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ABSTRACT
We use the k-nearest neighbour probability distribution function (kNN-PDF; Banerjee & Abel 2021a) to assess convergence in
a scale-free N-body simulation. Compared to our previous two-point analysis, the kNN-PDF allows us to quantify our results in
the language of haloes and numbers of particles, while also incorporating non-Gaussian information. We find good convergence
for 32 particles and greater at densities typical of haloes, while 16 particles and fewer appear unconverged. Halving the softening
length extends convergence to higher densities, but not to fewer particles. Our analysis is less sensitive to voids, but we analyse
a limited range of underdensities and find evidence for convergence at 16 particles and greater even in sparse voids.

Key words: methods: numerical – cosmology: theory.

1 IN T RO D U C T I O N

Cosmological N-body simulations model the evolution of the contin-
uous Vlasov–Poisson distribution function with a set of N particles
interacting under mutual gravitational attraction. The discrete nature
of the particles imposes a small-scale cutoff to the resolution of the
simulation, although precisely the length and mass scale of such a
cutoff and the mechanism by which it operates are not so clear. In
some limits, such as the weakly perturbative regime, it is possible
to show that the correspondence of the dynamics to the continuum
solution quickly degrades as one approaches the mean interparticle
separation, � = L/N1/3 (for box size L, Garrison et al. 2016). However,
in the strongly non-linear regime, resolution is often obtained at
scales many times smaller than the mean particle separation. The
relevant cutoff is therefore not �, but something less obvious, and the
question becomes the scale of such a cutoff and the mechanism by
which it manifests. And to complicate matters, additional parameters,
such as softening, are often introduced to regularize the particle
interactions. Their role in setting the resolution limit of a simulation
must also be assessed.

Traditional convergence tests operate by tuning a discreteness
parameter, such as N, towards its continuum value, in this case
infinity. But such tests are limited in their dynamic range, as the
computational expense necessarily increases towards the continuum.
Furthermore, parameters such as the softening length ε do not have
a well-defined continuum value – consider that taking ε → 0 will
increase scattering encounters between particles, which does not
occur in the continuous Vlasov–Poisson system.

� E-mail: lgarrison@flatironinstitute.org

Another class of tests exists that exploits the self-similar nature of
gravity, known as scale-free simulations. With a power-law power
spectrum of index ns and an �M = 1 background cosmology, only
one scale is present in the continuum version of the problem, with
time and space related by a power law whose index is determined
by ns. In other words, a small-scale property of the simulation at one
time must be equal to the same property measured on large scales at a
later time. Where such self-similarity is not observed, the simulation
may be said to differ from the continuum solution.

Scale-free simulations have a rich history in the N-body literature
(e.g. Efstathiou et al. 1988; Colombi, Bouchet & Hernquist 1996;
Jain & Bertschinger 1998; Scoccimarro & Frieman 1999; Smith
et al. 2003; Widrow et al. 2009; Orban & Weinberg 2011), alternately
being used to build Lambda cold dark matter (�CDM) predictions
and as tests of N-body dynamics. Scale-free tests do not establish
the absolute convergence of a simulation, but do guarantee that any
remaining errors must themselves be of a self-similar nature. For
many classes of error, this is sufficient, as ultraviolet cutoffs like N
and ε, as well as infrared cutoffs like L, impose a preferred scale. A
notable exception is certain classes of time-stepping; for example, a
fixed time-step in log-a will yield self-similar results for any time-
step size, even implausibly large. Even time-step schemes that are
not log-constant, such as ABACUS ’s, seem to exhibit moderately
self-similar errors, as discussed in Joyce, Garrison & Eisenstein
(2021, hereafter J2021). Such errors can be controlled with more
traditional tests of the raw amplitude of clustering or other non-
rescaled statistics.

In this work, we seek to build upon our previous scale-free
tests, which were limited to two-point correlations (2PCF; Garrison,
Joyce & Eisenstein 2021b, hereafter G2021b; J2021; Maleubre et al.
2021). This is both a result of computational expediency – the 2PCF
and power spectrum are more readily computed than the 3PCF
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or bispectrum – and because two-point functions encode the full
information content of Gaussian random fields. As these simulations
are imparted with Gaussian initial conditions, two-point statistics are
an excellent summary of information contained in large scales, so
long as the density fluctuations on such scales remain perturbatively
small. However, as many of the issues we wish to explore relate to
the deeply non-linear, small-scale behaviour of N-body simulations
– where the density field is certainly not Gaussian – we must
assume that the 2PCF is an incomplete compression the information
available.

In this work, we turn to the k-nearest neighbour probability dis-
tribution function (kNN-PDF) as a non-Gaussian summary statistic.
The kNN-PDF gives the distance distribution to the k-th nearest
neighbour from a random point in the volume, and is connected
to all higher N-point functions. Furthermore, as it is defined on
sets of discrete points, it allows us to quote our results in terms
of numbers of particles, an advantage not afforded by two-point
methods. Finally, its computational expense is modest compared to
direct evaluation of 3-point and higher statistics. This is particularly
important for measuring statistics directly on N-body particles, as
the number density is orders of magnitude higher than that of haloes
or galaxies.

This paper is organized as follows. In Section 2, we define
the nearest neighbour distribution, scale-free simulations, and the
mapping by which the kNN-PDF may be compared self-similarly.
In Section 3, we present measurements of the kNN-PDF on an
n = −2 N -body simulation and assess their self-similarity in the
halo and void regimes. In Section 4, we summarize and conclude.

2 k- N EAREST NEIGHBOUR D ISTRIBUTIONS
AND SC A LE- F R EE SIMULATIONS

2.1 Nearest neighbour distributions

The kNN-PDF is a measure of the spatial clustering of a set of
discrete points. It quantifies the probability density of the k-th
nearest point lying at distance r from a random point in space.
Introduced in Banerjee & Abel (2021a, b) for measurement of
cosmological clustering, it is connected to the counts-in-cells, void
probability function, and all N-point correlation functions of the
density field. Furthermore, it is computationally inexpensive to
compute, and makes for an efficient compression of the information
– both Gaussian and non-Gaussian – contained within the field. It
has relatively few free parameters: k, and any parameters used in
estimating the PDF, such as the histogram bin width.

The kNN-PDF may be computed as follows. First, the points are
organized into a space-partitioning data structure that allows for
efficient nearest-neighbour queries, such as a grid or a tree. In this
work, we employ SCIPY’s KDTree (Bentley 1975; Virtanen et al.
2020). Then, a set of NR random points are generated uniformly in
the volume, and the tree is queried for each, returning the distance
to the k-th nearest data point for each random point. Then, the NR

distances are histogrammed and normalized to form the PDF, or, if
the cumulative distribution function is desired, the list is sorted.

The kNN-PDF offers a different view on the density field than the
2PCF. As already discussed, it is a non-Gaussian summary statistic,
containing information from all N-point functions. But additionally,
it is a volume-weighted statistic, in that the random points are
uniformly distributed in space. Each random point gets one ‘vote’ in
the kNN-PDF; high- and low-density regions are weighted equally.
Compare with the small-scale 2PCF, which is dominated by dense
regions because the statistic is pair weighted. The kNN-PDF, by

contrast, probes high-density regions in its small-r tail and low-
density regions in its high-r tail.

Finally, the kNN-PDF seems particularly well suited to studies of
particle systems like haloes, as it operates on sets of points rather
than continuous fields. Because k is an input to the algorithm, it is
automatically spatially adaptive in the sense that it will return the size
of the spheres containing k − 1 particles, no matter the radius. This
allows mapping convergence not just with respect to length-scale,
but with respect to particle number, too. This is particularly relevant
for interpreting the results in the language of halo finders, where
the accuracy of halo properties is often considered as a function of
particle number.

2.2 Scale-free simulations

2.2.1 Definitions

Scale-free simulations use the self-similar nature of gravity to probe
the range of scales that a simulation faithfully reproduces. An EdS
(�M = 1) background cosmology and a power-law power spectrum
are introduced, leaving only one scale in the problem: the scale of
onset of non-linearity. At fixed time, this is given by a length-scale,
while at fixed length, this is given by a time-scale. This leads to the
idea which lends scale-free simulations their utility: length and time
may be used interchangeably as coordinates. In other words, small-
scale clustering at early times ought to be a rescaling of large-scale
clustering at late times, giving a powerful tool to assess convergence.

The length- and time-scales are related as follows. For a given
power-law power spectrum with amplitude A and spectral index ns,
the evolution under linear theory is given by

PL(k, a) = a2Akns , (1)

as a function of wavenumber k and scale factor a. The non-linear
scale may be identified through the closely-related dimensionless
power spectrum, given by

�2
L(k, a) ≡ 1

2π2
k3PL(k, a)

∝ a2k3+n. (2)

�2
L gives the contribution to the variance in logarithmic intervals,

and we have adopted proportionality since we are only interested in
ratios of scales. The self-similarity relation that yields constant �2

L

is therefore

knl ∝ a−2/(3+n). (3)

Likewise, identifying k ∝ R−1 through the Fourier transform, we
have

Rnl ∝ a2/(3+n), (4)

and identifying M ∝ R3 under the assumption of homogeneity, we
have

Mnl ∝ a6/(3+n). (5)

These scalings are expected to hold even in the deeply non-linear
regime, �2 � 1.

The first output time of the simulation is chosen based on the epoch
at which structures begin to form on small scales, as quantified by
the small-scale variance. Specifically, the variance of the overdensity
with a spherical top-hat window WR(r) of radius R is given by

σ 2(R, a) =
∫

�2(k, a)W̃ 2
R(k)k−1dk, (6)
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where W̃ 2
R(k) is the Fourier transform of WR(r). The analytic

solution to Equation 6 is presented in terms of gamma functions
in G2021b (equation 5).

The epoch of first output, a0, is the scale factor at which 3σ fluctu-
ations in the density field at radius � = L/N1/3 (the mean interparticle
spacing) reach the spherical overdensity collapse threshold of 1.68:

σ (�, a0) = 1.68/3 = 0.56. (7)

The normalization of the initial condition is also determined based
on σ :

σ (�, ai) = 0.03. (8)

2.2.2 Self-Similar scaling of the kNN-PDF

The self-similar scaling of the kNN-PDF may be determined as
follows. First, as the PDF is a function of distance r, it must be
rescaled by a factor of Rnl . Second, we observe that k is like a mass:
the k-th nearest neighbour encompasses k − 1 particles, by definition.
Therefore, it traces constant mass. And as a mass, k must be rescaled
by Mnl .

This introduces one extra wrinkle. k only admits integer values,
unlike the distance r, and must always be greater than 1. Mnl is
therefore not arbitrary, but must be an even divisor of k. Since time is
labelled by Mnl , the output epochs we wish to compare must fall on
integer multiples of the first epoch. In the simulation of Section 3, the
output epochs are related by a factor of

√
2 in Mnl , so we compare

every other epoch. Similarly, the epoch of first analysis, where k =
1, is not chosen to be the first epoch a0 but rather an intermediate
epoch that will trace scales relevant to halo formation. Earlier epochs
cannot be analysed simultaneously because they would have k < 1.

3 A PPLICATION TO A N nS = −2 SIMULATI ON

3.1 Overview

We measure the kNN-PDF at multiple epochs of an ns = −2 scale-
free simulation, apply the self-similar rescaling, and assess the
convergence as a function of epoch and length-scale, or equivalently
particle number and overdensity. We divide our analysis into two
regimes: high density (haloes) and low density (voids). We first
discuss the details of the simulation, then turn to the analysis.

3.2 Simulation

The simulation used in this work is an N = 10243 particle simulation,
first presented in J2021, run with the ABACUS N-body code (Garrison
et al. 2021a). ABACUS offers high force accuracy and uses many
global time-steps, minimizing integration errors in the particle
trajectories.1 Using a high-order multipole method on a static mesh to
solve the far-field force, and an analytically disjoint near-field force
calculation accelerated by GPUs, ABACUS achieves simultaneous
high performance and high accuracy.

This simulation employed a spline softening fixed in comoving
coordinates with a Plummer-equivalent length of ε = �/30, and a
time-step parameter of ηacc = 0.15. Variations in these choices were
explored in G2021b, with the time-step found to be conservative, and
diminishing returns found for reducing the softening below �/30.

1A working title of this paper was ‘Good Forces Make Good Neighbors’.

Figure 1. The PDF of finding the k-th neighbour at distance r, expressed in
units of the mean interparticle spacing �. Each line corresponds to a different
epoch, labelled by Mnl (colour bar). The k is a function of epoch and is given
by k = Mnl /512, spanning k = 1 at the earliest epoch to k = 512 at the latest.

The simulation produced full particle outputs at 38 epochs, loga-
rithmically spaced in scale factor (and therefore Mnl). Specifically,
the outputs were spaced by a factor of

√
2 in Mnl . Since we seek

to scale k by an integer value in order to compute the kNN-PDF at
multiple epochs, every other output was used, yielding a factor of
2 in Mnl between each epoch. We note that while the epoch of first
output is a0 (Equation 7), this is not the first epoch of analysis, which
was chosen to be Mnl = 512, or a/a0 = 2.83, so that the small-scale,
high-density regions would be probed at late times.

3.3 Analysis of the kNN-PDF

3.3.1 Measurement and rescaling

We measure the kNN-PDF on 10 epochs between Mnl = 512 and
262 144, or k = 1 and 512 using NR = 4 × 108 random points.
Rather than a uniform random distribution of points, we design an
importance sampling function that upweights the low- and high-
density regions of the simulation to reduce the noise in the tails of
the distribution (Appendix A).

The measurements are shown in Fig. 1. Each line represents a
different epoch, with an overall rightward shift occurring towards
later epochs, as k increases. The overall shape is very roughly
that of a Gaussian in log-space, but with a long tail to low r –
the result of clustering, as some regions of space will have many
neighbours packed closely together. The peak of the distribution
occurs approximately at the mean density: Consider that the first
epoch (darkest line), with k = 1, peaks at r/� = 1. The last epoch
(lightest line), with k = 512, peaks at r/� = 5121/3 = 8.

The self-similar rescaling of the PDF is shown in Fig. 2. Im-
mediately one sees that the PDFs do rescale self-similarly to a
good approximation – that is, they stack – but with notable outliers
at the earliest epochs (smallest k). Elsewhere, the agreement is
good, although both axes span many orders of magnitude, so small
differences are difficult to discern.

To make a quantitative analysis, we make multiple ‘slices’ of
the PDFs horizontally, and plot the r/Rnl value where each slice
intersects the PDF for each epoch in Fig. 3. We slice horizontally
because the steepness of the PDF makes vertical slices difficult to
assess, especially in the large-r, low-density tail. For the moment,
however, we will focus solely on horizontal slices of the high-density,
small-r tail, leftward of the peak.
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Figure 2. Same as Fig. 1, but in rescaled units of r/Rnl . The PDF is seen to
exhibit approximate self-similarity, with the lines superimposing.

Figure 3. Convergence of r/Rnl as a function of epoch, for multiple values
of the PDF (panels). Each panel may be thought of as a horizontal slice
through the lines in Fig. 2, considering only the high-density tail of the PDF
(small r).

3.3.2 High-density regime

Fig. 3 shows 10 such slices, one in each panel, ranging from
log10(PDF) = −7 to −0.48 (in detail, we make 30 such slices, but
only 10 are plotted here). The x-axis labels the epoch by Mnl , while
the plotted quantity is the value of the x-axis in Fig. 2 intersected by
the horizontal slices. Flat lines indicate constant value, unchanging
over epoch; i.e. self-similarity. This recalls the analysis of G2021b, in
which flat lines – constant correlation function amplitude – indicated
self-similarity.

At early times (leftward in each panel), we see a lack of conver-
gence (steep lines), but this flattens towards convergence in all but
the smallest values of log (PDF) (smallest r/Rnl values). A region
of ±1 per cent is shown as a shaded band in this figure; epochs that
fall within this band may be declared to exhibit self-similarity at the

Figure 4. The map of converged mass and length-scales, as determined from
Fig. 3. Each blue cross is an epoch whose kNN-PDF is converged to self-
similar solution at that r/Rnl ; the grey-shaded region is the parameter space
covered by the analysis. The top axis labels the number of particles at that
epoch, and the solid lines are isodensity contours. Therefore, at 16 particles
and fewer, we hardly find convergence at any density, while at 32 particles
and greater, the range of converged densities increases tremendously to δ >

7000, well within halo cores.

1 per cent level (with the exception of those epochs that momentarily
cross through the band).

In Fig. 4, we mark those epochs that fall within the 1 per cent
region with blue crosses. The x-axis is epoch, now labelled by a/a0

on the bottom axis, or k on the top axis. The y-axis is the r/Rnl

value to which the kNN-PDF converges for each epoch – the dashed
lines in Fig. 3. The grey-shaded region indicates the r/Rnl values
this analysis is sensitive to, as a function of epoch – the grey regions
without blue crosses are where we tested for convergence, but did
not find it.

We can interpret Fig. 4 as follows. For k ≤ 8 (eight particles or
fewer), we do not find convergence at any time- or length-scale. At
16 particles, we find convergence over a narrow range of length-
scales, which rapidly expands to smaller radii at 32 particles. From
64 particles to 512 particles, the improvement is less dramatic, but
steadily extends to smaller length-scales.

We can connect this analysis to the language of spherical overden-
sity, δ = ρ/ρ − 1. Because the kNN returns the radius of a sphere
that encompasses a fixed number of particles k, we may immediately
convert such a radius into an overdensity. Indeed, the self-similar
rescaling of k with Mnl exactly probes an isodensity contour for
fixed r/Rnl , which is why we expect the kNN-PDF to given identical
answers across epoch in the first place. These isodensity contours are
plotted as solid lines in Fig. 4.

Now interpreting the convergence relative to overdensity, we see
that the narrow convergence at 16 particles occurs at quasi-linear
densities, from δ ∼ 0 to 3. At 32 particles, the upper limit increases
by three orders of magnitude to δ = 7000, typical of halo cores.
Therefore, we may tentatively conclude that haloes of 32 particles
and above are converged in a spherical overdensity sense, at least
only considering the mass interior and not the details of internal
structure.

Fig. 5 shows the same information as Fig. 4, except with the y-axis
now in units of r/� instead of self-similar units. Notably, one may
now readily locate the mean interparticle spacing at r/� = 1, and see
that no particular damage is done to the convergence of the kNN-PDF
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Figure 5. Same as 4, but plotting r/�, where � is the (non-rescaled) mean
interparticle spacing.

by any ‘memory’ of the initial particle lattice in the late-time particle
distribution, which would peak at this location. This is consistent
with G2021b, in which the lattice memory was apparent at early
epochs but erased effectively as the correlation length exceeded r =
�. We see that the minimum resolved comoving length-scale is about
�/10, with modest decrease at later epochs.

3.3.3 Low-density regime

Rightward of the peak in the kNN-PDF in Fig. 2, we have the
low-density tail, which probes voids where the density is δ < 0.
The PDF is particularly steep here, so it does not cover a very
wide range of densities, but we none the less repeat the same
procedure of the previous section: make horizontal slices of the PDF
(Fig. 6), determine the regions converged to within 1 per cent, and
map them as a function of number of particles and overdensity (Figs 7
and 8).

Examining Fig. 7, we see qualitatively different behaviour from
the high-density case. For voids with four or fewer particles, there
is only a narrow δ range of convergence, around δ = −0.92.
Examining Fig. 7, we see that this range of particles underestimates
the density at low density, and overestimates the density at high
density. In other words, it ‘swings’ from too high to too low r/Rnl ,
and the ‘convergence’ occurs when it passes through the mid-
point. It is, therefore, likely that this convergence is unphysical,
but the range of densities it covers is so narrow as to be negli-
gible. However, this becomes less clear as the range of densities
expands at eight particles, so we choose to present the whole set of
measurements.

At 16 particles and greater, the whole range of covered densities is
converged, from δ = −0.88 to δ = −0.955. Of course, this is a small
range of densities, but it is none the less interesting that 16-particle
voids agree with 512-particle voids of the same density at later
times.

In Fig. 8, we see the same information as Fig. 7 but with the y-
axis in units of r/� rather than scale-free units. Here, we see that the
comoving size of these voids at late times is quite large, greater than
1/100th of the box scale in the last epoch. While this would not be
considered very large in a cosmological �CDM simulation, a scale-
free simulation with a red spectrum has significantly more large-
scale power because its power spectrum does not have a turnover

Figure 6. Same as Fig. 3, but for the low-density tail of the kNN-PDF, taking
horizontal slices through the large-r branch of Fig. 2.

Figure 7. The map of converged mass and length-scales in the low-density
regime, as determined from Fig. 6. Plotting elements are as in Fig. 4; blue
crosses indicate convergence. We find evidence for convergence in the whole
range of probed densities at 16 particles and greater, although the range of
densities, δ = −0.88 to −0.955, is narrow.

at the peak of matter-radiation equality. Scale-free simulations are,
therefore, more sensitive to finite box size effects; indeed, hints of
such effects were present in the correlation function at L/100 in
G2021b. However, we see no such effects here. Possibly larger scales
or different overdensities would be more sensitive, or perhaps the
nature of the kNN-PDF as an ‘interior mass’ measure mixes scales
more efficiently than the 2PCF.

The range of densities in the analysis could be extended if one
is willing to analyse the kNN-PDF near the peak. Because the PDF
becomes flat here, this ‘horizontal slice’ procedure is not appropriate.
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Figure 8. Same as Fig. 7, but plotting r/�, where � is the (non-rescaled) mean
interparticle spacing. Since r/� = 1024 is the box scale, the largest measured
r/� values reach about 1/50th of the box scale.

A complementary analysis could be done using vertical slices in a
restricted range, although interpreting the results on equal footing
with the horizontal slices might not be straightforward, as error
tolerances likely have different interpretation.

3.4 Softening length & comparison with two-point analysis

We may compare our results to the two-point analysis of J2021 and
G2021b, at least in the high-density regime common to both analyses
(Section 3.3.2). In this work as in theirs, the same qualitative picture
emerges of convergence propagating from large to small scales as
the simulation progresses. In Fig. 5, we see that the smallest resolved
comoving length-scale is about r = �/10; comparing with G2021b’s
fig. 9, we find remarkable agreement. The progression from large to
small scales is more evident in that work, proceeding from 0.15 to
0.1� over the same range of epochs, although 128 to 512 particles
show some improvement, too.

G2021b show that ε = 1/30 roughly matches the limit set by the
mass resolution, but that halving the softening length to �/60 still
produces a small gain – far from a factor of two, but still measurable.
To test this in the kNN statistic, we repeat the analysis of Section 3.3.2
for an identical simulation with half the softening length. The result is
shown in Fig. 9, where we indeed find that the resolution improves,
by about 10–30 per cent for 32–256 particles. We cannot measure
any improvement at 512 particles, because it is already saturated to
the highest density in our analysis, and the steepness of the PDF
precludes probing higher densities.

Notably, halving the softening length does not increase the
range of resolved masses – 32 particles remains resolved, and 16
particles unresolved. However, this analysis has only a factor-of-two
granularity in mass, so it is yet possible that there is some gain
between 16 and 32 particles.

4 C O N C L U S I O N S

We have measured the kNN-PDF on a scale-free cosmological N-
body simulation with spectral index ns = −2 and used it to determine
the length and mass scales over which the simulation is converged.
This extends the analysis of J2021 and G2021b because the kNN-PDF

Figure 9. Same as Fig. 5, but for a simulation with half the softening length
(ε = �/60). In the k = 32 to 256 regime, we see that the convergence extends
to smaller length-scales (higher δ). Notably, the smaller softening does not
extend the reach of convergence to fewer particles (smaller k), at least at the
factor-of-two mass granularity of this analysis.

encodes information from higher order correlations of the density
field, beyond the two-point function. By applying a self-similar
rescaling of both k and the length-scale, we find that the kNN-PDF
exhibits broad self-similarity. To quantify this, we divide our analysis
into two parts: the high-density regime (haloes), and the low-density
regime (voids).

In the high-density regime, we map convergence in terms of
number of particles k, and overdensity δ (Fig. 5). For eight particles
and fewer, we find no evidence for convergence at any density
between δ = 0 and 105. At 16 particles, we find a narrow range
of convergence near δ = 0, but this range quickly expands with more
particles. At 32 particles, we see convergence for δ < 7000, well
within halo cores. This improves to δ = 105 by 512 particles. The
resolved comoving length-scale is �/10 stable within 30 per cent from
32 to 512 particles.

Comparing these results to the two-point analysis of J2021 and
G2021b, we find excellent agreement, with these works suggesting a
minimum resolved length-scale of 0.15 to 0.1� over the same range
of epochs. We repeat our kNN analysis with a simulation of half the
softening length, and find modest improvements of 10–30 per cent in
resolved length-scale – slightly greater than in the two-point work,
but not a factor of two. This is consistent with ε = �/30 yielding most
of the possible resolution at a given particle mass.

In the low-density regime, our analysis is sensitive to a smaller
range of densities, from δ = −0.88 to −0.955. Still, in this regime, we
find weak evidence for convergence at eight particles and fewer, and
stronger evidence at 16 particles and greater. The analysis reaches
about 1/100th of the box size, but we do not observe the large-scale
effects that we attributed to finite box size in the two-point analysis
of G2021b.

The results of both the halo and void analysis may be seen
as surprisingly optimistic; 32-particle haloes are not considered
particularly robust, and likewise it is hard to imagine that the
dynamics of 16-particle voids are well sampled, yet the kNN-
PDF considers both well converged. Part of the answer may lie
in the effective smoothing the kNN imposes on the density field.
That is, it says nothing about the internal structure of 64-particle
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haloes or any property other than their spherically averaged mass.
The steepness of the PDF may play a role too, especially in the
low-density regime. Horizontal slicing of the PDF was chosen to
mitigate this effect, but voids are fundamentally already confined to
a narrower range of densities (δ = −1 to 0) than their high-density
counterparts. Therefore, the range of radii voids produced at fixed
density is narrower, giving the kNN, which measures radii, less of a
lever-arm.

Of course, we have only explored a small range of void densities in
this work, and it is possible an extended range of densities or a more
sophisticated analysis that mitigates the steepness of the kNN-PDF
have greater discerning power.
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Figure A1. The kNN-PDF for the earliest epoch from Fig. 1, with and
without importance sampling. The importance-sampled result (orange line)
is seen to reduce the noise in the low-r tail. This line has an arbitrary x-offset
applied to aid the visual comparison.

APPENDI X: I MPORTANCE SAMPLI NG FO R
T H E kNN-PDF

Measurement of the kNN-PDF usually involves generating a set of
NR uniform random points, querying the data points for the k-th
nearest distance to each random point (often with a kd-tree), and
estimating the PDF from those distances (often with a histogram
or interpolation). The finite size of NR introduces some noise in
the estimation of the PDF, especially at the tails of the distribution.
Consider that finding the low-distance tail requires a bull’s-eye of
a high-density region like a halo, which occupies relatively little
volume. Similarly, finding the large-distance tail requires landing in
the middle of a void.

Noise in the estimation of the PDF can be reduced with importance
sampling, in which the random points are generated with greater
probability in high- and low-density regions and are assigned weights
in inverse proportion to their probability. Specifically, we design the
following probability function P (x):

P (x) ∝ min((ρ(x)/ρ + 0.01, 10). (A1)

This weights the probability in proportion to the density so that
haloes are densely sampled, but with a uniform background level
that ensures voids are sampled well enough to find their centres. The
density peaks are clipped to keep the dynamic range of weights to a
factor of 1000. Each random particle i is then assigned weight wi =
1/P (xi) in the computation of the PDF. This probability function was
formulated through trial-and-error, so we expect it is not optimal, but
empirically it served to reduce the variance (Fig. A1).

To estimate ρ(x), we generate a density grid using triangle-shaped
cloud (TSC) mass assignment on a 40963 mesh at the first epoch,
scaled to larger cell sizes in proportion to Rnl at later epochs. This
relatively fine mesh was found to help effectively localize small
haloes at early times, and indeed yields a cell size of only �/4, while
the most extreme tails we seek are at �/100.

Generating random points according to P (x) can either be ac-
complished with rejection sampling or Poisson draws. The rejection
sampling method throws random points in the volume and accepts
them in proportion to the probability of the cell in which they land.
The Poisson draw method goes cell-by-cell, drawing a Poisson value
for the occupation number of that cell, and then generates that many
uniform random particles within the cell. We find the Poisson method
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more robust, as it is insensitive to the details of P (x). The rejection
sampling method can suffer from catastrophically low acceptance
rates for aggressive P (x). Both methods parallelize well. We use
Numba for the implementation in this work (Lam, Pitrou & Seibert
2015).

The entire kNN-PDF algorithm is thus the following:

(i) load the data points,
(ii) generate a TSC density field,
(iii) generate NR random points according to the density (Equa-

tion A1) and record their inverse probabilities as weights,
(iv) construct a kd-tree from the data points,
(v) query the tree with the NR randoms for each’s k-th neighbour

distance, and

(vi) histogram the distances, with each distance using the weight
of the corresponding random.

This produces about 3 GB of data per epoch when measured
with NR = 4 × 108. In our implementation, SCIPY’s single-
threaded kd-tree construction is the slowest step, taking about
500 s for N = 10243. Using 128 cores, generating importance-
sampled randoms takes 180 s for a 40963 mesh, and the tree
query 80 s.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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