is a multivariate Gaussian kernel with zero mean and
covariance f x € where C is the sample covariance of the 2.
We found that given our large sample of computed data vectors f
~ 0.1 is a good choice to balance smoothing and noise features in
the P(x?) contours. Fig. 1 shows the final selection of data vectors
as seen in x2 space and displays the 1-50 confidence intervals as
determined by our selected KDE. The angular distribution of the
selected noise realizations nicely covers all quadrants. Fig. 1 also
illustrates the evidence ratios of the selected data vector realizations,
specifically the colour bar shows the natural-log ratio of the data
vector’s 3x2pt evidence to its 2x2pt and shear evidences as defined in
equation (4).

4.2 Simulated analysis of noisy data vector realizations

Using the data vectors as generated in Section 4.1, we now investigate
whether statistical fluctuations in the DES-Y1 data vector have a high
probability of causing tension (as defined by the Jeftreys scale).

Fig. 1 shows that there is no radial or angular dependency in
the value of the evidence ratio as a function of x? values in
cosmic shear and 2x2. Similarly, Fig. 2 shows no differences in
the evidence ratio distribution associated with 1o, 30, and 5o noise
realizations; the histograms of evidence ratios are all centred on large
positive values, as predicted by (Raveri & Hu 2019) and (Handley &
Lemos 2019), using Gaussian approximation, for wide uninformative
priors.

The comparison between the evidence ratio and suspiciousness
(cf. Fig. 3) shows that broad priors significantly increase the number
of noise fluctuations that are not flagged as internal tension by
evidence ratios, but they would be flagged by using suspiciousness.
It is, however, not clear that a prior independent metric, such
as suspiciousness, is necessarily more objective. While Bayesian
evidence tends to hide tensions if broad priors are chosen, it is
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Figure 1. The distribution of %2 for cosmic shear, sthear, and the 2x2pt
(galaxy—galaxy lensing and galaxy clustering), Xzzxzs generated using the
DES-Y1 joint covariance matrix. We compute the 68 per cent, 99.7 per cent,
and 99.99997 per cent confidence intervals from the generation of hundreds
of millions of noise realizations, smoothing the contours, and defining
confidence intervals using a KDE. The data vectors are chosen along these
contours and are represented as coloured points. The colour-code denotes the
log-evidence ratio of the 3x2pt evidence to the 2x2pt and shear evidences
(cf. equation 4). Our selected points are the sample of confidence limits in all
radial directions and we do not find radial or angular trends of the evidence
ratio.
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our noiseless fiducial data vector and the official DES-Y 1 analysis. The mean
log-evidence ratio of each confidence interval is represented as a dotted line,
with the mean and scatter explicitly given for each interval in the top-right
key. The histogram reveals that the points on each contour all have similar
log-evidence ratio distributions. The histogram also shows that the observed
DES-Y1 evidence ratio is rather typical and does not point to an unusual
level of agreement between the data sets, where the Jeffreys scale declares
the DES-Y1 log-evidence ratio to be decisive agreement.
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the supspiciousness is the difference of the average log-likelihoods of joint and independent data sets as marginalized over their posterior distributions and
A2 is the difference of the average sampled log-likelihoods of joint and independent data sets as weighted by their posterior samples. In both the cases, the

fit parameters of the slope are similar for 1o, 30, and 5o noise realizations. For A2, the slope of the fit is close to the predicted for multivariate Gaussian

posteriors.

important to note that tensions in data are inevitably connected to
our prior understanding of the situation. Handley & Lemos (2019)
argue that some known tensions in cosmology would have been
interpreted differently, had they been observed decades ago, when
our prior beliefs encompassed a broader range.

It is difficult to estimate which tension estimator is a better
choice. In Fig. 3 (right-hand panel), we present a comparison and
relative calibration between evidence ratios and suspiciousness for
the specific DES-Y1 case considered in this paper. Our results show
how metrics that rely, at least for Gaussian likelihoods, solely on
the likelihood of the data differ from tension estimators that take the
DES-Y1 prior beliefs into account.

Fig. 2 shows that the observed DES-Y1 evidence ratio does not
point towards an exceptional level of agreement between the data
sets as would be inferred by the Jeffreys scale. Generally speaking,
we do not find a significant difference in the evidence ratio’s mean
or variance of data vectors drawn from the lo, 30, and 50 noise
level (also cf. Fig. 3, left-hand panel). In addition, we also find that
a noisy DES-Y1 data realizations from the 1o confidence region of
the parameter covariance matrix can have a negative evidence ratio,
which would point towards a significant discrepancy. These findings
make it difficult to motivate the DES-Y 1 Bayesian evidence ratio as
a strong indicator for significant agreement between cosmic shear
and 2x2.

In the case of correlated Gaussians, the evidence ratio and
Ax? = x% — x} — x? (i.e. the maximum log-likelihoods) are lin-
early correlated. In our DES-Y1 posteriors, we however find that a
linear combination of the sampled log-likelihoods, defined as A i
(equation 6), is correlated with the evidence ratio. No correlation was
found when comparing evidence ratios against generalized parameter
distances.

5 EVIDENCE RATIOS WITH INTERNAL
TENSION

In this section, we investigate the evidence ratio’s behaviour when
assuming a u-X modified gravity scenario (as studied in Abbott et al.
(2019b), Ade et al. (2016), Aghanim et al. (2018), and Simpson et al.
(2012)) that induces tension between the weak lensing and the galaxy

2.51 E
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= 25
=
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0.0 0.2 0.4 0.6
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Figure 4. Comparison between the evidence Ratio, R, for models with X =
{0.2,0.4, 0.6} and the evidence, Ry, for the ACDM model (£¢ = 0) model.
Black diamonds are chains with DES-Y1 covariance, while blue squares
and red triangles are chains with covariances that were divided by 20 and 50,
respectively. For DES-Y 1 chains, the posterior for many parameters are being
pressed against the prior boundaries before inconsistencies between cosmic
shear and 2x2pt become important, which explains the unexpected behaviour
of evidence ratio going up as a function of X.

clustering parts of the 3x2 data vector. Recall that ¥ # 0 only affects
cosmic-shear and galaxy—galaxy lensing.

5.1 Modified gravity data vectors

Following the definitions in Ferreira & Skordis (2010), the Poisson
and lensing equations in Newtonian Gauge are altered in the p-%
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Figure 5. The posterior distribution of selected parameters for cosmic shear (dashed) and 2x2pt (solid) analyses, and for the default DES-Y1 covariance
(yellow) against the case where the covariance was reduced by a factor 50 (blue). While it is true that X # O predicts inconsistencies between the cosmological
parameters in ACDM, it is difficult to see them in DES-Y1 chains. Not only are the error bars larger in DES-Y1, but the posteriors are also being squeezed

against the prior boundaries.

model as:
KW = 47 Ga*(1 + pu(a))psd 21)
KXW + @) = —87Ga*(1 + =(a))ps. (22)

Similar to the ACDM case (cf. Section 4.1), we compute the -
> data vector at the DES-Y1 best-fitting parameter values. Specifi-
cally, we set (a) = 1o Qa(z)/ Q24 and X(a) = Ly Q4(2)/ 24, with
Q4 (z) being the redshift dependent dark energy density over the
critical density. No noise is added to the modified gravity data vectors.
Similar to the ACDM cases, we apply Halofit (Takahashi et al.
2012) to compute the nonlinear matter power spectrum in the u-
% case. The fact that Halofit does not correctly describe the
nonlinear physics of -X gravity is not a significant concern for this
paper since it is not out goal to analyse actual data. Instead, our goal
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is to examine changes in the evidence ratio when the data vector is
computed from a different underlying physics than the model that is
assumed in the analysis.

5.2 Simulated likelihood analysis — modified gravity induced
tension

We now investigate induced internal tensions in the case where a data
vector originating from p-X gravity (see Section 5.1 for definitions)
is evaluated in the DES-Y1 pipeline for a ACDM cosmology. We
have generated fiducial data vectors with fixed 4 = 0 and X ranging
from 0 < ¥, < 1. We have not added noise realizations from DES-
Y1 covariances; the modified gravity data vector is noise free. Fig. 4
presents a surprising behaviour of evidence ratios: the log-evidence
ratio of the noiseless modified gravity data vector and our fiducial
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noiseless ACDM data vector increases as a function of % (black
diamonds). This means that the physical tension introduced by the
modified gravity parameters in the galaxy clustering, galaxy—galaxy
lensing, and cosmic shear parts of the data vector is not identified as
such by the Bayesian evidence ratio.

Such unexpected behaviour of the evidence ratio can be better
understood by looking at Fig. 5. We see that several parameters are
pushing against the prior boundaries. This boundary effect reduces
differences between the cosmological parameters that fit cosmic
shear and 2x2pt at the expense of making the goodness of fit between
theory and data worse. To check that prior boundaries are indeed
responsible for the unusual behaviour of the evidence ratio, we re-
examine the log-evidence ratio of the noiseless modified gravity data
vector and our fiducial noiseless ACDM data vector by rescaling the
covariance matrices by factors of 20 (cf. Fig. 4, blue squares) and
50 (cf. Fig. 4, red triangles). This rescaling procedure significantly
reduces the posterior volume, which reduces or even removes the
prior boundary effects. Indeed, the evidence ratio now decreases as
a function of ¥, as expected. This type of behaviour exemplifies
the difficulties in interpreting tension metrics in realistic examples
without extensive validation via simulated analyses.

6 CONCLUSION

Tension metrics are an important aspect of multiprobe analyses;
they will be used increasingly to determine whether probes can
be combined or whether tension across probes need to be further
explored. However, tension metrics themselves need to be calibrated
by simulated analyses for each data set in order to define levels of
discordance.

In this work, we study the properties of several tension metrics
for the specific case of the DES-Y1 3x2pt analysis. In Abbott et al.
(2018b), the individual analyses of (1) cosmic shear and (2) the
galaxy—galaxy lensing plus galaxy clustering (so-called 2x2pt) were
compared and ultimately combined into a so-called 3x2pt analysis.
Both data vectors, cosmic shear and 2x2pt, were deemed consistent
under an assumed ACDM model. Consistency was demonstrated
by computing the Bayesian evidence ratio, with the result of 6.39,
and interpreted using the Jeffreys scale. Bayesian evidence ratios,
however, are known to be prior dependent and it is important to
calibrate the computed numbers through a large suite of simulated
analyses.

We run multiple simulated likelihood analyses for a DES-Y1
cosmic shear, 2x2pt, and 3x2pt data vector and find that the Bayesian
evidence value obtained by DES-Y1 (6.39) is rather typical and
internal tensions generated by noise fluctuations about the best-
fitting DES-Y1 data vector are not reflected in the interpretation
of the evidence ratio as quantified by the Jeffreys scale. We
then explore evidence ratios where noiseless data vectors that are
computed from a p-X modified gravity model are analysed with a
pipeline that assumes a ACDM model. Under these assumptions,
a physical tension is induced between the weak lensing and galaxy
clustering parts of the 3x2pt data vector, and we explore the Bayesian
evidence ratio behaviour as a function of increasing the strength
of the modified gravity model (increasing X). We demonstrate
that prior boundary effects can efficiently hide tensions between
the weak lensing and galaxy clustering part of the 3x2pt data
vector. When significantly increasing the constraining power, by
dividing the covariance by factors 20 and 50, we show that such
boundary effects are significantly reduced and the expected tension
appears.

5225

Our findings confirm that the evidence ratio, as measured by
the Jeffreys scale, is biased towards compatibility between the
data sets due to DES-Y1’s adopted priors. These wide priors were
intentionally chosen conservatively and did not take into account
prior knowledge from other experiments. Such wide priors have the
potential to hide tensions between probes. In the near future, DES
data quality will be superseded by stage IV experiments, in particular,
Rubin Observatory’s LSST (Ivezi¢ et al. (2019)), SPHEREx (Bock
& SPHEREX Science Team (2018)), Euclid (Masters et al. (2017)),
and the Roman Space Telescope (Spergel et al. (2015), Eifler et al.
(2021)). These experiments will provide an unprecedented amount
of high-quality data that will enable not just 3x2pt analyses, as
considered in this paper, but a large variety of other cosmological
probes as well. Exploring tensions between probes of the same data
set and (even more interesting) between data sets will be a critical part
of the data analysis of these missions, throughout which simulated
analyses to calibrate tension metrics should become a standard tool
in precision cosmology.
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APPENDIX A: PIPELINE VALIDATION

This appendix focuses on the technical aspects of the pipeline
calibration. As shown in the main manuscript, the DES posteriors
are non-Gaussian in some dimensions, the DES priors are partially
informative in several directions, and the likelihood is weakly con-
straining. Such properties affect the required calibration of samplers’
hyperparameters, such as the Mult iNest’s efficiency (Feroz et al.
2013), given that the entire volume of the parameter space needs to
be well sampled. Indeed, regions in parameter space with low non-
negligible likelihood probabilities can contribute to the Bayesian
evidence as long as there is sufficient prior volume in which the
likelihood takes on these values.

The default Mult iNest configuration on DES-Y1 is: number of
live-points njye = 500, tolerance = 0.1 and efficiency = 0.3. Fig. Al
reveals biases in the evidence values with such settings. For other
hyperparameters, such as the number of live-points, changes in the
reported evidence are compatible with the quoted error bars. These
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Figure A1. MultiNest evidence bias as a function of the sampling efficiency (left-hand panel), number of live points (middle panel), and evidence tolerance
factor (right-hand panel). As a simplifying assumption, the evidence evaluated from the chain with the lowest efficiency, the highest number of live points, or
the highest tolerance factor has zero bias by construction. The error bars reflect Mult iNest’s claimed uncertainties and no error propagation was applied to

take into account the error bars in the value of the unbiased evidence.
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Figure A2. The panel presents the posterior predicted by MultiNest as
a function of the adopted efficiency hyperparameter. Table A2 shows the
values of additional Mul t iNest settings. The comparison against the EMCEE
sampler confirms that chains with high-efficiency do predict posteriors that
are quite close to the truth. Indeed, no posterior feature stands out as being an
outlier, something that would indicate that lower efficiency is indeed needed
as it predicts order unity bias for the evidence (see Fig. Al).

statements are valid for both the shear-only and the 3x2pt analyses.
One prominent feature on Fig. A1 is the constant slope of the evidence
bias as a function of the MultiNest’s efficiency in the case of the
3x2pt analysis. There is no guarantee, therefore, that even efficiencies
of the order of 10~* would provide reliable results, and such settings
raise the evidence’s computational costs by one order of magnitude
in comparison to the hyperparameter values adopted on DES-Y1.
We emphasize that no conclusions on the general applicability of
MultiNest can be drawn from our analysis; results are specific to
DES-Y1. Fig. A1 also does not imply that there are no settings where
MultiNest provides unbiased evidence ratios.

We also checked whether the detected biases on MultiNest
reported evidences could have been identified through features in the
posterior by-product, something that would have called the attention
as being flagrantly corrupted. Fig. A2 shows no substantial deviations
in the posterior as a function of the efficiency parameter, except for
slight enlargement of the 2o contours, and we have run similar
chains using the EMCEE (Foreman-Mackey et al. 2013) sampler to
confirm such statement. Comparisons between MultiNest and
EMCEE require robust calibration on both samplers, as one could
argue that direct comparison could point to problems in EMCEE.

To double-check that convergence on EMCEE has been achieved,
we have run extremely long chains to check the consistency of our
results. Also, we have compared on Fig. A3 EMCEE against a third
sampler — Metropolis—Hasting — where the well established and
reliable Gelman—Rubin criteria (Gelman & Rubin 1992) for conver-
gence can be applied. Such a comparison also cross-checks our code
development, which unites CosmoLike and Cobaya pipelines.' In
our new code, CosmoLike receives distances, parameter values, and

Thttps://github.com/CosmoLike/cocoa
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Figure A3. The figure compares the predicted posterior for the cosmological
parameters given by EMCEE and Metropolis—Hasting samplers. Blue shades
on the 2D panels correspond to dashed blue lines on the 1D posterior plots.
The two 3x2pt data vectors — DVO and DV1 were data vectors with noise
generated using a simulated DES-Y3 covariance. The agreement between the
two samplers is good to cross-check, considering the pipelines are somewhat
different: the linear power spectrum on EMCEE was evaluated within CLASS
(default CosmoLike pipeline), while for the Metropolis-Hasting, we have
performed a merging between Cobaya and CosmoLike and used CAMB to
calculate the matter power spectrum.

.
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Figure A4. The figure compares the predicted posterior for the cosmological
parameters given by Polychord against Metropolis—Hasting. Shades on the
2D panels correspond to dashed lines on the 1D posterior plots. The two 3x2pt
data vectors — DVO and DV1 were data vectors with noise generated using a
simulated DES-Y3 covariance. In both cases, the matter power spectrum was
evaluated using CAMB (without removing the extra Halofit factor shown
in equation C2).
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Figure AS. The figure compares the predicted posterior for the cosmological
parameter given by Polychord as a function of the hyperparameter nyepeats
written in units of the number of parameters in the chain (npgpv). Blue shades
on the 2D panels correspond to dashed blue lines on the 1D posterior plots.
On shear-shear, the posterior shows uncertain behaviour in the case nrepears =
npiM, With no appreciable changes were seen in the range 3 < Trepeats/TIDIM
< 20. This is not necessarily the case for 3x2pt data vectors, where setting
Nrepeats = NDIM 18 acceptable for posteriors.

the matter power spectrum as function of redshift and wavenumber
and returns the DES-Y1 data vector. This merging allowed us to
use both Polychord and Metropolis—Hasting samplers with the
fast-slow decomposition commonly adopted in CMB analyses (Neal
2005; Lewis 2013), while EMCEE and MultiNest chains employ
the original standalone CosmoLike.

It is unclear how much Mult iNest’s biases might have affected
DES-Y1 official results, and it is beyond the scope of this article to
make such an in-depth analysis of the DES-Y1 official chains. We
do, however, believe that Cobaya-CosmoLike code combines the
pipeline validation effort that has been performed on CosmoLike
with samplers that are more robust than MultiNest in evaluating
Bayesian evidence ratios. Cobaya-CosmoLike also provides
Metropolis—Hasting with fast-slow decomposition that possesses
robust convergence criteria, which is hard to be assessed in EM-
CEE. Indeed, the posterior comparison between Metropolis—Hasting
and Polychord show excellent agreement, as seen in Fig. A4.
Moreover, Figs A5 and A6 show that Polychord’s evidence and
posterior are robust against variations on the adopted values for its
hyperparameters.

One additional issue emerged from the comparison between CAMB
and CLASS Boltzmann codes. While the original CosmoLike is
directly integrated to CLASS, the Cobaya framework provided full
support only to CAMB? at the time of running our simulations. Dif-
ferences between CAMB or CLASS should have been negligible, but
we did detect an extra factor on the Halof it formula implemented
by CLASS. We then modified CAMB to match CLASS choices, and
we discuss this issue in greater depth on Appendix C. In addition
to that, CLASS has limitations on the ,4? range when dealing

Zhttps://github.com/CobayaSampler/cobaya/issues/46.
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with BBN constraints and because of that CosmoLike does assume
the prior 0.005 < Q,h* < 0.04. We, therefore, applied the same
prior choice in the Cobaya-CosmoLike joint pipeline. We do not
expect such minor choices to affect the qualitative conclusions of this
work.

APPENDIX B: GAUSSIAN APPROXIMATION

There is a significant difference in computational costs between
running MCMC for parameter estimation and evaluating Bayesian
evidence with nested sampling algorithms. The possibility of as-
sessing evidence ratios using MCMC samples could, therefore,
incentivize a more widespread use of such metric, as well as make
the recalibration of the Jeffreys scale a lot simpler. However, such
inference is generally challenging in high-dimensional spaces (see
Heavens et al. (2017) and references within). Recently, Raveri &
Hu (2019) proposed a Gaussian approximation to the posterior that
can provide an estimate for the evidence ratio. For DES only chains,
some partially constrained parameters are prior limited, which is an
indication that the Gaussian approximation may fail. Nevertheless,
we tested this approximation in a few data vectors to see the potential
reward such a method could bring to the ongoing DES-Y3 analysis
and this work.

We have followed Raveri & Hu (2019) closely, implementing the
Gaussian approximation around either the best fit or the median of the
MCMC chain. Initially, we have tested such a scheme in two noise
realizations generated using an approximate DES-Y3 covariance (see
Table Al). The use of DES-Y3 covariance matrix represents a best-
case scenario given that more constraining data should make the
Gaussian expansion work better. For shear only, the approximation
does not provide accurate Bayesian evidence ratios. Results were
more encouraging for the 2x2pt and 3x2pt analyses, and we further
examined such cases in eight additional noise realizations. Results
are shown in Fig. B1. Unfortunately, there are order unit biases that
make the adoption of this approximation in our work unfeasible for
even the most constraining 3x2pt analysis.

APPENDIX C: HALOFIT

One practical issue has emerged in our sampler comparison that is
related to implementation differences between CAMB and CLASS
codes.? The Cobaya pipeline version adopted in this work had only
partial support for CLASS, while CosmoLike is incompatible with
CAMB. Therefore, the Metropolis—Hasting and Polychoxrd chains
employed CAMB to evaluate the background comoving distances and
the non-linear matter power spectrum, while MultiNest and EM-
CEE chains used CLASS. We, consequently, tested the compatibility
between these Boltzmann codes, and discrepancies in the Halofit
formula were spotted.

3CAMB commit 6884b632fa0bc2229a7bb18bf0b5d1£06c9913£2
on the official GitHub repository https://github.com/cmbant/CAMB.
CLASS commit 63£f3cf18fad0061688b8bf95055765b4793£25¢7
on the official GitHub repository https://github.com/lesgourg/class_public
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Figure A6. Polychord evidence bias as a function of the npepeas parameter (left-hand panel), number of live points (middle panel), and precision criterion
(right-hand panel). As a simplifying assumption, the evidence evaluated from the chain with the highest nrepeats (left-hand panel), the highest number of live
points (middle panel), or the lowest precision criterion factor (right-hand panel) has zero bias by construction. The parameter 7epeais 0n the left-hand panel is
shown in units of the parameter dimension, npmv. The error bars reflect Polychord’s claimed uncertainties, and no error propagation was applied to take into
account the error bars in the value of the unbiased evidence. Computational costs scale as O(nrepears) (Handley et al. 2015), the main bottleneck of our chains,
so we have adopted nrepeais = 3 X npv as a middle ground between accuracy and computational costs.

Table Al. The Comparison performed between predicted Bayesian evidence evaluated using MultiNest, PolyChord, and Gaussian linear modelling of
Metropolis—Hasting chains around either the median of the parameters or the chain best fit. MKL stands for minimum Kullback—Leibler divergence (Kullback
& Leibler 1951), and in that row, we select the Gaussian approximation from the two previous cases by minimizing the KL divergence against the full posterior
(following the recipe from (Raveri & Hu 2019)). In all cases, the additional constraint 0.005 < Q4% < 0.04 were applied as an additional top-hat likelihood.
DVO0 and DV1 represent distinct noise realizations of the best-fitting data vector.

Sampler 3 x 2ptDVO 3 x 2ptDV1 2 x 2pt DVO 2 x 2pt DV1 Cosmic shear DVO Cosmic shear DV1 ~ RDVO RDV1
GLM - Mean —306.4 —204.0 —1724 —116.3 —154.5 —110.89 20.5 23.2
GLM - Chain BF —-307.5 —204.6 —176.4 —117.7 —142.1 -91.7 11 4.8
GLM - MKL —306.4 —204.6 —176.4 —117.7 —154.5 —110.89 24.5 23.9
Polychord —-307.1+£04  —2048+04 —171.8+£04 —1174+£04 —1432+0.3 —94.8+0.3 7.9 7.4
Table A2. Default values assumed for the internal parameters are employed new terms is, in CLASS, the following

in the multiple sampler codes which we analysed in our appendix. With
regards to MultiNest, tolerance corresponds to the evidence tolerance AZQ(k) - AZQ(k){l + /v [0977 — 18.015 x (2, — 0-3)] }s (€2)
factor, efficiency is the sampling efficiency (the variable efr), and njiye
matches the number of live points. In addition, we set to False the boolean
variable that sets up the constant efficiency mode. Using PolyChord, 3
clustering was turned off by default, and ngpeas matches the variable Fig. C1.

num_repeats. EMCEE runs consume a fixed amount of computer resources

to ensure that chains contain no less than 5 million samples. On the other

hand, Metropolis—Hasting samples were running until reaching convergence APPENDIX D: NESTED SAMPLING
according to the Gelman—Rubin criteria, where we find the mean and standard
deviation of the Gelman—Rubin criteria to be 0.02 and 0.2, respectively.

with f, = Q,/2,,. In CAMB, on the other hand, the term proportional
to (£2,, — 0.3) does not exists; the impact of such factor is shown on

Evaluation of the Bayesian evidence is possible with nested sampling
algorithms (Skilling 2006), and we will briefly review them in this
appendix. Let P(6|H) be the prior distribution of the parameters

S 1 i Effici Tol - =

ampier Mive creney vlerance Mrepeats within a model #, £ be the likelihood distribution P(d|0, H), and
MultiNest (MN) 256 0.3 0.1 - & be the evidence P(d|H). We define X()) to be the fraction of the
Polychord 256 - 0.05 3 x dim prior volume contained within the isolikelihood contour given by

P(Jlé, H) = A as shown below

The original Takahashi Halofit formula for the non-linear IR
matter power spectrum A%(k) = kK*P(k)/(2?) is given by X)) = A . do P(OIH). (D1)
A (k) = A (k) 4+ A% (k). (CD) Nested sampling algorithms evaluate evidences via the 1D integral

The specific expression for AzQ(k) and A%,(k) can be found at (Taka- 1

hashi et al. 2012). Both CLASS and CAMB have updates to the €= /0 LX)dX . (D2)
Takahashi formula that aims to provide better agreement against
cosmology with massive neutrinos. We were unable to find the
references in peer-reviewed journals for such updates. One of the

This integration is performed by maintaining a set of live points, 7jie,
that samples a sequence of exponentially contracting volumes that
respects that hard boundary £ > £; at iteration i + 1. The £; value
corresponds to the lowest likelihood of all live points at iteration
i, which is subsequently discarded and replaced by another point
with £ > £;. Making this replacement efficient is the technically
challenging part of the algorithm (see Feroz et al. (2013) and Handley
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etal. (2015) for specific implementations). The set of discarded points
are named dead points, and the discretization of the 1D evidence
integral above is given by

1
Ex 3 > (X = X)) x L. (D3)

iedead

The precise X; volumes are unknown, but can be probabilistically
estimated. To reconstruct the prior volume at the ith iteration, the
algorithm samples the uniform distribution 7y times spanning from
0 to X; _ 1 and retrieves the maximum prior volume (Skilling 2006).

The same procedure can also be used to calculate the KL
divergence

1 L; L;
D; ~ 5 Z (X1 — X)) x ?m (?> . (D4)

iedead

This expression allows us to evaluate suspiciousness using the same
nested sampling runs that are used to calculate evidence, and we have
cross-checked our numerical results for the KL divergence against
the ANESTHETIC package (run on the same chains; Handley 2019).
Finally, this section also shows why the evaluation of the Surprise
metric is challenging. The calculation of the relative entropy between
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data sets would require additional nested sampling runs where the
‘prior’ would be one of the data set’s posteriors.

This paper has been typeset from a TEX/IZTgX file prepared by the author.
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Figure B1. The panels present the comparison between the Bayesian evidence bias calculated using the Gaussian approximation and Polychord’s results.

Evidence bias is defined as the difference for the natural logarithm of the Bayesian evidence. The left-hand panel assumed the 3x2 pt data vector, while we

restrict the analysis to galaxy—galaxy lensing and galaxy clustering in the right-hand panel. The data vectors were randomly generated using a simulated DES-Y3

covariance. Triangle blue points with thick error bars show the results when the Gaussian approximation is made around the median of the chain, while black
round points provide the results for the Gaussian estimation around the sample of chain with the best likelihood. The error bars reflect Polychord’s claimed

uncertainties.
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Figure C1. This figure compares the impact of the additional term that
CLASS implements on the Halofit in comparison to the expression that
CAMB assumes for the non-linear completion of the matter power spectrum.
All MCMC chains adopted the Metropolis—Hasting sampler and CAMB code.
Shades on the 2D panels correspond to dashed lines on the 1D posterior plots.
The two 3x2pt data vectors — DVO0 and DV1 were randomly generated around
the default cosmology using a simulated DES-Y3 covariance. As expected,
the posteriors differ the most on the volume of parameter space associated
with high values for the sum of neutrino masses. Such discrepancy is also
non-negligible on the 1D 2, and Hy marginalized posteriors.
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