
MNRAS 509, 2551–2565 (2022) https://doi.org/10.1093/mnras/stab3114
Advance Access publication 2021 October 28

Multifidelity emulation for the matter power spectrum using Gaussian
processes

Ming-Feng Ho,1‹ Simeon Bird1‹ and Christian R. Shelton2

1Department of Physics & Astronomy, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
2Department of Computer Science & Engineering, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA

Accepted 2021 October 22. Received 2021 October 22; in original form 2021 May 13

ABSTRACT
We present methods for emulating the matter power spectrum by combining information from cosmological N-body simulations
at different resolutions. An emulator allows estimation of simulation output by interpolating across the parameter space of
a limited number of simulations. We present the first implementation in cosmology of multifidelity emulation, where many
low-resolution simulations are combined with a few high-resolution simulations to achieve an increased emulation accuracy. The
power spectrum’s dependence on cosmology is learned from the low-resolution simulations, which are in turn calibrated using
high-resolution simulations. We show that our multifidelity emulator predicts high-fidelity (HF) counterparts to percent-level
relative accuracy when using only three HF simulations and outperforms a single-fidelity emulator that uses 11 simulations,
although we do not attempt to produce a converged emulator with high absolute accuracy. With a fixed number of HF training
simulations, we show that our multifidelity emulator is �100 times better than a single-fidelity emulator at k ≤ 2 hMpc−1, and
�20 times better at 3 ≤ k < 6.4 hMpc−1. Multifidelity emulation is fast to train, using only a simple modification to standard
Gaussian processes. Our proposed emulator shows a new way to predict non-linear scales by fusing simulations from different
fidelities.

Key words: methods: statistical – cosmology: theory – methods: numerical.

1 IN T RO D U C T I O N

Current and next-generation large-scale structure surveys, such as
DES1 (Abbott et al. 2020), LSST (Rubin Observatory2; Tyson 2002),
EUCLID3 (Amendola et al. 2018), DESI4 (DESI Collaboration 2016),
and the Roman Space Telescope (WFIRST; Spergel et al. 2013) will
probe gravitational clustering and galaxy formation at small scales
with high accuracy. Thus, the future of cosmology relies on exploiting
the information in non-linear structure formation at small scales,
where numerical N-body simulations must be used to give accurate
theoretical predictions.

Cosmological linear perturbation theory provides accurate analytic
predictions on the clustering of mass up to k ∼ 0.1 hMpc−1. Despite
the success of the standard model of cosmology, several fundamental
physics puzzles are still unanswered: the accelerated expansion of
the Universe (Caldwell & Kamionkowski 2009), the nature of dark
matter (Feng 2010), and the sum of the neutrino masses (Wong 2011).
To answer these questions and constrain cosmological parameters
using future surveys, theoretical predictions from numerical simula-
tions must be accurate on smaller scales than are accessible to linear
theory. As a primary summary statistic, the matter power spectrum

� E-mail: mho026@ucr.edu (MH); sbird@ucr.edu (SB)
1https://www.darkenergysurvey.org
2https://www.lsst.org
3https://sci.esa.int/web/euclid
4https://www.desi.lbl.gov

needs to be at percent-level precision for k � 10 h Mpc−1 (Schneider
et al. 2016).

Modelling non-linear gravitational clustering is done using N-body
simulations, where a dark matter fluid is sampled by macro-particles
and evolved using a smoothed gravitational force. Each macro-
particle is representative of an ensemble of microscopic dark matter
particles. Generations of computational physicists have improved
the accuracy of the gravitational evolution, and created quicker
and more scalable algorithms to drive the mass resolution of the
simulations ever higher (Barnes & Hut 1986; Greengard & Rokhlin
1987; Hockney & Eastwood 1988; Couchman, Thomas & Pearce
1995; Dehnen 2002).

The mass resolution necessary to robustly predict the power spec-
trum at k ∼ 10 Mpc h−1 pushes the computational limits of contem-
porary supercomputers. To adequately sample a high-dimensional
input parameter space with Markov chain Monte Carlo (MCMC),
millions of samples are needed, while a limited number (at best a
few hundred to a few thousand) of high-fidelity (HF) simulations are
computationally possible.

An efficient way to perform accurate cosmological inference with
a limited number of simulations is to use emulators. Emulators are
flexible statistical models, usually built with Gaussian processes,
which learn the mapping from input cosmological parameters to
summary statistics. This reduces the number of costly forward
simulations by effectively interpolating the function outputs.

Emulators have been applied extensively in the field of cosmologi-
cal inference. Heitmann et al. (2006) and Habib et al. (2007) proposed
a cosmic calibration project to make percent-level predictions on

C© 2021 The Author(s)
Published by Oxford University Press on behalf of Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/2/2551/6413553 by guest on 23 April 2024

mailto:mho026@ucr.edu
mailto:mho026@ucr.edu
https://www.darkenergysurvey.org
https://www.lsst.org
https://sci.esa.int/web/euclid
https://www.desi.lbl.gov

2552 M.-F. Ho, S. Bird, and C. R. Shelton

the matter power spectrum using a Bayesian emulator. Heitmann
et al. (2009), Lawrence et al. (2010), and Heitmann et al. (2014)
implemented this cosmic emulator in their Coyote Universe suite
using 37 high-resolution simulations. Heitmann et al. (2016) and
Lawrence et al. (2017) designed the Mira-Titan Universe suite to
train emulators to make precise theoretical predictions using 36 sim-
ulations. The latest Euclid preparation (Euclid Collaboration 2020)
runs 250 simulations (30003 particles) to prepare their emulator for
the matter power spectrum. Besides Gaussian processes, Agarwal
et al. (2014) used a neural network to build a cosmic emulator from
6380 N-body simulations spanning 580 cosmologies.

Beyond the matter power spectrum, emulators have been trained
to predict the halo mass function (Bocquet et al. 2020), the
concentration–mass relation for dark-matter haloes (Kwan et al.
2013), the galaxy power spectrum (Kwan et al. 2015), the galaxy
correlation function (Zhai et al. 2019), the halo bias (McClintock
et al. 2019), weak-lensing peak counts (Liu et al. 2015), the cosmic
shear covariance (Harnois-Déraps, Giblin & Joachimi 2019), weak-
lensing voids (Davies et al. 2020), the 21 cm signal (Kern et al.
2017), and the Lyman-α 1D flux power spectrum (Bird et al. 2019).
They also have been used for inferring beyond-�CDM cosmologies
(Giblin et al. 2019; Pedersen et al. 2020) and f(R) gravity cosmologies
(Ramachandra et al. 2020).

While all these emulators successfully predict summary statistics
using HF simulations, one question which remains is how to
minimize the number of necessary training simulations to achieve
a given accuracy. Here, we demonstrate that building cosmological
emulators from simulations can be improved with multifidelity mod-
els. Multifidelity models (Kennedy & O’Hagan 2000) minimize the
computational cost by combining the predictive power of simulations
at different resolutions. They fuse the expensive but accurate HF data
with cheaply obtained low fidelity approximations. One standard
model used by the multifidelity emulation is a multioutput Gaussian
process (Bonilla, Chai & Williams 2008). A multioutput Gaussian
process (multioutput GP) generalizes a single-output GP to multiple
outputs, while building a cross-covariance function to model the
shared information between outputs. In this paper, low fidelity
(LF) and HF correspond to simulations at different resolutions. HF
simulations have a finer mass resolution while HF simulations have
a coarser mass resolution.

To train the multifidelity emulator using as few high-resolution
simulations as possible, we also propose a method for selecting HF
training samples, based on minimizing the loss computed among
the LF simulations. By optimizing the LF emulator’s loss, we show
that one can efficiently train a multifidelity emulator by avoiding
worst-case combinations of the HF training samples.

Computational astrophysicists have used methods similar to multi-
fidelity modelling to minimize the cost of performing high-resolution
simulations (Lukić et al. 2015; Chartier et al. 2020). A notable
example is Richardson extrapolation (Richardson 1911), a numerical
method to improve a simulation’s accuracy by combining a sequence
of simulations with varied spatial resolutions and fixed cosmologies.
More recently, generative adversarial networks (GAN) have been
used to produce high-resolution density fields (Kodi Ramanah et al.
2020) and particle displacements (Li et al. 2020) from low-resolution
(but larger volume) input data. In principle, such ‘super-resolution’
simulations could be implemented as a multifidelity emulator’s HF
training set, allowing an emulator to be built to a scale not directly
accessible to simulations.

Rogers et al. (2019) and Leclercq (2018) proposed using Bayesian
optimization to improve emulator accuracy by a sequential choice
of new simulation points designed to globally optimize the emulator

function. Similar approaches to iterative selection of training data in
a cosmological parameter space have been presented by Takhtaganov
et al. (2019) and Pellejero-Ibañez et al. (2020). Computer scientists
and engineers, including Huang et al. (2006), Forrester, Sóbester
& Keane (2007), Lam, Allaire & Willcox (2015), Poloczek, Wang
& Frazier (2016), and McLeod, Osborne & Roberts (2017), have
extensively studied combining multifidelity methods with Bayesian
optimization.5 Multifidelity Bayesian optimization arises when a
cheaper approximation to the object function exists.

We present a multifidelity emulator for the matter power spectrum,
as output by the cosmological simulation code MP-GADGET (Springel
& Hernquist 2003; Feng et al. 2018a). In this paper, we target percent
level relative accuracy: how well our emulators can reproduce the
matter power spectra at our highest fidelity. We defer producing
an emulator which allows percent level accurate reconstruction of
observations or a hypothetical ideal simulation to future work. The
main goal of this paper is to demonstrate that our multifidelity
techniques can be used to reduce the computational budget required
for an emulator.

We use two fidelities in a 256 Mpc h−1 box: a fast but low-
resolution version with 1283 dark-matter particles and a slow but
high-resolution version with 5123 particles. Even with only three HF
simulations and 50 HF simulations, we show that we can predict the
high-resolution matter power spectrum at percent-level accuracy on
average at k ≤ 6.4 h Mpc−1 at z = 0, with a total computational cost
�4 HF simulations. Although we only show our application to the
matter power spectrum, the methods presented in this paper could
apply to other summary statistics, e.g. the halo mass function or the
Lyman-α 1D flux power spectrum.

van Daalen et al. (2011) showed that the lack of AGN feedback
affects a dark matter-only simulation significantly (compared to
the error requirements of upcoming surveys) at k > 0.1 h Mpc−1.
Furthermore, baryon cooling can alter the power spectrum at k ∼
10 h Mpc−1 (White 2004). However, as techniques exist to model
this effect in post-processing (Schneider et al. 2020), we defer
extending our technique to hydrodynamical simulations including
AGN feedback to future work. Here, we validate that a multifidelity
emulator is useful in the simplest case: dark matter-only N-body
simulations.

We build two types of multifidelity emulators. One uses the
linear autoregressive model of Kennedy & O’Hagan (2000; first-
order autoregressive model, AR1), which we will call the “linear
multifidelity model.” The second multifidelity emulator uses the
non-linear fusion model of Perdikaris et al. (2017) (nonlinear auto-
regressive Gaussian process, NARGP), and which we call the “non-
linear multifidelity emulator.”6Kennedy & O’Hagan (2000) model
the scaling factor between fidelities as a scalar, while Perdikaris et al.
(2017) allow the scaling factor to depend on input parameters. Our
implementation of AR1 and NARGP is based on EMUKIT (Paleyes
et al. 2019),7 an open-source package for emulation and decision
making under uncertainty, with the modifications mentioned above.8

5Frazier (2018) has a subsection that provides a short review on multifidelity
Bayesian optimization.
6AR1 and NARGP are acronyms used in Perdikaris et al. (2017) and
Cutajar et al. (2019). In this paper, AR1 and linear multifidelity emulator
are interchangeable, and NARGP and non-linear mutlifidelity emulator are
interchangeable.
7https://github.com/EmuKit/emukit
8For a detailed comparison between AR1 and NARGP, see Cutajar et al.
(2019). An example code for the comparison between AR1 and NARGP can
be found in Emukit’s examples.

MNRAS 509, 2551–2565 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/2/2551/6413553 by guest on 23 April 2024

https://github.com/EmuKit/emukit

MF emulator 2553

In Section 2, we briefly describe the simulation code, MP-GADGET,
for training the emulator. We recap the general formalism of a
single-fidelity GP emulator in Section 3. Section 4 describes the
formalism of a multifidelity emulator (MFEmulator). We explain
our sampling strategy in Section 5. Section 6 shows the results, with
comparisons between multifidelity emulation and single-fidelity em-
ulation. We summarize the runtime for the MP-GADGET simulations
in Section 7. We conclude with a summary of key contributions
and potential applications of our work in Section 8. Our code for
multifidelity emulation in the matter power spectrum is publicly
available at https://github.com/jibanCat/matter multi fidelity emu.

2 SI M U L AT I O N S

We prepare our training set by running dark matter-only simulations
using the massively parallel N-body code MP-GADGET (Feng et al.
2018a).9MP-GADGET is a publicly available N-body + Hydro cosmo-
logical simulation code derived from GADGET3 (Springel & Hern-
quist 2003). It is parallelized using a hybrid OpenMP/MPI strategy
and has successfully performed a hydrodynamical simulation using
all 8 032 Frontera nodes, a total of 449 792 cores, demonstrating its
good scalability properties. The gravitational forces are computed
using a Fourier transform-based particle-mesh algorithm on large
scales and a Barnes-Hut tree on small scales.

We initialize our simulations from the linear power spectrum pro-
duced by CLASS (Lesgourgues 2011) at z = 99 using the Zel’dovich
approximation (Zel’Dovich 1970). The dark matter particles then
evolve through gravitational dynamics. The matter power spectra
are computed from the output snapshots of MP-GADGET, and used
as our emulation targets. In this paper, we fix the initial condition
(IC) noise in the nodes and change only the cosmology for the
emulator training. We do not use the “paired and fixed” technique
(Angulo & Pontzen 2016), but it would be easy to do so using only
low resolution simulations as these pairings are designed to remove
variance on large scales.

The matter power spectrum, P(k), is a compressed summary
statistic of the over-density field, δ(x), evaluated as an angle average
of the Fourier-transformed overdensity field:

P (|k|) = 〈δ̂∗(k)δ̂(k)〉, (1)

δ̂(k) =
∫

d3rδ(r)e−2πik·r . (2)

We measure the power spectrum with a cloud-in-cell mass assign-
ment, which is deconvolved. The Fourier transform is taken on a
mesh same as the PM grid of the simulation, which has a resolution
of two times the mean inter-particle spacing.

For a multifidelity problem, our data are from simulations at
different resolutions. Since low-resolution simulations are cheaper
to obtain (but are only approximations to the high-resolution results),
we typically have a limited number of HF data and many LF
approximations.

To make the text of this section consistent with the following
sections, we provide some notation to bridge the terminology,
summarized in Table 1. We have data from s different fidelities
(simulation resolutions). For each fidelity, we have pairs of inputs
and outputs Dt = {xi,t , yi,t } = {xt , yt }, where t = 1, . . . , s denotes
the fidelity level from low to high, and i = 1, . . . , nt, where nt is
the number of data pairs at fidelity t and i indexes each individual

9https://github.com/MP-Gadget/MP-Gadget/

Table 1. Notations and definitions.

Notation Description

HR High-resolution simulation, 5123 particles
LR Low-resolution simulation, 1283 particles
xi, t Input cosmological parameters at ith simulation at fidelity t
yi, t Matter power spectrum at ith simulation at fidelity t,

at log scale
nt Number of simulations at fidelity t
Nptl, side Number of particles per box side

simulation. The data pairs Dt = {xt , yt } for our emulation setup
are the cosmological parameters of the simulations and the power
spectrum outputs. Here, we have s = 2 for two mass resolutions:
1283 and 5123 dark matter-only simulations. We will denote 1283 as
low-resolution (LR, t = 1) and 5123 as high-resolution (HR, t = 2).

Each fidelity will have a different number of simulations, nt.
Practically, the number of LR simulations will be much larger than
the number of HR simulations, n1 > n2. The compute time for LR

(Nptl, side = 128) is ∼20 and ∼2 000 core hours for HR (Nptl, side =
512). We will empirically show that we only need 3 HR and 50 LR

to train a multifidelity emulator with an average emulator error per k
smaller than 1 per cent.

We do not emulate the matter power spectrum across redshifts,
conditioning on a given redshift bin z0. We generally focus on z0 =
0, but will discuss multifidelity emulators at z0 = 1 and z0 = 2 in
Section 6.4.2.

2.1 Latin hypercube sampling

As Heitmann et al. (2009) mentioned, a space-filling Latin hypercube
design is well suited for GP emulators of the matter power spectrum.
For a training set with d-dimensional inputs and N simulations, an
Nd grid is created first, and simulations are placed on this grid so
that only one simulation is present in any row or column. The Latin
hypercube design improves on random uniform sampling by ensuring
that the chosen points do not crowd together in any subspace.

We apply a Latin hypercube design on the input parameter
space, {h, �0, �b, As, ns}. We vary the �CDM cosmological
parameters {h, �0, �b, As, ns}, which are the Hubble parameter
h = H0/(100 km s−1 Mpc−1), the total matter density �0, the baryon
density �b, primordial amplitude of scalar fluctuations As, and the
scalar spectral index ns. We use the same set of �CDM cosmological
parameters as Euclid Collaboration et al. (2020), allowing us to
compute the relative errors of our simulations with respect to
EuclidEmulator2.

We use bounded uniform priors for the input parameters:

h ∼ U[0.65, 0.75];

�0 ∼ U[0.268, 0.308];

As ∼ U[1.5 × 10−9, 2.8 × 10−9];

ns ∼ U[0.9, 0.99];

�b ∼ U[0.0452, 0.0492]. (3)

The dark energy density is �� = 1 − �0. The prior volume surrounds
the WMAP 9-yr cosmology (Hinshaw et al. 2013). The code to handle
the simulation input files and Latin hypercube design is publicly
available at https://github.com/jibanCat/SimulationRunnerDM.

MNRAS 509, 2551–2565 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/2/2551/6413553 by guest on 23 April 2024

https://github.com/jibanCat/matter_multi_fidelity_emu
https://github.com/MP-Gadget/MP-Gadget/
https://github.com/jibanCat/SimulationRunnerDM

2554 M.-F. Ho, S. Bird, and C. R. Shelton

Figure 1. The matter power spectrum output by MP-GADGET at different mass
resolutions. The vertical dash lines indicate the mean particle spacing kspacing

for a given mass resolution. (Blue): the matter power spectrum from a dark-
matter only MP-GADGET simulation with 643 particles. (Orange): the matter
power spectrum from MP-GADGET with 1283 particles. (Green): the matter
power spectrum from MP-GADGET with 2563 particles. (Red): the matter
power spectrum from MP-GADGET with 5123 particles. (Purple): linear theory
power spectrum. The cosmology parameters are h = 0.675, �0 = 0.278, �b

= 0.0474, As = 1.695 × 10−9, and ns = 9.405 × 10−1. The dotted line shows
the relative error of HR (5123 simulations) compared with EuclidEmulator2
(Euclid Collaboration 2020), averaged over four different cosmologies.

2.2 Preprocessing of the simulated power spectrum

A numerical simulation is constrained by its box size and number of
particles. The mass resolution limits the smallest scale (the highest
k) of the power spectrum. Thus, HF simulations can model smaller
scales, not fully resolved in LF simulations, as shown in Fig. 1.

For k larger than the mean particle spacing, P(k) differs substan-
tially from the resolved value, due to artefacts of the macro-particle
sampling. The scale of the mean particle spacing is

kspacing = 2π
Nptl,side

Lbox
, (4)

where Nptl, side is the number of particles per side of the box. For
instance, if we have 5123 particles in the box, then Nptl, side = 512.
Lbox is the size of the simulation box in units of Mpc h−1.

We use the same set of matter power spectrum k bins for all
fidelities. The available information at small scales is sparse for the
LF spectrum. To resolve the issue, we fix the k bins to HF and linearly
interpolate the LF power spectrum in a log10 scale, log10P(k), on to
the HF k bins. The maximum k is set to be � 6.4 hMpc−1 when
using Nptl, side = 128 as our LF training set. However, in practice,
we found that 1283 and 5123 simulations shared similar k bins with
small offsets at small scales.

We do not model the HF spectrum with k larger than the maximum
k of the LF spectrum:

max kt=2 = max kt=1, (5)

where t indicates the fidelity level and t = 2 is the highest fidelity.
If we do not have any data at a given k from LF, we cannot extract
the correlations between fidelities without other more significant
assumptions. In other words, the maximum k we can model is limited
by the data available from the LF simulations, which always have a
lower maximum k than HF simulations. We note that it is possible to
get a higher maximum k by particle folding or by increasing the size
of the PM grid size used for estimating the power spectrum, although
we do not do that here.

We do model the LF P(k) even on scales smaller than the mean
particle spacing, k > kspacing. We made this particular decision
because we have a prior belief that even though P(k > kspacing) is
highly biased, it still captures some information about how P(k)
depends on cosmological parameters. Thus, we should be able to
exploit the correlations between fidelities and improve the emulator
accuracy at those scales.

To summarize, we:

(i) Use the same set of k bins across different fidelities.
(ii) Preserve all available P(k) from LF, even scales smaller than

the simulation’s mean particle spacing.

3 SI NGLE-FI DELI TY EMULATORS

Here, we briefly recap how we train a single-fidelity emulator.
Readers familiar with this material may wish to skip to Section 4.
The notation we use in this section follows those of Perdikaris et al.
(2017) and Cutajar et al. (2019). Consider a supervised learning
problem, in which we wish to learn the mapping relation, f, between
a set of input and output pairs D = {xi, yi} = {x, y}, where i = 1,
. . . , n:

y = f (x), with x ∈ Rd , (6)

where d is the dimension of the input space. A GP (Rasmussen
& Williams 2005) is a probabilistic framework modelling the
observations, y, as drawn from a noisy realization of a single random
function f with a likelihood p(y | f). It models the distribution over
f

p(f) = GP(f ; μ, K), (7)

with μ the GP mean prior function, which is usually assumed to be
a zero mean prior, and K the covariance kernel function specified
by a vector of hyperparameters, θ . For a given set of inputs, x1,
x2, . . . , xn, the kernel function evaluated on these points produces
a symmetric, positive-definite covariance matrix Kij = K(xi, xj ; θ)
with K ∈ Rn×n.

The choice of the covariance kernel depends on our prior knowl-
edge about the data. The hyperparameters of a chosen kernel are
optimized by maximizing the marginal log-likelihood:

log p(y | x, θ) = −1

2
log |K| − 1

2
y
K−1 y − n

2
log 2π. (8)

For an emulator, the main purpose is to predict an output f∗ = f(x∗)
from a new input point x∗, given the provided data D.

p(f∗ | D, x∗) = N
(
f∗ | μ∗(x∗), σ 2

∗ (x∗)
)
,

μ∗(x∗) = k∗nK−1 y,

σ 2
∗ (x∗) = K(x∗, x∗) − k∗nK−1k

∗n, (9)

where μ∗ is the posterior mean and σ ∗ is the standard deviation of
the uncertainty in the estimate of the predictions. The vector k∗n

is the covariance between the new point and trained data, k∗n =
[K(x∗, x1), . . . , K(x∗, xn)].

3.1 Cosmological emulators

Consider we have a set of dark matter-only simulations with fixed box
size and mass resolution. At each redshift bin z0, we can compute the
matter power spectrum, P(k, z = z0), given a set of input parameters.
We will use the log power spectrum, log10P(k, z = z0), as our training
data.

MNRAS 509, 2551–2565 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/2/2551/6413553 by guest on 23 April 2024

MF emulator 2555

The training data, D = {xi, yi}, are defined as

xi = [hi,�0i , �bi, As i , ns i];

yi = log10 P (k, z = z0),

where i = 1, . . . , n indicates the ith simulation we run with this
specific set of input parameters.

The rest of the modelling is choosing an appropriate covariance
function K(x, x

′
). We use a squared exponential kernel and use

automatic relevance determination (ARD) weights for each input
dimension. ARD assigns each input dimension, xi, a separate hy-
perparameter, wi:

K(x, x ′; θ) = σ 2 exp

(
−1

2

d∑
i=1

wi

(
xi − x ′

i

)2

)
(10)

where i = 1, . . . , d indicates the dimension of the input space x ∈ Rd .
σ 2 is the variance parameter for the squared exponential kernel,
{wi}d

i=1 are the ARD weights. {wi}d
i=1 are inverse length scales, which

define the degree of smoothness at a given input dimension. We note
that we assign independent hyperparameters, θ = {σ 2, w1, . . . , wd},
for each k mode.10 A larger wi corresponds to a smaller length
scale, reflecting that the learned function varies more in the ith
dimension. On the other hand, a smaller wi implies a larger length
scale, indicating that the learned function is smoother along the ith
dimension. ARD allows each dimension of the learned function to
have a different degree of smoothness.

We do not decompose the power spectrum into principle com-
ponents for training the emulators, as described by Heitmann et al.
(2006) and Habib et al. (2007) because we want to compare single-
fidelity emulators to the multifidelity emulators, and an MFEmu-
lator only has a limited number of high-resolution simulations
available. In our default case, we only have three high-resolution
simulations for an MFEmulator, and it is not sensible to perform
dimension reduction on three power spectra.

To ensure that our single-fidelity emulator is not unfairly disad-
vantaged in the comparison with our multifidelity emulator by poorly
constrained hyperparameters, we built a single-fidelity emulator that
shared kernel parameters across all k modes and empirically verified
that it had a similar performance.

4 MULTIFIDELITY EMULATOR

In this section, we describe how we train a multifidelity emulator.
We outline the modelling assumptions in Section 4.1. Section 4.2
describes the formalism of the linear multifidelity emulator proposed
by Kennedy & O’Hagan (2000), a multioutput GP with a linear
correlation between fidelities. Section 4.3 outlines the non-linear
multifidelity emulator of Perdikaris et al. (2017), which models
the correlation between fidelities as a function of cosmological
parameters. We follow the notation and formalism of Kennedy &
O’Hagan (2000), Perdikaris et al. (2017), and Cutajar et al. (2019).

4.1 General assumptions

Here, we outline our modelling assumptions, following the assump-
tions made in Kennedy & O’Hagan (2000):

10Takhtaganov et al. (2019) refers to this approach as the many single-output
approach (MS).

(i) Correlations between the code fidelities: For an N-body sim-
ulation, the simulation cost depends on the mass resolution. We
assume a simulation with a low-mass resolution can approximate a
simulation with a high-mass resolution. The matter power spectrum
from different fidelities is strongly correlated at large scales since
all fidelities are resolved and the mass resolution has negligible
effects. At small scales, however, we expect different fidelities are
only weakly correlated.

(ii) Smoothness: For an emulation problem, we assume that
neighbouring inputs give similar outputs. For example, suppose two
sets of input parameters to MP-GADGET are close to each other. In
that case, we assume that an N-body simulation will provide a similar
outcome.

(iii) The prior belief on each fidelity is a Gaussian process: We
assume a prior belief that the mapping from code input to output is
a GP for each fidelity.

The first assumption is the core assumption of a multifidelity
emulator. Different levels of the same code are simulating the same
physical reality. It is thus reasonable to assume that different code
fidelities should correlate at some level. However, a naive simulation,
for example, Nptl, side = 16 could only barely approximate a HR with
Nptl, side = 512. Therefore, we should also assume the correlation
between fidelities depends on the distance between two fidelities in
the dimension of mass resolution.

There is thus a trade-off between the strength of correlation and
the computational expense: for example, a simulation with Nptl, side

= 256 provides more information about a HR (Nptl, side = 512), but
running a 2563 simulation is eight times most expensive than running
a LR (Nptl, side = 128).

One can select an optimal choice of simulation cost by balancing
the computational time and the emulation accuracy. Here, we choose
Nptl, side = 128 for our LF simulations because:

(i) The maximum k is � 6.4 h Mpc−1, which includes enough
non-linear scales to test the emulation accuracy;

(ii) A 1283 simulation is 64 times cheaper than a HR, and thus the
resolution difference between Nptl, side = 128 and Nptl, side = 512 is
large enough to demonstrate whether simulations with lower costs
can accelerate the training of an emulator.

In Section 6.4.1, we will show our method is applicable to simulations
with different resolutions, Nptl, side = 64 and 256. Empirically, we
found that using Nptl, side = 256 as LF is similar to Nptl, side = 128,
while Nptl, side = 64 gives a worse emulation accuracy.

The second assumption, the smoothness assumption, is the general
assumption of a GP emulator. A GP emulator will have poor accuracy
if the code does not behave similarly with similar input. The
smoothness assumption is also the assumption behind the Latin
hypercube sampling scheme (for a detailed discussion, see Heitmann
et al. 2009).

A multifidelity emulation could, in principle, be implemented
using other models (see Peherstorfer, Willcox & Gunzburger (2018)
for different data-fitting models for surrogates). We chose to use
GPs simply because their Bayesian approach supports uncertainty
quantification and there is a well-developed community around GP

emulation.

4.2 Linear multifidelity emulator (AR1)

We have multifidelity data Dt as described in Section 2. A multifi-
delity emulator is essentially inferencing the highest fidelity model
conditioned on data from all model fidelities. The final goal of a

MNRAS 509, 2551–2565 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/2/2551/6413553 by guest on 23 April 2024

2556 M.-F. Ho, S. Bird, and C. R. Shelton

multifidelity emulator is to find a mapping relation f such that, from
an arbitrary input vector x∗, we can always find the highest fidelity
code output:

ys,∗ = f (x∗). (11)

As described by Kennedy & O’Hagan (2000), a linear autoregressive
model can be applied in a multifidelity setting by assuming a
hierarchical order between fidelities:

ft (x) = ρt ft−1(x) + δt (x), (12)

where ft is the function emulated by a GP at t fidelity and ft − 1

is the function emulated at the previous fidelity level (t − 1). The
linear component of equation (12) is ρ t, which models the correlation
between fidelities as a linear relation. δt is a GP modelling the bias
term:

δt ∼ GP(μδt
, Kt). (13)

We modify equation (12) so inference is performed on each k bin
independently. For k = kj, we have independent kernel and scaling
parameters for each k = kj mode. For simplicity, we will drop the k
= kj notation in the rest of the paper:

ft (x) = ρt (ft−1(x) − μt−1) + δt (x). (14)

The mean of the bias term, μδt
, is assumed to be the zero function. For

the LF part, we subtract the sample mean of the logarithm training
power spectra, log10P(k), and model the LF part of the power spectra
as a zero mean GP:

(f1(x) − μ1) ∼ GP
(
0, K1

(
x1, x

′
1; θ1

))
. (15)

As shown in Fig. 1, the LF power spectrum is biased high. We pass
variations of the LF power spectrum around its mean to the next
fidelity to avoid passing biased outputs. In practice, we found that
this slightly improves emulation accuracy for multifidelity models.

For the highest fidelity bias function, δs(x), we model the power
spectrum using a zero mean GP without subtracting the sample mean.
We do not have enough points at the highest fidelity for the sample
mean to be a good estimate of the true mean. Except for t = 1, ft(x)
is completely determined by ft − 1(x), δt(x), and ρ t.

As mentioned by Kennedy & O’Hagan (2000), there is a Markov
property implied in the covariance structure of equation (12):

cov
{
ft (x), ft−1(x ′) | ft−1(x)

} = 0, (16)

which is true for all x �= x
′
. Equation (16) indicates that if we have

ft − 1(x), then other input parameters ft − 1(x
′
) do not contribute to

training ft(x).
The Markovian property also suggests that an efficient training set

{D1,D2, · · · ,Ds} for a multifidelity GP is a nested structure:

x1 ⊆ x2 ⊆ · · · ⊆ xs . (17)

The above notation says that, given an input point x at fidelity t, there
must be an input x in its lower fidelity u, where u < t and t, u ∈
{1, 2, ···, s}. The reason for using a nested experimental design is
that since we have xt−1 ⊆ xt , we can immediately get an accurate
posterior ft − 1(x) at the x location without interpolating at the t − 1
level. However, in practice, we found that our multifidelity emulators
performed well even without a nested design in the input space.11

11Without a nested design in input space, we found, for a multifidelity
emulator using 50 LR and 3 HR, the non-nested one is only 5 per cent worse
than the nested one on the relative errors.

Figure 2. The learned scale factor between fidelities in the linear multifidelity
model, ρ, as a function of k. This scale factor is learned from 50 LF simulations
and 3 HF simulations.

At a given fidelity t, the posterior at a test input x∗ could be written
as

p(f∗t | D, x∗) = N
(
f∗t ; μ∗t (x∗), σ 2

∗t (x∗)
)
, (18)

where we denote predictions from new inputs as subscript ∗. The
predictive mean and variance are

μ∗t = ρt · μ∗t−1(x∗) + μδt

+ k∗nt
K−1

t [yt − ρt · μ∗t−1(xt) − μδt
];

σ 2
∗t = ρ2

t · σ 2
∗t−1(x∗) + K(x∗, x∗) − k∗nt

K−1
t k

∗nt
, (19)

where k∗nt
= [Kt (x∗, x1), . . . , Kt (x∗, xnt

)] is a vector of covariance
between the new location and the training locations at fidelity t.
Kt = Kt (xt , x′

t) is the covariance matrix of training locations at
fidelity t.

4.2.1 Covariance kernel

For a linear multifidelity emulator, we place an independent squared
exponential kernel on each kj. The mathematical form of the kernel
is same as equation (10).

Having ARD weights means we assign different length scales to
each dimension so that the kernel can be trained anisotropically.
We found that using ARD in the highest fidelity did not improve the
model’s accuracy. Thus, we decided to assign an isotropic kernel for
δs. For a two-fidelity emulator (s = 2), we have six hyperparameters
in LF for each k bin; five of them are the length scale parameters;
and one is the variance parameter. We have three hyperparameters
for each k bin in HF, with one scale factor ρ t between fidelities, one
variance parameter, and one length scale parameter. We have 49 bins
in k, so the total number of trainable hyperparameters is 441.

Fig. 2 shows the learned scale factor, ρ.12 ρ is roughly unity
at large scales k ≤ 2 hMpc−1, but its value increases dramatically
after k > 2 h Mpc−1. Non-linear physics becomes important and the
LF simulations become less reliable at small scales, making the
relationship between fidelities non-trivial. We want to emphasize
that the scale factor, ρ, is learned from the multifidelity emulator. We
did not enforce ρ to be a specific shape during the training. Because

12The multifidelity scale factor shown Fig. 2 is ρ2, which is ρt when t = 2.
For simplicity, we use ρ to refer to ρ2 for our multifidelity emulators.

MNRAS 509, 2551–2565 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/2/2551/6413553 by guest on 23 April 2024

MF emulator 2557

we learn the mapping from LR to HR using the training data, it is
expected that LR runs deviate from HR power spectra. The purpose
of multifidelity emulation is to correct these deviations.

4.3 Non-linear multifidelity emulator (NARGP)

The linear multifidelity model in equation (12) assumes the scale
factor ρ t is independent of input parameters, x, and so does not
model the cosmological dependence of the scale factor ρ t. The non-
linear multifidelity model proposed by Perdikaris et al. (2017) drops
this assumption, allowing the scale factor, ρ t(·), to be a function of
both input cosmology and output from the previous fidelity. As for
the linear multifidelity model, we model the non-linear multifidelity
GP independently for each k:

ft (x) = ρt (x, ft−1(x) − μt−1) + δt (x), (20)

where ρ t(·) is a function of both input parameters x and the previous
fidelity’s output. ρ t(·) is modelled as a GP equation (20) results
in a more complicated distribution over ft, a deep GP (Damianou
& Lawrence 2013). To avoid added computational and statistical
complexity, we follow the same approximation as Perdikaris et al.
(2017) and replace ft − 1 in equation (20) with its posterior, f∗t − 1.
The result is a regular GP,

ft ∼ GP(0,Kt), (21)

whose kernel can be furthermore decomposed:

Kt (x, x ′) = Ktρ (x, x ′; θ tρ) · Ktf (f ′
∗t−1(x), f ′

∗t−1(x ′); θ tf)

+ Ktδ (x, x ′; θ tδ), (22)

where f ′
∗t−1 ≡ f∗t−1(x) − μt−1 for simplicity. The first kernel Ktρ

models the cosmological dependence of the scale factor ρ. Next, Ktf

models the covariance of the output passing from the previous fidelity
to the current level. The final term Ktδ models the model discrepancy
between fidelities. For the lowest fidelity, the matter power spectrum
is only modelled with Ktδ .

Each kernel in equation (22), (Ktρ , Ktf , Ktδ), is modelled as a
squared exponential kernel. Suppose we assign a different length
scale parameter for each x dimension. Ktρ will have d + 1 hyper-
parameters, Ktf will have two hyperparameters, and Ktδ will have
d + 1 hyperparameters. As for the linear emulator, we found no
improvement in accuracy in practice by using ARD for the HF model.
Thus, we have two hyperparameters for each kernel in HF and d +
1 hyperparameters for LF. To be explicit, in the HF model, Ktρ has
two hyperparameters, Ktf has two hyperparameters, and Ktδ has two
hyperparameters. For d = 5, we have six hyperparameters for LF and
six for HF models at each k bin.

4.3.1 Halo Model Interpretation

The formulation of our multifidelity emulator bears a marked
resemblance to the equations which form the basis of HALOFIT
(Smith et al. 2003), and are themselves motivated by the halo model
(Peacock & Smith 2000; Seljak 2000). This correspondence allows us
to provide a physical interpretation of our results. In the halo model,
matter clustering is schematically divided into two components: a
two-halo term and a one-halo term. The two-halo term arises from
correlations between haloes on large scales, while the one-halo term,
which has a weaker dependence on cosmology, is sensitive to the
density profile inside each halo. We can model this by splitting the
non-linear power spectrum

PNL(k) = PQ(k) + PH(k). (23)

The quasilinear term PQ(k) is a two-halo term, while PH(k) is a one-
halo term. The two-halo term can be modelled by the linear theory
power spectrum filtered by a window function W(M, k):

PQ(k) = PL(k)

(∫
W (M, k)dM

)2

. (24)

The window function depends on the halo mass function and halo
bias, encodes how virialization displaces the linear matter field, and
tends to unity on large scales.

There is a clear connection between this model and the form of
our multifidelity emulator. Equations (12; AR1) and (20; NARGP)
move between fidelities via two terms: a scaling factor ρ and an
additive factor δt. The correlations between fidelities are strong on
large scales, and so ρ → 1 as k → 0. ρ is analogous to the quasilinear
window function, except that it filters not the linear theory power
spectrum PL, but the LF N-body model ft − 1(x). In the context of the
halo model, it extrapolates the existing quasilinear halo filtering to
include lower mass haloes not included in the LF simulation.

The additive factor δt, which is important on small scales, is
analogous to the one-halo term. It models the difference in halo
shot noise and internal halo profiles between resolutions. Notice that
δt, like the one-halo term, depends only weakly on cosmology, as
evidenced by it requiring only one length-scale hyperparameter.

5 SA M P L I N G ST R ATE G Y FO R H F
SI MULATI ONS

In this section, we will describe how we select the training simula-
tions for our multifidelity emulators. We will first describe the nested
structure implemented in multifidelity emulators in Section 5.1.
Section 5.2 explains how we find the optimal choice of highfidelity
training simulations.

5.1 Nested training sets

The proposed sampling scheme for training and testing is shown in
Fig. 3. The corresponding output power spectra are shown in Fig. 4.
In Fig. 3, the sampling is done using two different Latin hypercubes:

(i) Training simulations: a Latin hypercube with 50 points. HR

points are a subset of LR points.
(ii) Testing simulations: another Latin hypercube with 10 points.
(iii) We use the notation “X LR-Y HR emulator” to represent a mul-

tifidelity emulator trained on X number of low-resolution simulations
and Y number of high-resolution simulations.

The first hypercube with 50 points ensures that we will have a nested
experimental design. The second hypercube is to ensure we will
not test on the training simulations during the validation phase. In
practice, we found that the emulation accuracy roughly converged
with ∼30 LR points.

5.2 Optimizing the loss of LF simulations

For a multifidelity problem, we want to minimize the required HF
training simulations to achieve a given accuracy. We search for the
optimal subset of LR points to simulate at HR by picking the subset
that would minimize the LF training set’s single-fidelity emulator
errors. In our experiments with two fidelities, s = 2, there are

(
n1
n2

)
possible combinations for x2, which are input parameters for the HF
data, D2 = {x2, y2}.

Retraining LF-only emulators on all possible subsets of the LF grid
is computationally intensive. For example, selecting two samples out

MNRAS 509, 2551–2565 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/2/2551/6413553 by guest on 23 April 2024

2558 M.-F. Ho, S. Bird, and C. R. Shelton

Figure 3. Two 2D cross-sections of the 5D samples of input parameters. The input parameters are designed with a nested structure, x1 ⊆ x2, between HR and
LR. (Blue):x1, 50 sampling points in LR. (Orange):x2, 3 sampling points in HR. The selection of these three points is chosen by the procedure described in
Section 5.2, which minimizes the LR error in the LF-only emulator. (Green): 10 points from the HR testing set, which is a different Latin hypercube than x1.

Figure 4. Training (left) and testing (right) data for the multifidelity emulator. (Left): 50 LF training simulations (blue) and three HF simulations (orange) used
in a 50LR–3HR emulator. A HR is a 5123 simulation and a LR is a 1283 simulation. Both HR and LR are in a box with 256 Mpc h−1 per side. The 50 LF training
simulations are drawn from a 5D Latin hypercube, (h, �0, �b, As, and ns). The three HF simulations are a subset of the LF simulation hypercube. (Right): 10
HF test simulations (green dashed) and three HF training simulations (orange).

of 50 points means that we have to train
(50

2

) = 1 225 LF emulators.
To save computational cost, we employed a greedy optimization
strategy. Instead of exploring all possible subsets, we grew the subset
one point at a time, fixing the previously chosen points. As a further
optimization, we used the same set of kernel hyperparameters for all
k bins.

Consider S, a potential D2 with x2 ⊂ x1. We train a LF-only
emulator based on equation (8) using the n2 LF points in S and get
a GP:

p(f∗ | S, x∗) = N
(
f∗ | μ(i)

∗ (x∗), σ (i)
∗ (x∗)2

)
, (25)

which is the posterior as described in equation (9).
With the trained LF-only emulator in equation (25), we can test

this single-fidelity emulator’s performance by predicting the rest of
the data in the LF Latin hypercube. To evaluate the accuracy, we
compute the mean squared error by averaging over the test data:

MSE = E
[(

y∗ − μ(i)
∗ (x∗)

)2
]
, (26)

where {(x∗, y∗)} are the LF data pairs from the rest of the Latin
hypercube,

{(x∗, y∗)} ∈ {D1 − S}. (27)

This simply means that we test the single-fidelity emulator on the
available data not included in the training subset.

Suppose we repeat the training of single-fidelity emulators until
we train all possible subsets in the LF hypercube. We will now have(

n1
n2

)
trained single-fidelity emulators. Each single-fidelity emulator

will provide a mean squared error, which is the test error that the
emulator generates against the LF hypercube test data. To select the
optimally trained emulator, we compute

S∗ = arg minS∗ (E
[(

y∗ − μ(i)
∗ (x∗))2

])
, (28)

where we find the subset S∗ which minimizes the mean squared
errors on the test set. We use S∗ as our HF training set D2 under the

MNRAS 509, 2551–2565 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/2/2551/6413553 by guest on 23 April 2024

MF emulator 2559

Figure 5. Emulator mean squared errors evaluated from 643 emulators and
2563 emulators. We compute all subsets of three samples from a 50 samples
Latin hypercube,

(50
3

) = 19 600 subsets in total. Colourbar is in log scale.
The blue dashed line represents a perfect linear relationship.

nested experimental design. To be explicit:

x2 = xS∗ ⊂ x1, (29)

where x2 are the selected HF input points, xS∗ are the input points
from the selected subset S∗ (which minimizes the LF emulator mean
squared error), and x1 are the LF input points.

This strategy assumes that the effect of a sampling scheme on
a LF emulator is the same as that on a corresponding multifidelity
emulator. For example, suppose
�b is crucial for learning how
the LF power spectrum y1 changes for inputs x1. In that case, we
expect that information about
�b can also effectively change the
HF spectrum y2.

The above assumption could be violated if the power spectra at
small scales, which are not included in the LF data, behave very
differently from those at large scales. This could happen if the
smoothness length scale acts very differently between LF and HF data
for a given input dimension. For example, imagine that a parameter,
θ , has a small effect on the outcomes of LF simulations, but a large
effect on the outcomes of HF simulations.

Fig. 5 shows the mean squared errors computed from 643 single-
fidelity emulators and 2563 single-fidelity emulators. First, note that
the selection of the training simulations affects the emulator accuracy.
Secondly, the LF emulator errors are correlated with their higher
fidelity counterparts. This suggests that a LF emulator can serve as a
guide for placing HF training simulations. The HR parameter choices
used in Section 6 were selected with an earlier version of our model
using 643 particle simulations. We checked that using either 643 or
1283 for selection gave almost the same emulation accuracy for a
non-linear 50 LR-3 HR emulator, though one of the selected samples
is different.

In practice, we find the procedure above can prevent us from
selecting the HR combination that will give us the worst multifidelity
emulation result. Although, we have tested that our procedure
works for the matter power spectrum, we would suggest that when
emulating a new summary statistic (e.g. the halo mass function),
the reader investigates the effectiveness of this method using small
test cases. We may in future work and investigate using Bayesian
optimization (e.g. Forrester et al. 2007; Lam et al. 2015; Poloczek
et al. 2016) to select the optimal HR samples for multifidelity
training.

Figure 6. Predicted divided by exact power spectrum from a 50 LR–3 HR

emulator using a linear multifidelity method (AR1). Different colours cor-
respond to 10 test simulations spanning a 5D Latin hypercube. The shaded
area indicates the worst-case 1 − σ emulator uncertainty. There is one test
simulation driving the larger error compared to the non-linear one in Fig. 7.

Figure 7. Predicted divided by exact power spectrum from a 50 LR–3 HR

emulator using a non-linear multifidelity method (NARGP). Different colours
correspond to 10 test simulations spanning a 5D Latin hypercube. The shaded
area indicates the worst-case 1 − σ emulator uncertainty. Note that the y-scale
in this plot is the same as Fig. 6.

6 R ESULTS

This section shows the interpolation accuracy of multifidelity meth-
ods and compares our multifidelity emulators to single-fidelity
emulators. Section 6.1 compares test set emulator errors for the linear
multifidelity emulator (AR1) and non-linear multifidelity emulator
(NARGP). Section 6.2 compares a multifidelity emulator to two
kinds of single-fidelity emulators: HF only and LF only. We also
compare the emulator accuracy as a function of core hours for both
multifidelity emulators and single-fidelity emulators.

To test how much a multifidelity emulator can improve with more
training simulations, Section 6.3 shows the emulator errors with
more LR or HR training simulations. Finally, Section 6.4 checks the
performance of the multifidelity method for other emulation settings.

6.1 Comparison of linear and non-linear emulators

Figs 6 and 7 show the predicted power spectrum divided by the exact
power spectrum for simulations in the testing set. Both emulators,
linear (AR1) and non-linear (NARGP), are trained with 50 LF sim-
ulations and 3 HF simulations. We will call these emulators “50 LR–

MNRAS 509, 2551–2565 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/2/2551/6413553 by guest on 23 April 2024

2560 M.-F. Ho, S. Bird, and C. R. Shelton

Figure 8. Relative emulator errors from a 50 LR–3 HR emulator using linear
multifidelity (blue) and non-linear multifidelity (orange). Solid lines represent

the average error from test simulations, 1
10

∑10
i=1 | Ppred ,i

Ptrue
− 1|. Shaded areas

show the maximum and minimum test errors.

3 HR emulators” for simplicity. A non-linear (linear) multifidelity
emulator requires at least 3 (2) HR simulations for training and has
� 2 per cent (� 5 per cent) worst-case accuracy per k bin. For a
linear multifidelity emulator, the minimum required number of HR

simulations is 2, reflecting the lower number of hyperparameters in
the kernel.

Fig. 8 shows a comparison between a linear multifidelity emulator
and a non-linear multifidelity emulator in relative emulator error. We
include linear and non-linear 50 LR–3 HR emulators. We define the
relative emulator error:

Emulator Error =
∣∣∣∣Ppred

Ptrue
− 1

∣∣∣∣ . (30)

Ppred is the predicted power spectrum from the multifidelity emulator,
and Ptrue is the power spectrum from the HF test simulation.

Fig. 8 shows that the linear 50 LR–3 HR emulator predicts an aver-
age error < 1 per cent per k bin for k ≤ 4 h Mpc−1 and < 2 per cent
per k bin for 4 < k ≤ 6.4 h Mpc−1. The non-linear multifidelity em-
ulator predicts an average error � 1 per cent per k bin, which implies
we only need 3 HR to achieve a percent-level accurate emulator
using the non-linear multifidelity method. At k ≤ 3 h Mpc−1, both
emulators predict mostly the same accuracy, but the non-linear one
performs better at smaller scales k > 3 h Mpc−1.

We found that the non-linear multifidelity emulator outperforms
the linear one in all aspects. For simplicity, we will only show the
non-linear multifidelity models in the following sections, but we
note that a linear multifidelity model is still useful when only two HR

simulations are available. We also found that, for the linear model,
changing from 50 LR–3 HR emulator to 50 LR–2 HR emulator only
slightly degrades the overall accuracy.

6.2 Comparison to single-fidelity emulators

6.2.1 Comparison to HF-only emulators

Fig. 9 shows a comparison between a non-linear 50 LR–3 HR em-
ulator and HF-only emulators. The HF-only emulators are single-
fidelity emulators trained solely on HR simulations. The non-linear
multifidelity emulator outperforms the single-fidelity emulator with
11 HR at all k modes. It also predicts a worst-case error smaller
than the worst-case error from the 11 HR single-fidelity emulator.
At k ≤ 2 h Mpc−1, the multifidelity emulator performs much better
than the single-fidelity emulators. Since LR simulations can predict

Figure 9. Non-linear multifidelity emulator (blue) with 50 LR and 3 HR

simulations, compared to single-fidelity emulators with 3 HR (orange) and
with 11 HR (green). Shaded area indicates the maximum and minimum
emulation errors. The computational cost for a 50 LR–3 HR emulator � 9000
core hours while the single-fidelity emulator with 11 HR requires � 25 000
core hours. However, a 50 LR–3 HR emulator still outperforms an 11 HR

emulator.

Figure 10. Relative emulator errors between a 50 LF emulator and a non-
linear 50 LR–3 HR emulator. Errors are evaluated on 10 HR simulations. Shaded
area indicates the maximum and minimum errors. Note that the y-axis is in
log10 scale.

accurate power spectrum at large scales k ≤ 2 h Mpc−1, we expect a
single-fidelity emulator requires ∼50 HR to compete with the 50 LR–
3 HR emulator on large scales. A HR is �64 times more expensive
than a LR, thus the core time for a 50 LR–3 HR emulator is �4 HR. The
non-linear multifidelity outperforms a single-fidelity 11 HR emulator
with �3 times lower computational cost.

The error reduction rate is the relative error of a single-fidelity
emulator divided by the error of a multifidelity emulator. Both linear
and non-linear 50 LR–3 HR emulator show an error reduction rate
of �100 for k ≤ 0.5 h Mpc−1, �100 times better than the single-
fidelity counterpart using 3 HR. At smaller scales k > 3 h Mpc−1, the
multifidelity emulators are �20 times (non-linear), and �10 times
(linear) better than their single-fidelity counterpart.

6.2.2 Comparison to LF-only emulators

Fig. 10 shows a single-fidelity emulator trained on 50 LR simulations,
compared to a non-linear 50 LR–3 HR emulator. Fig. 10 demonstrates
how multifidelity modelling improves the emulator accuracy at each
k scale. At k � 3 h Mpc−1, multifidelity modelling uses 3 HR to

MNRAS 509, 2551–2565 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/2/2551/6413553 by guest on 23 April 2024

MF emulator 2561

Figure 11. Core hours for running the training simulations versus emulation
errors for HF-only emulators (orange) and LF-only emulators (blue), linear
multifidelity emulators (AR1) with 2 HR (green), and non-linear multifidelity
emulators (NARGP) with 3 HR (purple). The numbers in the labels indicate
the number of training simulations used in the emulator. For multifidelity
emulators, X-Y, X is the number of low-resolution and Y is the number of high-
resolution training simulations. The dots show the average errors. The upper
shaded areas show the maximum emulator errors among 10 test simulations.
The LR samples beyond 100 are drawn from a separate Latin hypercube with
400 samples. For LF-only emulators, we only calculate the relative errors for
k ≤ 3.

correct the resolution and reduce the average emulator error from
� 5 per cent to ≤ 1 per cent. A LF emulator predicts a biased power
spectrum beyond k = 3 h Mpc−1. However, the multifidelity method
can moderately correct the bias and reduce the error to � 1 per cent.
Again, the multifidelity technique can use a few HR simulations to
calibrate the resolution difference.

6.2.3 Core hours versus emulator errors

Fig. 11 shows the average relative emulator error as a function of core
hours for performing the training simulations. The emulator errors
shown in Fig. 11 are averaged over all k modes, so each emulator
corresponds to a single point in the plot. An ideal emulator will be
on the left bottom corner, implying both low cost and high accuracy.
The slope of a given emulator in the plot indicates how easily we
can improve the emulator with more training data. A steeper (more
negative) slope means we can increase the emulator accuracy with a
lower cost.

We notice three types of emulators are clustered in separate regions
in the plot. The LF-only emulator has the lowest cost and shows no
noticeable improvement from increasing training simulations from
50 to 400 LR. The HF-only emulator (HF-only) shows an accuracy
improvement with more HR simulations from 3 HR to 11 HR. However,
performing one HR requires ∼2000 core hours, making the HF-only
emulator much more expensive than the other two emulators in the
plot.

In Fig. 11, the non-linear multifidelity emulator (NARGP) shows
a compute time similar to 3 HR simulations but has better accuracy
than the HF-only emulator. It also presents a steeper slope than the
HF-only emulator, indicating we can efficiently increase the accuracy
using low-cost LR simulations. From 10 LR–3 HR emulator to 50 LR–
3 HR emulator, it shows that we can decrease the error from ∼0.02
to ∼0.003 using an additional ∼800 core hours. From 50 LR–3 HR

emulator to 400 LR–3 HR emulator, we also see a mild decrease of
error but not as steep as 10LR–3HR to 50LR–3HR.

Figure 12. Relative emulator error of non-linear N LR–3 HR emulator colour
coded with different number of LR training simulations, with N ∈ {10, 20,
30, 40, 50}. The same as Fig. 8, solid lines represent the average error from

test simulations, 1
10

∑10
i=1 | Ppred,i

Ptrue
− 1|, and shaded areas show the maximum

and minimum test errors.

We also include the linear model (AR1) to demonstrate the
performance of the multifidelity method when there are only 2 HR

available. The linear model also shows a steep improvement slope
from 10LR–2HR to 50LR–2HR. However, we notice that the linear
model with 2 HR is slightly worse than the non-linear one with 3 HR.

Fig. 11 demonstrates that a multifidelity emulator can provide
good accuracy with a much lower cost than HF-only emulators. It
also points out that we can efficiently improve the accuracy of a
multifidelity emulator using cheap LF simulations.

6.3 Varying the number of training simulations

6.3.1 Effects of more low-resolution training simulations

The benefit of using a multifidelity emulator is that we can improve
the emulator accuracy using extra LF simulations. Fig. 12 shows the
emulator error colour coded by the number of LR training simulations.
With more LR training data, the emulator performance improves at
both large and small scales. We only show the non-linear emulator
here for simplicity, but we observe a similar trend in the linear emu-
lator. For NLR–3HR with N ∈ {10, 20, 30, 40, 50} emulators, the last
k bin gives 3.77 per cent, 1.16 per cent, 1.15 per cent, 0.97 per cent,
and 1.04 per cent emulator errors, indicating an increase of accuracy
with more LR training simulations. Dividing the errors into large
and small scales at k = 1 h Mpc−1, the average emulator errors
are 0.65 per cent, 0.22 per cent, 0.10 per cent, 0.09 per cent, and
0.09 per cent for k ≤ 1 h Mpc−1 and 1.60 per cent, 1.04 per cent,
0.60 per cent, 0.61 per cent, and 0.56 per cent for k > 1 h Mpc−1.
The decrease in error is nearly saturated with ∼40 LR simulations.

6.3.2 Effects of more high-resolution training simulations

In Fig. 13, we add more HR training simulations to our multifidelity
emulator. The 50 LR–N HR emulator with N ∈ {3, 5, 7, 9} shows no
improvement in average error with more HR, although the worst case
error improves noticeably for the 50 LR–9 HR emulator. One reason
may be stochasticity in the training set due to simulation modelling
error, which is around 1 per cent, and limits the prediction accuracy.
In particular, MP-GADGET simulations with 5123 particles may not
be fully converged on small scales, and this limits the emulator’s

MNRAS 509, 2551–2565 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/2/2551/6413553 by guest on 23 April 2024

2562 M.-F. Ho, S. Bird, and C. R. Shelton

Figure 13. Relative emulator errors from non-linear 50 LR–N HR emulator
with N = 3 (blue), N = 5 (orange), N = 7 (green), and N = 9 (red) HR training
simulations. Solid lines are the average test errors. Shaded areas show the
maximum and minimum test errors.

Figure 14. Relative emulator errors for 50 LR–3 HR emulators using different
qualities of LR simulations. (Blue): using 1283 simulations as LF training
simulations. (Orange): using 643 simulations as LR, which are �8 times
cheaper than 1283 simulations. (Green): using 2563 simulations as LR, which
are �8 times most expensive than 1283 simulations. Shaded area shows the
maximum and minimum errors amongst 10 test simulations.

learning. Another possibility is that prior from 50 LF simulations
may be too hard to overcome with only 9 HR simulations.

To improve multifidelity emulator accuracy further, one could
build a more complicated model than the one proposed in this paper.
The improvement from the linear to the non-linear model shows that
different decisions about the scaling factor ρ could better predict
the non-linear structure. However, those complicated models will
require more HF training simulations. We will leave more complex
modelling structures to future work.

6.4 Effect of other emulation parameters

6.4.1 The resolution of LF simulations

We have so far tested multifidelity emulators using 1283 simulations
(LR) as LF and 5123 simulations (HR) as HF. Fig. 14 shows non-linear
50 LR–3 HR emulators using different mass resolutions, 643 and 2563

simulations, as LF.
A 643 simulation is �512 times cheaper than a HR but has a smaller

maximum k with max (k) � 3 h Mpc−1. It produces percent level
accuracy for k ≤ 1 h Mpc−1 and has worst-case errors < 5 per cent at

Figure 15. Relative emulator errors for a non-linear emulator at different
redshifts, z ∈ {0, 1, 2}. Note that the y-axis is in log10 scale. The larger error
in the z = 2 emulator at k > 2 h Mpc−1 may be due to a transient near the
mean-particle spacing in the LR simulations, see Fig. 16.

small scales k ≥ 1 h Mpc−1. A 2563 simulation is �8 times cheaper
than a HR simulation, so the computational cost for a 50 LR–3 HR

emulator is �9 HR simulations. This emulator mildly outperforms the
emulator where LR is 1283, with an average percent-level emulation
until k � 12 h Mpc−1, but at a substantially increased computational
cost.

Fig. 14 demonstrates that one can fuse various qualities of LR with
HR simulations to build a multifidelity emulator. Fig. 14 also shows
that the multifidelity emulator’s accuracy depends on the correlation
between LR and HR. A 643 simulation is only a rough approximation
to its 5123 counterpart, so the emulator that uses 643 simulations as
LF is less accurate than the others in Fig. 14.

6.4.2 Emulation at z = 1 and z = 2

This section examines the performance of a non-linear emulator at
higher redshifts, z = 1 and z = 2. Fig. 15 shows the emulator error
of a non-linear 50 LR–3 HR emulator at z = 0, 1, 2. The mean error
at z = 1 is smaller than the z = 0 error at k ≤ 2 h Mpc−1 while it is
larger for k > 2 h Mpc−1

. This result shows that it is easier to train the correlation between
fidelities at large scales k ≤ 2 h Mpc−1 while harder to train at small
scales k > 2 h Mpc−1. The emulator at z = 2 also shows a better
performance than z = 0 at large scales, k ≤ 2 h Mpc−1, but the
error diverges to ∼10 per cent on smaller scales, k > 2 h Mpc−1.
The improved performance on large scales may be because at higher
redshifts the matter power spectrum is closer to linear theory and so
the correlation between fidelities is easier to learn.

Fig. 16 shows the matter power spectrum at z = 2, with
the same cosmological parameters as Fig. 1 and indicates a
potential explanation. At z = 2, the LF simulation contains a
systematic at the scale of the mean inter-particle spacing, re-
lated to the initial spacing of particles on a regular grid. This
systematic is a transient and disappears by z = 0. However,
at redshifts, where it is present, it implies that the LF simula-
tions contain very little cosmological information on scales near
their mean interparticle spacing, k � 3 h Mpc−1 and thus cannot
significantly improve the emulation accuracy. It may be possi-
ble to improve performance at high redshift with the use of
other pre-initial conditions such as a Lagrangian glass (White
1994).

MNRAS 509, 2551–2565 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/2/2551/6413553 by guest on 23 April 2024

MF emulator 2563

Figure 16. The matter power spectrum at z = 2, output by MP-GADGET with
different mass resolutions. The vertical dash lines indicated the mean particle
spacing kspacing for a given mass resolution. (Blue): the matter power spectrum
from dark-matter-only MP-GADGET simulation with Nptl, side = 64. (Orange):
the matter power spectrum from MP-GADGET with Nptl, side = 128. (Green):
the matter power spectrum from MP-GADGET with Nptl, side = 256. (Red):
the matter power spectrum from MP-GADGET with Nptl, side = 512. (Purple):
linear theory power spectrum.

7 RUNTIME

We ran our simulations using MP-GADGET on UCR’s High Per-
formance Computing Centre and the Texas Advanced Computing
Centre. The standard computational setup was 256 MPI tasks per
simulation for both HR (5123 dark matter particles) and LR (1283

dark matter particles). The runtime was ∼20 core hours for LR and
∼2 000 core hours for HR, with a fixed boxsize 256 Mpc h−1. The
computational time for a 643 simulation was ∼1.5 core hours with
64 MPI tasks and ∼280 core hours for a 2563 simulation with 256
MPI tasks.

The computational cost for training a non-linear 50 LR–3 HR

emulator (NARGP) was �0.5 h and �1.6 h for a linear 50 LR–3 HR

emulator (AR1) on a single core. For a single-fidelity emulator, it was
�2 min on one core. The compute time could be further improved
by parallelizing the hyperparameter optimization for each k bin. The
compute time for optimizing the choice of HR using LF emulators
was ∼3 h for selecting 3 HR (on one core). The run time was �12 s
for evaluating 10 test simulations.

8 C O N C L U S I O N S

We have presented multifidelity emulators for the matter power
spectrum. Multifidelity methods fuse together N-body simulations
from different mass resolutions to improve interpolation accuracy.
Multifidelity emulators use many LF simulations to learn the power
spectrum’s dependence on cosmology, correcting for their low
resolution by adding a few HF simulations. The result is equivalent in
accuracy to a single-fidelity emulator performed entirely with much
more costly HF simulations. A multifidelity emulator’s physical
motivation can be understood using the halo model: LF simulations
capture the two-halo term at large scales, while a few HF simulations
are used to learn the (almost cosmology independent) one-halo term
at small scales.

We have also proposed a new sampling strategy which uses LF
simulations as a prior to place HF training simulations. We choose
our HF training samples by optimizing the LF emulator’s error.
In this way, the input parameters at which to run HR simulations
can be optimized without knowledge of the HR output. We showed

that single-fidelity emulator errors are correlated between different
fidelities, indicating that a lower fidelity emulator can serve as a good
prior for picking HR simulation points.

Our best multifidelity emulator achieved percent level accuracy
using only 3 HR simulations and 50 LR simulations, with a total
computational cost �4 HR simulations. We showed it outperforms
a single-fidelity emulator with 11 HR simulations. We expect that
a single-fidelity emulator would require ∼50 HR simulations to
compete with the multifidelity one at large scales, k ≤ 2 h Mpc−1.

In this paper, we used 1283 simulations as our LF training sample
and 5123 simulations as HF, with a fixed 256 Mpc h−1 box. However,
Fig. 14 indicates that our method still has a good performance when
extended to other resolutions. We tested our emulator with a series
of 10 HR simulations in a Latin hypercube. Two types of multifidelity
emulators, linear (AR1) and non-linear (NARGP), are used. We
showed that both emulators perform similarly at large scales, while
the non-linear one has a better accuracy at small scales.

We focused on z = 0, but also investigated higher redshifts. Higher
redshift power spectra behave more linearly than at z = 0, so it is
easier to learn the large-scale correlation between fidelities. However,
the LF power spectra are less reliable beyond the mean particle
spacing at higher redshifts, inducing some difficulty modelling small
scales with k > 2 h Mpc−1.

Our multifidelity emulators could provide percent-level predic-
tions for future space- and ground-based surveys at a minimum com-
putational cost. All current emulators are single-fidelity, training only
on expensive HF simulations. A single-fidelity emulator requires at
least ∼40 simulations to give percent-level accuracy in a �CDM
Universe. For example, Heitmann et al. (2009) use 37 simulations to
emulate a 5D �CDM model. Euclid Collaboration (2020) use ∼200
HF simulations (30003 dark matter particles) to achieve the upcoming
Euclid mission’s desired accuracy in an 8D parameter space.

Our multifidelity methods can also be used to improve the existing
single-fidelity emulators. For example, suppose we have run 50 high-
resolution simulations to build an emulator. We can perform three
additional super high-resolution simulations and combine them to
build a super-resolution multifidelity emulator. The choice of these
three simulations could be selected via the optimization strategy
proposed in this paper. Instead of performing super high-resolution
simulations, one could use GAN techniques (see Li et al. 2020)
to generate super-resolution simulations and combine them with a
multifidelity emulator.

Besides increasing the resolution, multifidelity methods could also
be used to decrease the emulation uncertainty of an existing emulator
by extending it with many low-resolution simulations. This indicates
a low-cost way to enhance current emulators. Multifidelity emulators
may make possible efficient expansion of the prior parameter volume.
Since HF simulations are only used to calibrate the resolution, they
might not need to span the whole parameter space, implying we can
expand the sampling range of an existing emulator by extending
the LF sampling range. We will leave this technique to future
work.

In this work, we have tested our multifidelity emulators with 5123

resolution and a relatively small box 256 Mpc h−1. In future, we
will apply the framework developed here to create a production
quality emulator using higher particle load simulations (e.g. 20483

particles) in larger boxes. Other summary statistics, including the
halo mass function and the cosmic shear power spectrum, could also
be emulated using the same framework.

The multifidelity framework may also be extended to hydrody-
namical simulations, which are much more costly than their dark
matter-only counterparts. No production hydrodynamical emulators

MNRAS 509, 2551–2565 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/2/2551/6413553 by guest on 23 April 2024

2564 M.-F. Ho, S. Bird, and C. R. Shelton

including galaxy formation effects, such as AGN feedback yet exist.13

However, AGN feedback significantly affects the matter power
spectrum at k > 0.1 h Mpc−1 (van Daalen et al. 2011) and pressure
forces can affect the power spectrum at k ∼ 10 h Mpc−1 (White
2004). Thus practical exploitation of the small-scale information
from future surveys will require the development of hydrodynamical
emulators. By decreasing the computational cost of an emulator by
a factor of ≈3 and still outperforming a single-fidelity emulator,
the work presented here makes emulation development substantially
more practical.

SOFTWARE

We used the GPY (GPy 2012) package for Gaussian processes.
For multifidelity kernels, we moderately modified the multifidelity
submodule from EMUKIT (Paleyes et al. 2019).14 We used the MP-
GADGET (Feng et al. 2018a) software for simulations.15 We generated
customized dark matter-only simulations using Latin hypercubes a
modified version of SIMULATIONRUNNER.16

AC K N OW L E D G E M E N T S

We thank the referee for providing insightful suggestions and
comments. We thank Martin Fernandez, Phoebe Upton Sanderbeck,
Mahdi Qezlou, and Shan-Chang Lin for valuable help and dis-
cussions on this project. We thank Cosmology from Home 2020
for providing a valuable place for discussing simulation-based
inference during the pandemic. MFH acknowledges funding from
a NASA Future Investigators in NASA Earth and Space Science
and Technology (FINESST) grant. SB was supported by NSF grant
AST-1817256. Computing resources were provided by NSF XSEDE
allocation AST180058.

DATA AVAILABILITY

The code to reproduce a 50 LR–3 HR emulator is available at https://
github.com/jibanCat/matter multi fidelity emu alongside the power
spectrum data.

RE FERENCES

Abbott T. M. C. et al., 2020, Phys. Rev. D, 102, 023509
Agarwal S., Abdalla F. B., Feldman H. A., Lahav O., Thomas S. A., 2014,

MNRAS, 439, 2102
Amendola L. et al., 2018, Living Rev. Relativ., 21, 2
Angulo R. E., Pontzen A., 2016, MNRAS, 462, L1
Aricò G., Angulo R. E., Contreras S., Ondaro-Mallea L., Pellejero-Ibañez

M., Zennaro M., 2020, MNRAS, 506, 4070
Barnes J., Hut P., 1986, Nature, 324, 446
Bird S., Rogers K. K., Peiris H. V., Verde L., Font-Ribera A., Pontzen A.,

2019, J. Cosmol. Astropart. Phys., 2019, 050
Bocquet S., Heitmann K., Habib S., Lawrence E., Uram T., Frontiere N., Pope

A., Finkel H., 2020, ApJ, 901, 5
Bonilla E. V., Chai K., Williams C., 2008, Advances in Neural Information

Processing Systems. NIPS, Curran Associates, Inc., 20

13Villaescusa-Navarro et al. (2020) has a neural net emulator trained with
4233 (magneto-)hydrodynamical simulations in a relatively small box,
25 Mpc h−1. Aricò et al. (2020) has an hydro-emulator using baryonification
methods for BACCO simulations.
14https://github.com/EmuKit/emukit
15https://github.com/MP-Gadget/MP-Gadget
16https://github.com/sbird/SimulationRunner

Caldwell R. R., Kamionkowski M., 2009, Ann. Rev. Nucl. Part. Sci., 59, 397
Chartier N., Wandelt B., Akrami Y., Villaescusa-Navarro F., 2020, MNRAS,

503, 1897
Couchman H. M. P., Thomas P. A., Pearce F. R., 1995, ApJ, 452, 797, preprint

(arXiv:astro-ph/9409058)
Cutajar K., Pullin M., Damianou A., Lawrence N., González

J., 2019, Deep Gaussian Processes for Multi-fidelity Modeling,
preprint (arXiv:1903.07320)

Damianou A., Lawrence N., 2013, in Carvalho C. M., Ravikumar P., eds,
Proceedings of Machine Learning Research Vol. 31, Proceedings of
the Sixteenth International Conference on Artificial Intelligence and
Statistics. PMLR, Scottsdale, Arizona, USA, p. 207

Davies C. T., Cautun M., Giblin B., Li B., Harnois-Déraps J., Cai Y.-C., 2020,
MNRAS, 507, 2267

Dehnen W., 2002, J. Comput. Phys., 179, 27
DESI Collaboration, 2016, The DESI Experiment Part I: Science,Targeting,

and Survey Design, United States, preprint (arXiv:1611.00036)
Euclid Collaboration et al., 2020, MNRAS, 505, 2840
Feng J. L., 2010, ARA&A, 48, 495
Feng Y., Bird S., Anderson L., Font-Ribera A., Pedersen C., 2018a, MP-

Gadget/MP-Gadget: A tag for getting a DOI.
Forrester A. I., Sóbester A., Keane A. J., 2007, Proc. R. Soc. A., 463, 3251
Frazier P. I., 2018, A Tutorial on Bayesian OptimizationShow affiliations,

preprint (arXiv:1807.02811)
Giblin B., Cataneo M., Moews B., Heymans C., 2019, MNRAS, 490, 4826
GPy since, 2012, GPy: A Gaussian process framework in python. http://gith

ub.com/SheffieldML/GPy
Greengard L., Rokhlin V., 1987, J. Comput. Phys., 73, 325
Habib S., Heitmann K., Higdon D., Nakhleh C., Williams B., 2007,

Phys. Rev. D, 76, 083503
Harnois-Déraps J., Giblin B., Joachimi B., 2019, A&A, 631, A160
Heitmann K., Higdon D., Nakhleh C., Habib S., 2006, ApJ, 646, L1
Heitmann K., Higdon D., White M., Habib S., Williams B. J., Lawrence E.,

Wagner C., 2009, ApJ, 705, 156
Heitmann K., Lawrence E., Kwan J., Habib S., Higdon D., 2014, ApJ, 780,

111
Heitmann K. et al., 2016, ApJ, 820, 108
Hinshaw G. et al., 2013, ApJS, 208, 19
Hockney R. W., Eastwood J. W., 1988, Computer Simulation using Particles.

Taylor & Francis, Inc., USA
Huang D., Allen T. T., Notz W. I., Miller R. A., 2006, Struct. Multidisc.

Optim., 32, 369
Kennedy M., O’Hagan A., 2000, Biometrika, 87, 1
Kern N. S., Liu A., Parsons A. R., Mesinger A., Greig B., 2017, ApJ, 848,

23
Kodi Ramanah D., Charnock T., Villaescusa-Navarro F., Wandelt B. D., 2020,

MNRAS, 495, 4227
Kwan J., Bhattacharya S., Heitmann K., Habib S., 2013, ApJ, 768, 123
Kwan J., Heitmann K., Habib S., Padmanabhan N., Lawrence E., Finkel H.,

Frontiere N., Pope A., 2015, ApJ, 810, 35
Lam R., Allaire D., Willcox K. E., 2015, 56th AIAA/ASCE/AHS/ASC

Structures, Structural Dynamics, and Materials Conference. the American
Institute of Aeronautics and Astronautics, Inc., Kissimmee, Florida, USA

Lawrence E., Heitmann K., White M., Higdon D., Wagner C., Habib S.,
Williams B., 2010, ApJ, 713, 1322

Lawrence E. et al., 2017, ApJ, 847, 50
Leclercq F., 2018, Phys. Rev. D, 98, 063511
Lesgourgues J., 2011, preprint (arXiv:1104.2932)
Li Y., Ni Y., Croft R. A. C., Di Matteo T., Bird S., Feng Y., 2020, Proceedings

of the National Academy of Science, 118, 2022038118
Liu J., Petri A., Haiman Z., Hui L., Kratochvil J. M., May M., 2015,

Phys. Rev. D, 91, 063507
Lukić Z., Stark C. W., Nugent P., White M., Meiksin A. A., Almgren A.,

2015, MNRAS, 446, 3697
McClintock T. et al., 2019, preprint (arXiv:1907.13167)
McLeod M., Osborne M. A., Roberts S. J., 2017, preprint (arXiv:1703.04335)
Paleyes A., Pullin M., Mahsereci M., Lawrence N., González J., 2019, in

Second Workshop on Machine Learning and the Physical Sciences, NIPS.

MNRAS 509, 2551–2565 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/2/2551/6413553 by guest on 23 April 2024

https://github.com/jibanCat/matter_multi_fidelity_emu
http://dx.doi.org/10.1103/PhysRevD.102.023509
http://dx.doi.org/10.1093/mnras/stu090
http://dx.doi.org/10.1007/s41114-017-0010-3
http://dx.doi.org/10.1093/mnrasl/slw098
http://dx.doi.org/10.1038/324446a0
http://dx.doi.org/10.1088/1475-7516/2019/02/050
https://github.com/EmuKit/emukit
https://github.com/MP-Gadget/MP-Gadget
https://github.com/sbird/SimulationRunner
http://dx.doi.org/10.1146/annurev-nucl-010709-151330
http://dx.doi.org/10.1086/176348
http://arxiv.org/abs/astro-ph/9409058
http://arxiv.org/abs/1903.07320
http://dx.doi.org/10.1006/jcph.2002.7026
http://arxiv.org/abs/1611.00036
http://dx.doi.org/10.1146/annurev-astro-082708-101659
http://dx.doi.org/http://doi.org/10.1098/rspa.2007.1900
http://arxiv.org/abs/1807.02811
http://dx.doi.org/10.1093/mnras/stz2659
http://github.com/SheffieldML/GPy
http://dx.doi.org/10.1016/0021-9991(87)90140-9
http://dx.doi.org/10.1103/PhysRevD.76.083503
http://dx.doi.org/10.1051/0004-6361/201935912
http://dx.doi.org/10.1086/506448
http://dx.doi.org/10.1088/0004-637X/705/1/156
http://dx.doi.org/10.1088/0004-637X/780/1/111
http://dx.doi.org/10.3847/0004-637X/820/2/108
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://dx.doi.org/10.1007/s00158-005-0587-0
http://dx.doi.org/10.1093/biomet/87.1.1
http://dx.doi.org/10.3847/1538-4357/aa8bb4
http://dx.doi.org/10.1093/mnras/staa1428
http://dx.doi.org/10.1088/0004-637X/768/2/123
http://dx.doi.org/10.1088/0004-637X/810/1/35
http://dx.doi.org/10.1088/0004-637X/713/2/1322
http://dx.doi.org/10.3847/1538-4357/aa86a9
http://dx.doi.org/10.1103/PhysRevD.98.063511
http://arxiv.org/abs/1104.2932
http://dx.doi.org/10.1103/PhysRevD.91.063507
http://dx.doi.org/10.1093/mnras/stu2377
http://arxiv.org/abs/1907.13167
http://arxiv.org/abs/1703.04335

MF emulator 2565

Peacock J. A., Smith R. E., 2000, MNRAS, 318, 1144, preprint (astro-
ph/0005010)

Pedersen C., Font-Ribera A., Rogers K. K., McDonald P., Peiris H. V., Pontzen
A., Slosar A., 2020, J. Cosmol. Astropart. Phys., 2021, 033

Peherstorfer B., Willcox K., Gunzburger M., 2018, SIAM Rev., 60, 550
Pellejero-Ibañez M., Angulo R. E., Aricó G., Zennaro M., Contreras S.,

Stücker J., 2020, MNRAS, 499, 5257
Perdikaris P., Raissi M., Damianou A., Lawrence N. D., Karniadakis G. E.,

2017, Proc. R. Soc. A., 473, 20160751
Poloczek M., Wang J., Frazier P. I., 2016, Advances in Neural Information

Processing Systems, Curran Associates, Inc., Multi-Information Source
Optimization, 30

Ramachandra N., Valogiannis G., Ishak M., Heitmann K., 2020, Phys. Rev.
D, 103, 123525

Rasmussen C. E., Williams C. K. I., 2005, Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT Press,
Cambridge, MA, USA

Richardson L. F., 1911, Phil. Trans. R. Soc., 210, 307
Rogers K. K., Peiris H. V., Pontzen A., Bird S., Verde L., Font-Ribera A.,

2019, J. Cosmol. Astropart. Phys., 2019, 031
Schneider A. et al., 2016, J. Cosmol. Astropart. Phys., 2016, 047

Schneider A., Stoira N., Refregier A., Weiss A. J., Knabenhans M., Stadel J.,
Teyssier R., 2020, J. Cosmol. Astropart. Phys., 2020, 019

Seljak U., 2000, MNRAS, 318, 203

Smith R. E. et al., 2003, MNRAS, 341, 1311,
Spergel D. et al., 2013, preprint (arXiv:1305.5422)
Springel V., Hernquist L., 2003, MNRAS, 339, 289
Takhtaganov T., Lukic Z., Mueller J., Morozov D., 2019, ApJ, 906, 74
Tyson J. A., 2002, in Tyson J. A., Wolff S., eds, SPIE Conf. Ser. Vol.

4836, Survey and Other Telescope Technologies and Discoveries. SPIE,
Bellingham, p. 10

van Daalen M. P., Schaye J., Booth C. M., Dalla Vecchia C., 2011, MNRAS,
415, 3649

Villaescusa-Navarro F. et al., 2020, ApJ, 915, 71
White S. D. M., 1994, preprint (astro-ph/9410043)
White M., 2004, Astropart. Phys., 22, 211
Wong Y. Y. Y., 2011, Ann. Rev. Nucl. Part. Sci., 61, 69
Zel’Dovich Y. B., 1970, A&A, 500, 13
Zhai Z. et al., 2019, ApJ, 874, 95

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 509, 2551–2565 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/2/2551/6413553 by guest on 23 April 2024

http://dx.doi.org/10.1046/j.1365-8711.2000.03779.x
http://dx.doi.org/10.1137/16M1082469
http://dx.doi.org/10.1093/mnras/staa3075
http://dx.doi.org/http://doi.org/10.1098/rspa.2016.0751
http://dx.doi.org/10.1098/rsta.1911.0009
http://dx.doi.org/10.1088/1475-7516/2019/02/031
http://dx.doi.org/10.1088/1475-7516/2016/04/047
http://dx.doi.org/10.1088/1475-7516/2020/04/019
http://dx.doi.org/10.1046/j.1365-8711.2000.03715.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06503.x
http://arxiv.org/abs/1305.5422
http://dx.doi.org/10.1046/j.1365-8711.2003.06206.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18981.x
http://dx.doi.org/10.1016/j.astropartphys.2004.06.001
http://dx.doi.org/10.1146/annurev-nucl-102010-130252
http://dx.doi.org/10.3847/1538-4357/ab0d7b

