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ABSTRACT
Whilst the underlying assumption of the Friedman-Lemaı̂tre-Robertson-Walker (FLRW) cosmological model is that matter is
homogeneously distributed throughout the universe, gravitational influences over the life of the universe have resulted in mass
clustered on a range of scales. Hence we expect that, in our inhomogeneous Universe, the view of an observer will be influenced
by the location and local environment. Here, we analyse the one-point probability distribution functions and angular power
spectra of weak-lensing (WL) convergence and magnification numerically to investigate the influence of our local environment
on WL statistics in relativistic N-body simulations. To achieve this, we numerically solve the null geodesic equations which
describe the propagation of light bundles backwards in time from today, and develop a ray-tracing algorithm, and from these
calculate various WL properties. Our findings demonstrate how cosmological observations of large-scale structure through WL
can be impacted by the locality of the observer. We also calculate the constraints on the cosmological parameters as a function
of redshift from the theoretical and numerical study of the angular power spectrum of WL convergence. This study concludes
the minimal redshift for the constraint on the parameter �m (H0) is z ∼ 0.2 (z ∼ 0.6) beyond which the local environment’s
effect is negligible and the data from WL surveys are more meaningful above that redshift. The outcomes of this study will have
direct consequences for future surveys, where per cent-level-precision is necessary.
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1 IN T RO D U C T I O N

Upcoming galaxy surveys, such as the Large Synoptic Survey Tele-
scope (LSST 2012), Dark Energy Spectroscopic Instrument (DESI;
Aghamousa et al. 2016), Evolutionary Map of the Universe (EMU;
Norris et al. 2011), Euclid (Amendola et al. 2018), and others (Santos
et al. 2015; Walcher et al. 2019) will map the Universe over large
scales and to significant depth. These surveys will measure various
cosmological properties (viz. redshift, brightness, shape, and sizes of
galaxies, etc.) with unprecedented precision, and thus, quantitative
understating of the influence of local cosmological environment on
cosmological observation is essential.

Gravitational lensing is a unique tool to obtain information about
the distribution of matter around the lensing objects. In an inho-
mogeneous universe, all under- and over-densities of matter act as
gravitational lenses and each light ray from distant galaxies is sheared
differently, leading to an observer-dependent view based upon their
location within the large-scale structure (LSS) of the Universe. The
study of gravitational lensing magnification, shear, convergence, and
other cosmological properties by investigating weak-lensing (WL) is
an established approach in astronomy (Kaiser 1992; Kaiser, Wilson &
Luppino 2000; Maoli et al. 2001; Brown et al. 2002; Barber & Taylor
2003; Killedar et al. 2012; Takahashi et al. 2012, 2017). However,
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a relatively small number of studies have focused upon numerically
solving the null geodesic equations in order to determine the light
propagation effects in inhomogeneous cosmologies as light traverses
significant distances (Bolejko 2011a,b; Bolejko & Ferreira 2012;
Killedar et al. 2012; Yamauchi, Namikawa & Taruya 2013; Thomas,
Bruni & Wands 2015a; Breton et al. 2019; Adamek et al. 2019;
Breton & Fleury 2021). Previously, the distance redshift relation
was computed through the investigation based on a simplified model
for inhomogeneous universe (Watanabe & Tomita 1990). The WL
was numerically studied by Couchman et al. (1999), where they
constructed a 3D ray-tracing code and discussed the difference
between 2D shear and 3D shear. An approach to study WL by voids
was presented by Barreira et al. (2015). Their outcomes suggest that
the observation of WL signals associated with under-dense regions
is a promising tool to constrain the law of gravitation on large-
scales. Reischke et al. (2019) have theoretically investigated how
the cosmological observables depend on the locality of an observer.
After critically examining the analysis of Reischke et al. (2019),
Hall (2020) has concluded that there is no evidence of significant
bias depending on the observer’s position at different regions on the
LSS.

Numerical simulations play a vital role to study the evolution
of the LSS of the Universe. Typical approaches have employed
Newtonian gravity-based N-body simulations (Dyer & Roedar 1974;
Futamase & Sasaki 1989; Babul & Lee 1991; Casarini et al. 2012;
Borzyszkowski, Bartacca & Porciani 2015; Renneby, Hilbert &
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Angulo 2018) to study the non-linear structure formation of the
galaxies. These simulations consider that the gravitational fields are
weak and they originate from non-relativistic matter, it is impor-
tant to add relativistic effects in N-body simulation to understand
properly the ‘dark’ side of the universe. In this paper, we use
numerical simulations based on gevolution (Adamek et al.
2016a,b), which use relativistic N-body approaches based on the
weak field approximation. Considering the relativistic properties, this
can compute all six metric degrees of freedom in Poisson gauge. Very
recently, Lepori et al. (2020) have investigated the WL observables
using this gevolution code. They have studied the relativistic
ellipticity, convergence, image rotation, and two-point correlation
functions as a function of cosmological distance by implementing
a completely different methodology from us, they did not consider
the local environment’s dependency on LSS there. In our present
work, we have used this relativistic N-body code to generate the
weak perturbations.

This work contains the results from our relativistic N-body
simulations to study the WL statistics. We clone gevolution
from the github repository1 and generate snapshots for gravitational
potentials and particle’s position at different redshifts setting the
simulation parameters properly. After that we construct a new ray-
tracing algorithm by integrating null geodesic equations from today
towards big bang and then run our own algorithm to study the WL
properties. The background of our simulation is the standard �CDM
cosmological model. The code computes the convergence for various
line of sights. From these, we compute the maps of the convergence,
shear, and magnification. The maps are then used to infer WL
probability distribution functions (PDFs) and angular power spectra.
These are then examined for the location of the observer and its
cosmological environment.

This paper is structured as follows: Section 2 contains the
description of our ray-tracing algorithm and how we calculate the
WL properties. In Section 3.1, we provide the information about
our N-body simulation and the adopted algorithms to find voids and
haloes from the simulation in Section 3.2. The theoretical approach to
calculate the WL convergence angular power spectrum is discussed in
Section 4.1 and in Section 4.2, we describe how we infer the angular
power spectra from the simulations. We devote Section 5 to describe
the results of this work and finally, we present the conclusions in
Section 6.

2 R AY- T R AC I N G

2.1 Weak-lensing theory

We present here the basic theory behind WL and a number of
important results from WL approximation which will require: The
WL theory as well as equations to calculate the magnification, cosmic
shear, and convergence. Convergence is the integrated mass density
along the line of sight that comes from the isotropic Ricci focusing,
a linear function of the amount of matter, of a beam due to enclosed
matter. Due to the WL by the intervening LSS of the Universe, images
of distant galaxies are experiencing distortion, and this distortion is
known as cosmic shear. Convergence and shear contribute together
to the area of the source on the sky, whereas the magnification arises
from the conservation of the surface brightness.

If there are two neighbouring geodesics L and L′
enclosed by a

light bundle then assuming the small angle approximation, we can

1https://github.com/gevolution-code/gevolution-1.2

write

αi(z) = a Dij (z) θj , (1)

where α is the angular diameter distance between L and L′
at

redshift z, a is the expansion factor, and θ j is the angle between the
two neighbouring geodesics at the observer’s location. Dij provides
different information for different universes. For an inhomogeneous
universe, Dij indicates the distortion of light bundles that is being
produced due to the density distribution. On the other hand, in case
of a homogeneous universe, Dij = D0(z) δK

ij , D0 is the physical
distance and δK

ij is the Kronecker delta.
Let β be the observed position of a source and the true position

is β0, then the deformation of the image of that source can be
represented by the following 2 × 2 Jacobian matrix:

A = ∂βi
0

∂βj

≡
[

1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

]
, (2)

where κ is the convergence, γ is the shear, and the components of
the cosmic shear can be represented by, γ =

√
γ 2

1 + γ 2
2 and γ 2 can

be expressed in terms of the second derivatives of the gravitational
potential ψ along two orthogonal directions as:

γ1 = 1

2

(
ψ,11 − ψ,22

)
&γ2 = ψ,12, (3)

where the indices after the comma sign indicate partial differentia-
tion. The lens equation in the locally linearised form is

I (α) = I (s)[B0 + Aα0 · (α − α0)], (4)

where α0 is a point within an image, B0 = Bα0 within the source,
B is the angular positions of the images of a source, Is(B) is the
surface brightness in the source plane, and Is(α) is the observed
surface brightness in the lens plane. Equation (4) tells us that the
images of circular sources are ellipses and the flux magnification of
an image can be calculated from the inverse of the determinant of
the Jacobian matrix, A:

μ = 1

detA
= 1

(1 − κ)2 − |γ |2 . (5)

2.2 Ray bundle method

In this paper, we use an alternative technique to the ray-shooting
method (RSM) for calculating the magnification, convergence, and
cosmic shear in the WL limit, namely, the ray bundle method (RBM).
This method was developed by Fluke, Webster & Mortlock (1999)
(see also Barber et al. 2000; Fluke, Webster & Mortlock 2002;
Fluke & Lasky 2011; Killedar et al. 2012) and it allows to study the
WL statistics for cosmological models. The RBM has been developed
for situations where the multiple-image creation of any source has
not taken as a concern. This method works in the similar way to the
well-known RSM but they are different from a structural point of
view. Instead of modelling individual light rays in the line of sight,
the RBM uses the pattern of a ray bundle that contains eight light
rays and a central ray. Fig. 1 shows a schematic diagram of RBM,
where we show the formation of one bundle employing the RBM.
This figure clearly indicates how we have projected light rays as
bundles from the observer into space.

2.3 Magnification

Magnification is a geometric consequence of gravitational lensing.
The magnification can change the observed size and flux of individual
galaxies. There are mainly two techniques to measure magnification,
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Figure 1. The schematic diagram of RBM. There are nine light rays here
that are indicated by nine red points. Each of the light rays represents null
geodesic and the central null geodesic here is shown by the blue dashed line.

one is from the change in local source counts (Broadhurst, Taylor &
Peacock 1995) and another is from the change of the image sizes
when the surface brightness is fixed (Bartelmann & Narayan 1995).
When a bundle of light rays pass through a transparent lens,
the intensity of the source does not change due to the effect of
gravitational lensing, however, the cross-sectional area of the light
bundle is impacted. According to Dyer & Roedar (1974), the change
in the apparent brightness depends on the change in the solid angle
that the image covers and on the presence of a lens, hence

|μ| = Sν

S
′
ν

, (6)

where the flux at a frequency ν is Sν = Iν d�obs , Iν is the specific
intensity, and d�obs is the solid angle subtended by the source at the
observer’s location.

The algorithm implemented in this study projects photons as
bundles. At the initial instant each bundle has the same radius. As the
bundle propagates its shape and area changes due to the underlying
matter distribution along the line of sight. The magnification is then
calculated as:

μ = Aimage

Asource

, (7)

where μ is the magnification, Aimage is the area of of image,
and Asource denotes the area of source in RBM. In a perturbed
universe, demagnification (μ < 1) occurs in under-dense regions
and magnification (μ > 1) takes place in over-dense regions.

2.4 Cosmic Shear

The cosmic shear is a powerful probe to study the nature of dark
matter as well as the expansion history of the universe. The images
of distant galaxies are sheared due to the WL by LSS of the Universe
(Escude & Jordi 1991; Schneider et al. 2002). If a galaxy has an
intrinsic and complex source ellipticity εs then the cosmic shear can
modify this ellipticity as a function of complex reduced shear. The
observed ellipticity is (Seitz & Schneider 1997):

ε = εs + g

1 + g∗εs
, (8)

where g∗ is the complex conjugate of reduced shear, g. In WL limit
equation (8) reduces to ε ≈ εs + γ , and |ε| = g when |εs| = 0.

The RBM algorithm implemented in this study allows to infer the
ellipticity of the bundle (and hence the image ellipticity):

γ = c − d

c + d
, (9)

where c and d are the semi-minor and -major axes of the bundle,
which is obtained by fitting ellipses to the bundle.

2.5 Null geodesics and ray-tracing

In this work, we solve the null geodesic equations to observe the
distortion of the ray bundles, where the weak gravitational potentials
found from the N-body code gevolution (Adamek et al. 2016a)
play a vital role. Perturbing a spatially flat Friedman-Lemaı̂tre-
Robertson-Walker metric in the Poisson gauge yields:

ds2 = a2(τ )[−(1 + 2ψ)dτ 2 − 2Bix
idτ + (1 − 2φ)δij dxidxj

+hij dxidxj ], (10)

where a(τ ) is the scale factor, τ is conformal time, ψ and φ are
scalar perturbations, Bi are vector perturbations, and hij are tensor
perturbations. gevolution implements the same gauge for metric
perturbations.

The RBM method implemented in this paper is based on solving
null geodesic equations for light rays travelling from observer to
source

d2xα

dλ2
= −�α

βγ

dxβ

dλ

dxγ

dλ
, (11)

where �α
βγ is the Christoffel symbols computed from the metric (10)

with scalar perturbations only. λ is the affine parameter and Greek
indices can take the values: 0, 1, 2, 3.

In our code, we project the light rays as bundles in such a way
where each bundle contains 9 geodesics (including the central ray),
the light bundles will start to travel from one box to another box (since
in gevolution, they impose the periodic boundary conditions so
that when rays leave the box will enter the box again from the
opposite side) and after that the shape of the bundles are gradually
distorted while the bundles travel through space. At first, we save
some snapshots at different redshifts by using the N-body code
gevolution (Adamek et al. 2016a), that contain the information
about the scalar potentials in the simulation cube when light travels
different cosmological distances. That means the space between
an observer and source is divided up into individual regions, then
each modelled by a snapshot of a cosmological simulation at an
appropriate redshift. Finally, we develop a ray-tracing algorithm in
such a way so that it can take the snapshots at different redshifts
as inputs as well as the light bundles could travel from one box to
another box by maintaining the proper evolution of cosmological
properties (e.g. scale factor, redshift, energy).

The evolution of the metric components is obtained from the
N-body code gevolution. This is then used to compute the
Christoffel symbols and solve the geodesics equations.2 It is im-
portant to mention here that the amplitudes of the vector and tensor
perturbations are very small than the scalar potentials, ψ & φ, (Lu
et al. 2009; Thomas, Bruni & Wands 2015b; Adamek et al. 2016a),
so their effects will be negligible in the round-off error when solving
geodesic equations at single precision. We perform initial tests to
confirm this and then we neglect the effects of the vector and tensor

2We solve 49152 bundles of geodesics here. This is not a limitation of our
ray-tracing algorithm and one can easily solve different number of bundles.
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Figure 2. The probability distributions of cosmic shear, γ , at a redshift of 0.4.
The blue line is when the shear probability distribution has been calculated
from a metric that depends on scalar potentials, ψ & φ, only, whereas the
orange line represents that the weak field metric contains the components of
both scalar and vector potentials, ψ , φ, & Bi.

perturbations Bi & hij in this work, i.e. the Christoffel symbols here
depend on the gradients of the scalar potentials ψ & φ only. Fig. 2
shows the PDFs of cosmic shear, γ , when the geodesic equations
have been solved from the weak field metric that contains only scalar
potentials (blue line) and both scalar as well as vector potentials
(orange line). After solving the null geodesic equations from some
random realizations, we plot the mean probability distribution curves
for both cases here considering the equal binning scale. As expected,
there is no apparent distinction between the obtained PDFs, other than
the variations due to low number statistics. Thus, in further studies
in this paper, we focus on scalar perturbations only and explore how
local environment affects the WL observables. In future studies, we
may include Bi when investigating higher order statistics which could
be sensitive to vector perturbations. The radius of the ray bundle has a
negligible effect on the results of the WL statistics, and we consider
here that all of bundles possess an initial radius of 0.01 [physical
units] (Fluke et al. 1999). We set the initial conditions at the present
day and trace the bundles back in time up to a comoving distance of
1.5 Gpc/h (redshift z ≈ 0.62), where h is the dimensionless Hubble
parameter. For this, we infer a set of WL observables (see Sections 2.3
and 2.4) for a single observer. We then repeat the procedure for
different observers to test the dependency on the local cosmological
environment (see Section 3.2).

2.6 Mapping the WL statistics

Mapping of WL properties provides information regarding the
evolution of LSS of the Universe (Takahashi et al. 2012; Carbone
et al. 2013; Lepori et al. 2020). An example of such a map is presented
in Fig. 3, which shows the orthographic projection of the WL maps
for magnification, shear, and convergence at a redshift of 0.6.

The maps were obtained by applying the RBM. Here, the bundles
of geodesics propagated through a simulated universe based on the
N-body codegevolution. The bundles were propagated up to red-

Figure 3. Maps of WL statistics at redshift z = 0.6 (orthographic projection).
The results are based on the computational approach described in Section 2.5
and all of the three maps are taken from the same realization. Here, the darker
(lighter) colour in the colour bar indicates under-dense (over-dense) regions
in the LSS.
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shift of 0.6. Then, equation (7) was used to calculate magnification,
equation (9) to calculate cosmic shear, and equation (5) to calculate
the WL convergence. The patterns of magnification and convergence
mapping look similar, whereas some filament type structures have
been found in the map of cosmic shear. These results are similar to
some previous studies (Takahashi et al. 2017; Fabbian, Calabrese &
Carbone 2018; Lepori et al. 2020). This figure reflects the behaviour
of LSS formation of the Universe which is due to the impact of
density perturbation. In each of the maps in Fig. 3, darker regions
indicate zones having low density, whereas lighter regions are the
highly dense zones on the LSS of the Universe. These maps are then
analysed using one-point and two-point statistics.

3 SI M U L AT I O N S

3.1 Simulating the LSS

All the results that we will present in Section 5 are from cosmological
simulations, whereas the lensing potentials have been generated us-
ing the weak field metric from the codegevolution (Adamek et al.
2016a). We develop a ray-tracing code that can solve null geodesic
equations at any redshift and study the WL observables. We adopt
a standard �CDM cosmology where the values of cosmological
parameters are �m = 0.312, �� = 0.6879, h = 0.67556, primordial
amplitude of scalar perturbations As = 2.215 × 10−9 at the pivot
scale k∗ = 0.05 Mpc−1, spectral index ns = 0.9619, and massless
neutrinos with Neff = 3.046, respectively. The parameter h is used
here only to convert the physical neutrino density to a dimensionless
density parameter. In gevolution, the linear transfer function and
the primordial power spectra were generated at an initial redshift of
z = 100 with CLASS (Blas, Lesgourguesa & Tram 2011). We run
around 150 numerical simulations with different initial conditions,
each having in total 2563 dark matter particles in a simulation volume
of (320 Mpc/h)3.

3.2 Finding haloes and voids

Before analysing any outcomes regarding the influence of our local
Universe, at first it is important to characterise potential locations of
observers in terms of their place in the cosmic web. To do that, we
find out the positions of all voids and haloes on the LSS within our
simulation volume.

We employ two publicly available codes to identify the position of
haloes and voids from our simulation. First, ROCKSTAR3 (Behroozi,
Wechsler & Wu 2013) is an algorithm that is based on an adaptive
hierarchical refinement of friends-of-friends groups in six phase
space dimensions and one time dimension. This approach can
be used to find the substructures as well as dark matter haloes
from cosmological simulations. Based on particle density, we use
ROCKSTAR (Behroozi et al. 2013) in this work to identify the halo
positions, masses, velocities, and other halo properties from our
simulation data. We use the particle snapshot at redshift z = 0
from gevolution, for the same simulation setting as described in
3.1. We find in total 30321 haloes using ROCKSTAR and then cluster
all of these haloes according to their mass ranges. According to the
mass information fromROCKSTAR, we find total 17613 haloes when
the halo mass is smaller than 10 12.5 M� h−1, in total 11353 haloes
when 10 12.5 M� h−1 < halo mass < 1013.5 M� h−1, and total 1300

3https://github.com/yt-project/rockstar

number of haloes have been found where 10 13.5 M� h−1 < halo mass
< 1014.5 M� h−1.

To identify voids, we adopt the void finder Pylians.4 This can
be used to analyse the spherical voids from the results of both N-body
and hydrodynamic simulations. Besides the identification of voids,
Pylians can also be used to compute power spectra, bispectra,
correlation functions, and density fields. But in this study, we pay
attention only to find the positions and radii of the voids because the
observers’ location is the foremost priority here. From the particle’s
snapshot at redshift z = 0, we identify the positions and radii of all
voids, when the simulation setting was the same as we mentioned
in Section 3.1. We find in total 5261 voids by Pylians and then
categorize them according to their radii ranges (e.g. range 1: 10–20
Mpc/h; range 2: 21–30 Mpc/h; range 3: 31–40 Mpc/h). There are
around 2559 voids in range 1, 342 voids in range 2, and around 126
voids have been found within range 3.

4 TH E C O N V E R G E N C E A N G U L A R P OW E R
SPECTRUM

Here, we consider the convergence angular power spectrum. This
is obtained by comparing the expected theoretical angular power
spectrum of the convergence with the actual angular power spectra
inferred from ray-tracing within our numerical simulations.

4.1 Theoretical angular power spectrum of the convergence

The theoretical angular power spectrum is calculated by imple-
menting the Limber approximation in the WL limit (Limber 1953;
Krause & Hirata 2010; Bartelmann & Maturi 2016; Kilbinger et al.
2017; Lemos, Challinor & Efstathiou 2017; Wei et al. 2018), which
makes an approximation of a flat sky and neglects the curvature of
the sky. This approach is suitable for any survey areas with an extent
less than 10◦ (Kilbinger et al. 2017). Within this approximation the
convergence is first related to the gravitational lensing potential φ and
can be written in the form of the weighted integral of the overdensity
δ along the line of sight as:

κ(θ, χ ) = 3H 2
0 �m

2c2

∫ 0

χ

dχ
′ r(χ − χ

′
)r(χ

′
)

r(χ )

δ(r(χ
′
)θ, χ

′
)

a(χ ′ )
, (12)

where θ is the observed angular position, H0 is the Hubble constant,
�m is the matter density, χ is the comoving distance, r(χ ) is the
comoving angular diameter distance, and a(χ

′
) is the scale factor

at χ
′
. Then the two-point correlation function in Fourier space can

be considered as the power spectrum of convergence Cκ (�), in the
flat-sky limit.

〈κ̃(�)κ̃∗(�′)〉 = (2π )2 δD(� − �′) Cκ (�), (13)

where δD(�) is the Dirac delta function. Finally, the angular power
spectra of convergence in the Limber approximation is

Cκ (�) =
∫ χH

0
dχ

W (χ )2

r(χ )2
Pδ

(
k = �

r(χ )
, χ

)
, (14)

where Pδ(k, χ ) is the three-dimensional matter power spectrum at the
given comoving distance χ and χH is the comoving horizon distance.
Here, the weight function W(χ ) can be expressed as:

W (χ ) = 3H 2
0 �m

2c2

r(χH − χ )r(χ )

r(χH)

1

a(χ )
. (15)

4https://github.com/franciscovillaescusa/Pylians
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Here, we use the publicly available code CAMB5 (Code for
Anisotropies in the Microwave Background) to calculate the theoreti-
cal power spectrum of the convergence for the �CDM model (Lewis,
Challinor & Lasenby 2000). Due to the Limber approximation being
valid for small angle approximation in this study we only take the
angular power spectrum of convergence for the multipole � > 10
(Lemos et al. 2017).

4.2 Inferring the angular power spectrum of the convergence
from simulations

Peebles (1973) proposed a technique to estimate the angular power
spectra C�, where projected density field on to the plane of the
celestial sphere was decomposed into spherical harmonics. If there
is a bandlimited function f on the sphere then it can be expanded in
spherical harmonics, Y�m, as:

f (ζ ) =
�max∑
�=0

∑
m

a�m Y�m(ζ ). (16)

Here a�m is the spherical harmonic coefficients, ζ denotes a unit
vector pointing at polar angle θ ∈ [0, π ], and azimuth φ ∈ [0, 2π ].
This spherical harmonic coefficient â�m can be used to compute the
angular power spectrum Ĉ� as:

Ĉ� = 1

2� + 1

∑
m

|â�m|2. (17)

This is a direct method of inferring the angular power spectrum. In
our analysis that above mentioned function f is the WL convergence.
Thus, in order to infer the angular power spectrum from our ray-
tracing simulations we first generate WL maps (cf. Fig. 3). In our
study, each map is generated by sending ray bundles in separate
directions, corresponding to separate pixels on the HEALPix sphere
(Górski et al. 1999). The Euler–Rodrigues formula has been used here
to initially align each bundle with its corresponding normal vector.
For each bundle, we then infer its magnification and shear, see Sec-
tion 2.3 and 2.4. This is then used to calculate the WL convergence by
the means of equation (5). The convergence maps are then analysed
using the code healpy,6 which is a python code that implements
the HEALPix scheme (Górski et al. 2005). Finally, we compute the
angular power spectra using the function healpy-anafast.

5 R ESULTS A N D ANALYSIS

5.1 Local environment influence on one-point WL statistics

We present here results from the one-point PDFs for various WL
properties. All of the results discussed in this subsection contain
descriptive information about the local cosmological environments
(i.e. the effect on WL observables due to the positions of the observer
within the LSS of the Universe).

Using our ray-tracing algorithm we generate the PDFs from
the WL statistics. After identifying the cosmic structures from the
snapshot at today’s redshift, we categorize the haloes according to
their mass ranges and voids according to their radii ranges. We set
the observers in different locations, here in haloes having different
masses and in voids having different radii, then solve around 0.4
million geodesics by projecting ray bundles starting from redshift z

5https://github.com/cmbant/CAMB
6https://github.com/healpy/healpy

= 0 backwards in time using our ray-tracing algorithm and calculate
the PDFs for each realization. Finally, we compute the mean PDFs
for each range of halo masses and void radii, then generate the error
bars from 68 per cent confidence interval around every mean PDFs.

Fig. 4 shows the WL magnification PDFs of sources at different
redshifts. Error bars indicate 68 per cent data around mean for
different halo mass ranges and the scaling of the x-axis for the
magnification is different for each redshift. It is clearly seen that for
more distant sources, the width of the distributions becomes broader
and the peak moves toward demagnification (where μ < 1). These
aspects are compatible with some previous studies (Wambsganss
et al. 1997; Wang, Holz & Munshi 2002; Hilbert et al. 2007;
Takahashi et al. 2011; Bolejko & Ferreira 2012). We find higher
magnification for observers in massive halo regions as compared
to less massive halo regions. We then place the observer in the
underdense region. Fig. 5 shows how the WL observables for sources
at different redshifts and accordingly to the radius of a void where
the observer resides in. The results are consistent with the one for
observers residing in overdense regions: The denser the environment
the higher the amplitude of the PDFs.

5.2 Local environment influence on two-point WL statistics

In this section, we present results regarding the effect of the local
cosmological environment on the angular power spectra. Here, we
also place the observers in haloes having different masses and in
voids having different radii.

Fig. 6 shows how the angular power spectrum of magnification
changes for sources at different redshifts and accordingly to the
masses of the haloes where the observers reside in. The analysis of the
angular power spectrum of voids having different radii is presented
in Fig. 7. Both of these figures show the same phenomena as we have
seen from the analysis of PDFs for haloes having different masses and
voids having different radii, i.e. the amplitude of the power spectrum
depends on how dense the local cosmological environment is. As
before, the effect decreases with redshift, which is understandable as
signal becomes more dominated by the underlying matter distribution
along the line of sight, rather than the local environment.

5.3 The effect on the estimation of cosmological parameters

Our goal is to investigate the effect of the local cosmological environ-
ment on WL observables. In particular, we ask what is the minimal
redshift beyond which the effects due to the local environment are
negligible. To do that, we focus on constructing likelihood contours
and provide constraints on cosmological parameters from the WL
statistics of simulation data.

The first step is to measure the angular power spectra of the
WL convergence from the data of numerical simulation. First,
the observer is placed in a random halo of mass M = 1012.5M�.
Then, we calculate the WL convergence angular power spectra at
different redshifts. We then generate model data from the theoretical
predictions, see Section 4.1. Finally, we use the Markov chain Monte
Carlo (MCMC) method to estimate the posteriors of the cosmological
parameters (�m, H0) for a given parameter space and generate the
likelihood contours. The MCMC analysis is done using the code
emcee.7 In this study, we use uniform priors in the parameter ranges
�m: [0.1, 1.2] & H0: [30, 100] and the posterior probability outside
this prior range is 0.

7https://github.com/dfm/emcee
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Figure 4. Magnification PDFs as a function of redshift when observers were located in haloes having different masses. Here, the markers indicate mean PDFs
and the error bars show 68 per cent data of magnification around the mean value at each mass range.

The results are presented in Fig. 8, which shows the corner
plot for the two-dimensional posterior probability distributions of
the cosmological parameters as a function of redshift. In this
figure, the blue horizontal line shows our true cosmology, H0 =
67.556 km/s/Mpc & �m = 0.312, and the posterior distributions
indicate how the WL properties are influenced by the local Universe
at different redshifts. This plot has been generated from the same
locations of the observers but at different redshifts of the sources.
It should be emphasised that for each constraints we have the same
amount of sources. Unlike in the case of realistic WL surveys where
the number of galaxies increases with redshift, here regardless the
redshift we have the same amount of bundles, i.e. 49152 ray bundles.
Figs 9 and 10 show how constraints on the cosmological parameters
�m and H0, respectively, change as a function of redshift.

These results consistent with those reported in Reischke et al.
(2019) that local cosmological environment affects the WL ob-
servables, the only difference between the analysis of the paper
and the results presented in Reischke et al. (2019) is that here we
confirm these using the relativistic N-body simulations and by solving
geodesic equations.

6 C O N C L U S I O N S

The local cosmic structure or our observable Universe includes
cosmic voids, Galaxy, clusters of galaxy, filaments, and many other
structures also. All of these shapes contribute to the cosmic web
and solving geodesic equations is a proper way to study the LSS as
well as gravitational lensing for different lens approximations (Kasai,

MNRAS 509, 3004–3014 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/2/3004/6414000 by guest on 04 April 2024



Local environment’s effect on WL statistics 3011

Figure 5. PDFs of convergence as a function of redshift when observers were located in voids having different radii. Here the markers indicate mean PDFs and
the error bars having different colours show 68 per cent data around the mean value of convergence at each radius range.

Futamase & Takahara 1990; Killedar et al. 2012; Mood, Firouzjaee &
Mansouri 2013; Lepori et al. 2020). The view of the LSS is not
identical and the local structures are formed there due to the variation
of particle mass distribution or density fluctuations. That is why all of
the images of galaxies, that are situated far away from us, may not be
looked like similar to all of the observers who lay down in different
zones on the LSS. The physics of voids and haloes depending on
their mass ranges, radius ranges, and density distributions have been
analysed through many works already (Amendola, Frieman & Waga
1999; Bolejko et al. 2013; Mood, Firouzjaee & Mansouri 2013;
Davies, Cautun & Li 2018; Fong et al. 2018).

This paper has numerically probed the influence of the local
environment on WL statistics depending on where the observer
is located. To do this study, we have constructed a ray-tracing

algorithm that is a well-organised code and easy to implement with
any simulations to study the LSS of the Universe. We have also
studied the posterior distributions of the cosmological parameters
to see how the local environment’s effect changes as a function of
redshift and beyond which redshift such effects on the data from
any cosmological observations is negligible. We have constructed a
ray-tracing code here, that uses the gravitational potentials from a
relativistic N-body simulation, to solve the geodesic equations by
varying the observers’ location in different void, and cluster regions.
To project the light rays in different directions in the sky, we have
implemented RBM where we project light rays as bundles instead of
a single light ray. We have run a number of numerical simulations
and studied the maps, PDFs, and angular power spectrum of various
WL characteristics. Further, we have adopted the Bayesian statistics
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Figure 6. Angular power spectra of magnification as a function of redshift
when observers were located in haloes having different masses (Range I:
Halo mass < 1012.5 M� h−1; Range II: 1012.5 M� h−1 < halo mass < 1013.5

M� h−1; Range III: 1013.5 M� h−1 < halo mass < 1014.5 M� h−1). Here,
markers indicate mean values and error bars having different colours show
68 per cent data around the mean angular power spectrum of magnification
for different redshifts at each mass range.

Figure 7. Angular power spectra of convergence as a function of redshift
when observers were located in voids having different radii (Radius I: 10–20
Mpc/h; Radius II: 21–30 Mpc/h; Radius III: 31–40 Mpc/h). Here, markers
indicate mean values and error bars having different colours show 68 per cent
data around the mean angular power spectrum of convergence for different
redshifts at each radius range.

approach to analyse the constraints on cosmological parameters as
a function of redshift. The distributions are very sensitive at low
redshifts, the curves are getting closer to the fiducial cosmology as
the light travels towards high redshifts.

Figure 8. Expected constraints on cosmological parameters as a function
of redshift of the data used to constraints these parameters. The constraints
are based on mock data from simulations with H0 = 67.556 km s−1 Mpc−1

and �m = 0.312. The mock data consist of the angular power spectrum
of WL convergence of 49152 sources. The angular power spectrum is then
analysed against a theoretical convergence power spectrum that is sensitive
to H0 and �m.
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Figure 9. Constraints on the parameter �m as a function of source redshift.
The constraints are based on the angular power spectrum of WL convergence
of 49152 sources, simulated using � m = 0.312. The constraints are similar
to those presented in Fig. 8 but marginalised over H0.

According to the cosmological perturbation theory, today’s LSS
was formed due to the growth of density fluctuations from the early
universe. Using perturbation theory, Di Dio et al. (2014) theoretically
compared the standard Fourier power spectra with the redshift
dependent angular power spectra of galaxy number counts and
studied the sensitivity of future Euclid-like (Amendola et al. 2018)
galaxy surveys. The effect of neglecting lensing magnification in the
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Figure 10. Constraints on the parameter H0 as a function of source
redshift. The constraints are based on the angular power spectrum of WL
convergence of 49152 sources, simulated using H0 = 67.556 km s−1 Mpc−1.
The constraints are similar to those presented in Fig. 8 but marginalised over
�m.

future galaxy surveys like SKA8 and Euclid (Amendola et al. 2018)
was investigated by Villa, Di Dio & Lepori (2018) considering three
cosmological models, one is standard �CDM and the others are two
extensions: Massive neutrinos and the modifications of General Rel-
ativity. Again, the amplitude of relativistic contributions to the WL
convergence power spectra was estimated by Andrianomena et al.
(2014) where the gravitational wave and frame-dragging rotation
were taken into consideration as backgrounds. Unlike those previ-
ously mentioned studies, the goal of this present work is different
and here we have numerically analysed that the observer will observe
non-identical scenarios when they are located in voids having differ-
ent radii and haloes having different masses. We have also focused
on the cosmological parameter estimation and studied numerically
how the posterior distributions are changing with the redhsift of the
sources. The results of this analysis confirms that local cosmological
environment has the effect on low redshift data, and one needs to use
sources beyond some minimal redshift beyond which the effect is
negligible.

This study concludes that when inferring cosmological parameters
from observations data one need to account for effect of the local
cosmological environments. This study suggests that the minimal
redshift of WL surveys from which the constraints on �m can be
meaningful is around z > 0.2, whereas for the parameter H0, we
require higher redshift, i.e. z > 0.6. These results were obtained
based on 49152 ray bundles, and thus, the relevance for realistic
WL surveys especially depends on the number of data remains
to be investigated. As the goal of future WL surveys e.g. Euclid
(Amendola et al. 2018) is to study the LSS with very good
precision, this study can contribute to produce more meaningful
results from the data of any future cosmological observations. This
paper contains the results from the analysis of the PDFs and angular
power spectrum of WL statistics. It would be also interesting to
investigate the impact of our local structures on the WL bispectrum
and also search for the redshift from which there are no such effects
on the data from any WL surveys, we left these for our future study.

8https://www.skatelescope.org
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