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A B S T R A C T 

One of the most promising tracers of the Galactic potential in the halo region is stellar streams. Ho we ver, indi vidual stream fits 
can be limited by systematic biases. To study these individual stream systematics, we fit streams in Milky Way-like galaxies 
from Feedback In Realistic Environments cosmological galaxy formation simulations with an analytical gravitational potential 
by maximizing the clustering of stream stars in action space. We show that for coherent streams the quality of the constraints 
depends on the orbital phase of the observed stream stars, despite the fact that the phase information is discarded in action- 
clustering methods. Streams on intermediate phases give the most accurate results, whereas pericentre streams can be highly 

biased. This behaviour is tied to the amount of correlation present between positions and momenta in each stream’s data: weak 

correlation in pericentre streams prohibits efficient differentiation between potentials, while strong correlation in intermediate 
streams promotes it. Although simultaneous fitting of multiple streams is generally prescribed as the remedy to combat individual 
stream biases, we find that combining multiple pericentric streams is not enough to yield a bias-free result. We finally show that 
adopting the two-component St ̈ackel model does not fundamentally induce a biased mass estimate. With our full data set of two 

multiwrap streams, we reco v ered the true rotation curve of the simulated galaxy within 12 per cent o v er the entire range of radii 
co v ered by our set of stars (10–176 kpc) and within 6 . 5 per cent between the 5 and 95 percentile distance range (23–109 kpc). 

Key words: methods: numerical – Galaxy: halo – Galaxy: kinematics and dynamics – Galaxy: structure – dark matter. 
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 I N T RO D U C T I O N  

tellar streams, relics of tidally disrupted globular clusters and dwarf 
alaxies, are one of the most promising probes of the gravitational 
eld of the Milky Way at large Galactocentric distances. Since 

he first detections of streams in the Milky Way (Ibata, Gilmore 
 Irwin 1994 ; Grillmair et al. 1995 ; Helmi et al. 1999 ), many
ethods have been developed to constrain the Galactic mass profile 

sing streams. Some of these make comparisons between predictions 
nd data directly in position and velocity space such as the orbit-
tting technique (e.g. Koposov, Rix & Hogg 2010 ), particle ejection 
ethods (e.g. the ‘streakline’ method of K ̈upper, Lane & Heggie 

012 , the modified Lagrange Cloud Stripping method of Gibbons, 
elokurov & Evans 2014 , the ‘particle-spray’ method of Fardal, 
uang & Weinberg 2015 ), or full N -body simulations (e.g. Law &
ajewski 2010 ), while others utilize the action-angle coordinates, 

uch as the angle-frequency slope method (Sanders & Binney 2013 ) 
nd action-clustering method (Sanderson, Helmi & Hogg 2015 ). 
hese methods have thus far been applied to only a handful of
treams, most commonly GD-1 (Koposov et al. 2010 ; Malhan & 

bata 2019 ), Pal 5 (K ̈upper et al. 2015 ), Sagittarius (Law & Majewski
010 ; Dierickx & Loeb 2017 ; Vasiliev, Belokurov & Erkal 2021 ),
nd Orphan (Newberg et al. 2010 ; Erkal et al. 2019 ). 
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To date, most of these studies have focused on measuring the
otential with single streams (although see Bovy et al. 2016 ).
o we ver, using a sample of streams evolved in the Via Lactea

I simulation Bonaca et al. ( 2014 ) showed that constraints from
ndividual streams can be highly biased. Only simultaneous fitting of 
 collection of streams would result in accurate potential reco v ery.
hey estimated that GD-1 and Pal 5-like streams could individually 

eturn up to 50 per cent biased mass estimates for the Milky Way. In
eino et al. ( 2021 ), we showed that this also holds true when using

he action-clustering method. In particular, we saw a significant bias 
rise from the analysis of GD-1 compared to the constraints derived
ith a collection of streams. The strategy of simultaneous fitting 
f multiple streams to a v oid the pitfalls of a single stream fit was
lso advocated by Lux et al. ( 2013 ), Sanders & Binney ( 2013 ), and
anderson, Hartke & Helmi ( 2017 ). 
Today, more than 60 streams have been discovered in the Milky
ay (Newberg & Carlin 2016 ; Mateu, Read & Kawata 2018 ; Ibata,
alhan & Martin 2019 ; Koppelman et al. 2019 ; Myeong et al. 2019 ;
aidu et al. 2020 ; Malhan et al. 2021 ) and ideally we should seek a

onsensus fit. Ho we ver, the observ ational data required for Galactic
otential inference is only available for a subset of these streams.
ttaining the full 6D phase space information tends to be difficult and
ecessitates a cross-matching of information from different surv e ys, 
.g. proper motions from Gaia (Gaia Collaboration 2016 ), distances 
f RR Lyrae from P anSTARRS1 surv e y (Sesar et al. 2017 ) or Gaia’s
pecific Object Study catalogue (Clementini et al. 2019 ), and radial
 elocities from RAVE (K under et al. 2017 ), WEAVE (Dalton et al.
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012 ), 4MOST de Jong et al. ( 2019 ), or DESI (Levi et al. 2019 ). Since
teams are typically distant and faint, targeted follow-up surv e ys are
ften needed, such as the H3 surv e y (Conroy et al. 2019 ) targeting
he stellar halo and the S5 surv e y (Li et al. 2019 ) targeting the stellar
treams in the Southern Hemisphere. With this in mind, knowledge of
hich streams are the most useful for putting accurate constraints on

he Galactic potential would be valuable for selecting which streams
o focus both our modelling and observing efforts on. 

To gain this insight, Bonaca & Hogg ( 2018 ) explored the intrinsic
nformation content in the tracks of 11 mock globular cluster stellar
treams as a function of their properties using the Fisher-matrix
pproach. They found that angular length of the stream was the
est predictor of the tightness of their parameter constraints and that
treams on more eccentric orbits were the most sensitive to the halo
hape. Ho we ver, while the Fisher-matrix approach allowed them to
nvestigate the precision of the constraints the different streams were
apable of reaching, they did not address the question of accuracy. 

In this paper, we aim instead to gauge the accuracy of the con-
traints that arise from different streams using the action-clustering
ethod. In particular, we explore the systematics of stream-driven

onstraints as a function of their orbital phase. To this end, we select
wo long spatially coherent streams from Feedback In Realistic Envi-
onments (FIRE) cosmological-hydrodynamical simulations (Hop-
ins et al. 2018 ) for our analysis. First, we set the expectation for the
ccuracy obtainable with two full-length streams and then divide the
treams into smaller sections based on their current orbital phase and
nalyse these segments independently. This approach is moti v ated,
rst, by the fact that in reality it is more likely to detect (or have the
ull 6D phase space information for) only a small nearby segment
f the whole longer stream, or that associations between stream
ections observed in different parts of the sky are uncertain. Second,
he streams most commonly used for characterizing the potential of
he Milky Way are from globular cluster origin, and therefore much
horter than the dwarf galaxy streams found in FIRE simulations.
ince globular cluster streams do not intrinsically form in the FIRE
imulations, we can instead approximate their length by treating each
ection as an independent stream. Third, this approach allows us to
eep constant some properties of the streams we are working with
for instance eccentricity, inclination, apocentre distance), and to
irect our focus on phase differences. Finally, with this framework
e can easily apply our method to the full stream data to verify that
ur potential model does not induce severe systematic biases on these
ectional results. As a by-product, this setup will give us an indication
f whether, and how much, the constraints vary o v er the length of
he full long stream. Another goal of our study is to investigate how
ccurately we can reco v er the true potential of the simulated galaxy
hen modelling the streams with a St ̈ackel potential. Although
t ̈ackel potentials are generally considered inadequate for describing
ealistic galaxies, they have the great benefit of exact actions. This
roperty was our incentive for adopting the St ̈ackel potential when
nalysing real Milky Way stellar streams in Reino et al. ( 2021 ). In
his work, we will test whether this assumption can introduce any
ignificant additional bias into our results. 

This paper is organized as follows. We discuss the elements of
ur method in Section 2, introducing the St ̈ackel potential (2.1), the
ction coordinates (2.2), and our action-space clustering measure
2.3). We give an overview of the FIRE suite of simulations and our
tream sample in Section 3. In Section 4, we present our results for
he full streams, while the results for stream sections are shown in
ection 5. Next, in Section 6 we explore the stream section results as a
unction of orbital phase. In Section 7, we explore the dependence of
ur result on other stream section properties and provide a reasoning
NRAS 509, 5365–5381 (2022) 
or the orbital-phase effects. Finally, we discuss our results and make
onclusions in Section 8. 

 M E T H O D  

e follow the action-clustering method outlined in Sanderson et al.
 2015 ) and Reino et al. ( 2021 ) which aims to constrain the galactic
otential by maximizing the clustering of stream stars in action space.
e vary the potential used for converting the stars’ positions and ve-

ocities into action coordinates and adopt as the best-fitting potential
he one that gives rise to the most clustered distribution of actions. 

.1 St ̈ackel potential 

nalytical transformation of phase space coordinates ( x , v ) to action
oordinates J is possible only for a small set of potentials for which
amilton–Jacobi equations can be solved by separation of variables.
ction estimation for general potentials requires the use of numerical

pproximation algorithms (see Sanders & Binney 2016 ), although
epeated calculation of actions can be computationally costly in these
ases. Analytical calculation, in contrast, is less e xpensiv e and as such
llows both for a larger number of stream stars to be included in the
t and more potentials to be considered. 
The St ̈ackel potential, which separates in ellipsoidal coordinates, is

he most general of the small group of separable potentials to describe
 real galaxy, as it allows for arbitrarily flattened density profiles and
onstruction of flat rotation curves with the two-component St ̈ackel
odel (Batsleer & Dejonghe 1994 ). 
Ho we ver, the applicability of St ̈ackel potentials is limited by the

act that all orbits are defined by the same foci. This restriction has
een shown to be incorrect for real galaxies (Kuijken & Gilmore
989 ; Binney 2012 ) and therefore a perfect global fit is not possible.
any action-calculation methods still utilize its advantages and, for

xample, fit each orbit with a local St ̈ackel potential instead (Sanders
012 ) or apply the St ̈ackel formulae to another more complex
otential of interest (Binney 2012 ). 
One of the aims of this work is to test the practicality of adopting

 St ̈ackel potential to describe a realistic galaxy and to see whether,
espite its known limits, it could still be utilized as a valuable tool.
iscussion on the expected size of errors originating from our choice
f the St ̈ackel potential model is included in Section 4. 
In this work, we consider oblate axisymmetric two-component

t ̈ackel potentials described by spheroidal coordinates, a limiting
ase of ellipsoidal coordinates. Spheroidal coordinates ( λ, ν, φ) are
elated to cylindrical coordinates ( R , z, φ) by the following quadratic
quation: 

R 

2 

τ − a 2 
+ 

z 2 

τ − c 2 
= 1 , (1) 

here τ = λ, ν are the roots. 
Parameters a and c are constants that determine the location of

he foci � = 

√ 

a 2 − c 2 and define the axial ratio of the coordinate
urfaces, e ≡ a 

c 
and therefore establish the shape of the coordinate

ystem. For an oblate density distribution, we have a > c . Further
etails about this coordinate system can be found in de Zeeuw ( 1985 )
nd Dejonghe & de Zeeuw ( 1988 ). 

A St ̈ackel potential, � , in spheroidal coordinates can be written
s 

 ( λ, ν) = −f ( λ) − f ( ν) 

λ − ν
, 

f ( τ ) = ( τ − c 2 ) G( τ ) , (2) 
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here we set G( τ ) to be the K uzmin–K utuzo v potential 

( τ ) = 

GM tot √ 

τ + c 
, (3) 

here M tot is the total mass and G is the gravitational constant. 
To construct a two-component St ̈ackel model, we combine two 

ndividual St ̈ackel potentials, � outer and � inner . The motivation for
his is to add more flexibility to our potential model thereby allowing
or a more realistic model of the galaxy (Batsleer & Dejonghe 1994 ;
eino et al. 2021 ). The two components are defined by different
arameters a outer , c outer and a inner , c inner , and therefore each has a
ifferent scale and axial ratio but, crucially, they must have the same
oci for the total potential to retain the St ̈ackel form (as defined by
quation 2). It then follows that 

a 2 outer − a 2 inner = c 2 outer − c 2 inner = q, 

outer − λinner = νouter − νinner = q, (4) 

here q > 0 is a constant. The total G( τ ) is now a combination of
wo parts, G outer ( τ ) and G inner ( τ ) 

( τ ) = 

GM tot (1 − k) √ 

τouter + c outer 
+ 

GM tot k √ 

τouter − q + c inner 
, (5) 

nd the total two-component potential is 

 ( λouter , νouter , q) 

= −GM tot 

[
1 − k √ 

λouter + 

√ 

νouter 
+ 

k √ 

λouter − q + 

√ 

νouter 

]
, (6) 

here k is the ratio between the inner component and the outer
omponent masses and M tot is the sum of the two-component masses.

We define our two-component St ̈ackel potentials on a grid of
ve parameters ζ = ( M tot , a outer , e outer , a inner , k). We select the trial
otentials by drawing 50 points for each of the shape parameters, 
rom uniform distributions in log space, o v er the ranges: [0.7,
.8] in log 10 ( a outer / kpc), [log 10 (1.0), log 10 (2.0)] in log 10 ( e outer ), and
log 10 (0.), log 10 (0.7)] in log 10 ( a inner / kpc). Ho we ver, we only use a
ubset of these parameter combinations ( ∼8000) that constructs a 
athematically valid potential according to equation (4); i.e. the 

arameter combinations which adhere to c 2 outer = 

e 2 outer 
a 2 outer 

> c 2 inner . We 

lso draw 20 points for each mass parameter o v er the ranges: [11.5,
2.5] in log 10 ( M / M �) and [log 10 (0.01), log 10 (0.3)] in log 10 ( k ). In
otal, our grid contains 3253 600 trial potentials. 

We further discard the potentials that cause any of the star particles
n our sample to be unbound from the host galaxy. In Reino et al.
 2021 ), we showed that our results did not change appreciably if,
nstead of this strict condition, we allowed a small percentage of the
tars to become unbound. Furthermore, in that work we were dealing 
ith real stream data with measurement errors while here we know 

he true position and velocity of all our particles and do not need to
orry about measurement errors causing unbound stars. 

.2 Actions 

he action-angle coordinates are a set of canonical coordinates which 
onsiderably simplify the equations of motion of a bound star in a
tatic or adiabatically time-evolving potential: the actions, J i , are 
ntegrals of motion that uniquely define the stellar orbit and the 
ngles, θ i , are periodic coordinates that express the phase of the 
rbit. For the St ̈ackel potential, we define the actions J λ and J ν as 

 τ = 

1 

2 π

∮ 
p τ dτ , (7) 
here p τ is the conjugate momentum to the coordinate τ and the
ntegral is over the full oscillation in τ . The third action J φ is equal to
he z -component of the angular momentum, L z , and hence is constant
n our axisymmetric potentials. 

The conjugate momenta, p τ , can be found by solving the
amilton–Jacobi equation by separation of variables. In addition to 

he momenta, the separation of variables introduces three isolating 
ntegrals: I 2 , I 3 , and the total energy E . The integrals I 2 and I 3 are
efined as (Dejonghe & de Zeeuw 1988 ) 

 2 = 

L 

2 
z 

2 
, 

 3 = 

1 

2 

(
L 

2 
x + L 

2 
y 

) + ( a 2 − c 2 ) 

[
1 

2 
v 2 z − z 2 

G( λ) − G( ν) 

λ − ν

]
. (8) 

he solution to the Hamilton–Jacobi equation then allows the 
omenta, p τ , to be expressed as a function of the τ coordinate

nd the three isolating integrals: 

 

2 
τ = 

1 

2( τ − a 2 ) 

[
G( τ ) − I 2 

τ − a 2 
− I 3 

τ − c 2 
+ E 

]
, (9) 

hich can then be used in equation (7) and integrated numerically. 

.3 Clustering measurement 

n intrinsic element of the action-clustering method is the procedure 
f quantifying and comparing the degree of clustering present in the
ction space of dif ferent potentials. Follo wing Sanderson et al. ( 2015 )
nd Reino et al. ( 2021 ), we measure this degree of clustering with the
 ullback–Leibler div ergence (KLD). The KLD is a measure of the
ivergence between two probability distributions p( x ) and q( x ). For
 discrete sample [ x i ] with i = 1 , ... , N drawn from a distribution
( x ), the KLD can be calculated as 

LD ( p || q ) ≈ 1 

N 

N ∑ 

i 

log 
p( x i ) 
q ( x i ) 

, if q ( x i ) �= 0 ∀ i. (10) 

he value of KLD increases with increasing difference between p( x )
nd q( x ) and is equal to 0 when p( x ) = q( x ). 

Since we are looking to measure the amount of clustering in action
pace, irrespective of the cluster locations, we proceed with the idea
f comparing the distribution of actions in a particular trial potential
o a completely unclustered, featureless distribution. In other words, 
e set q( x ) to a uniform distribution in the actions, u ( J ), and p( x ) to
 probability distribution of actions, p( J | ζ , ω ), found by mapping
he phase space coordinates ω to action space J with a trial potential
arametrized by ζ . The difference between the two distributions is 
reater the more clustered the action distribution. 
Our goal is to maximize the difference, and therefore the KLD

alue, between these probability distributions as we vary the trial 
otential and explore the parameter space. The trial potential with 
he highest KLD value is adopted as the best-fitting potential, with
arameters ζ 0 , for that particular data set, ω . 
The standard KLD gives equal weight to each star particle in the

ample and as a consequence, when multiple streams (or stream 

ections) are analysed simultaneously, streams (or stream sections) 
ontaining more star particles have stronger influence o v er the results. 
ince stream membership in this case is known, we can make the
est use of the data by giving equal weight to all streams instead, by
eighting the contribution of each star particle with 

 j = 

1 

N s 
× 1 

N j 

, (11) 
MNRAS 509, 5365–5381 (2022) 
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here N s is the number of streams and N j is the number of star
articles in stream j . 
This weighted KLD is thus calculated as follows: 

LD1 ( ζ ) = 

N s ∑ 

j 

N j ∑ 

i 

w j log 
p( J | ζ , ω ) 

u ( J ) 

∣∣∣∣
J = J ij ζ

, (12) 

here J ij ζ = J ( ζ , ω ij ) and ω ij are the phase space coordinates for
tar i in stream j . 

Although the function p( J | ζ , ω ) is not known a priori, it can
e constructed using the observed points J via a density estimator.
ere, we obtain p( J | ζ , ω ) using the Enlink algorithm developed
y Sharma & Johnston ( 2009 ). u ( J ), on the other hand, is constant
cross all trial potentials and does not have an impact on the results.
t can therefore be set to any preferred value. 

Finally, the method will work best if the different streams do
ot o v erlap with each other in action space. Since in this case,
s in Reino et al. ( 2021 ), we know which stars belong to which
tream, we can ensure this absence of o v erlap by calculating the
robability distributions for each stream independently. So, instead
f estimating p( J | ζ , ω ) with the full set of sample points J ,
e construct a probability density function p j ( J j | ζ , ω j ) for each

tream j individually from points J j . To keep the p j at the correct
elative size between the different streams, we normalize each p j with
N j 

N 
. In practice, the KLD equation that we use is therefore 

LD1 ( ζ ) = 

N s ∑ 

j 

N j ∑ 

i 

w j log 
N j 

N 

p j ( J j | ζ , ω j ) 

u ( J ) 

∣∣∣∣
J = J ij ζ

. (13) 

It is important to note that neither the weighing nor the separation
f streams in action space is critical for the action-clustering method
o work, as we have shown in previous works (Sanderson et al. 2015 ;
eino et al. 2021 ). 
The goal of this procedure, as already stated abo v e, is to determine

he set of St ̈ackel potential parameters that maximize the KLD1
alue. As a second step in our procedure, we calculate the confidence
ntervals on these best-fitting parameters, by comparing the action
istribution of the best-fitting potential, p( J | ζ 0 , ω ), to the action
istributions of the other trial potentials, p( J | ζ trial , ω ) using again
he Kullback–Leibler divergence. 

The KLD defined in such a way can be interpreted as the
elative probability of the potential parameters ζ trial to the best-
tting potential parameters ζ 0 (Kullback & Leibler 1951 ; Kullback
959 ). As we mo v e further from the best-fitting parameter values, the
ifference between the two action distributions grows and so does the
LD value. In other words, we can measure how far from the best-
tting parameters we can mo v e before the action distribution starts

o significantly differ from that of the best-fitting action distribution.
he confidence intervals can then be drawn based on the value of
LD that we deem to correspond to significant difference. The

nterpretation of KLD as the expectation value of the difference
n the log of two posterior probabilities allows us to determine the
alue of KLD that corresponds to any preferred level of significance.
 or e xample, the significance of 1 σ corresponds to KLD = 0.5.
n in-depth deri v ation of the relation between the KLD values and

he confidence levels can be found in Reino et al. ( 2021 ) and a full
iscussion of this interpretation of KLD in Sanderson et al. ( 2015 ). 
As with KLD1 ( ζ ) in equation (13), this version of KLD will

ncorporate weights and a separate density estimation for different
NRAS 509, 5365–5381 (2022) 
treams. It is defined as follows: 

LD2 ( ζ ) = 

N s ∑ 

j 

N j ∑ 

i 

w j log 
N j 

N 

p i ( J i | ζ 0 , ω i ) 

p i ( J i | ζ trial , ω i ) 

∣∣∣∣
J i = J ij 0 

. (14) 

nce again, we use Enlink to estimate the probability density
unctions p i ( J i | ζ 0 , ω i ) and p i ( J i | ζ trial , ω i ) using the two sets
f actions. Both functions are then e v aluated at J 0 = J ( ζ 0 , ω ), the
ctions computed with the best-fitting potential parameters ζ0 . 

Finally, throughout the rest of the paper we discuss the un-
ertainties of our measurements as 1 σ confidence intervals. This
orresponds to the subset of trial potentials with KLD2 ( ζ ) ≤ 0 . 5.
he individual parameter confidence intervals are determined as the

ull range of parameter values in this subset of potentials. 

 SIMULA  T I O N  DA  TA  

n this work, we make use of streams formed from the tidal disruption
f dwarf galaxies in cosmological-baryonic simulations of Milky
ay-like galaxies from the Latte suite (Wetzel et al. 2016 ) and

LVIS on FIRE suite (Garrison-Kimmel et al. 2019 ) of the FIRE
roject (Hopkins et al. 2018 ). All haloes were simulated in  CDM
osmology at particle mass resolution of 3500–7100 M � and spatial
esolution of 1–4 pc for star/gas particles; 18 000–35 000 M � and
0 pc for DM particles. The resolution of this suite of simulations
llows both luminous and dark subhaloes to be resolved well even
ear each Milky Way-like galaxy, and follows the formation of tidal
treams from dwarf galaxies down to slightly below the mass of
he Milky Way’s ‘classical‘ dSphs: around 10 8 M � in total mass or
0 6 M � in stellar mass (at z = 0). 
Panithanpaisal et al. ( 2021 ) search these simulated galaxies for

ccreted structures that are spatially coherent and stream-like at
resent day. They identify 100 such streams across 13 simulations
see their table 1) and confirm that the progenitor galaxies of
hese coherent streams are consistent with the mass–size–velocity
ispersion relationship of observed present-day Milky Way satellites.
his implies that the streams’ phase-space volumes, and therefore

heir sizes and densities in action space, are representative of real
treams from satellite galaxies. 

In this work, we focus on two of the nine coherent tidal streams
ound in the halo of the isolated galaxy simulation m12i . This
imulated galaxy has had a quiet recent accretion history involving
ostly quite low-mass galaxies, as the Milky Way’s is expected to

ave been since the Gaia–Enceladus merger (e.g. Bonaca et al. 2017 ,
020 ; Belokurov et al. 2018 , 2020 ; Haywood et al. 2018 , Di Matteo
t al. 2019 , Naidu et al. 2020 ). Specifically, m12i experiences no
ergers with mass ratios more similar than 1:3 after z = 1.7 (about

.5 Gyr ago; Santiste v an et al. 2020 ). Its thin disc stabilizes in its
urrent configuration more than 5 Gyr before present day (Garrison-
immel et al. 2018 ), and has a stellar mass and surface density at the
olar circle comparable to the Milky Way (Sanderson et al. 2020 ). 
We select two long streams identified in m12i , which each have
ultiple wraps around their host galaxy and contain between 2000

nd 4000 star particles. Although they are far longer than nearly
 very kno wn Milky Way stream, this length is ideal for our purposes
s it allows us to divide each stream into many sections that are
ach comparable to most known stream lengths, and to select several
nstances of the same orbital phase from each stream. Throughout
he paper, we use the error-free present-day positions and velocities
f the star particles that belong to these streams and assume complete
nd contamination-free knowledge of stream membership for each
tar particle. 
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Figure 1. Streams A (top) and B (bottom) in galactocentric coordinates. Each stream section is identified by a given colour throughout the whole paper (see 
Table 1 for a summary). Star particles not belonging to any section are shown as grey. 
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We define 11 sections in each stream by eye using a combination of
he position, velocity, and orbital phase information. Fig. 1 shows the 
wo streams in the galactocentric reference frame with each section 
ighlighted using a different colour (the velocities of the streams 
re shown in Fig. A1 ). Throughout this paper, we consistently use
he same colour to represent a particular section of each stream, the
egend for this section-specific colour scheme is given in Table 1 .
old-coloured points represent the progenitor-containing section in 
oth streams. The star particles that do not belong to any section
re shown in light grey. In Fig. 2 , we show the streams after we
ave unwound them using angle coordinates. The angle coordinates 
ere computed using the AGAMA library (Vasiliev 2019 ) in a low-
rder multipole (dark matter and hot gas distribution) and cylindrical 
pline (stellar and cold gas distribution) model fit to the potential 
f m12i (Arora et al., in preparation). To unwind each stream, we
tilized the Hough transform (Duda & Hart 1972 ), a line detection
lgorithm, to identify line o v erdensities in the θ r versus θφ projection 
Pearson et al. 2021 ; Shih et al. 2021 ). All the lines identified were
hen connected by exploiting the periodic boundary condition in 
he angle projection (i.e. if a line terminates at ( θr , θφ) = (2 π, ˜ θφ),
t will reappear at ( θr , θφ) = (0 , ˜ θφ)). Starting from the line with
he most members as the stem, we progressively connected more 
ines to both sides, shifting ( θ r , θφ) of the members of the newly
ttached lines with suitable offsets, until all the lines are used. A more
etailed explanation of the unwinding process will be presented in 
anithanpaisal et al. (in preparation). 
Fig. 2 thus allows for clear identification of the phase that 

ach section is on, which we have also summarized in Table 1 .
lthough we define for both streams the section which contains the 
∼  
emaining progenitor (4A and 6B), we do this purely for visualization
urposes and do not make use of these sections individually. In
otal, discounting the progenitor-containing sections, we identify six 
pocentre sections, seven pericentre sections, and seven intermediate 
ections between the two streams. The sizes of the sections vary
rom 30 to 318 star particles, with a total of 973 star particles within
pocentre sections, 984 within pericentre sections, and 1176 within 
ntermediate sections. 

 FULL  STREAM  RESULTS  

n this section, we discuss the results of our action-clustering method
hen applied to the two streams as a whole, both independently and

n combination. Fig. 3 compares our reco v ered St ̈ackel potential
ith the true potential in two projections: the circular velocity 

urve (left) and enclosed mass profile (right). The true potential 
hich is derived from the spherically binned total mass profile of

he simulation snapshot is shown with the black dash–dotted line. 
he solid lines show the best-fitting St ̈ackel potential of a particular
ata set. Both stream A (solid green line) and stream B (solid blue
ine) reco v er the true potential relativ ely accurately, especially at the
alactocentric distances where most of their star particles are. Stream 

, whose star particles lie between ∼10 and ∼96 kpc, reco v ers
he true potential more accurately at lower radii than Stream B,
hose median distance is twice as large. The best-fitting velocity 

urve lies within 32 km s −1 of the true v elocity curv e across all the
istances of its star particles, with ∼10 km s −1 at the median distance
 ∼38 kpc). Stream B, co v ering the range of distances from ∼20 to
176 kpc, on the other hand reco v ers the true potential better at
MNRAS 509, 5365–5381 (2022) 
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Table 1. Sections defined in our streams. The upper portion lists the sections from stream A and the lower portion 
contains those of stream B, each with their respective full stream details on top. The columns give for each stream 

their signifier, number of stars N ∗, median galactocentric distance r , approximate orbital phase, the colour scheme 
(which is used to mark the corresponding sections throughout the paper), length, width, and velocity dispersion. 
Discussion on how these properties were computed is included in Appendix B. 

Figure 2. Phase information of streams A (left) and B (right). The progenitor-containing section (in gold) is at θ r = 0. Colour scheme as in Fig. 1 (see also 
Table 1 ). 
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arger radii. Its best-fitting velocity curve is within 20 km s −1 of
he true velocity curve across its radial range, with 2.6 km s −1 at
he median distance ( ∼79 kpc). The largest differences between
he predicted and true velocity curves occur at the shortest and the
argest radii for both streams. The true potential at galactocentric
istances less than ∼20 kpc cannot be well reproduced by either
tream likely due to the small number of star particles within that
ange (only ∼2 per cent of the stars in our full sample). A further
iscrepancy might arise also due to the lack of flexibility in the
t ̈ackel potential but this possibility cannot be explored with the
urrent data. 

Unsurprisingly, the uncertainties of these best-fitting measure-
ents (shows as the shaded regions) are also the tightest where each

tream contains the most data: the median distance of star particles
NRAS 509, 5365–5381 (2022) 
n each stream (marked with a cross) correlates with the distance at
hich the uncertainty region has reduced to its minimum extent over

ll distances. 
The results from combined data (solid green line) show impro v ed

ccuracy and precision along the whole range of galactocentric
istances probed by our streams. The uncertainty region no longer
as a specific galactocentric distance where it is the tightest, instead
e are able to reco v er the true v elocity curv e within 12 per cent o v er

he range of radii co v ered by all the star particles (10–176 kpc). As
s the case with the individual stream results, the best-fitting rotation
urve most deviates from the true rotation curve at very short and
ery large distances: between 23 and 109 kpc, the 5–95 percentile
alactocentric distance range of the star particles, we reco v er the true
otation curve within 6 . 5 per cent . 

art/stab3176_ufig1.eps
art/stab3176_f2.eps
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Figure 3. Results for stream A, stream B, and their combined data. We compare the results from these data sets to the true potential (black dash–dotted 
line) in circular velocity and enclosed mass. The solid coloured lines show the best-fitting St ̈ackel potential of each data set and the shaded regions show the 
corresponding 1 σ uncertainty regions. The median distance of the star particles in the stream A and stream B data sets is marked with a cross (see Table 1 ). 
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To confirm that this accuracy is typical of all streams in the
imulation, we randomly selected three of the other nine coherent 
treams present in the simulation and applied the action-clustering 
ethod to each whole stream separately. We find that all three streams 

eco v er the true potential very well – within 13 per cent, 3 per cent,
nd 10 per cent between the 5 and 95 percentile galactocentric 
istance range co v ered by their respective star particles. 
These full stream results, for which we used all the star particles

f the two streams, are virtually unaffected if we remo v e the sections
hat contains the progenitors (4A and 6B). Stream B identifies the 
xact same potential as best fit with or without the progenitor, while
tream A finds a best-fitting potential with a somewhat lower mass
cross all radii in the without-progenitor-section case compared to the 
ull stream case. Ho we ver, this lo wer mass profile is still well within
he uncertainty region of both stream A and the combined streams
shown in Fig. 3 ). The extent of the uncertainty regions between
he with-progenitor and no-progenitor results only show very minor 
ifferences for both streams. 
To address the question whether the difference between the best- 

tting St ̈ackel potentials and the true potential might largely be 
ttributed to our adoption of the St ̈ackel model, we performed 
 least-squares fit to the true velocity curve over the range of
alactocentric distances where we have stellar data (10–176 kpc) 
sing only our set of trial potentials. The potential that minimizes the
east squares can be considered the best possible St ̈ackel potential 
pproximation to the true potential in terms of circular velocity. 
e find that this St ̈ackel potential approximates the true potential 

xtremely well: it recovers the true velocity curve within 2.8 km s −1 

r 1.2 per cent o v er this distance range. Therefore, we expect the
ias due to adopting the St ̈ackel model to be ne gligible ev en for
he innermost stream sections in our sample, and well within our 
ncertainties. 
Fig. 4 shows the comparison of the vertical acceleration (i.e. 

cceleration in z -direction) field of the simulated galaxy (left-hand 
anel) and that of our best-fitting potential model of the combined 
tream data set (middle panel). The relative residuals are shown in the
ight-hand panel. In general, the two acceleration fields are consistent 
ith each other. It is not surprising that the greatest difference 
etween the true and model z -accelerations occur near the plane
f the galaxy. Part of the reason lies in the fact that the simulated
alaxy is dynamic and the accelerations are not perfectly symmetric 
round the mid-plane (see e.g. Beane et al. 2019 ). In addition to
his m12i has a warp in its outer disc, that our model, or any other
xisymmetric model, is not designed to reproduce. This warping is 
ikely the cause for such pronounced differences just abo v e the z -axis
n the positive x -direction and just below the z -axis on the ne gativ e
 -direction. Another reason for the mismatch lies in the fact that,
ike most parametrized, axisymmetric potentials, the St ̈ackel model 
as limited flexibility when used as a global model of the potential
f a realistic galaxy. This is likely because the disc is flatter than
ur St ̈ackel model can account for, causing it to underestimate the
aximum density in the plane. In particular, as is clear from Fig. 3 , it

oes not deliver a good match to the galaxy at small radii. Ho we ver,
his is also the region where the uncertainties in our best-fitting model
re the largest, and where we have no data. The green circle in the
ight-hand panel of Fig. 4 shows the minimum radius of the star
articles in our sample. 
We compare the alignment between the streams and the predicted 

rbits in Fig. 5 . The figure shows the orbits of a single representative
tar particle per each stream section, selected to lie near the centre
f its respective section. These stars have then been integrated 
ackwards and forwards in time in the best-fitting potential of their
espective full stream. We do not expect to see perfect alignment
etween the star particles and the integrated orbits for several reasons:
here is a natural small misalignment between streams and orbits due
o the range of energies in the stream stars, but more importantly
n this situation, these streams have evolved is lumpy, time-evolving 
otentials in stark contrast to our smooth and static St ̈ackel model.
he disruption of a dwarf galaxy in a realistic halo is a complex
rocess often taking several pericentre passages, which each produce 
heir own trailing and leading arms based on the evolving energy
nd angular momentum distribution of the stars being stripped. This 
aturally leads to different segments of the stream being on slightly
ifferent orbits. 
Despite this caveat, the orbits of stream A (top panels) align with its

tar particles markedly well. The orbits of stream B (bottom panels),
MNRAS 509, 5365–5381 (2022) 
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Figure 4. The binned z -accelerations of a slice of the simulated galaxy. The left-hand panel shows the z -accelerations of the real star particles, the middle panel 
shows the predicted z -accelerations for the star particles based on our best-fitting St ̈ackel model with the combined stream data set, and the right-hand panel 
shows their relative residuals. The slice has a thickness of 2 kpc and is centred on galactocentric y -axis. The green circle in the right-hand panel marks the 
minimum distance of the star particles in our two streams. 

Figure 5. The orbits of streams A (top) and B (bottom) in their respective best-fitting potentials. The star particles whose orbits are shown (marked with a coloured 
dot) were picked by eye to be near the centre of their section. The orbits are coloured based on the colour scheme of the section they belong to (see Table 1 ). 
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o we ver, sho w some inconsistencies with the data. One of the main
ismatches is near the location of the progenitor, which is to be

xpected, as leading and trailing tails by definition have a mismatch
n their orbits. The second inconsistency is between the orbits of 2B
nd 3B. The rest of the orbits, especially those in the inner parts of
he stream, align well with the data. 

The action space of each stream in their respective best-fitting
otentials is shown in Fig. 6 . The colours of the star particles
nce again correspond to the sections they belong to and reveal
NRAS 509, 5365–5381 (2022) 
he structure of these streams in action space. As the stars get
tripped from the progenitor they settle either into leading or trailing
ails, which should form two slightly separated clusters in action
pace. Here, we see this behaviour clearly: the section containing
he progenitor (gold-coloured dots) is near the centre of the action
pace and the sections comprising the trailing tail are abo v e it, while
he sections in the leading trail are below it. It is also noticeable that
he sections that ha ve ev olved further from the progenitor along the
ails, tend to be further from the progenitor also in action space. This

art/stab3176_f4.eps
art/stab3176_f5.eps
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Figure 6. The action space of stream A (left) and stream B (right) in their respective best-fitting potentials. The insets show the stream in x –z frame for reference. 
The star particles are coloured based on their sections (see Table 1 ) with star particles not belonging to any section shown as grey. The centre of each section is 
marked with an ‘X’ in its respective colour, and the black line connects them in the order that they appear in phase space. 
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s because the least-bound stars, with the largest energy and action 
ifference from the progenitor, escape the progenitor first. 
On the whole, we conclude that the action-clustering method and 

he tw o-component St ̈ack el potential can reproduce the true global
otential of the simulated galaxy fairly well and without obvious 
iases. 

 SECTIONS  O F  STREAMS  

ith simulated streams it is convenient to utilize the full stream in our
nalysis. Ho we v er, we typically observ e only the close-by segments
f whole streams or, even if multiple sections are observed, we may
ot realize that they belong to the same larger structure (e.g. Bonaca
t al. 2021 ). 

To investigate the possible consequences, we split our two streams 
nto sections (as specified in Table 1 and Fig. 1 ) and use them in our
nalysis individually as if they were independent streams. 

Fig. 7 shows the best-fitting results for all sections of stream A
top panels) and stream B (bottom panels). There is considerable 
ariation in the global fit of the different sections, further evidence 
hat individual streams that span only a small region of the position-
elocity space can lead to biased estimates of the global galactic 
otential. The majority of the sections do, ho we ver, gi ve a good local
rediction of the potential. With two exceptions, the crosses that 
ignify the median distance of the star particles of that section, lie
ithin 25 km s −1 of the true velocity curve as shown with the black
ash–dotted line. 
The galactocentric radii at which each section gives the tightest 

ncertainties correlates linearly with their median galactocentric 
adius. The same relationship was found by Bonaca & Hogg ( 2018 )
ho further disco v ered that the y could tighten this correlation by

dding flexibility to their potential model. In other words, the 
ore flexible a model, the more localized the best constraints 

ecame. This demonstrates that streams (or stream sections) do not 
ontain information about the entire extent of their orbit but rather 
re sensitive to the underlying potential at their current location. 
urthermore, Pe ̃ narrubia et al. ( 2006 ) showed that the past history
f an evolving gravitational potential cannot be constrained using 
resent-day observables: the properties of stellar streams only reflect 
he present-day galactic potential. 

As streams reco v er best the current potential at their current
ocation, the variation we see in Fig. 7 is unsurprising – the sections
ehave as if they were completely separate streams. 
Finally, single streams have been shown to produce biased esti- 
ates of their host’s potential (see e.g. Lux et al. 2013 ; Bonaca et al.

014 ). This serves to add even more complexity to the differences
e see in Fig. 7 . In the next section, we will explore the underlying

auses for the variations we see in both the global and local results
etween different streams. 

 O R B I TA L  PHASE  

e now organize the sections of both streams into three groups
ased on their orbital phase: pericentre, intermediate, and apocentre 
ections. This allows us to, first, e xplore an y systematic differences
n the section results based on the phase and, second, perform a
oint analysis of all the sections that belong to a particular phase
roup using our action-clustering method. The interplay between the 
ection results and other stream properties is explored in Section 7.
ur findings are summarized in Fig. 8 , where the top, middle, and
ottom panels present the results for pericentre, intermediate, and 
pocentre sections, respectively. The right-hand panels show again 
he individual stream section best-fitting St ̈ackel potentials while the 
eft-hand panels show the confidence regions of these measurements 
 v erlaid in semitransparent grey colour: the brightness of the grey
olour tells us where most of the confidence regions overlap. The
rror bars show each section’s measurement at their median distance. 
he left-hand panels also contain a red line which signifies the best-
tting St ̈ackel potential of the joint data set of each respective phase.
he confidence region for that is shown with the red shaded region

n the right-hand panel. 
The pericentre sections generally o v erestimate the mass of their

ost galaxy both locally and globally, as evidenced by their best-
tting potentials and the associated uncertainties. The lower edge of 
MNRAS 509, 5365–5381 (2022) 
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Figure 7. The best-fitting St ̈ackel potentials for different sections of stream A (top panels) and stream B (bottom panels) shown in circular velocity and enclosed 
mass profiles. The crosses mark the median distance of each section, while the thicker part of the lines corresponds to the full range of distances of star particles 
in that section. The insets show the stream in x –z frame for reference. 
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heir confidence regions typically just about covers the true circular
 elocity curv e at high radii, while only a few do so closer in: there
s a visible gap in the co v erage of the true curve between about 40
nd 60 kpc. This is confirmed by the joint phase results: the best-
tting potential is consistently abo v e that of the true potential and

he confidence region only barely reaches the true potential at high
adii, while being somewhat abo v e it from about 30–100 kpc. 

The intermediate sections, on the other hand, show a much better
greement with the true velocity curve. Although there are still large
ariations in the individual best-fitting potentials in a global sense, the
ocal measurements are better matched. The grey shaded regions now
lso clearly envelope the true potential across all distance scales. The
oint best-fitting potential shows good agreement with the true po-
ential nearly everywhere: we recover the true velocity curve within
 per cent o v er the range of radii co v ered by the data (19–100 kpc). 
Finally, the apocentre sections again generally show good agree-
ent with the true v elocity curv e. The local measurements mostly

gree with the true velocities, without showing a preferred bias,
hile the predicted velocity curves at high radii do mostly prefer

ower masses when compared to the true potential. This is also clear
hen looking at the uncertainty regions: while at low distances the

greement between the stream sections looks fairly chaotic, at high
NRAS 509, 5365–5381 (2022) 
istances, most of the confidence regions overlap slightly below the
rue velocity curve. The joint best-fitting curve echos these individual
esults: at high distances we have a fairly good fit, while at low
istances the difference is quite large. 

 BI AS  DEPENDENCE  O N  OTH ER  STREAM  

ROPERTIES  

n Fig. 9 , we explore the dependence of the accuracy of our potential
t on several stream section properties (see also Fig. B1 where further
tream properties are considered and Appendix B for the description
f how these properties were calculated). In the top left and bottom
eft panels, we show the points with the section-specific colours as
er Table 1 while in the rest of the panels the points are coloured
ased on their orbital phase. The top left panel shows for each section
he residuals between the best fit and the true velocity curve at the
istance of minimum uncertainty as a function of orbital phase (solid
ata points). For comparison we also show, with empty markers
nd lighter colours, the residuals at the median distance of each
ection (this corresponds to the vertical difference between each of
he crosses and the dash–dotted line in Fig. 7 ). In the bottom left
anel, we show the residuals relative to their 1 σ uncertainty. 

art/stab3176_f7.eps
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Figure 8. The results of all stream A and stream B sections organized by orbital phase. The top panels show the pericentre sections, while the middle and 
bottom panels show the intermediate and apocentre sections, respectively. The coloured lines in the right-hand panels show the best-fitting St ̈ackel potential 
of the individual sections, with the error bar indicating the uncertainty at their median distance. These are coloured based on Table 1 , with stream A sections 
shown with solid lines and stream B sections shown with dashed lines. Their full confidence regions are shown as a function of radius in the left-hand panel as 
gre y semi-opaque re gions. The red line in the left-hand panel shows the best-fitting St ̈ackel potential of the joint phase data set, and the red shaded area in the 
right-hand panel is its associated uncertainty. The true potential is shown with a black dash–dotted line in every panel. 
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Figure 9. The residuals of the circular v elocity curv e at the distance of the smallest 1 σ uncertainty as a function of the sections’ properties. In the top left panel, 
we also show the residuals at the sections’ median distance with lighter empty markers, for comparison. In the left-hand panels, we adopt our section-specific 
colour scheme, while on the rest of the panels we indicate the pericentre, intermediate, and apocentre sections with teal, purple, and yellow colours, respectively. 
A description of how the stream properties were computed is available in Appendix B. 
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We find that there is a clear correlation between the accuracy of
he fit and the orbital phase of the stream. The best-fitting results of
he intermediate sections show the least amount of scatter around the
rue velocity curve, and do not appear to have a preferred bias. The
pocentre sections, although not exhibiting an obvious bias either,
ave a lot more scatter around the true potential. The pericentre
ections, in contrast, consistently o v erestimate the mass. Moreo v er,
heir uncertainties are small compared to the residuals, indicating a
ystematic bias. 

We do not see any clear trends with either the angular length
bottom middle panel) or physical length (shown in Fig. B1 ) of
he stream sections. Indeed, the intermediate sections in our sample
end to be quite short and nevertheless give better estimates than the
ften longer pericentre sections. We also see no correlations with the
umber of stars in each stream section, the median galactocentric
istance, the median distance from the galactic plane, width or
elocity dispersion in each section (all shown in Fig. B1 ) nor with
he angular momentum vector or the galactocentric distance range
o v ered by a certain stream section (not shown). All of this gives us
onfidence that it is truly the effect of the orbital phase that causes
he variation in the quality of our constraints. 

To explain this effect, we investigated the correlation between λ
nd p λ in each stream section. The bottom right panel in Fig. 9 shows
hat stream stars exhibit strong correlations between their motions
nd positions during the intermediate phase. The pericentre streams
NRAS 509, 5365–5381 (2022) 
eanwhile have the weakest correlations. In general, the stronger the
orrelations between motions and positions of stream stars the better
he constraints from that stream tend to be. Fig. 10 illustrates this
oncept. On the upper panel, we show a cartoon of a dwarf galaxy
tream near pericentre passage for a more radial orbit (top left panel)
nd a more circular orbit (top right panel). The black points represent
tream stars, which have been created by selecting points along the
ericentre of a single orbit (the blue line) and adding scatter in both
and p λ. The light blue shaded regions approximate the ‘scatter’

n these orbits. The yellow line shows a fit to the black points and
s in both cases almost perfectly vertical, signifying no correlation
etween λ and p λ. This in turn indicates lack of statistical power for
ignificant differentiation between different potential models. 

The origin of the systematic error that we see arising with
ericentre streams therefore lies in this lack of correlation between
he positions and momenta of stream stars during pericentre passage.
s a consequence this data cannot differentiate between potentials

s successfully as intermediate and apocentre streams. In the case of
he action-clustering method, this property of the pericentric motion

anifests as o v erestimation of mass. Due to the lack of correlations
etween motions and positions, it is possible to find a high-mass
otential that confines all the stream stars on to orbits with very little
adial motion. This potential is then selected as the best fit because
t forms a dense cluster near J λ ∼ 0. Ho we ver, to accommodate this
onfiguration the stars have to be placed on a variety of different
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Figure 10. Schematic phase diagram of dwarf galaxy streams (top panels) and cold stellar streams (bottom panels) near pericentre passage for radial orbits 
(left-hand panels) and circular orbits (right-hand panel). The black points represent stream stars created by selecting points along the pericentre of the orbit 
shown with the blue line and adding scatter in both λ and p λ. This scatter is five times larger in both positions and momenta for the dwarf streams compared to 
the cold stellar streams. The light blue shaded regions on top panels approximate the much larger ‘scatter’ in the orbits of dwarf galaxy streams. The yellow 

lines show a fit to the black points on each panel. 
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hases on their respective orbits. This means that the ordering of the
tars along the stream, and in fact the spatial coherence of the stream
tself, breaks down in this potential (see also Buist & Helmi 2015 ).

e call this spurious reordering of the stream stars in the incorrect
otential ‘phase scrambling’. 
Although the pericentre streams are likely to yield potentials that 

re highly biased, the confidence regions can nevertheless be small. 
his is due to the fact that to calculate the uncertainty, we compare

he action-space distribution of the best-fitting potential to that of all 
ther trial potentials, and draw the error contours so that they mark
he boundary where the action-distributions begin to significantly 
iffer. The weakness of this technique is that even if there were
ther potentials that produced a highly clustered action-space (i.e. 
ad a high KLD1) there is no guarantee that they would be included
n the uncertainty region if their action-space looks significantly 
ifferent from that of the best fit, e.g. when clusters simply form
t a sufficiently different locations in action-space. So our set-up is
eliant on having managed to determine the ‘correct’ potential as the 
est fit, while the uncertainty just measures the variation around it. 
Finally, in the top right panel, we show the goodness of fit as

 function of the difference in median J λ between the best-fitting
otentials of individual sections and that of the combined full streams
green line in Fig. 3 ). The further the individual results are from the
rue potential, the bigger this change in J λ. Although it is expected
hat a greater difference between two potentials results in a greater 
hange in the action-space, we do not see such a trend with J ν . 

To confirm that the quality of our results is indeed determined 
y the phase of the stream, we looked at the two stream sections
ith the highest difference between the true and estimated velocity 

urves – pericentre sections 1B and 4B – in a simulation snapshot 
m
orresponding to redshift z = 0.038, when both of these stream
ections occupied the intermediate phase. We reapplied the action- 
lustering algorithm for the stars in each section but now using their
ast positions and velocities from snapshot z = 0.038. The results of
his test are presented in Fig. 11 , where with the blue line we show the
esult of the analysis of the current day (pericentre phase) positions of
he stream stars, and with the yellow line the past (intermediate phase) 
ositions of the same stars. In both cases, the results originating from
he past positions, when the stars were at intermediate phase, perform

arkedly better. 

 C O N C L U S I O N S  A N D  DI SCUSSI ON  

n this work, we have shown that with two whole dwarf galaxy
treams we reco v ered the true rotation curve of the simulated galaxy
ithin 12 per cent o v er the entire range of radii co v ered by our set
f star particles (10–176 kpc) when adopting the two-component 
t ̈ackel model. Ho we v er, this accurac y is much impro v ed o v er the
istances where we have the most data, reco v ering the true rotation
urve within 6.5 per cent between the 5 and 95 percentile distance
ange (23–109 kpc). This leads us to conclude that using the St ̈ackel
otential does not introduce a significant bias into our results, at least
ot more so than any other axisymmetric, parametrized potential 
odel would. 
Bonaca et al. ( 2014 ) explored the accuracy of smooth analytical

otentials in representing realistic – lumpy and time-evolving –
ark matter haloes. Using a collection of streams evolved (using 
he streakline method) in the Via Lactea II simulation, they esti-
ated the galactic mass by comparing these ‘observed’ streams to 
odels generated in trial analytical potentials and showed that just 
MNRAS 509, 5365–5381 (2022) 
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Figure 11. Comparison of the results from analysis of the present day 
and past (z = 0.038) positions of the stars in sections 1B (top panel) 
and 4B (bottom panel). The solid coloured lines represent the best-fitting 
St ̈ackel potential and the error bar shows the 1 σ uncertainty at the median 
galactocentric distance for each data set. The black and red dash–dotted lines 
represents the true galactic potential at z = 0 and z = 0.038, respectively. 
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ssuming an analytical potential limits the measurement accuracy to
 −20 per cent . This limit was reached only with the full collection
f 256 streams in their sample, while individually the streams were
uch less accurate (only 40 −60 per cent of the individual streams

ould reco v er the true parameters within 10 per cent ). A similar
xploration was performed by Sanderson et al. ( 2017 ) who fitted
nalytical potentials to the streams occurring natively in the Aquarius
 simulation using the action-clustering method. 1 They found that
ith simultaneous fitting of 15 streams they could recover M 200 

ithin 10 per cent . 
The tight constraints we achieve here with just two streams are

emarkable considering that, in contrast to Via Lactea II and Aquarius
imulations, both of which are dark matter-only simulations, we
odel a galaxy from a fully cosmological-baryonic simulation which

ontains a stellar and gas disc shaped by star formation in addition to
 time-evolving dark matter halo. Yet we obtain this precision using
 Although mostly similar to the action-clustering method described here, 
anderson et al. ( 2017 ) used the product of the marginal distributions of p 

nstead of the uniform distribution as the comparison distrib ution q , ga ve 
qual weight to all stars, and did not separate different streams during the 
rocess of density estimation. 

p  

p
 

c  

p  

n  

e  
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nly a global, two-component St ̈ackel potential to represent the entire
omplexity of this galaxy. This is likely due to the good orbital phase
o v erage of these two streams: both streams have several wraps
round the host galaxy and as such co v er each orbital phase multiple
imes. 

Both Bonaca et al. ( 2014 , using streakline) and Sanderson et al.
 2017 , using action clustering) demonstrated that an o v ersimplifica-
ion of the potential model does not intrinsically produce a biased

ass profile when fitting a collection of streams. Our findings agree
ith this: our results with the full streams show no presence of

ystematic bias (Section 4). 
We next split each of the two streams into 11 smaller sections based

n their orbital phase (Section 5) and analysed them independently.
e find that the quality of the constraints on the mass profile

epends on the orbital phase of the stream (Section 7). There is
 clear systematic bias when using only the pericentre streams in
ur analysis: this data o v erestimates the mass of the host galaxy
t all galactocentric radii (see Fig. 8 , top panel and Fig. 9 , lower
eft panel). This systematic error stems from the fact that during
ericentre passage the positions and momenta of stream stars are
ot correlated (see Fig. 9 , bottom right panel). Although a joint fit
f multiple streams is usually recommended to get a better fix on
he potential, this bias remains even when all pericentre sections are
nalysed jointly. We find that streams on the intermediate phase are
he most likely to give bias-free local mass estimates individually,
nd a bias-free and accurate global mass profile in combination (see
ig. 8 , middle panel and Fig. 9 , left-hand panels). 
In Reino et al. ( 2021 ), we showed that when analysed with the

ction-clustering method GD-1 data produced a mass estimate that
as considerably larger than those from Pal 5, Orphan, and the

ombination of all three streams. We explored the range of orbital
hases the GD-1 stars were on with the best-fitting GD-1 potential
nd found that the stars were all placed on very different orbital
hases on their respective orbits. We briefly discussed that the cause
or this, and therefore the high mass that GD-1 reco v ers, is likely due
o the natural energy gradient along the stream not being reproduced.
his is another symptom of the phase scrambling we discussed abo v e
nd, since GD-1 is believed to be a pericentre stream, it aligns with
ur results here. 
This inability of pericentre streams to distinguish robustly between

otential models can manifest in other ways for different methods.
reviously, Sanders & Binney ( 2013 ) remarked on having more
ifficulty constraining the potential with streams observed at their
ericentre. They analysed a mock stream with their angle-frequency
lope method both during its apocentre and the subsequent pericentric
assage and found that they could not reco v er the true potential
arameters as successfully in the pericentric case. Ho we ver, despite
everal local minima in their likelihood surface, they do not calculate
 large systematic bias. The cause for such a behaviour could be that
treams co v er a smaller angle space near their pericentres making
he determination of the slope more prone to errors. 

Similarly, Koposov et al. ( 2010 ) found that they could not constrain
ll the parameters in their three-component potential model with six-
imensional GD-1 data using the orbit-fitting method and noted that,
ue to being near its pericentre, GD-1 might not have sufficient
hase co v erage to dif ferentiate between orbits produced in dif ferent
otentials, resulting in a poor fit. 
Pericentre streams therefore lead to either biased results or weak

onstraining power irrespective of the applied method. Although our
osition in the Galaxy and the increased stellar density of streams
ear pericentre makes detecting streams near their pericentres the
asiest, their relative accessibility does not lead to an appreciable
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mpro v ement in our understanding of the Galactic potential or the
eld of near-field cosmology. 
Although in this work we have made use of dwarf galaxy type

treams, the conclusions drawn here are also applicable to most cold 
tellar streams of globular cluster origin. This is because the cause 
or the weak constraining power in pericentre streams is not unique 
o dwarf type streams. In the bottom panels of Fig. 10 , we show the
artoon versions of two cold stellar streams to provide comparison 
ith the dwarf galaxy streams in the top panels. Both cartoon streams

n the left-hand panels were created from the same original orbit (the
lue line), ho we v er, the cold stellar stream stars are fiv e times less
cattered both in λ and in p λ. The same holds true for the streams in
he right-hand panels: the stars were created from the same original 
rbit but with five times more scatter added to the dwarf galaxy
tream stars. Although with considerably less scatter, the positions 
nd momenta of stars in cold stellar streams on more radial orbits
bottom left panel) would still be uncorrelated during pericentre 
assage and therefore result in poor constraining po wer. Ho we ver, in
ontrast with dwarf galaxy streams, a cold stellar stream on a more
ircular rather than radial orbit (bottom right panel) can potentially 
ave suf ficient curv ature in the pericentre part of the phase diagram
o constrain a model potential. 

Many studies have shown that in general longer streams have more 
onstraining power. When investigating the information content in 
he tracks of stellar streams Bonaca & Hogg ( 2018 ) found that longer
treams (in degrees) achieve the highest precision in reco v ering the
otential parameters. We do not find any correlation between either 
ngular or physical distance with the accuracy of the constraints or
he precision of our confidence regions. In fact, our intermediate 
hase streams often tend to be the shortest and the pericentre streams
he longest. Ho we ver, our shortest streams are around ∼50 deg while
nly 1 of the 11 streams Bonaca & Hogg ( 2018 ) studied reaches this
ength, the rest being considerably shorter. It could be that the trend
ith length is no longer as rele v ant as other factors when it comes

o longer streams. Alternatively, the effect could be related to the 
ifference in our methods. Bonaca & Hogg ( 2018 ) made comparisons 
etween the tracks of stream data and models in position and velocity
pace, so longer streams will allow the comparisons to be made o v er
 larger extent and thus enhance the results. Conversely, the length 
f the stream has no direct impact on the constraints derived with the
ction-clustering method as we are only measuring the density of the 
tars in action space. 

We summarize our findings as follows: 

(i) Although individual streams are likely to deliver accurate 
stimations of the local galactic profile, they should not be relied 
n for yielding good global fits. 
(ii) We have shown that the pericentre streams can lead to 

ignificant systematic errors when used to constrain the potential 
f their host galaxy. 
(iii) Meanwhile apocentre and, especially, intermediate phase 

treams lead to accurate inference. 

For accurate high-confidence constraints on the Galactic potential, 
e therefore advocate targeting streams that are likely at intermediate 
r apocentre phases. 
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PPENDI X  A :  STREAM  VELOCI TI ES  

n Fig. A1 , we show the galactocentric velocities for our two streams
ith each section highlighted in the colour as specified by Table 1 . 
tream section is identified by the colour given in Table 1 and a label. Star 
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PPENDIX  B:  BIAS  A S  A  F U N C T I O N  O F  

U RTH E R  STREAM  PROPERTIES  

n this section, we show in Fig. B1 the accuracy of our potential fit
s a function of some further stream section properties. As already 
emarked in Section 7, none of these stream section characteristics 
re sufficient to explain the variation that we see in the quality of our
otential constraints. 
To measure the stream length, width, and velocity dispersion, 

e first convert to stream-aligned coordinates. This is a spherical 
oordinate system ( r , ξ , η) where the equator, η = 0, is defined
y a great circle best fitting the stream data centred on the galactic
entre and the radius, r is the median galactocentric radius of the
tream stars. The angular length of the stream is then defined as
igure B1. The residuals of the circular velocity curve at the distance of the smal
ericentre, intermediate, and apocentre sections with teal, purple, and yellow colou

his paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 
ξ . The physical length is found by computing the arc length
f the circle subtended by the stream, i.e. r × �ξ . To estimate
he width of the stream, we fit the galactocentric x , y , and z
oordinates of stream stars as a function of the angle along the
tream, ξ , with a quadratic polynomial. The distance of each star
rom this stream ‘axis’ can then be calculated at their respective
, i.e. d i = 

√ 

( x i − x( ξi ) 2 + ( y i − y( ξi ) 2 + ( z i − z( ξi ) 2 . We then 
efine the width as the root mean square of these distances. An
nalogous technique is employed to calculate the velocity dispersion, 
v , except now the polynomial is fitted to the galactocentric v x , v y ,
 z as a function of ξ . Correlation between λ and p λ for each stream
s defined as the absolute value of the Pearson correlation coefficient
etween these coordinates. 
lest 1 σ uncertainty as a function of the sections’ properties. We indicate the 
rs, respectively. 
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