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ABSTRACT

Machine learning has achieved an important role in the automatic classification of variable stars, and several classifiers have
been proposed over the last decade. These classifiers have achieved impressive performance in several astronomical catalogues.
However, some scientific articles have also shown that the training data therein contain multiple sources of bias. Hence, the
performance of those classifiers on objects not belonging to the training data is uncertain, potentially resulting in the selection
of incorrect models. Besides, it gives rise to the deployment of misleading classifiers. An example of the latter is the creation of
open-source labelled catalogues with biased predictions. In this paper, we develop a method based on an informative marginal
likelihood to evaluate variable star classifiers. We collect deterministic rules that are based on physical descriptors of RR Lyrae
stars, and then, to mitigate the biases, we introduce those rules into the marginal likelihood estimation. We perform experiments
with a set of Bayesian logistic regressions, which are trained to classify RR Lyraes, and we found that our method outperforms
traditional non-informative cross-validation strategies, even when penalized models are assessed. Our methodology provides a
more rigorous alternative to assess machine learning models using astronomical knowledge. From this approach, applications
to other classes of variable stars and algorithmic improvements can be developed.

Key words: methods: data analysis—astronomical data bases: miscellaneous —software: data analysis—stars: variables: RR
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1 INTRODUCTION

Machine learning has been applied intensively to the classification
of variable stars in recent decades (Debosscher et al. 2007, 2009;
Richards et al. 2011a; Pichara et al. 2012; Nun et al. 2015; Kim
& Bailer-Jones 2016; Mackenzie, Pichara & Protopapas 2016;
Benavente, Protopapas & Pichara 2017; Valenzuela & Pichara 2017;
Narayan et al. 2018; Naul et al. 2018; Aguirre, Pichara & Becker
2019; Carrasco-Davis et al. 2019; Becker et al. 2020). Variable stars
are considered crucial celestial objects, mainly because several of
them (e.g. RR Lyrae and Cepheids) are reliable distance indicators,
thus providing us with a gauge to measure topics ranging from
Galactic structure to the overall expansion of the Universe.

From a machine learning perspective, the major efforts have been
concentrated on developing variable star classifiers (Debosscher et al.
2007, 2009; Richards et al. 2011a; Pichara et al. 2012; Mackenzie
et al. 2016; Benavente et al. 2017; Narayan et al. 2018; Aguirre
et al. 2019; Carrasco-Davis et al. 2019; Becker et al. 2020) and new
alternatives to represent the celestial objects (i.e. human-based and
deep learning-based features; Nun et al. 2015; Kim & Bailer-Jones
2016; Valenzuela & Pichara 2017; Naul et al. 2018). However, these
classifiers rely heavily on the quality of the labelled training data sets
and itis challenging and highly time-consuming to generate represen-
tative training data sets to train these models. This drawback hinders
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the model assessment procedure and, therefore, it can impact the
performance of these models when they are tested on objects beyond
the labelled objects (including those from the same catalogue). More
significantly, this could lead to wrong models being used to label new
training data, thereby generating a cascade effect. This situation has
given rise to the following questions: Do we have confidence in our
variable star classifiers? Can we improve the model assessment pro-
cess? To answer these questions, the metrics used to evaluate models
under non-favourable conditions have become an important topic.

Several papers have discussed the impact of biases in the training
data of variable stars (Debosscher et al. 2009; Richards 2012; Masci
et al. 2014). However, to the best of our knowledge, no definitive
solution has been proposed to more accurately assess the classifiers
in this scenario. Bias in data means that there is a difference between
the joint distribution of our labelled data DS and that of the population
DP, which considers all the observed objects for the astronomical
project (survey). The problem arises from the fact that the current
classifiers are trained with a subset of D5 and, subsequently, the
performance is evaluated using the complement (the testing set),
typically by means of a cross-validation (CV) scheme. The CV strate-
gies assume the existence of representative training data; however,
we know that data sets in astronomy are biased and, consequently,
we are unable to report a realistic classification performance.

Those biases stem from several sources, the majority of which
can be linked to human-related tasks and technical characteristics of
the telescopes. The former is associated with the labelling process
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since astronomers are more prone to label a class when it is easier to
define. In this sense, Cabrera, Miller & Schneider (2014) presented
a good discussion about this systematic bias in the astronomical
labelling process. The mechanical design of receptors generates
another type of bias, specifically in relation to the range in which the
signal can be processed; for example, when distances increase, less
luminous objects are more difficult to see (Richards 2012). Finally,
the rapid development of technology accelerates the obsolescence of
the models. Hence, we are unable to apply trained models to new
surveys and we lack sufficient confidence in the error metrics in these
newer catalogues. This problem is addressed by domain adaptation
and was discussed in depth in variability surveys in Benavente et al.
(2017).

To analyse the effect of these biases, they are typically divided into
two categories: biases in features and biases in class representations.
The existence of biases in features (e.g. period and amplitude) means
that there is a difference in the joint feature distribution between
DS and DP. That is to say, zones of the feature space without
labelled objects or an overrepresentation of other zones, it impacts the
relevance of those zones during the training and assessment process.
Bias in the representation of classes is associated with some classes
of variable stars that are more/less represented in DS compared to
DP.

Notwithstanding this underlying problem, few efforts have been
made to study metrics and validation strategies to evaluate the
performance of light-curve classifiers. Furthermore, it is a challenge
to provide more accurate metrics to assess models in a scenario
in which we cannot entirely trust the data. One natural framework
with which to address the aforementioned problems is Bayesian
modelling, which has been increasingly used in different fields
of astronomy, such as to compare astrophysical models (Ford &
Gregory 2007) or make predictions on the properties of celestial
objects (Sanders & Das 2018). To improve the model assessment
task, we propose a novel pipeline for evaluating Bayesian Logistic
Regressions (BLRs) on biased training data. The methodology used is
based on Bayesian machine learning, which allows us to incorporate
astronomical knowledge into the model assessment process. Our
approach exploits the powerful Bayesian model selection (BMS)
scheme (Murray & Ghahramani 2005), which embodies desirable
properties such as Bayesian Occam’s razor, consistency, and compa-
rability (Myung & Pitt 1997).

The BMS framework is based on the marginal likelihood (also
known as Bayesian evidence), which is the likelihood function
weighted by a prior distribution over the range of values for its
parameters. In other words, the marginal likelihood contains the
expected probability of data over the parameters. However, if we do
not add information to these prior distributions, even this powerful
and robust metric is unable to assess the models correctly when the
training data are biased. Hence, to address these biases, we contribute
with a strategy that exploits expert knowledge by incorporating
informative priors in the marginal likelihood estimation of RR
Lyrae star classifiers. Our methodology is divided into three stages;
first, we propose a method to represent the prior knowledge using
deterministic rules (DRs) founded on physical-based features, such
as period and amplitude. In the second stage, we generate posterior
samples using these informative priors. This is a suitable approach
since, by means of posterior samples, we are able to ensure zones
of high value in the likelihood function and the prior distribution.
Moreover, we can add astronomical knowledge through the effect
of the priors in the posterior distribution. Finally, in the third phase,
we estimate the marginal likelihood using an approximated sampling
method.
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This paper is organized as follows. Section 2 introduces the
background theory of metrics and validation strategies for the
assessment of models. Section 3 provides an account of related works
and is divided into two subsections: first, we review machine learning
models in the classification of variable stars which deal with biases;
secondly, we present how Bayesian data analysis has been applied in
the field of astronomy. Section 4 outlines the proposed methodology
used to address the challenge. Sections 5 and 6 describe the data
and the implementation, respectively. After that, Section 7 shows
the results. Finally, Section 8 sets out the conclusions and future
work.

2 BACKGROUND THEORY

In the machine learning and statistical learning fields, the model
assessment process is a central topic and one that is typically
associated with three main tasks: (i) the evaluation of a population
error using the training data error, (ii) the selection of the most
suitable model among a set of alternatives, and (iii) the definition of
a good set of hyper-parameters. In this section, we summarize the
traditional methods used to assess models as follows: Section 2.1
concentrates on the metrics for model selection and Section 2.2
focuses on validation strategies.

2.1 Metrics for evaluating classifiers

There are several metrics to evaluate the performance of classification
models that have been originated from different fields such as sta-
tistical learning, information theory, and data mining. Consequently,
selecting one metric or a set thereof to assess our models can become
challenging. Given that, it is important to consider the following
well-known basic properties when using or proposing a metric.
Consistency: the size of the training data should not affect our metric,
Occam’s razor principle: we desire a metric that can identify whether
a model has the optimal complexity required, comparison: it should
allow us to compare non-nested models, reference: the metric must be
independent of the validation strategy, and individuality: the metric
must be able to measure any given object individually (Anderson &
Burnham 2004).

We present a summary of the most frequently used metrics below.
They have been divided into two groups: Section 2.1.1 presents
metrics based on the confusion matrix, and Section 2.1.2 provides a
scheme of methods based on BMS.

2.1.1 Metrics based on confusion matrix

Within this framework, the most intuitive metric is the accuracy,
which evaluates prediction quality based on the ratio of correct
predictions over the total number of observations. This metric has
two critical drawbacks: first, it is not able to discriminate the type of
error, and secondly, it can be easily dominated by the majority class.

In order to assess the type of error, other measures can be
obtained. For example, the Recall, which represents the fraction
of positive patterns that are correctly classified. Or the Precision,
which corresponds to the ratio between the positive objects that are
correctly predicted and the total number of predicted objects for the
true class. To consider a balance between Recall and Precision, we
can evaluate these two metrics in conjunction through the F1-score.
This metric is the harmonic-mean between Precision and Recall, and
it is more robust than accuracy when the data set has imbalanced
classes.
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The aforementioned metrics are the most common ones in this
framework, although there are many variants in the literature. A sum-
mary of these can be found in Sokolova & Lapalme (2009). Despite
the large variety of metrics, there are a number of related limitations:
(i) We cannot compare the trade-off between the goodness of fit and
the model complexity directly; (i) We must use validation strategies;
and (iii) due to the fact that these metrics consider a hard classification
(i.e. a Boolean decision about the predicted class), we cannot consider
different levels of confidence in the prediction scores.

2.1.2 Bayesian model selection

A robust alternative for selecting models is the marginal likelihood,
which is denoted by p(D|m), where m represents a model and D the
training data. It appears in the first level of inference in the Bayesian
framework:

p(DI6, m)p(6m)
p(O|D,m) = ——— L7
61D, m) D)

p(Dlm) = /p(DIQ, m)p(0]m)do. (@)

) ()]

We use the following traditional notation: let p(6|D, m) be the
posterior distribution of the parameter given the data and a model;
let p(D|6, m) denote the likelihood function; let p(6|m) represent the
prior distribution over the parameters; and finally, let p(D|m) be the
marginal likelihood.

The marginal likelihood like a model selector was analysed in
depth by MacKay (1992) and, subsequently, the links with the Oc-
cam’s razor principle were emphasized in Rasmussen & Ghahramani
(2001), Murray & Ghahramani (2005), and Ghahramani (2013). The
idea of using the marginal likelihood in model assessment comes
from the second level of inference:

p(Dim)p(m)
ZmEM p(m’ D) ,

where the Bayes’ theorem is used to estimate the model probability
given a data set p(D|m).

The estimation of p(m|D) is intractable since we cannot enumerate
all possible models. However, we can apply the same criteria used
in the first level of inference, avoiding the denominator estimation
(constant). In this way, we can estimate the model posterior by
p(m|D) x p(D|m)p(m). Finally, if we assume a non-informative
prior for the model, p(m|D) is proportional to the marginal likeli-
hood. For this reason, we use the marginal likelihood to select the
most appropriate model.

Despite the fact that the marginal likelihood automatically em-
bodies all those desired properties of good metrics, it is unable
to automatically manage the biases in the training data and its
estimation is a computational challenge in high-dimensional data
(see equation 2). To address this challenge, we can estimate the
marginal likelihood by interpreting it as an expected value and then
performing Monte Carlo (MC) estimation according to the following
equations:

p(m|D) = 3)

p(Dim) =Ly [p(DI6, m)], “

N
1
52 P(D 1 0,m), 0, ~ p(®). (5)
s=1
This simple approach only performs well if the prior and likelihood
have a similar shape and are strongly overlapped. If this does not hold,
then misleading samples can be generated in low-valued areas of the
likelihood function. Therefore, a few samples with high values in the
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likelihood function dominate the estimator, and this could produce a
high variance in the estimation procedure (Gronau et al. 2017).

Due to these difficulties, the majority of research into BMS avoids
MC sampling methods by applying approximations such as the
Laplace approximation and Bayesian information criterion (Schwarz
et al. 1978; Watanabe 2013) or they resort to MC methods based on
posterior samples (Neal 2001; Raftery et al. 2006; Overstall & Forster
2010). Our proposal is based on the latter type of strategies but adding
astronomical knowledge to those posterior samples.

2.2 Validation strategies

CV is the most common family of methods for estimating metrics. We
present a summary and some drawbacks of the three most common
CV-based methods. First, we review hold-out, which is the most
basic approach. Therein, two sets of data are generated, one of which
is used to train the model and the other to evaluate its quality. This
approach depends heavily on one data set, and for that reason, it is a
good option only when we are in possession of large quantities of data
or when there is some running time limitation. Moreover, in small
data sets, hold-out can generate a pessimistic estimator (Lendasse,
Wertz & Verleysen 2003).

Secondly, k-fold, which is the most commonly used variant of CV,
considers splitting the data D° into smaller chunks Dy, D5, ...D§
with the same size. We train using D% \ D} chunks and evaluate using
the free chunk Dy . The number of folds provides the bias-variance
trade-off; a small number of folds reduces the bias but increases the
variance. Lastly, leave-one-out uses each data point as a chunk, and
for each object, a model is trained to leave only this object out. It
provides an unbiased estimator, although its variance can be larger,
and the running time can be prohibitive (Rao, Fung & Rosales 2008).

Arlot et al. (2010) presented a survey of CV procedures for
model selection. Despite the effort to develop variants, these ideas
consist of a fundamental assumption. They consider that we are
working with representative training data. This means that DS has
the same probability distribution as the data beyond the labelled
objects D7 . However, in astronomy, we are often unable to generate
such representative training data.

In an attempt to overcome this challenge, Sugiyama, Krauledat &
MAZller (2007) proposed a CV variant to tackle the aforementioned
biases (also known as data shift problem) by means of an importance
weighted CV (IWCV) approach. The IWCV weighs each observation
i in the evaluation metric with the density ratio p(x;)west/ P(Xi)iain-
Note that IWCYV is proposed to address a type of data shift, which is
named as a covariate shift (bias in features), here, p(x;)iain 7 P(Xi )test»
but p(¥[X)rain = p(V|X)eest- If we need to work on scenarios with bias in
labels (target shift), which assumes p(¥)iain 7 P(Viest> DUt p(X]Y)irain
= p(xly)lesh we must adapt the deHSity ratio by p(y)lrain/p(y)lest~
This is a clever approach, but it assumes an existing knowledge
of the probability density functions for DS and DT, which can be
intractable in high dimensions.

A further commonly used method is bootstrap (Efron & Tibshirani
1997), which uses sampling with replacement, in which N samples
are selected in each of the k iterations. In this approach, in a given
iteration, a particular sample may appear more than once, while
others might not appear at all. Although the traditional bootstrap
has interesting statistical properties, it fails to select classifiers in
a machine learning context because it favours overfitting classifiers
(Kohavi et al. 1995).

An interesting variant is found when the bootstrap approach is
analysed from a Bayesian perspective (Rubin 1981). A traditional
bootstrap can be understood by modelling the probability of drawing
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a specific observation such as a categorical distribution, Cat(r),
where the vector m = (4, 72, ..., Ty) is the probability of drawing
each object (ZIN m; = 1). In a traditional bootstrap we have 7| =
m, = m; = my = 1/N.InaBayesian view, 7 draws from a Dirichlet,
Dir(a), where for example, the expected proportion for 7, is based
on the priors o/ Z,Nzl o;. However, the generation of informative
priors Dir(a) can pose a significant challenge.

3 RELATED WORK

This section is divided into two subsections. Section 3.1 studies the
state of the art of variable star classifiers, with emphasis on research
addressing underlying biases and how these approaches select and
compare models. Section 3.2 discusses briefly how Bayesian data
analysis has been used in the field of astronomy.

3.1 Classification of variable stars under bias

Several papers on the automatic classification of variable stars have
sought to address the data shift problem from different perspectives.
However, none has focused on model selection strategies. Over a
decade ago, Richards et al. (2011b) proposed several strategies to
improve the training data. For example, they designed an active
learning method and presented an importance-weighted CV method
to avoid underrepresented zones of feature space. However, metrics
to compare models in these contexts were not analysed in depth.
Masci et al. (2014) proposed a random forest (RF) classifier, which
was trained with a labelled set from the Wide-field Infrared Survey
Explorer (Wright et al. 2010), within an active learning approach.
This classifier was able to improve the training data and mitigate
the biases. This RF approach outperformed support vector machine
(SVM), K nearest neighbours (KNN), and neural networks (NN)
using a CV method to estimate the accuracy.

Benavente et al. (2017) proposed a full probabilistic model to
address the domain adaptation problem. This model was able to
transfer knowledge (feature vectors) among different catalogues.
It was able to manage the covariate shift and improve the cross-
validated Fl1-score. A Gaussian mixture model representing each
catalogue (source and target) and a mixture of linear transformations
(translation, scaling, and rotation) were applied. Recently, Aguirre
et al. (2019) designed a convolutional NN that was able to learn
from multiple catalogues, outperforming an RF based on handcrafted
features. To manage the imbalanced classes, Aguirre et al. (2019)
proposed a novel data augmentation scheme that creates new light
curves by modifying real objects.

Sooknunan et al. (2021) reported the relevance of a non-
representative DS when applying trained models on data from
new telescopes. Moreover, they studied how the accuracy metric
decreases (training versus real) when DS is small. To create the
training data, they used a few real objects and synthetic light curves
generated using a Gaussian process. Experiments with the following
five classes of transients were conducted: active galactic nuclei
(supernovae, X-ray binaries, y-ray bursts, and novae. The results
led to the conclusion that a better performance can be obtained
in new surveys if contextual information (object location) and
multiwavelength information are incorporated. To encourage the use
of multiwavelength information, they presented results using both
the optical telescope MeerLICHT (Bloemen et al. 2016) and the
radio telescope MeerKAT (Booth & Jonas 2012).

Naul et al. (2018) proposed the use of a recurrent autoencoder
to learn a variable star embedding. The measurement error in
observations is used for weighting the reconstruction metric in the
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loss function so that those observations with large measurement error
were less important. Subsequently, this embedding is used to classify
by means of an RF classifier. The new representation is compared
with two baseline sets of handcrafted features (Richards et al.
2011a; Kim & Bailer-Jones 2016), being competitive with traditional
approaches when folded light curves were used. It outperformed
or was similar to the baselines in the LIncoln Near-Earth Asteroid
Research survey (Sesar et al. 2013) and the MAssive Compact Halo
Object catalogue (Alcock et al. 1997).

Recently, Becker et al. (2020) presented a scalable recurrent
NN that was capable of learning a representation without human
support. The researchers obtained a competitive accuracy in shorter
running time than an RF that was based on handcrafted features.
Furthermore, they provided a comparison between biases affecting
handcrafted features and those based on deep-learning features,
thereby supporting the line of thought that deep learning models
are capable of learning features that are less biased when working in
specific surveys.

Table 1 provides a summary of model assessment strategies for
variable star classifiers. We conclude that the majority of the papers
analysed herein have applied metrics based on the confusion matrix
and have primarily utilized k-fold for the validation thereof.

3.2 Bayesian data analysis in astronomy

In recent decades, several astronomical papers have proposed the
application of a Bayesian analysis. For example, pioneering research
was conducted by Gregory & Loredo (1992) and Saha & Williams
(1994) on the parameter estimation of astrophysical models. The re-
search field most heavily influenced by these developments has been
probably that of cosmological parameter estimation (Christensen &
Meyer 1998; Christensen et al. 2001). Accordingly, Trotta (2008)
provided a comprehensive review of Bayesian statistics with an em-
phasis on cosmology. Sharma (2017) produced a literature review that
focuses on the Monte Carlo Markov Chain (MCMC) for Bayesian
analysis in astronomy, providing an extensive overview of several
MCMC methods, while also emphasizing how astronomers have
used Bayesian data analyses in the past and how such approaches
should, in fact, be used more commonly in the present. Furthermore,
Sharma (2017) exemplified a number of basic concepts for model
selection in a Bayesian approach. Subsequently, Hogg & Foreman-
Mackey (2018) provided a pedagogical overview of MCMC in
astronomical contexts and discussed its foundations, highlighting
certain aspects to consider to avoid obtaining misleading results from
applications of this otherwise powerful technique. Moreover, several
papers have shown the advantages of the BMS approach (Parviainen,
Deeg & Belmonte 2013; Ruffio et al. 2018) in astrophysical model
selection.

Weinberg (2013) presented a software package to apply Bayesian
statistics in astronomy, including methods for estimating the pos-
terior distribution and managing the model selection. This paper
also provides a comprehensive introduction to Bayesian inference.
Moreover, Weinberg (2013) included two applications where the
system performance on astrophysical models (semi-analytic galaxy
formation model and Galaxy photometric attributes) is evidenced.

Budaviri, Szalay & Loredo (2017) designed an incremental
Bayesian method to decide whether observations correspond to faint
objects or noise from the data set (multiepoch data collection). To
classify each object, thought a Bayes factor scheme the marginal
likelihoods of competing hypotheses (object or no object), at each
epoch, are compared. In order to define these hypotheses, expert
knowledge of the flux of each alternative is included.
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Table 1. Summary of strategies for selecting variable star classifiers. The bold letters in the classifiers column represent the best model according
to the papers listed in the final column. GMM = Gaussian mixture model classifier, BN = Bayesian network, BAANN = Bayesian average of
artificial neural networks, SVM = support vector machine, CNN = convolutional neural network, RNN = recurrent neural network.

Classifiers Metrics Validation Reference

GMMC, BN, BAANN, SVM Accuracy 10-fold (Debosscher et al. 2007, 2009)
CART, random forest, Error rate 10-fold (Richards et al. 2011a)
Boosted trees, C4.5, SVM - - -

RF Error rate k-fold (Bloom et al. 2012)
Boosted RF, regular RF, SVM Fl-score 10-fold (Pichara et al. 2012)
RF+BN F1-score k-fold (Nun et al. 2014)

NN, RF, SVM, KNN Accuracy, ROC Hold-out (Masci et al. 2014)

Meta Classifier (RF) Precision-F1-score-recall k-fold (Pichara, Protopapas & Ledn 2016)
SVM, RF F1-score 10-fold (Mackenzie et al. 2016)

LR, RF, CART, SBoost, AdaBoost Precision, Recall, F1, AUC 10-fold (Elorrieta et al. 2016)

SVM, LASSO, NN, DNN - - -

RE, SVM F1-score CcvV (Benavente et al. 2017)
Decision tree F1-score Bootstrap (Castro, Protopapas & Pichara 2017)
Recurrent CNN, RF Accuracy, Av. recall Hold-out (Carrasco-Davis et al. 2019)
RF Accuracy 3-fold (Sooknunan et al. 2021)
CNN Recall, F1-score, MC Repetitive hold-out (Mahabal et al. 2017)

RF OOB - Accuracy- ROC k-fold (Narayan et al. 2018)
AE-RNN+RF Accuracy 5-fold (Naul et al. 2018)

CNN, RF Accuracy 10-fold (Aguirre et al. 2019)

In spite of the fact that several papers have applied BMS to
astronomy, to the best of our knowledge, our proposal is the first
approach that adds physical information during the assessment
process of machine learning classifiers for variable stars.

4 INFORMATIVE BAYESIAN MODEL
SELECTION

This section provides a comprehensive description of our method
to add human knowledge to the assessment and selection of RR
Lyrae star classifiers. The methodology assumes that we have a set
of models {m, m,, .., m;, ..m,} € M and a biased set of labelled
objects (variable stars) to train them. Our goal is to rank these models
to obtain a good performance in a shifted data set (testing set).

The method can be divided into three main steps. Section 4.1
focuses on obtaining priors from DRs. Section 4.2 considers the
generation of posterior samples running an MCMC algorithm.
Section 4.3 presents the mechanism to add informative posterior
samples to the marginal likelihood estimation procedure.

Fig. 1 shows a diagram of our method, in which the output for each
step is highlighted. The final output is a ranking of models based on
an informative estimation of the marginal likelihood. We propose to
mitigate biases through this informative marginal likelihood.

4.1 Obtaining informative priors

In the Bayesian framework, informative priors offer a great opportu-
nity to add expert knowledge to machine learning models; however,
the majority of Bayesian approaches use non-informative priors, and
hence, they rely completely on the likelihood function (Gelman,
Simpson & Betancourt 2017). The use of non-informative priors, if
there is expert knowledge, can be controversial (Gelman et al. 2008;
Golchi 2019), and it is valid for both levels of inference: the first
level, when we make inference on parameters, and the second level,
when we make inference on models.

For some models, the addition of human knowledge can be less
complex, since it can be transferred from the space of features to
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the space of parameters directly; this is the case of Bayesian GMM
or Bayesian Naive Bayes. However, in models such as BLRs or
Bayesian neuronal networks, it is not direct. Proposing informative
priors for BLR can be a great challenge (Hanson et al. 2014), despite
the fact that some alternatives have been proposed to add expert
knowledge when it is available. Gelman et al. (2008) proposed
weakly informative priors (Cauchy priors) that are also useful to
solve the complete separation problem (Zorn 2005). Hanson et al.
(2014) provided an informative g-priors approach; this scheme is
suitable if there is information about the probability of each class.
In spite of these proposals, and to the best of our knowledge,
information about the relationship between classes and features
cannot easily be incorporated. To face this challenge, we propose
a novel methodology to obtain informative Gaussian priors for BLR
classifiers.

We propose to obtain astronomical knowledge through DRs. DRs
can be used to filter celestial objects without resorting to machine
learning methods. The DRs are based on physical features such as
period, mean magnitude, and amplitude. To design these rules for
RR Lyrae stars, we can use literature in the field to define physical
features that may be particularly relevant in characterizing this class
of variable stars.

DRs can be understood as a relationship between an antecedent (if)
and a consequent (then). To define a rule, we use a standard notation,
A=>B, where A represents a physical condition (antecedent) and B
represents a class of variable stars (consequent). Some examples of
DRs for pulsating stars include

(1) (period € [0.2, 1.0] days) = RR Lyrae

(i1) (amplitude € [0.3 — 1.2] in V-band) = RR Lyrae
(iii) (amplitude € [0.2 — 0.8] /-band) = RR Lyrae
(@iv) (period € [1, 100] days) = Classical Cepheid
(v) (period € [0.75, 30] days) = Type II Cepheid
(vi) (period € [0.5, 8.0] hours) = Dwarf Cepheid

Note that some physical conditions can be valid for more than
one variable star class; however, when applying a chain of sev-
eral DRs, this drawback is reduced. Despite that, we recommend
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Figure 1. Proposed method overview. (1) First, we label a variable star data set using the DRs. (2) Then, we train a standard logistic regression to obtain its
weights. (3) After that, the mean and variance of those weights are used in an MCMC frame to generate posterior samples. (4) The marginal likelihood is
estimated using these informative posterior samples. Lastly, the estimated marginal likelihoods are used to rank the models.

mitigating this possible overlap using not only various DRs but also
DRs based on features that do not vary across different surveys
(invariant features), e.g. period and amplitude (Catelan & Smith
2015).

Once we have obtained the DRs, we propose algorithm 1 to
obtain informative priors. This algorithm identifies priors in a binary
classification scheme; thus, we must use a set of rules for each class
of variable stars.

The priors § are generated by fitting a standard (non-Bayesian)
logistic regression. The training data with which to fit this model
becomes critical at this stage. This because depending on the
training set, our DRs can find a different distribution of objects
for both the true class and the false class. It is possible to use
an entire survey, a subset of a survey, or even an improved
set (data augmentation, adversarial examples, down-sampling, or
oversampling).

This method allows transferring astronomical knowledge from
the space of physical features to the space of model parameters
through the collected DRs based on physical features of RR Lyrae
stars. In particular, we define the mean estimator vector, 0 , and the
variance estimators, Var(d), for a normal prior. Var(d) is defined by
the diagonal of the inverse Fisher Information matrix I(6). To avoid
very small values for the estimated prior of variance Var(9), we add
a small constant € (for example, € =0.1) after applying algorithm 1.

4.2 Posterior samples generation

Our path for transferring human knowledge is by means of posterior
samples since these contain both prior knowledge and data infor-
mation. In this step, for each m € M, we train a BLR with priors
obtained using algorithm 1.

MNRAS 503, 484-497 (2021)
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Algorithm 1 Procedure to obtain priors from physical based features.

Input: Data Dy, classifier m, DRs
Output: weights for the classifier m,

Dy = 1
for r € Rules do
for d € Dy do
state<— r.applyDR(d)
if state == False then
Dyld]=0
end if
end for
end for

6 < m.fit(D, Dy)
Var(d) < diag(1(6)™")
return 4, Var()

To estimate the posterior p(6|Dx, m), we propose to use standard
MCMC techniques, such as Metropolis—Hastings or Hamiltonian
MC algorithms. Moreover, we use the Gelman—Rubin test to validate
the sample convergence in each dimension (Gelman et al. 1992).
Lastly, to manage imbalanced classes, we downsample the data sets.

This step is time-consuming; hence, more efficient sampling
strategies could speed up our strategy. We did not consider variational
inference since the samples from this approach can be biased and our
approach requires precise and unbiased samples (Blei, Kucukelbir &
McAuliffe 2017).

4.3 Informative marginal likelihood estimation

The marginal likelihood has been widely studied to compare and
select machine learning models, despite the fact that its estimation
represents a significant computational challenge. Comprehensive
references for the study of estimation methods can be found in
Gronau et al. (2017) and Wang, Chen & Kuo (2018).

We propose addressing an informative estimation of the marginal
likelihood using a bridge sampling approach (Overstall & Forster
2010; Gronau et al. 2017). Unlike standard MC estimators (impor-
tance sampling or harmonic mean estimator), bridge sampling allows
us to avoid dealing with typical constraints of standard MC methods
inrelation to the shape of a proposal probability distributions. Indeed,
this method has suitable properties in our context, mainly due to
the following reasons: (i) it does not waste resources by generating
samples in low-value zones, and (ii) it allows us to incorporate
astronomical knowledge in order to reduce the impact of biases in
the training data.

The bridge sampling estimator is based on a ratio of two expected
values as follows:

Ee0) [P(DIO) p(0)h(0)]
Epep) [1(0)g()]

To estimate L ) [p(D]0)p(0)h(0)], we use samples from a pro-
posal distribution, g(6), and to estimate £ ,p) [2(6)g(8)] we need
posterior samples, p(6|D), that contain astronomical knowledge.

The desired match between the samples from the proposal and
those from the posterior is managed through a function, which is
named bridge function,

1
s1p(D10)p(8) + s2p(D)g(6)’
which plays a central role in the bridge sampling estimator (Meng &

Wong 1996). When the bridge function is introduced to the estimator,
the function depends recursively on p(D); hence, for estimating it,

p(D) = Q]

h@@)=C

N
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Table 2. Class distribution of OGLE labelled set.

Class Abbreviation Number of objects
Long-period variable Ipv 323999
RR Lyrae rrlyr 42751
Eclipsing binary ecl 41787
Cepheids cep 7952
Delta Scuti dsct 2807
Type II Cepheid t2cep 589
Double Periodic Variable dpv 135
Anomalous Cepheid acep 81
Dwarf nova dn 35
R CrB variable rcb 22
it is solved iteratively by
1 ZNZ p(DI6;)p(6;)
| Ny £—~i=1 51 p(D|0;)p(0;)+s2p(D) (0;)
p(D)" = Ty @) ,
N J=1 51 p(D10)p©;)+s2p(D) g(0;)
0; ~ p01D);0; ~ g(0). ®

Through this estimator, astronomical knowledge is incorporated
into the assessment process. Using an informative prior, we can
reduce the effect of biases in the training sets on the posterior. A
proof of this estimator is presented in Appendix A (Gronau et al.
2017).

5 DATA AND CLASSIFIERS

This section presents the inputs used to validate our methodology.
Section 5.1 describes the Optical Gravitational Lensing Experiment
(OGLE) catalogue. Section 5.2 describes how we obtain the final
training set from the raw light curves. In Section 5.3, the procedure
to obtain a ground truth is explained. Lastly, in Section 5.4, we
present a set of models that are assessed through our method.

5.1 OGLE-III catalogue of variable stars

For testing purposes, we use the OGLE-III variable star catalogue,
which corresponds to the third phase of the OGLE project (Udalski
et al. 2008). The main goal of OGLE has been to identify microlens-
ing events and transiting planets in four fields: the Galactic bulge, the
Large and Small Magellanic Clouds, and the constellation of Carina.
We use light curves with at least 25 observations in the / band.
The final number of labelled light curves is 420,126. In Table 2, we
present the number of objects per class.

To estimate the informative priors (step 1 in Fig. 1), we also use
the OGLE-III catalogue. When applying the DRs to this data set,
we obtained a subset with ~75 per cent of RR Lyraes, ~20 per cent
of eclipsing binaries, and ~ 5 per cent distributed amongst the
remaining classes.

5.2 Processing of light curves

To extract features from the light curves, we use the Feature Analysis
for Time Series (FATS) library (Nun et al. 2015), thus obtaining a
420126 x 63 matrix, where 63 stands for the number of features
included in our analysis. Subsequently, to manage both the high
dimensionality and multicollinearity, we apply principal component
analysis (PCA). Spyroglou et al. (2018) used a similar strategy that
combines BLR and PCA to avoid multicollinearity among features.
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Table 3. Number of objects in the training and testing sets for each class.
TC represents the true class.

D Training Testing TC training TC testing

rrlyrae-1 389364 30762 27240 (6.9%) 15269 (49.6%)
rrlyrae-2 402787 17339 34233 (8.5%) 8500 (49.0%)
rrlyrae-3 335721 84405 34001(10.1%) 8732(10.3%)

5.3 Shifted training and testing sets

To evaluate the performance of our approach, we simulate some
challenging scenarios, where the training objects are shifted from
the testing objects. To create this scenario, we propose a procedure
(algorithm 2) for splitting a labelled catalogue (OGLE-III in our
case) into two shifted (biased) data sets.

Algorithm 2 Procedure to introduce bias in the distribution of objects
from a catalogue.

Input: Data D = (Dx, Dy), classifier m, bias control (1")

Output: Biased Data D = (Duain Diest)

m.fit(Dx, Dy)
for (d,.d,) € (Dx. Dy) do
P4, P < m.softPredict(d,)
h=1—(P;+ P})
p=e T
r = uniform(0, 1).sample()
if r < p then
Dtruin-add((dxv d}))
else
Diest-add((dy, dy))
end if
end for
return D

First, we fit a binary classifier (m) that is trained with the entire
catalogue. We use an RF classifier (m) to obtain a soft prediction
(probability) for each star, and then, we use these predictions to split
the data set D. To split the objects, we define a threshold to assess
whether an object can be easily classified or not; to measure that, we
use the following metric for each objecti € D: h; =1 — (P(A)l.2 +
P(B)f). This is based on the Gini impurity index (Raileanu & Stoffel
2004), where P(A),.2 is a soft prediction for the true class (RR Lyrae)
and P(B)? = 1 — P(A)? a prediction for the false class.

To avoid a hard threshold when deciding the set (training or testing)
for each object, we add a random selection, which is tuned by a
constant 7. This is based on the annealing principle (Van Laarhoven
& Aarts 1987) and allows us to provide a probabilistic selection
of objects, assigning difficult objects [P(A); close to 0.5] more
frequently to the testing set. As higher values for 7" are defined a
less shifted sets is generated.

We apply algorithm 2 to obtain data sets with different levels of
bias for the RR Lyrae class. The bias was managed by the parameter
T, and we obtained the data sets rrlyrae-1, rrlyrae-2, and rrlyrae-3
for T € {1, 2, 4}. These three configurations allow us to evaluate our
proposal under different bias scenarios. Table 3 provides a summary
of different biased data sets.

Fig. 2 shows the hardness distribution (classification difficulty)
for objects in the training and testing sets. As we said before, we
assume that objects whose prediction scores are close to 0.5 are
more difficult to classify than whose predictions scores are close to 1
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or 0. According to this definition, in the training sets in Figs 2(a), (c),
and (e), we can observe that the training sets have a higher frequency
of easier objects than the testing sets in Figs 2(b), (d), and (f). The
relative frequency of objects at different levels of hardness can be
visualized in both type plots, in the histograms and those bars on the
top of each figure.

Fig. 3 presents the resulting amplitude versus period distribution,
also known as Bailey diagram, obtained using algorithm 2, in the
space of features for data set rrlyrae-1. Figs 3(a) and (b) show a
clear shift in the joint distribution of period and amplitude for RR
Lyrae from the Small Magellanic Cloud between the training and
test sets. Figs 3(c) and (d) show a similar behaviour for RR Lyrae of
the Galactic disc. We note that the bimodal distributions that are seen
in these Bailey diagrams are similar to those typically found for RR
Lyrae stars (e.g. Catelan & Smith 2015, and references therein). In
particular, stars in the sequence with the longest periods at any given
amplitude are fundamental-mode pulsators, also known as ab-type
RR Lyrae stars. Conversely, stars located in the sequence with relative
short periods and small amplitudes are first-overtone pulsators, or c-
type RR Lyrae stars (RRc). Double-mode RR Lyrae, which pulsate
simultaneously in the fundamental and first-overtone modes, also
exist, and are commonly denoted as RRd. Their position in the Bailey
diagram will depend on which mode is selected as the dominant one.
We note that c-type and d-type RR Lyraes stars are mainly assigned
to testing sets [see Figs 3(b) and 3(d)]. In other words, when we
trained the RR Lyrae classifier (m) in algorithm 2 these types (RRc
and RRd) were more difficult to classity.

5.4 Classifiers

As mentioned before, we focus on assessing and ranking a set of
BLR classifiers. We compare rankings provided by our method with
the accuracy-based rankings in a CV framework, considering two
traditional logistic regression variants. Below we present a brief
description of each of these models.

5.4.1 Standard logistic regression:

The standard LR classifier models the success probability of a binary
dependent variable, y € {0, 1}, by means of a Bernoulli distribution:

p(yIx, 8) = Ber(y|s(x, 0)). )
In this model, a sigmoid function,

1 e(?Tx

s(x,0) = (10)

T+e s T4
of input (X) and parameters (6) is used to model the Bernoulli
parameter (p = s(x, #)). The Likelihood function,

POIX, 0) = s(x,0)"(1 — s(x,0)' ™, 1)

is optimized, giving rise to the maximum likelihood estimator.

5.4.2 Penalized logistic regression (1;-LR-C):

In Bayesian terms, penalized LRs (/; and /;) embody a prior
distribution over 6, and subsequently, the maximum value for the
resulting distribution (Maximum a posteriori or MAP) is selected. In
particular, /,-LR is equivalent to a vague Gaussian prior centred at
the origin. Let 1/C be the penalization factor; hence, if C is small, we
obtain a stronger regularization. This approach does not use human
knowledge to define the shape of priors.

MNRAS 503, 484497 (2021)
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Figure 2. Histogram for the probability of belonging to the true class in rrlyrae-1 (a-b), rrlyrae-2 (c—d) and rrlyrae-3 (e—f). (a), (c), and (d) are training sets and
(b), (e), and (f) are testing sets. The bars on the top of each figure represent objects. To create these plots, a sample of 10000 objects was used.

5.4.3 Bayesian logistic regression:

BLR focuses on estimating and using the posterior of the distribution
of the weights p(6|D) in the LR. In our proposal, the informative
priors ~ N (@, &) are estimated using the method laid out in Section 4.
For these experiments, we consider DRs for period and amplitude,
both of which were estimated with the FATS library (Nun et al.
2015).

Each of these models (LR, /,-LR, and BLR) represents a family of
models (M), which are defined by transformations over their input
matrices. Regarding these transformations, first, we apply a linear
transformation using PCA retaining the r most important principal
components, where r € {2, 4, 6, 8, 10, 12}, and after that, we also
apply polynomial transformations over each component p € {1, 2}.
The interactions among the components were not considered.

Let (X"*7) be the final matrix, where n are the objects in the
training set and g the product between the polynomial degree and the
number of components used in each model, m € M. This processing
allows us to control the complexity of the model by increasing

MNRAS 503, 484-497 (2021)

the number of PCA components or by increasing the degree of
the polynomial transformation. Due to convergence problems, the
model m(2, 1) was not considered in our experiments (]M| = 11).
Downsampled data were used to deal with imbalanced classes.

In LR and /»-LR, the models are sorted by their cross-validated
accuracy in training. The BLR models are ordered according to our
method (informative marginal likelihood). In the following section,
we compare the rankings obtained and show empirical results in
which the marginal likelihood (BLR case) can provide improved
rankings with respect to CV (LR and /,-LR cases).

6 IMPLEMENTATION

Our methodology was implemented using PYTHON 3.7. The most
important libraries in our code are presented below:

PYMC: probabilistic modelling framework and posterior sampling
algorithms (Salvatier, Wiecki & Fonnesbeck 2016).
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Figure 3. Density plots for RR Lyrae variable stars in rrlyrae-1 data set. (a) Small Magellanic Cloud — Training. (b) Small Magellanic Cloud — Testing. (c)

Galactic disc — Training. (d) Galactic disc — Testing.

SCIKIT-LEARN: preprocessing, traditional machine learning mod-
els (e.g. Logistic Regression, RF, and PCA), CV methods and metrics
for assessing models (Pedregosa et al. 2011).

PANDAS: methods for reading and managing data sets (McKinney
etal. 2011).

SEABORN: visualization methods, e.g. scatter plots, histograms,
and density plots (Waskom et al. 2014).

We also use a PYTHON implementation of bridge sampling, which was
developed by Grunwald (2004). Lastly, the code source is available
at https://github.com/frperezgalarce/vsbms.

7 RESULTS

Fig. 4 presents two examples of rankings that were generated by
different strategies for selecting models: Fig. 4(a) provides a ranking
of models from our proposed method, while Fig. 4(c) shows a
ranking using a k-fold cross-validated (k = 10) accuracy. In these
simple examples, we can note that the marginal likelihood strategies
[Figs 4(a) and 4(b)] provide a better ranking coherence compared
to the cross-validated accuracy. In fact, according to Fig. 4(c), the
cross-validated accuracy selects the worst model.

To obtain a more rigorous comparison of rankings among methods,
we define a set of metrics to quantify several viewpoints thereof. The
selection of metrics used to compare models is presented below.

(i) Kendall-tau (7): this metric is estimated by M, where
Fnm —1)

n. represents the number of concordant models and r4 is the number
of discordant models in the ranking. It identifies the coincidences

between training and testing rankings. Both rankings (training and
testing) are concordant when the selection is correct. In preliminary
experiments, similar results were obtained using the Spearman’s rank
coefficient.

(ii) Average top-3-Accuracy (A): In order to discriminate beyond
the rankings, we also use the average accuracy (in test) over the three
best models for each ranking. Thus, we can identify the quality of the
selected models. This metric provides a perspective about how good
are the models prioritized by each strategy. Note that the best model
accuracy can be a harsh metric in our context (ranking of models).
On the other hand, the average performance over a family of models
is a poorly informative measure.

(iii) Average top-3-Fi-score (Fi): As was explained in Sec-
tion 2.1.1, this metric is a better option than A in case of having
unbalanced classes. To assess the performance of each method, we
estimate the average F';-score in testing for the three foremost models
in the ranking.

(iv) Delta training/testing (A7): This metric seeks to evaluate
how far, on average, the predicted accuracy for the testing set is with
respect to the training set. We report the average distance over the
set of models in each family.

In Tables 4-6, we summarize the metrics for each data set (rrlyrae-
1, rrlyrae-2, and rrlyrae-3), considering three subset sizes s (for
training). As was commented in Section 5.4, we run three baseline
strategies to rank models in addition to three approaches based on
the marginal likelihood. The baseline approaches (LR, /;-LR-1, and
l,-LR-100) are based on k-fold CV with k& = 10. The rankings
based on the marginal likelihood consider flat priors (BLR-FP),

MNRAS 503, 484-497 (2021)
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Figure 4. Comparison of model rankings with 1000 samples on rrlyrae-3 set. (a) Models sorted by the marginal likelihood BLR-IP. (b) Models sorted by the
marginal likelihood BLR-IP(0 = 10). (c) Models sorted by a cross-validated (k = 10) accuracy for the /,-LR-1 family of models. Let BLR(p, ¢) and LR(p, ¢)
be classifiers that is defined by an n x (p x ¢) input matrix, where r represents the retained principal components and p the polynomial transformation degree.

informative priors for the mean and fixed variance (BLR-IP o =
10), and informative priors on both the mean and variance (BLR-IP).
From Tables 4-6, we can also observe that t values are greater for
marginal-likelihood-based rankings than those based on k-fold CV.
These results demonstrate empirically that the marginal likelihood is
more robust than the cross-validated A for assessing and prioritizing
RR Lyrae star classifiers under different levels of bias. In fact,
according to T values, when looking at rrlyrae-1 and rrlyrae-2 results,
the best rankings were provided by BLR-IP (2000), while the best
ranking for rrlyrae-3 was obtained using BLR-IP (1000).
Concerning Fj-score and A for the three sets, the best three
informative Bayesian models obtain a better performance than the
best three likelihood-based models. This means that the predictive
performance of posterior samples (posterior mean) is also improved
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when we add prior knowledge from DRs. When looking at experi-
ments with rrlyrae-1, it is worth noting that the difference is more
significant in the A metric.

When looking the impact of bias (managed by 7 in Algorithm 2)
on A and Az, we can note that in highly biased data sets (rrlyrae-1
and rrlyrae-2) our proposal is the best alternative, but even BMS is
competitive in the less biased set (rrlyrae-3).

Table 6 shows that, given a smaller bias, the six alternatives obtain
better A. However, in this set, this metric is poorly informative due to
the imbalance problem in this testing set (10 per cent of RR Lyraes,
see Table 3). In spite of that, it also shows a better F1-score value for
those models selected by the informative marginal likelihood (BLR-
IP). Figs 4(a), (b) and (c) show the rankings provided by BLR-IP
(0=10), BLR-IP and /,-LR-1 for this experiment (data set rrlyrae-3
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Table 4. Evaluation of rankings of models in rrlyrae-1. 7 is the
Kendall’s tau rank correlation; A and F1 are the mean Accuracy
and the mean F1-score, respectively; of the three foremost models,
Ar is the average difference between the accuracy in training and
testing. The bold numbers represent the best strategy for model
selection by each metric.

M N T F] A AT
k-fold CV

LR 1000 0.11 0.62 0.62 0.35

2000 0.09 0.62 0.63 0.34

4000 0.26 0.63 0.65 0.32

[>-LR-100 1000 —0.31 0.64 0.64 0.35

2000 —-0.09 0.64 0.63 035
4000 024  0.68 0.66 032

[r-LR-1 1000 —-0.16  0.64 0.64 035
2000 —-0.02  0.63 063 034
4000 0.49  0.69 0.66 032

Marginal likelihood
BLR-FP 1000 0.70  0.70 0.69 032
2000 0.82  0.70 0.69 032
4000 085  0.70 0.69 031

BLR-IP (c=10) 1000 0.31 0.68 0.69 032
2000 0.56  0.70 0.69 032
4000 0.75 0.70 0.69 031

BLR-IP 1000 0.60  0.50 0.61 0.24
2000 0.85 0.65 0.66 034
4000 0.71 0.69 0.68  0.32

Table 5. As in Table 4, but for the case of rrlyrae-2.

M s T Fi A Ar
k-fold CV
LR 1000 0.13 0.67 0.64 0.32

2000 0.38 0.66 0.66  0.32
4000 0.38 0.63 065 032

[r-LR-100 1000 0.27 0.65 0.64 032
2000 0.24 0.65 063 033
4000 0.45 0.65 063 034

l-LR-1 1000 0.42 0.66 0.65 032
2000 0.27 0.65 063 033
4000 0.45 0.65 063 034

Marginal likelihood
BLR-FP 1000 0.71 0.68 0.66 032
2000 0.64 0.68 0.66 033
4000 0.76 0.69 0.67 032

BLR-IP (c=10) 1000 0.20 0.68 0.67 033
2000 0.61 0.68 066 033
4000 0.73 0.68 0.67 032

BLR-IP 1000 0.60 0.49 059 024
2000 0.82 0.68 0.66 033
4000 0.78 0.68 0.67 033

and s = 1000). When looking at Fig. 4(c), we can observe that the
cross-validated Accuracy is unable to prioritize models correctly; in
fact, this approach selects the worst model in this case.

To sum up, when there are biased labelled objects and we have
expert knowledge, our scheme provides an excellent alternative to
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Table 6. As in Table 4, but for the case of rrlyrae-3.

M K T F A Ar
k-fold CV
LR 1000 —0.75 046 0.76 0.19

2000 —0.53 045 0.75 0.20
4000 —0.05 0.57 0.85 0.12

l>-LR-100 1000 —0.75 046  0.76 0.20
2000 —0.78 044 0.74 0.22
4000 —0.42 051 0.80 0.16

lr-LR-1 1000 —0.71 046  0.76 0.20
2000 —-0.78 044  0.74 0.22
4000 —0.49 051 0.80 0.17

Marginal likelihood
BLR-FP 1000 —0.16 049 0.78 0.19
2000 —0.36 046 076 0.22
4000 —0.39 046  0.76 0.21

BLR-IP (c=10) 1000 0.09 049 0.79 0.18
2000 —0.30 047 0.76 0.22
4000 —033 046 0.76 0.21

BLR-IP 1000 056 0.71 093 —-025
2000 —0.53 047 0.76 0.22
4000 —053 046  0.76 0.22

select models. Note that BLR-IP (s = 1000) obtains the best Az
in the three sets; this means that the reported A is more reliable. It
comes from informative priors on small training sets can penalize the
performance highly in training since this expert knowledge helps to
limit the likelihood function (based on data), but when we use them,
the selected models are more robust to biases.

8 CONCLUSIONS

We have presented a novel approach to assess and sort models
considering expert knowledge. The method is based on the design
of informative priors using deterministic physical rules that allow us
to estimate an informative marginal likelihood, which includes well-
known properties like a model selector. The method offers a good
alternative for selecting variable star classifier with biased (and/or
small) sets of labelled objects. This gives rise to an original and
simple methodology to add prior knowledge in the model assessment
process of RR Lyrae star classifiers without having to undergo a time-
consuming adaptation process.

For evaluation purposes, we have designed a method capable of
introducing bias to a data set according to the classification difficulty
of each object. This allows us to test different strategies to assess
models under three conditions of bias. The results show that the
informative marginal likelihood is able to identify more suitable
models than non-informative cross-validated metrics.

Future work can consider extensions such as (i) the use of other
types of informative priors, e.g. priors over the proportion of classes
or heavy-tailed distributions over BLR’s weights; (ii) analysis of
other time-series survey data sets; (iii) and the application of this
approach to other classes (or subtypes) of variable stars.
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APPENDIX: PROOF OF BRIDGE SAMPLING
ESTIMATOR

The proposed bridge sampling approach (Gronau et al. 2017) begins
with the following identity:

_ | p(DI®)p©@)h(®)g(®)de
[ p(DIO)p(O)h(B)g(6)d0’

(A1)

where g(0) is the proposal distribution. Subsequently, it is multiplied
by the marginal likelihood on both sides. Then, we obtain the
following equation:

_ J p@10)p@h©)g®)ds

- DI|6)pO
J EEEECh(©)g(0)do

p(D) (A2)

Note that the posterior distribution appears on the right side’s
denominator. After that, by means of

D|0)p(O)h(6 0)de
(D) = L POIOPORO) )5
[h®)g®)  p@ID)dY

(A3)
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the right-hand side of A2 is separated into two ratios, and conse-
quently, we can obtain the expected values in the denominator and
numerator as follows:

E0) [P(DIO) p(0)h(0)]
Epop) [R(0)g(0)]

Finally, we use the definition of optimal bridge function provided
by Meng & Wong (1996):

1
C .
s1p(DI0)p(0) + s:p(D)g(6)

Due to the obtained estimator depends recursively on the marginal
likelihood, the iterative scheme presented below is applied:

(A4)

p(D) =

h(®) = (AS5)

1 ZNz p(D16;) p©;)
Ny £~i=1 51 p(DI6;)p(6;)+s2p(D) g(bi)

POy = (A6)

1 ZNl 80))
Ny J=1 51 p(D16;)p0)+s2p(DY g(6;)
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