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ABSTRACT
We study systematic effects from half-wave plates (HWPs) for cosmic microwave background (CMB) experiments using full-
sky time-domain beam convolution simulations. Using an optical model for a fiducial spaceborne two-lens refractor telescope,
we investigate how different HWP configurations optimized for dichroic detectors centred at 95 and 150 GHz impact the
reconstruction of primordial B-mode polarization. We pay particular attention to possible biases arising from the interaction of
frequency-dependent HWP non-idealities with polarized Galactic dust emission and the interaction between the HWP and the
instrumental beam. To produce these simulations, we have extended the capabilities of the publicly available BEAMCONV code.
To our knowledge, we produce the first time-domain simulations that include both HWP non-idealities and realistic full-sky beam
convolution. Our analysis shows how certain achromatic HWP configurations produce significant systematic polarization angle
offsets that vary for sky components with different frequency dependence. Our analysis also demonstrates that once we account
for interactions with HWPs, realistic beam models with non-negligible cross-polarization and sidelobes will cause significant
B-mode residuals that will have to be extensively modelled in some cases.

Key words: polarization – methods: numerical – techniques: polarimetric – telescopes – cosmic background radiation –
cosmology: observations.

1 IN T RO D U C T I O N

The measured temperature anisotropies of the cosmic microwave
background (CMB) provide a large part of the empirical basis
for �CDM, the current standard model of cosmology (MacTavish
et al. 2006; Bennett et al. 2013; Planck Collaboration VI 2020a).
Additional cosmological information from the CMB will mainly
come from accurate characterization of the polarized component
of the anisotropies. Although many cosmological constraints will
benefit from polarization measurements (Galli et al. 2014), the
most notable advance is perhaps seen in the search for primordial
gravitational waves, which might have a distinctive signature in
the B-mode component of the CMB polarization (Kamionkowski,
Kosowsky & Stebbins 1997; Zaldarriaga & Seljak 1997).

Experiments have to minimize spurious polarization in order to
measure the weak CMB polarization. An attractive approach is the
use of a half-wave plate (HWP): a birefringent optical element that
shifts the polarization angle of linearly polarized light that passes
through. The shift depends on the orientation of the plate, which
allows modulation of the polarized sky signal by rotation of the
HWP. An ideal rotating HWP only modulates the linearly polarized
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sky signal and therefore allows one to cleanly separate this desired
signal from unpolarized sky signal. Unfortunately, non-ideal HWPs
impede perfectly controlled modulation and indirectly cause spurious
polarized signal of their own. The merit of an HWP has to be carefully
weighed against the downsides.

Multiple polarimetric experiments have employed HWPs. Exam-
ples include MAXIPOL (Johnson et al. 2007); POLARBEAR (The
Polarbear Collaboration 2010; Hill et al. 2016); ABS (Kusaka et al.
2014); SPIDER (Rahlin et al. 2014); PILOT (Misawa et al. 2014);
BLAST (Galitzki et al. 2016); and EBEX (Aboobaker et al. 2018). In
addition, several upcoming B-mode experiments are planning to use
HWPs; see e.g. the Simons Observatory small-aperture telescopes
(Galitzki et al. 2018) and the proposed LiteBIRD satellite (Suzuki
et al. 2018; Sugai et al. 2020). Consequently, there exists a rich
body of literature describing the optical impact of HWPs, including
descriptions of various HWP non-idealities (Bryan et al. 2010b;
Kusaka et al. 2014; Pisano et al. 2014; CMB-S4 Collaboration 2017)
and mitigation strategies (Bao et al. 2012; Matsumura 2014; Bao
et al. 2016; Vergès, Errard & Stompor 2020).

In order to separate astrophysical foregrounds from the CMB
signal, experiments observe in several frequency bands. For example,
the proposed LiteBIRD satellite effort currently proposes to deploy 15
frequency bands in three telescope modules spanning 34–448 GHz
(Suzuki et al. 2018; Sugai et al. 2020). Successful implementation
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of wide-band polarization modulation is arguably quite technically
challenging: the modulation efficiency of simple birefringent crystals
is constant over a relatively small frequency range and the plate will
cause loss in linear polarization for signals outside that frequency
range. In order to efficiently modulate polarization over a wide
frequency range, for example, to support the use of dichroic or
even trichroic bolometers (Suzuki et al. 2014), an achromatic half-
wave plate (AHWP) is likely required (Hill et al. 2016; Komatsu
et al. 2018). AHWPs largely remove the frequency-dependent loss
in polarization modulation efficiency, but they can also rotate the po-
larization angle of linearly polarized light by a frequency-dependent
angle. This angle offset, which can be significant for certain AHWP
configurations, is potentially troublesome. When present, an observer
needs prior knowledge of the spatial and spectral energy distribution
(SED) of various astrophysical sources in order to correctly interpret
the modulated sky signal. For instance, a sky region dominated by
polarized dust requires a different angle correction compared to one
dominated by the polarized CMB (Bao et al. 2012; Abitbol et al.
2020).

In this paper, we investigate how non-idealities from a collection
of (A)HWP configurations optimized for dichroic detectors sensitive
to both 95 and 150 GHz limit our ability to reconstruct primordial
B-mode polarization. We pay particular attention to the frequency-
dependent polarization rotation angle for these different configura-
tions. It has been pointed out, see e.g. Vergès et al. (2020), that such
angle offsets will inevitably lead to biased sky maps that require
different correcting polarization angles for each sky component.
Here, we provide a realistic example of this effect to judge its
importance. We also simulate the interaction between the HWP non-
idealities and a realistic polarized beam and point out the importance
of this potential systematic. To produce these simulations, we extend
the BEAMCONV1 code, first described in Duivenvoorden, Gudmunds-
son & Rahlin (2019). The new code allows us to simulate the effects
of non-ideal HWPs on the time-ordered data (TOD) of CMB experi-
ments. To our knowledge, this is the first time that a publicly available
code can perform realistic time-domain simulations that include both
HWP non-idealities and all-sky beam convolution with asymmetric
beams.

This paper is organized as follows: in Section 2, we introduce the
mathematical framework and the data model used for the simulations.
The description of our fiducial instrument, the HWP properties, the
proposed scanning strategy, and the input sky models are presented
in Section 3. Results are given in Section 4. We discuss the results
and formulate our conclusions in Section 5.

2 MATH E M AT I C A L F R A M E WO R K

In this section, we derive a data model for a typical CMB polarization
experiment (see Section 2.2). The model describes the effects of a
non-ideal HWP combined with beam convolution on the TOD. We
generalize the model presented in Bryan et al. (2010b) to multilayer
HWPs and arbitrary shaped and non-trivially polarized beams. First,
however, we briefly discuss the Mueller matrix description of an
HWP. See Hecht (2002) or Gil Pérez & Ossikovski (2016) for
general introductions to the Mueller matrix formalism and Bryan,
Montroy & Ruhl (2010a), Essinger-Hileman (2013), Moncelsi et al.
(2014), Salatino, de Bernardis & Masi (2017), and Salatino et al.
(2018) for applications to HWPs for CMB experiments.

1https://github.com/AdriJD/beamconv

Throughout this section, we make use of the Einstein summation
convention: pairs of upper and lower indices are implicitly summed
over. We use θ and φ to denote the polar and azimuthal angles of
the standard spherical coordinate system. The metric of the sphere is
given by gij = diag(1, sin 2θ ) in these coordinates.

2.1 Half-wave plate Mueller matrix

We start by describing the polarized sky signal incident from
direction n̂ and at frequency ν as a Stokes vector:

Ssky(n̂, ν) =

⎛⎜⎜⎝
I

Q

U

V

⎞⎟⎟⎠(n̂, ν) . (1)

Here, I represents the total intensity of the radiation, while Q and U
describe the linearly polarized part of the radiation and V describes
the circularly polarized component. Stokes vectors have real elements
that obey

I ≥
√

Q2 + U 2 + V 2 . (2)

The above inequality is saturated for completely polarized light,
while the right-hand side of the equality goes to zero for unpolarized
light.

Mueller matrices describe the set of linear transformations that
transform Stokes vectors to other valid Stokes vectors. Linear optical
media such as HWPs is described by Mueller matrices. Multiplying
a Stokes vector by such a Mueller matrix describes how the HWP
alters the polarization properties of the radiation described by the
Stokes vector.

A traditional HWP design involves a single layer of birefringent
crystal cut to a thickness such that the phase shift incurred from a
particular wavelength at normal incidence is exactly half a period.
In the Mueller formalism, an HWP comprised of a single layer of
birefringent material and any number of layers of isotropic dielectric
materials can be represented through a matrix characterized by four
parameters:

MHWP(ν) =

⎛⎜⎜⎝
T ρ 0 0
ρ T 0 0
0 0 c −s

0 0 s c

⎞⎟⎟⎠(ν) (single layer) , (3)

where T can be interpreted as the total transmission, ρ as the
difference in transmission between the fast and the slow axes, c
as the linear polarization response, and s as the coupling to circular
polarization. The values of these parameters can be directly linked to
the Fresnel coefficients for reflection and transmission. For an ideal
HWP, we note that T = 1 = −c and ρ = s = 0. For a real single-
layer HWP, these elements are instead variable and dependent on the
frequency and the incidence angle of the incoming radiation. Fig. 1
shows how the angle of incidence made by light hitting the HWP
changes significantly as one moves across the focal plane. For wide
field-of-view telescopes, this incidence angle can be as large as 17◦

(Galitzki et al. 2018).
Pancharatnam (1955) showed that there exist combinations of lay-

ers of birefringent materials that, unlike the single-layer HWPs, can
behave in an almost achromatic manner. The resulting AHWPs have
a low frequency dependence in polarization modulation efficiency
across a broad frequency range. This is achieved by introducing a
relative rotation angle for one or several of the birefringent layers
such that not all of the fast optical axes are aligned. The set-up is
discussed in detail in Title (1975). A complication of AHWPs is their
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Figure 1. Sketch of telescope model used for this study. Light coming in
from the left interacts with an HWP before hitting the primary lens. Light
from the primary lens then gets further focused by the secondary lens before
hitting the focal plane (on the right). The edge pixel has a beam centroid of
14◦ relative to boresight (see ray bundle emitted from top right corner).

effective frequency-dependent rotation angle offset. We will come
back to this issue in Section 3.4.

The Mueller matrix of an AHWP, being composed of more than
one birefringent layer, cannot be adequately described by the four
parameters in equation (3). Instead, the transfer matrix method
(TMM) can be used to generate an appropriate Mueller matrix.
The TMM formalism captures the response of materials that are
composed of any collection of dielectric and birefringent media. For
the work presented here, we use the publicly available code described
in Essinger-Hileman (2013) to calculate the Mueller matrices of the
HWPs that we study.2

2.2 Data model

We model the TOD of a single detector of a CMB polarimeter as
follows:

dt =
∫

dν F (ν)
∫

d�(n̂) I
(t)
tot (n̂, ν) + nt . (4)

The signal incident on the detector I
(t)
tot depends on the Stokes vector

of the sky Ssky, but is a scalar quantity; the detector is ultimately only
sensitive to total intensity. The signal is time varying, the index t runs
over the number of recorded time samples. The frequency passband
of the detector and the additive noise are denoted by F(ν) and nt,
respectively.

To describe how the polarization of the sky couples to the
instrument, we express I

(t)
tot in terms of the trace of the product of two

density matrices: one that describes the polarization state of the sky
Wsky and one time-varying density matrix W(t)

instr that describes the
instrumental response on the sky (Hu, Hedman & Zaldarriaga 2003;
Kamionkowski & Kovetz 2016; Hivon, Mottet & Ponthieu 2017):

I
(t)
tot (n̂, ν) = 2 tr

(
W(t)

instrWsky

)
(n̂, ν) . (5)

The density matrices are rank 2 tensor fields defined on the sphere
that contain the same polarization state information as the Stokes
vectors. In fact, it is possible to express a density matrix W in terms
of a Stokes vector Sμ = {I, Q, U, V} using

W(n̂, ν) = Sμ(n̂, ν)σμ(n̂) , (6)

where σμ is given by the identity matrix and the (permuted)
Pauli matrices defined on the sphere: σμ = {σ 0, σ 3, σ 1, σ 2}, see
equations (A20)–(A23). The tensor nature of the polarization state is
explicit in the density matrix formulation, it is implicit in the Stokes

2 https://github.com/tomessingerhileman/birefringent transfer matrix

vector formulation. Using the standard spherical coordinate system,
the elements of the sky density matrix are given by(
Wsky

)
ij

(n̂, ν) = 1

2

(
I + Q (U − iV ) sin θ

(U + iV ) sin θ (I − Q) sin2 θ

)
(n̂, ν). (7)

The time-dependent instrumental density matrix is similarly ex-
pressed as(
W

(t)
instr

)
ij

(n̂, ν)

= 1

2

(
Ĩ (t)

i + Q̃ (t)
i

(
Ũ (t)

i − iṼ (t)
i

)
sin θ(

Ũ (t)
i + iṼ (t)

i

)
sin θ

(
Ĩ (t)

i − Q̃ (t)
i

)
sin2 θ

)
(n̂, ν), (8)

where we have used a tilde to distinguish these Stokes parameters
from those of the sky. The t and i indices denote that the parameters
are time dependent and correspond to the instrument (i.e. the
combination of beam and HWP), respectively.

Both density matrices in equation (5) are defined with respect to
the same coordinate basis that is fixed relative to the sky. As a result,
the instrumental density matrix W(t)

instr is time dependent due to the
continuous rotation of the instrument with respect to the sky (another
time dependence is due to the HWP rotation, which is kept implicit
for now). This time dependence can be factored out by considering
the instrumental density matrix in a coordinate system fixed relative
to the instrument. Let us denote the density matrix in the instrument
frame by W(0)

instr. The two frames are connected by a 3D rotation Rt

that we define as the rotation that would align the instrument frame
to the frame fixed relative to the sky. We can thus perform an active
rotation of the W(0)

instr tensor by Rt to get back W(t)
instr:(

W
(0)
instr

)
ij

(n̂, ν) �→ (
W

(t)
instr

)
ij

(n̂, ν)

= � k
i (Rt )�

l
j (Rt )

(
W

(0)
instr

)
kl

(R−1
t n̂, ν). (9)

The � matrices are matrix representations of the 3D rotation Rt

(Challinor et al. 2000).
The 3D rotation from the instrument frame to the sky frame can

be parametrized using three time-dependent Euler angles:

Rt = R(ψt , θt , φt ) . (10)

The ψ t, θ t, and φt angles can be understood as follows. Imagine a
right-handed 3D Cartesian coordinate frame with X-, Y-, and Z-axes
centred at the origin of the spherical coordinate system. Let the Z
axis point towards the centre of the instrumental response, i.e. the
beam centre. The 3D rotation is then achieved by a sequence of three
right-handed rotations: first rotating around the Z-axis by the first
Euler angle ψ t, then rotating around the Y-axis by θ t, and finally
rotating around the Z-axis again by φt.

Under the rotation Rt , the W(0)
instr tensor transforms as equation (9).

While it is possible to evaluate the transformation directly, we follow
Challinor et al. (2000) and Wandelt & Górski (2001) and perform
the transformation in the spherical harmonic domain instead. In the
harmonic domain, the data model of equation (4) is expressed as
follows:

dt =
∫

dνF (ν)
∑

,m,s

{
b
˜I

(0)
i


s (ν, αt )a
I

m(ν) + b

˜V
(0)
i


s (ν, αt )a
V

m(ν)

+ 1

2

[
−2b

˜P
(0)
i


s (ν, αt )2a
P

m(ν) + 2b

˜P
(0)
i


s (ν, αt )−2a
P

m(ν)

]}
×
√

4π

2
 + 1
e−isψt

sY
m(θt , φt ) + nt , (11)

where the sY
m function is a spin-weighted spherical harmonic
(SWSH) and the ψ t, θ t, and φt Euler angles describe the instrumental
pointing. The different b coefficients are SWSH coefficients that
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describe W(0)
instr, while the different a SWSH coefficients correspond

to Wsky. The sum over 
 runs from 0 to the harmonic band limit
of the beams: 
max, while the sums over m and s run from −


to 
. It should be noted that the sum over s can be truncated
drastically for an approximately symmetric instrumental response.
For perfectly symmetric beams, only s = 0 and s = ±2 are needed
for the Ĩ (0)

i , Ṽ (0)
i , and P̃ (0)

i coefficients, respectively (Challinor
et al. 2000; Hivon et al. 2017). Exact definitions of the SWSH
coefficients are given below and a full derivation is provided in
Appendix A. The expression matches that of a general CMB
polarimeter derived in Challinor et al. (2000), but is generalized
to have an explicit dependence on frequency and the HWP rotation
angle αt.

The b harmonic coefficients that describe the instrument in
equation (11) are given by combinations of the Stokes parameters
of the beam, denoted with the subscript b, and the elements of the
HWP Mueller matrix. For the sake of brevity, we use a complex
representation of the Stokes parameters to describe the linearly
polarized beam:

P̃
(0)
b = Q̃

(0)
b + iŨ (0)

b . (12)

Additionally, we replace the standard HWP Mueller matrix
with a complex representation C that is indexed by {I, P,
P∗, V}. The two matrices are related by the following unitary
transformation:

C = TMHWPT
† , (13)

where MHWP is the unrotated Mueller matrix and T is given by

T =

⎛⎜⎜⎝
1 0 0 0
0 1√

2
i√
2

0
0 1√

2
−i√

2
0

0 0 0 1

⎞⎟⎟⎠. (14)

The complex representation allows us to cleanly separate terms with
different dependence on the HWP rotation angle αt. The harmonic
coefficients that describe the instrumental response in equation (11)
are then given by

b
˜I

(0)
i


s (ν, α) =
∫

S2
d�(n̂)

[
Ĩ

(0)
b (n̂, ν)CII (ν)

+Ṽ
(0)

b (n̂, ν)CV I (ν)

+
√

2Re
(
P̃

(0)
b (n̂, ν)CP ∗I (ν)e−2iα

)]
Y ∗


s(n̂), (15)

±2b
˜P

(0)
i


s (ν, α) =
∫

S2
d�(n̂)

[
Ĩ

(0)
b (n̂, ν)CIP (ν)

√
2 e−2iα

+Ṽ
(0)

b (n̂, ν)CV P (ν)
√

2e−2iα

+P̃
(0)
b (n̂, ν)CP ∗P (ν)e−4iα

+P̃
(0)∗
b (n̂, ν)CPP (ν)

]
2Y

∗

s(n̂), (16)

b
˜V

(0)
i


s (ν, α) =
∫

S2
d�(n̂)

[
Ĩ

(0)
b (n̂, ν)CIV (ν)

+Ṽ
(0)

b (n̂, ν)CV V (ν)

+
√

2Re
(
P̃

(0)
b (n̂, ν)CP ∗V (ν)e−2iα

)]
Y ∗


s(n̂). (17)

The elements of the C HWP matrix are given in equation (A36).
Note that the −2b
s coefficients can be obtained using the following
symmetry relation:

−2b
˜P

(0)
i


s (α) = [
2b

˜P
(0)
i


−s (α)
]∗

(−1)s . (18)

Figure 2. Power spectral densities (PSDs) corresponding to a typical 2-h
segment of noiseless TOD for a single detector. The curves labelled I (P)
correspond to scans over an I-only ((Q, U)-only) simulated CMB sky. The
curves labelled HWP include HWP modulation using the three-layer BR3
HWP configuration (to be discussed in Section 3) spinning at a frequency
να of 1 Hz. The curve labelled P, w/o const. (overlapping with P, HWP but
slightly different below ∼ 2 Hz) incorporates the same HWP modulation,
but does not include the HWP systematic that is constant with HWP angle
α, see equation (16). The curves labelled w/o HWP do not include HWP
modulation. The simulated data are recorded at a monochromatic frequency
of 90 GHz using a Gaussian beam with a full width at half-maximum of 32.2
arcmin. Each curve is the average of 10 PSDs corresponding to successive
2-h scans. The scan strategy is described in Section 3.1.

The harmonic coefficients that represent the Stokes parameters of
the sky in equation (11) are given by

aI

m(ν) =

∫
S2

d�(n̂)I (n̂, ν)Y ∗

m(n̂), (19)

±2a
P

m(ν) =

∫
S2

d�(n̂)(Q ± iU )(n̂, ν)±2Y
∗

m(n̂), (20)

aV

m(ν) =

∫
S2

d�(n̂)V (n̂, ν)Y ∗

m(n̂). (21)

Fig. 2 helps to qualify the rather verbose expressions for the above
harmonic coefficients. It illustrates the effect of a non-ideal HWP on
the TOD by comparing the corresponding power spectrum densities
for two cases: without an HWP and with a non-ideal HWP (see
Section 3.3). Recall that ideal HWP modulation will only modulate
the Q and U sky signal, which it will do at a modulation frequency
4να , where να is the HWP rotation frequency. It can be seen that the
non-ideal HWP introduces an additional spurious 2να modulation of
the I sky (second line of equation 15), a 2να modulation of the Q and
U sky (first and second line of equation 16), and a 2να modulation
of the V sky (second line of equation 17, not shown in the figure).
Finally, the non-ideal HWP also introduces a spurious constant 0να

modulation of the Q and U sky (fourth line of equation 16). Note
that Fig. 2 omits the case of an input V sky. The να dependence of
the V-input case will be the same, qualitatively, as the Stokes I-input
case.

The dependence on HWP angle α of the different terms in the data
model is relevant because this dependence is used by the subsequent
map-making procedure to distinguish between I, Q, U, (and possibly
V) sky signal. Leakage between the Stokes parameters will occur
when the data model used by the map maker does not capture the
full α modulation of the TOD. For the experimental configuration
considered in this work, see Section 3, we find that the I → (Q, U)
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leakage that is caused by ignoring the 2να terms during map making
is subdominant to the Q↔U leakage that is caused by ignoring non-
idealities in the 4να term.

It should be noted that in the derivation of equations (15)–(17) in
Appendix A, we have assumed that the instrumental Stokes vector,
which is related to W(0)

instr by equation (6), can be factored into a
Stokes vector describing the beam and a Mueller matrix describing
the skywards HWP:

S(0)T
instr(n̂, ν, αt , ϑinc) = S(0)T

beam(n̂, ν)MHWP(ν, αt , ϑinc) . (22)

The Stokes vector describing the beam has an angular dependence
that describes the finite resolution of the experiment, but it is constant
with time. On the other hand, the Mueller matrix of the HWP
depends on the time-varying HWP angle αt but is assumed to
have no angular dependence. Note that the Mueller matrix varies
between detectors based on their position on the focal plane (see
Fig. 1). This dependence on detector incidence angle is captured
by the ϑinc parameter. The factorization of the beam and HWP
response in equation (22) is an approximation. It allows for separate
modelling of the HWP and the instrumental beam. Strictly speaking,
the factorization is only valid when the radiation in between the HWP
and the beam-forming optical elements is described by plane waves
propagating along n̂. The interaction between the near-field beam
and the HWP would in reality also be sensitive to the longitudinal
component of the electric field in between the elements. On top of
that, the near-field beam is different than the far-field beam described
by S(0)

beam. Accounting for such near-field effects is beyond the scope
of current analysis and simulation infrastructures. We expect that our
approximation describes the interaction between the HWP and the
beam sufficiently well.

The data model described by equations (11)–(21) is now im-
plemented in the BEAMCONV library. The frequency dependence
of the model is handled by approximating the integral over the
instrumental frequency band with a small number (nν = 7 for
the results in Section 4) of monochromatic input skies, beams,
and HWP Mueller matrices. The memory costs and computational
scaling of the algorithm have thus gained a linear scaling with nν

compared to the algorithm in Duivenvoorden et al. (2019) but are
unchanged otherwise. The algorithm allows for efficient time-domain
simulations that include all-sky beam convolution with asymmetric
beams and non-ideal HWPs.

3 SIMULATION SET-UP

We consider a telescope similar to the one described in Duivenvo-
orden et al. (2019), but with an HWP in front of the primary lens.
Incoming radiation passes through the HWP followed by a pair of
lenses before being absorbed by the detectors on the focal plane
(see Fig. 1). A beam profile for a typical 150-GHz detector used
in this analysis is shown in Fig. 3. We model 50 dichroic detectors
sensitive to two 30-GHz-wide frequency windows centred at 95 and
150 GHz. The detectors are evenly distributed on a square grid of a
focal plane fed by a 30- cm aperture telescope. The field of view of
this square grid is only 7◦ compared to the 28◦ that can be supported
by this telescope; the detectors therefore only cover a fraction of
the focal plane. The spectral response of the detectors is assumed
to be represented by a top-hat function within each band. In order
to test frequency-dependent effects, we run simulations at seven
subfrequencies within a band. These subfrequencies are 80, 85, 90,
95, 100, 105, and 110 GHz for the 95-GHz band and 135, 140, 145,
150, 155, 160, and 165 GHz for the 150-GHz band (see hatched
regions in Fig. 4).

Figure 3. Azimuthally averaged beam profiles (dBi units) for a representative
detector of one of the 50 used in this analysis. Shown are the Stokes Q̃ and Ũ

beam components. For this figure, we have defined the Stokes parameters with
respect to the Ludwig-3 basis (Ludwig 1973). This basis is approximately
Cartesian around the beam centre and has been aligned with the polarized
element of the detector. As a result, the ±Ũ profile quantifies the amount
of non-aligned (or ‘cross-polar’) polarized sensitivity of the beam. It can be
seen that |Ũ | is subdominant close to the centre of the beam (see inset) while
having a relatively large contribution at large opening angles.

3.1 Simulated scanning

Using the updated version of BEAMCONV, we simulate 1 yr of satellite
scanning for 50 detectors. We use a similar scan strategy as in
Duivenvoorden et al. (2019), which is based on Gorski (2008) and
Wallis et al. (2017). The satellite spins around its principal axis
with a period of 600 s. It precesses about the boresight axis with
a period of 90 min. The two axes are separated by 50◦. We set the
HWP rotation frequency να to 1 Hz (angular frequency of 2π rad s−1)
and sample the data at 12.01 Hz. Although the sampling frequency
is likely an order of magnitude below that of a real experiment,
we find that this rate suffices for our noiseless simulations. The
resulting angular coverage is excellent and allows for simultaneous
per-pixel recovery of I, Q, and U over the full sky. Even without a
continuously spinning HWP, the average condition number of the
per-pixel (I, Q, U) covariance matrix, which is inverted as part of
the solution (Duivenvoorden et al. 2019), is approximately 2.9 for a
Nside = 256 map. In comparison, the condition number approaches
2.0 (the minimum value) for all pixels when the HWP is spun with a
1-Hz rotation frequency.

3.2 Input maps

We generate statistically isotropic random Gaussian Stokes I, Q,
and U CMB maps (with a vanishing B-mode component) using
the synfast utility in HEALPIX’s (Górski et al. 2005) PYTHON

implementation, HEALPY3,4 and the best-fitting 2018 Planck power
spectra (Planck Collaboration VI 2020a). To probe how frequency-
dependent HWP systematics interact with the different components
of the microwave sky, we also simulate polarized Galactic dust
using the PYTHON Sky Model (PYSM) code (Thorne et al. 2017).
Other foreground sources, including synchrotron radiation, are

3http://healpix.sf.net
4https://github.com/healpy/healpy
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Figure 4. HWP Mueller matrix elements as a function of frequency in the normal incidence case (solid lines) and for an incidence angle ϑinc of 18◦ (dashed
lines, virtually indistinguishable from solid lines) simulated using the TMM. The three HWP configurations described in Table 1 are shown. A 31.4◦ HWP
rotation angle offset is applied to the three-layer BR3 model. The black dashed line represents the ideal HWP (T = −c = 1, ρ = s = 0 in equation 3). The grey
hatched bands illustrate the two instrumental frequency bands used in this work.

subdominant in our 95 and 150 GHz frequency bands. PYSM provides
different templates for dust emission, all based on the high-frequency
Planck data (Planck Collaboration X 2016b).5 We use six different
PYSM dust models: d0 to d5. The first four models are directly based
on a modified blackbody distribution. In units of CMB brightness
temperature, these models all follow the same parametrization:(

Q

U

)
(n̂, ν) =

(
AQ

AU

)
(n̂) ×

(
ν

ν0

)β(n̂)+1 ehν0/kBT (n̂) − 1

ehν/kBT (n̂) − 1
, (23)

There are four parameters: the spectral index β, the dust temperature
T, and the AQ/U amplitudes at the reference frequency ν0 = 353 GHz.
A brief description of each model follows, see Thorne et al. (2017)
for more details.

d0 uses a fixed spectral index (β = 1.54), a fixed temperature
(T = 20 K), and the Commander dust template from Planck Col-
laboration IX (2016a) for AQ/U.

d1 extends the d0 model with spatially varying spectral index
and temperature that are both given by the Commander templates
from Planck Collaboration IX (2016a).

d2 modifies the d1 model with a spectra index that varies
randomly on degree scales, following a Gaussian distribution: β ∼
N (μ = 1.59, σ 2 = 0.04).

d3 is the same as d2 except that β ∼ N (μ = 1.59, σ 2 = 0.09).
d4 models two dust populations as two modified blackbodies

with different but spatially constant spectral indices and two different

5https://pysm3.readthedocs.io/en/latest/

spatially varying temperatures and dust amplitudes (Meisner &
Finkbeiner 2015).

d5 is a more physically motivated model based on the physical
properties of two populations of dust grains (silicate and carbona-
ceous) (Hensley 2015; Hensley & Bull 2018).

The inclusion of these six models in our analysis serves to roughly
bracket the current uncertainty in dust modelling. We note that the
d3 model is designed to match the largest variation in spectral index
allowed by the Planck data. We study the interplay between the HWP
non-idealities and these different foreground models in Section 4.3.

3.3 Selection of HWPs

A wide range of HWP designs have been described and studied in
the literature (Bryan et al. 2010b; The Polarbear Collaboration 2010;
Hill et al. 2016; Aboobaker et al. 2018; Komatsu et al. 2018). HWP
design involves a complex optimization problem where absorptive
and reflective losses from materials with high index of refraction need
to be balanced against the desire for unity polarization efficiency
across a wide band. We choose to study three HWP configurations,
which are loosely based on Bryan et al. (2010b) as a model of a
one layer HWP, (Hill et al. 2016) for the three-layer HWP, and a
five-layer HWP model taken from Komatsu et al. (2020). Some key
properties of these three HWP configurations, which we denote as
BR1, BR3, and BR5, are shown in Table 1.

We adopt a fixed thickness, d = 3.75 mm, for the individual
sapphire plate layers for all three polarization modulators. This
thickness was found using the traditional formula for HWPs made
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Table 1. HWP configurations adopted for the analysis presented in this
paper. Orientation angles are those of the fast axis of the birefringent layers
relative to the plane of incoming vertically polarized radiation. The rotation
angle offset is given in each band following equation (24), for CMB and dust
weights as defined in equation (25).

Model Orientation Phase 95 GHz Phase 150 GHz
CMB/dust CMB/dust

BR1 0◦ 0◦/0◦ 0◦/0◦

BR3 {0◦, 54◦, 0◦} 30.75◦ / 31.16◦ 32.51◦ / 32.30◦

BR5 {22.9◦, −50◦, 0◦
50◦, −22.9◦} 0◦/0◦ 0◦/0◦

of a single layer of birefringent material d = c/[2ν(ne − no)], where
no and ne correspond to the index of refraction for the ordinary and
extraordinary axes, respectively. The selected thickness is optimal for
ν = 126 GHz, near the average of our two band centres. We adopt an
antireflection coating similar to the one described in Coughlin et al.
(2018) that is optimized for 75–170 GHz. We settle on three AR
layers with thicknesses dAR = 0.5, 0.31, 0.257 mm and individual
indices nAR = (1.268, 1.979, 2.855). The above parameters are used
as input to the TMM formalism to calculate the Mueller matrices of
the HWPs. We produce a unique set of Mueller matrices for each
unique HWP incidence angle ϑinc.

Fig. 4 shows the Mueller matrix elements for our three HWP
configurations as function of frequency. It can be seen that the
additional layers of the BR3 and BR5 HWPs improve the frequency
uniformity of the polarization efficiency (see the UU elements)
compared to the BR1 case. Describing the efficiency loss for the
different Stokes parameters is a rather complicated task. Although
the efficiency loss of Stokes I is easy to understand, as the II elements
decrease in value with additional layers, the same is not true for the
polarization efficiency.6 Because of these complications, we do not
directly use the HWP Mueller matrix elements to correct our results
for the efficiency loss. As will be detailed in Section 4, we settle for a
more robust and simpler power spectrum based calibration method.
Such an approach will likely also be taken by a real experiment.
Finally, we note that the Mueller matrix models that we use do
not include systematic effects caused by non-ideal manufacturing
or material non-uniformity, which are likely to exist at some non-
negligible level even in next-generation experiments.

3.4 Determining the AHWP induced rotation offset

AHWPs, such as the three- and five-layer configurations discussed
in this paper, tend to have higher polarization efficiency over a given
frequency range compared to a single-layer HWP. However, they
also introduce an undesirable frequency-dependent phase between
the in-going and out-going electric field that manifests itself as a
frequency-dependent HWP rotation angle offset. Fig. 5 shows our
HWP Mueller matrices, integrated over the two frequency bands,
as a function of the HWP angle α. From the inner two-by-two
set of panels it is clear that the three-layer HWP has a relatively
large rotation angle offset. It turns out that the offset angle of the

6The amplitude of incoming linear polarization
√

Q2 + U2 will be changed
based on the QQ, QU, UQ, UU submatrix. The change in amplitude will be
bounded by the singular values of this matrix. Note that the amplitude change
will generally be different per pixel and frequency. Furthermore, the input I
and V signal will also alter the linear polarization amplitude due to leakage
caused by the QI, UI, QV, and UV terms.

three-layer model also displays the largest variation with frequency.
While the average value of this offset angle can be simply calibrated
out, this large variation with frequency poses a difficulty: sky
components with different frequency characteristics will require dif-
ferent offset angles after integration over the instrumental frequency
band.

We can determine an optimal rotation angle offset for a specific
sky component as the HWP rotation angle, αmin, that minimizes the
difference between the QQ, QU, UQ, UU submatrices of the Mueller
matrices of the HWP and the ideal HWP. The αmin angle is found by
minimizing

R(α) =
∑

i,j∈{Q,U}

[
nν∑

k=1

w(νk) MHWP,ij (νk) − Dij (α)

]2

, (24)

where MHWP(νk) is the same as in equation (22) with normally
incident light and D(α) is the Mueller matrix of the ideal HWP
rotated by an angle α. The νk are a set of subfrequencies within the
band, and w(νk) are weights applied to model the SED. Because
we work in units of CMB brightness temperature, we use uniform
weighting for the CMB. If we assume that Galactic dust follows a
modified blackbody distribution with a fixed temperature and spectral
index across the sky, the weights can be derived from equation (23):

w(νk) =
(

nν∑
i=1

ν
β+1
i

ehνi /kBT − 1

)−1
ν

β+1
k

ehνk/kBT − 1
. (25)

Note, however, that these assumptions about the dust SED are only
valid for the d0 PYSM model (with T = 20 K and β = 1.54). The
optimal offset angles for the CMB and the above dust weights are
given in Table 1. The three-layer configuration shows a significantly
different optimal offset angle for the CMB versus dust.

The optimal HWP rotation angle correction will vary across the
sky for foregrounds models that include spatial SED variations. We
can determine an optimal per-pixel correction for a given foreground
component by applying equation (24) on a pixel-by-pixel basis. In
Fig. 6, we compare the distribution of the optimal HWP rotation offset
angles for the d1–d5 PYSM dust models to the d0 value given by
equation (25). We only show results for BR3 in Fig. 6. The BR1 and
BR5 configurations have a near-constant rotation angle offset over
the range of frequencies that we consider and show no appreciable
deviation from an isotropic angle offset. Calculating the distributions
in Fig. 6 requires knowledge on the per-pixel SED weights w(νk) in
equation (24). Although we lack a closed-form expression for all
of the SEDs of our dust models, we can make use of the PYSM

predictions at each subfrequency νk to determine the SED weights
using

w(n̂, νk) =
( nν∑

j=1

|P (n̂, νj )|
)−1

|P (n̂, νk)| , (26)

where |P (n̂, νk)| is the amplitude of linear polarization at subfre-
quency νk in direction n̂.

4 A NA LY SIS R ESULTS

To test the capabilities of the updated BEAMCONV code, we run
a number of simulations that probe the different HWP configura-
tions, sky models, and instrumental beams. Each simulation batch
is based on seven subfrequency maps per frequency band that
are combined assuming a top-hat passband. Seven subfrequencies
represent the lowest adequate sampling of the frequency variation
of the HWP Mueller matrices. The simulated TOD are binned on
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Figure 5. Mueller matrix elements for the three HWP models described in Table 1, integrated over the instrumental frequency bands (95: solid lines, 80–
110 GHz; 150: dashed lines, 135–165 GHz) as a function of the HWP rotation angle. The dashed black lines represent the behaviour of the ideal HWP (T =
−c = 1, ρ = s = 0 in equation 3). It can be seen that the BR3 configuration (orange lines) is out of phase with the other HWP configurations.

Figure 6. Distribution of optimal BR3 HWP rotation angle offset ϕ in the
95 GHz (solid lines) and 150 GHz (dashed lines) bands for the PYSM Galactic
dust models based on their per-pixel spectral energy distribution at Nside =
512. The distributions are given for the 40 per cent sky mask used in our
analysis. The abscissa is expressed as the difference between the rotation angle
offset ϕ and the reference angle ϕd0 corresponding to a modified blackbody
with T = 20 K and β = 1.54 as in Table 1.

the sphere using the standard map-making scheme that ignores the
instrumental beam and assumes the following data model for each
detector:

dt = I (n̂t ) + Q(n̂t ) cos
[
2(ψt + γ ) + 4(αt + ϕ)

]
+U (n̂t ) sin

[
2(ψt + γ ) + 4(αt + ϕ)

] + nt .
(27)

Here, n̂t , ψ t, and αt describe the instrumental pointing and HWP
rotation angle at time-sample t while γ and ϕ describe the detector
polarization angle and HWP rotation angle offset, respectively. The
map maker solves for I, Q, and U per pixel, uses uniform weighting
of the TOD and does not explicitly use detector pair differencing, see
e.g. Duivenvoorden et al. (2019).

For every simulated systematic effect, the same simulation is
performed using an ideal HWP (T = −c = 1, ρ = s = 0 in equation 3).
With ideal and non-ideal maps in hand, we can calculate difference
maps that quantify signal residuals due to HWP-related systematics.
The resulting difference maps cover the entire sky, but we use a
40 per cent sky mask (gal040; Planck Collaboration IX 2016a)
before calculating power spectra using POLSPICE (Challinor et al.
2011).

4.1 Calibration

To correct for the non-ideal polarization efficiency of each HWP
model, we calibrate each map on a map obtained by scanning with an
ideal HWP. This is performed using the EE angular power spectrum
at degree angular scales, 50 ≤ 
 ≤ 200. The choice of angular scales
roughly coincides with the peak in the expected primordial gravi-
tational wave power spectrum. Note that the calibration procedure
could instead be performed using lab measurements or simulated
HWP (and other optical component) material properties (Pisano et al.
2006; Bryan et al. 2010a, b; Hill et al. 2016). The EE calibration
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Figure 7. Residual B-mode power spectra obtained by observing the CMB
with the BR3 configurations presented in Table 1 (including the rotation angle
offset optimized for the CMB). The beams are Gaussian. We omit the BR1
and BR5 HWP configurations since their residuals fall below the limits on
the vertical axis. The no-HWP case is also shown (orange curves).

approach uses the following factor:

g = 1

151

200∑

=50

C
EE,ideal



CEE



, (28)

where the denominator (numerator) is the E-mode power spectrum
estimated from the output maps created with a non-ideal (ideal) HWP.
The final difference maps are formed by subtracting the calibrated
output of the non-ideal simulation from the ideal simulation’s output:(

Q

U

)
diff

=
(

Q

U

)
ideal

− √
g

(
Q

U

)
. (29)

The residual B-mode power spectrum caused by the non-ideal HWP
is then estimated from these calibrated difference maps.

Finally, we divide out a beam window function to correct the
power spectrum for the azimuthally symmetric part of the beam.
This allows us to directly compare the residual to theory spectra. For
each simulation, we use a window function that corresponds to the
averaged symmetric part of the input detector beams.

4.2 Scanning with an ideal Gaussian beam

We start by exploring effects that are purely caused by non-ideal
HWPs. This is achieved by choosing a copolar polarized and az-
imuthally symmetric Gaussian beam model, see e.g. Duivenvoorden
et al. (2019). Using this beam, we scan the CMB with the different
HWP configurations; we summarize our results in Fig. 7. We find that
only the BR3 configuration shows an appreciable B-mode residual
in this case. All three HWP configurations outperform the case
without HWP modulation, which shows a relatively large white-
noise spectrum caused by small conditioning problems in the map-
making solution that are approximately uncorrelated between pixels.
It is instructive to determine which terms of the data model in
equations (15)–(17) are causing the BR3 residual. It turns out that
this spurious signal is due to E → B leakage from the 4να terms,
i.e. non-idealities in the inner two-by-two part of the HWP Mueller
matrix. We have checked that the residual is not caused by I →
(Q, U) leakage due to the 2να term in equation (15) that couples
the linearly polarized beam to the I sky signal: we obtain virtually

Figure 8. Residual B-mode power spectra generated when the CMB is
observed using the BR3 HWP with a rotation angle offset optimized for the
PYSM Galactic dust model d1 (solid curves) and vice versa (dashed curves).

identical residuals when the input Stokes I signal is artificially set
to zero. The insignificance of the 2να term can be attributed to
the smallness of the IQ and IU elements in the HWP Mueller
matrices (see Fig. 5), the lack of a strong atmospheric I signal, and
most importantly, the rather good conditioning of the map-making
solution. Even without modification, the map maker corresponding to
equation (27) accurately distinguishes between time-ordered signal
that is modulated at 2να and 4να .

Using the same set-up, we then explore the addition of a foreground
component. Specifically, we simulate what happens when a map
maker that uses an HWP angle offset ϕ (see equation 27) that is
optimized for the CMB encounters polarized signal from Galactic
dust. Fig. 8 shows the B-mode residual for this hypothetical situation
as well as for the opposite case in which the CMB is observed with
ϕ optimized for the SED of dust. We again only show the BR3 HWP
configuration. The error in ϕ causes E → B leakage: the residual
clearly traces the shape of the input E-mode spectrum. The effect is
identical to that of a systematic polarization angle calibration error. It
can be seen that for both cases the residual is larger for 95 GHz than
for 150 GHz. This is due to the fact that the optimal BR3 offset angle
for dust in the 95 GHz band differs from the optimal angle offset for
the CMB by about 0.4◦ while the difference at 150 GHz is only half
that.

From this section it becomes clear that in the presence of multiple
sky components a single HWP offset angle ϕ will not effectively
reduce B-mode residual caused by HWP non-idealities. The remain-
ing spurious signal for the BR3 HWP configuration is at a level
that would be unacceptable for upcoming B-mode experiments. A
correction angle per sky component seems to be necessary. We further
explore this point in the next section.

4.3 Foreground dependence

To investigate how the HWP-induced systematics depend on fore-
ground emission, we scan the different PYSM Galactic dust models
(d0–d5) with Gaussian beams (using the same set-up as in the
previous section). Data from the Planck satellite have provided a
wealth of information on Galactic dust emission, but there remains
considerable uncertainty regarding both its frequency scaling and
spatial variation (Planck Collaboration XI 2020b). It is therefore
natural to ask whether this uncertainty is large enough to impact
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Figure 9. Residual B-mode power spectra for the different PYSM Galactic
dust models in the 150 GHz frequency band scanned using the BR3 HWP
configuration. The solid lines use a value of the HWP angle offset that
is tailored to each dust model (the median of the distributions shown in
Fig. 6). The dashed coloured lines use the median of the rotation angle offsets
calculated for the case of an SED given by the combination of CMB and dust.

the modelling of HWP systematics. We are particularly interested in
seeing if spatial variation in the effective spectral index invalidates
the use of a single HWP rotation angle offset. Recall that in Fig. 6 the
offset angles for the various PYSM dust models are compared to the
offset angle determined for the simplest modified blackbody model
d0. The offset angle distributions of the more involved dust models
are both biased from the d0 value and show a dispersion. The model
with the greatest dispersion (d3) predicts that a significant number
of sky pixels will have an optimal offset angle that is more than 0.1◦

away from the mean value for the BR3 HWP configuration.
Fig. 9 shows the effect of ignoring the spatial SED variations of the

various PYSM models. We scan the dust models using the BR3 HWP
and correct for the HWP-induced rotation offset using an angle that
corresponds to the mean of each distribution in Fig. 6. As expected,
we see that the d2 and d3 models, which both have a relatively
large spread in spectral index over the sky, give the largest residuals.
However, the amplitude of the spurious signal is still well below any
detectable B-mode power spectrum amplitude. It thus seems that any
realistic spatial variation in the dust SED can be safely ignored when
determining the optimal HWP rotation angle correction for the dust
component.

Similar to the previous section, we also explore the case in which a
single angle calculated for the SED of the combination of CMB and
dust is used to correct for the HWP-induced rotation angle. These
residuals are given by the dashed lines in Fig. 9. We again see that
this choice of correction angle would produce significant residual
and we see that this result is insensitive to the choice of dust model.

4.4 Scanning with a non-ideal beam

The simulation framework presented in this paper enables studies
of the complicated interplay between non-ideal HWPs and non-ideal
beams. For this purpose, we can use physical optics (PO) simulations
that include extended beam sidelobes with non-negligible cross-polar
response; features that could be present in an optical configuration
shown in Fig. 1. The azimuthally averaged beam profiles for the
Stokes Q and U beams of a representative beam used in this analysis
are shown in Fig. 3. We study two cases, one where we apodize the

beam maps at 3◦ away from the beam centre (no far-sidelobes) and
one where we extend our beam maps out to 30◦ (with far-sidelobes).
In order to focus on effects from the interplay between the beam
and the HWP, we calculate difference maps by subtracting a map
generated using the same beam model but with an ideal HWP.

Fig. 10 shows the resultant B-mode residuals; the input sky is the
d1 dust model, the amplitude of the curves should be compared to the
solid d1 curve in Fig. 9. The effect of the more complex beam model
is two-fold. The increased solid angle of the beam, i.e. the sidelobe,
brings in E-mode dust signal from behind the Galactic mask. Given
that we use a correction for the HWP rotation angle offset ϕ that has
been calculated for unmasked pixels, the correction that we apply
is not quite appropriate for this extra signal. The result is E → B
leakage close to the edges of the mask. The second, more significant,
effect is due to the cross-polar beam. This is especially obvious in
the right-hand panel of Fig. 10 that was made with the beam model
that extends out to 30◦ and includes a relatively large cross-polar
component. The impact of the cross-polar beam can be understood
as an 
-dependent polarization rotation that, given the shape of the
cross-polar component in Fig. 3, is larger at lower 
. One might
wonder why the resulting E → B leakage is not cancelled in our set-
up when we subtract the ideal-HWP maps that were created using
the same cross-polar beam. The reason is that the dominant HWP
non-ideality couples directly to the cross-polar beam component: the
two effects are not additive but multiplicative. This can be seen in the
third line of equation (16): the dominant 4να term of the data model
contains a term proportional to Ũ

(0)
b CP ∗P , i.e. the product of the

cross-polar beam and the P∗P component of the HWP Mueller matrix
in equation (A36). Roughly speaking, the difference maps used to
create the spectra in Fig. 10 are thus proportional to the cross-polar
beam times (1 − CP ∗P ), the deviation from the ideal HWP Mueller
element. The outcome is E → B leakage from the HWP non-ideality
that is modulated by the cross-polar beam, resulting in the leaking of
a redder version of the original E-mode dust spectrum to the B-mode
spectrum, as can be observed in the right-hand panel of Fig. 10.

4.5 Polarization sensitivity

Given the results that we have discussed so far, there does not seem
to be much difference between the BR1 and BR5 performance. Both
outperform the BR3 HWP configuration in all the tests we presented
and in Fig. 10 the BR1 and BR5 curves overlap almost perfectly.
However, the calibration process that we described in Section 4.1
masks the fact that the BR5 configuration has much greater po-
larization modulation efficiency than the BR1 configuration. For
example, in the case when we scan the CMB with a Gaussian beam
(see Section 4.2, Fig. 7), we find that the calibration coefficients
based on the E-mode power spectrum are 1.44, 1.10, 1.09, and 1.00
for the BR1, BR3, BR5, and no HWP configurations, respectively.
In comparison, the calibration procedure that uses the temperature
power spectrum gives 1.04, 1.05, 1.08, and 1.00, for the BR1, BR3,
BR5, and no-HWP configurations, respectively. This shows that even
though the BR5 configuration has lower optical efficiency because of
the larger number of optical elements, and therefore a greater number
of both loss and reflection mechanisms, its polarization modulation
efficiency, and therefore sensitivity, is approximately 15 per cent
higher than that of the BR1 configuration when integrated over the
95-GHz band.
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Figure 10. Left: Residual B-mode power spectra at 95 GHz (solid lines) and 150 GHz (dashed lines) derived from the band-averaged difference maps obtained
by observing the PYSM d1 dust model using all of the HWP configurations presented in Table 1 for scans with a PO beam truncated at 3◦. Right: The same, but
now observing the sky with a PO beam that extends to 30◦ and therefore includes a higher contribution from sidelobes (see Fig. 3). Note that the BR1 curves
are almost completely hidden behind the BR5 curves.

5 C O N C L U S I O N S

We formulated an extension of the harmonic beam convolution
algorithm originally described by Wandelt & Górski (2001) that adds
the capability of simulating systematics due to non-ideal HWPs. The
generalized algorithm allows for numerically efficient generation
of simulated time-domain data that include spurious signal from
non-ideal HWPs and asymmetric and/or non-trivially polarized
beams. Such time-domain simulations are a crucial part of ‘end-
to-end’ analysis pipeline validation efforts for CMB experiments.
As multiple current and upcoming CMB instruments employ HWPs,
it is timely to include the associated non-idealities in our simulations.
The new simulator also allows us to investigate the importance of
HWP-related systematics, some of which we have investigated in this
paper. The extended algorithm is implemented as part of the publicly
available BEAMCONV code, which has also been used to derive the
results in this paper.

For our investigation into HWP systematics, we included three dif-
ferent HWP configurations: a one-, three-, and five-layer model. With
this selection, we simulated data for a representative CMB B-mode
satellite experiment that employs a spinning HWP as polarization
modulator. Particular attention was paid to the frequency dependence
of the system. Our simulated experiment employs dichroic detectors
and is thus especially sensitive to frequency-dependent HWP sys-
tematics given the wide frequency band of the detectors.

We find that the choice of HWP configuration significantly impacts
the B-mode reconstruction fidelity. In particular, the three-layer HWP
that we study comes with a significant frequency-dependent rotation
angle offset, which, if not corrected for, acts as a polarization angle
offset that leaks E-mode to B-mode polarization by an amount that
would be problematic for an experiment aiming to constrain the
tensor-to-scalar ratio r to a level of r < 0.003. Correcting for the rota-
tion offset requires a correcting HWP angle offset ϕ that is dependent
on the SED of the observed signal; we demonstrate that ϕ varies sig-
nificantly between the CMB signal and the Galactic dust signal. This
introduces a challenge for the standard CMB data analysis paradigm,
which aims to compress an experiment’s TOD into unbiased sky
maps before component separation and cosmological analysis is
performed. During this map-making procedure one typically has
no knowledge of the relative contribution of each sky component

to the TOD. As a result, the map-making procedure can only be
given a single ϕ angle, based on some combination of the optimal ϕ

of each of the sky components, which will necessary lead to biased
maps. Parametric algorithms for component separation, starting from
a prior on the SEDs of the various sky components, could use ϕ as a
parameter per sky component and forward propagate the polarization
rotation. Such algorithms might attempt to divine the ϕ angles from
the observed amount of EB signal in the non-component separated
maps, as no significant EB power has until now been observed for
either dust or the CMB (Planck Collaboration XI 2020b).

In light of HWP rotation angle offsets that vary between sky
components, we investigate how well one would need to know the
SED of polarized Galactic dust when modelling the angle offset of
this component. We find that the current understanding of the dust
SED will likely suffice for this procedure. We determine offset angles
for a range of different dust models and find that the resulting angles
vary by an insignificant amount. Spatial variations in the dust SED
also seem to be of relatively minor importance.

Finally, we leverage the potential of the new code by simulating
data using non-ideal HWPs and non-ideal instrumental beams. We
point out that there exist an interplay between the cross-polar
component of the beam and certain HWP non-idealities. We find
significant B-mode residual for all three HWP configurations when
this interplay is not modelled correctly. We can conclude that a
thorough understanding of the instrumental beam will be necessary
for future experiments attempting to model or correct for HWP non-
idealities.
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Wandelt B. D., Górski K. M., 2001, Phys. Rev. D, 63, 123002
Zaldarriaga M., Seljak U., 1997, Phys. Rev. D, 55, 1830

A P P E N D I X A : EX PA N D I N G O N TH E
MATHEMATI CAL FRAMEWORK

The aim of this appendix is to give a more exhaustive explanation
of the mathematical framework used in Section 2. In particular,
we will derive the harmonic-domain version of the data model of
equation (11) and derive the harmonic coefficients in equations (15)–
(17).

We express the data model in terms of the Stokes parameters of
the instrument and the sky by inserting equation (5) in equation (4):

dt =
∫

dν F (ν)
∫

d�(n̂)
(
I Ĩ (t)

i + QQ̃ (t)
i

+UŨ (t)
i + V Ṽ (t)

i

)
(n̂, ν). (A1)

Note that we omit the noise term for brevity. The instrumental Stokes
parameters in the above equation are defined in a basis fixed to the
sky and thus change continuously as the telescope scans over the sky.
The transformation between sky and instrument coordinate frame is
given by equation (9). In this derivation, we will, however, first
express the data model in the harmonic domain before performing
the transformation.

By working in the harmonic domain we can make use of the fact
that a generic set of SWSH coefficients f

(0)

m defined with respect to
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the coordinate basis fixed to the instrument transform as follows:

f
(0)

m �→ f

(t)

m =

√
4π

2
 + 1


∑
s=−


f
(0)

s sY
−m(θt , φt )e

−isψt , (A2)

when we instead define the coefficients with respect to the coordinate
frame fixed relative to the sky. Here, ψ i, θ i, and φi are the three Euler
angles that describeRt , the rotation between the two frames, and sY
m

is a spin-s spherical harmonic (Newman & Penrose 1966; Goldberg
et al. 1967).

To make use of equation (A2) it is necessary to know the
SWSH coefficients for each of the different Stokes parameters in
equation (A1). Using the transformation rule for the density matrix in
equation (9), we may illustrate why Ĩ (t)

i , and Ṽ (t)
i should be expanded

into regular (spin-0) spherical harmonics and why

P̃ (t)
i = Q̃ (t)

i + iŨ (t)
i , (A3)

ought to be expanded in spin-2 spherical harmonics. We note that
the � matrices in equation (9) generally depend on the ψ t, θ t, and
φt angles that describe Rt but that in the case where Rt describes
a right-handed rotation around n̂ by an angle ψ t the matrices are
simply given by

�
j

i (Rn̂(ψt )) =
(

cos ψt sin ψt

− sin ψt cos ψt

)
. (A4)

It is straightforward to check that when this specific rotation is applied
to W(t)

instr, the Ĩ (t)
i and Ṽ (t)

i elements remain invariant, while the
elements of the symmetric trace-free part, Q̃ (t)

i and Ũ (t)
i , transform

as a spin-2 field:(
Q̃ (t)

i ± iŨ (t)
i

)
(n̂) �→ e∓2iψt

(
Q̃ (t)

i ± iŨ (t)
i

)
(n̂) . (A5)

We now expand the instrumental Stokes parameters into the
appropriate spin-weighted spherical harmonics:

Ĩ (t)
i (n̂, ν, αt ) =


max∑

=0


∑
m=−


b
˜I

(t)
i


m (ν, αt )Y
m(n̂), (A6)

P̃ (t)
i (n̂, ν, αt ) =


max∑

=2


∑
m=−


2b
˜P

(t)
i


m (ν, αt )2Y
m(n̂), (A7)

Ṽ (t)
i (n̂, ν, αt ) =


max∑

=0


∑
m=−


b
˜V

(t)
i


m (ν, αt )Y
m(n̂). (A8)

The Stokes parameters of the sky are expanded in a similar manner:

I (n̂, ν) =

max∑

=0


∑
m=−


aI

m(ν)Y
m(n̂), (A9)

P (n̂, ν) =

max∑

=2


∑
m=−


2a
P

m(ν)2Y
m(n̂), (A10)

V (n̂, ν) =

max∑

=0


∑
m=−


aV

m(ν)Y
m(n̂), (A11)

where we have used the following definition:

P = Q + iU. (A12)

We insert equations (A6)–(A11) into equation (A1) to produce the
following version of the data model:

dt =
∫

dνF (ν)

max∑

=0


∑
m=−


{[
b
˜I

(t)
i


m (ν, αt )
]∗

aI

m(ν)

+ Re
([

2b
˜P

(t)
i


m (ν, αt )
]∗

2a
P

m(ν)

)
+ [

b
˜V

(t)
i


m (ν, αt )
]∗

aV

m(ν)

}
. (A13)

To obtain this expression, we have made use of the orthogonality of
the SWSH:∫

S2
d�(n̂)sY
m(n̂)sY

∗

′m′ (n̂) = δ
,
′δm,m′ . (A14)

Note that the b
˜I

(t)
i


m , 2b
˜P

(t)
i


m , and b
˜V

(t)
i


m coefficients in equation (A13) are
still defined on the basis fixed to the sky, so they are time dependent
(they change as the telescope scans over the sky). We may now use
equation (A2) to relate these time-varying coefficients to the b

˜I

s ,

±2b
˜P

s , and b

˜V

s coefficients in equation (11) that are defined with

respect to the coordinate frame fixed to the instrument. Under the
rotation Rt the following relationships hold:

b
˜I

(0)
i


m (αt ) �→ b
˜I

(t)
i


m (αt )

= q



∑
s=−


b
˜I

(0)
i


s (αt ) sY
−m(θt , φt )e
−isψt , (A15)

2b
˜P

(0)
i


m (αt ) �→ 2b
˜P

(t)
i


m (αt )

= q



∑
s=−


2b
˜P

(0)
i


s (αt ) sY
−m(θt , φt )e
−isψt , (A16)

b
˜V

(0)
i


m (αt ) �→ b
˜V

(t)
i


m (αt )

= q



∑
s=−


b
˜V

(0)
i


s (αt ) sY
−m(θt , φt )e
−isψt , (A17)

where we have defined the shorthand:

q
 =
√

4π

2
 + 1
. (A18)

Inserting the above into equation (A13) yields the final expression
for the data model in equation (11).

To derive the harmonic coefficients in equations (15)–(17), we
need to compute the instrumental Stokes parameters in the coordinate
frame fixed to the instrument. We make use of equation (22) that
expresses these parameters in terms of a Stokes vector representing
the beam and the HWP Mueller matrix, rotated by an angle αt:

S(0)T
instr(n̂, ν, αt ) = S(0)T

beam(n̂, ν)MHWP(ν, αt ) . (A19)

The instrumental Stokes vector contains the same information as
the instrumental density matrix W(0)

instr in equation (9). We may use
equation (6) to transform the between density matrix and Stokes
vector using the following Pauli matrices:

(σ0)ij =
(

1 0
0 sin2 θ

)
, (A20)

(σ3)ij =
(

1 0
0 − sin2 θ

)
, (A21)

(σ1)ij =
(

0 sin θ

sin θ 0

)
, (A22)

(σ2)ij =
(

0 −i sin θ

i sin θ 0

)
. (A23)

The additional factors of sin θ compared to the standard Pauli
matrices are a consequence of the metric of the assumed spherical
coordinates: gij = diag(1, sin 2θ ).

We start by rewriting equation (A19) as follows:

S(0)T
instr(n̂, ν, αt )T

† = S(0)T
beam(n̂, ν)T†TMHWP(ν, αt )T

† , (A24)
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where we have introduced the following complex transformation
matrix:

T =

⎛⎜⎜⎝
1 0 0 0
0 1√

2
i√
2

0
0 1√

2
−i√

2
0

0 0 0 1

⎞⎟⎟⎠ , (A25)

that should be understood as transforming the real Stokes parameter
basis to a complex basis spanned by I, (Q + iU )/

√
2, (Q − iU )/

√
2,

and V. Note that T is unitary:

T†T = TT† = 1 . (A26)

Next, we factor the rotated HWP Mueller matrix into the unrotated
matrix and two Mueller rotation matrices:

MHWP(α) = MT
αMHWPMα , (A27)

with:

Mα =

⎛⎜⎜⎝
1 0 0 0
0 cos 2α sin 2α 0
0 − sin 2α cos 2α 0
0 0 0 1

⎞⎟⎟⎠ . (A28)

Note that the T matrix diagonalizes the rotation matrix:

TMαT
† =

⎛⎜⎜⎝
1 0 0 0
0 e−2iα 0 0
0 0 e2iα 0
0 0 0 1

⎞⎟⎟⎠ . (A29)

Putting everything together yields:

S(0)T
instr(n̂, ν, αt )T

†

= S(0)T
beam(n̂, ν)T†TMT

αT
†TMHWP(ν)T†TMαT

†. (A30)

Evaluating this expression provides us with the instrumental Stokes
parameters in terms of the beam Stokes parameters and the HWP:

Ĩ (0)
i (n̂, αt , ν) = Ĩ

(0)
b (n̂, ν)CIV (ν) + Ṽ

(0)
b (n̂, ν)CV V (ν)

+
√

2Re
(
P̃

(0)
b (n̂, ν)CP ∗V (ν)e−2iα

)
, (A31)

P̃ (0)
i (n̂, α, ν) = Ĩ

(0)
b (n̂, ν)CIP (ν)

√
2 e−2iα

+ Ṽ
(0)

b (n̂, ν)CV P (ν)
√

2e−2iα

+ P̃
(0)
b (n̂, ν)CP ∗P (ν)e−4iα

+ P̃
(0)∗
b (n̂, ν)CPP (ν), (A32)

Ṽ (0)
i (n̂, α, ν) = Ĩ

(0)
b (n̂, ν)CIV (ν) + Ṽ

(0)
b (n̂, ν)CV V (ν)

+
√

2Re
(
P̃

(0)
b (n̂, ν)CP ∗V (ν)e−2iα

)
, (A33)

where

P̃ (0)
i = Q̃ (0)

i + iŨ (0)
i , (A34)

and where we have used the following shorthand for the unrotated
HWP Mueller matrix expressed in the complex basis:

C = TMHWPT
† , (A35)

that, in terms of the original HWP Mueller matrix elements, is given
by

C =

⎛⎜⎜⎜⎜⎝
MII

MIQ−iMIU√
2

MQI +iMUI√
2

MQQ+MUU −i(MQU −MUQ)
2

MQI −iMUI√
2

MQQ−MUU −i(MQU +MUQ)
2

MV I
MV Q−iMV U√

2

×

MIQ+iMIU√
2

MIV

MQQ−MUU +i(MQU +MUQ)
2

MQV +iMUV√
2

MQQ+MUU +i(MQU −MUQ)
2

MQV −iMUV√
2

(MV Q+iMV U )√
2

MV V

⎞⎟⎟⎟⎟⎠ . (A36)

Finally, we plug the instrumental Stokes parameters in equa-
tions (A31)–(A33) into the transformations below:

b
˜I

(0)
i


m (ν) =
∫

S2
d�(n̂)Ĩ (0)

i (n̂, αt , ν)Y ∗

m(n̂), (A37)

2b
˜P

(0)
i


m (ν) =
∫
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to obtain the harmonic coefficients given in equations (15)–(17).
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