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ABSTRACT
We establish a quantitative relationship between photometric and spectroscopic detections of solar-like oscillations using ab
initio, 3D, hydrodynamical numerical simulations of stellar atmospheres. We present a theoretical derivation as a proof of
concept for our method. We perform realistic spectral line formation calculations to quantify the ratio between luminosity and
radial velocity amplitude for two case studies: the Sun and the red giant ε Tau. Luminosity amplitudes are computed based
on the bolometric flux predicted by 3D simulations with granulation background modelled the same way as asteroseismic
observations. Radial velocity amplitudes are determined from the wavelength shift of synthesized spectral lines with methods
closely resembling those used in Birmingham Solar Oscillations Network (BiSON) and Stellar Oscillations Network Group
(SONG) observations. Consequently, the theoretical luminosity to radial velocity amplitude ratios are directly comparable with
corresponding observations. For the Sun, we predict theoretical ratios of 21.0 and 23.7 ppm [m s−1]−1 from BiSON and SONG,
respectively, in good agreement with observations 19.1 and 21.6 ppm [m s−1]−1. For ε Tau, we predict K2 and SONG ratios of
48.4 ppm [m s−1]−1, again in good agreement with observations 42.2 ppm [m s−1]−1, and much improved over the result from
conventional empirical scaling relations that give 23.2 ppm [m s−1]−1. This study thus opens the path towards a quantitative
understanding of solar-like oscillations, via detailed modelling of 3D stellar atmospheres.
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1 IN T RO D U C T I O N

Solar-like oscillations can be observed via photometry and spec-
troscopy. The photometric method allows us to detect stellar oscilla-
tions by measuring variations in the brightness of stars, whereas
the spectroscopic method exploits the Doppler shifts of spectral
lines to detect stellar oscillations. The spectroscopic method (also
called the radial velocity method) is employed by ground-based
telescopes such as Birmingham Solar Oscillations Network (BiSON;
Chaplin et al. 1996) and Stellar Oscillations Network Group (SONG;
Grundahl et al. 2006). These instrumments have laid the groundwork
for helioseismoloy and asteroseismology through their detailed
observations of solar oscillations and their detection of the first solar-
like oscillating stars (Claverie et al. 1979; Brown et al. 1991; Bedding
et al. 2001; Kjeldsen et al. 2003).

Built upon these pioneering works, the field of asteroseismology
has thrived in the last decade because of the CoRoT (Michel et al.
2008), Kepler (Borucki et al. 2010), and TESS (Ricker et al. 2015)
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missions that detect stellar oscillations by measuring variations
in stellar luminosity. The high-quality, long time-series, extensive
photometric data provided by these space-based telescopes enable
accurate determination of oscillation frequencies and amplitudes
for thousands of solar-like stars, thus ushering in the era of en-
semble asteroseismology. However, in the low-frequency regime
the photometric method is complicated by signals due to stellar
atmospheric convection (stellar granulation), which impedes the
characterization of low-frequency oscillations. This difficulty can
be avoided by observing the star using the radial velocity method, as
stellar granulation noise is significantly less pronounced in velocity
signals. Moreover, the radial velocity method has demonstrated great
potential for measuring oscillations in cool dwarf stars (e.g. Kjeldsen
et al. 2005), which are important in exoplanet science but difficult to
detect with space-photometry due to their low intrinsic luminosity
and small oscillation amplitude (Huber et al. 2019). None the less,
ground-based spectroscopy is limited by target brightness and the
Earth’s atmosphere.

It follows that the photometric and spectroscopic methods of
measuring stellar oscillations are highly complementary and that
combining the two methods will yield extra information that can
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further constrain the properties of stars. Recently, solar-like oscil-
lations in several stars, such as Procyon A and ε Tauri (hereafter
ε Tau), have been observed in both photometry and spectroscopy
(Huber et al. 2011; Arentoft et al. 2019). With the commencement
of the TESS mission and SONG observations, many stars will soon
have both luminosity and radial velocity data available. Therefore,
investigating the relationship between luminosity and radial velocity
amplitude is of increasing importance.

This topic was first explored in the pioneering study of solar-
like oscillations by Kjeldsen & Bedding (1995), who proposed
a quantitative relationship between luminosity and radial velocity
oscillation amplitudes for solar-like stars by scaling from the Sun.
The Kjeldsen & Bedding (1995) amplitude ratio scaling relation has
been the industry standard in asteroseismology until now, providing
valuable guidance for many years. However, their relationship is
based on empirical arguments, and it is unable to reproduce the
observed amplitude ratio for some stars (Huber et al. 2011; Arentoft
et al. 2019). It is therefore prudent and timely to refine the relationship
between luminosity and radial velocity based on detailed stellar
modelling. As a first attempt to solve this problem from a modelling
perspective, Houdek et al. (1999) and Houdek (2010) computed
the theoretical ratio between luminosity and velocity amplitudes.
The calculations are based on their 1D, non-local, time-dependent
convection model for the Sun (Houdek et al. 1999) and the scaled
VAL-C atmosphere for Procyon A (Vernazza, Avrett & Loeser
1981; Houdek 2010). Their amplitude ratio results are in reasonable
agreement with observations. Nevertheless, it is worth noting that the
predicted amplitude ratio depends on at which atmospheric height
the velocity amplitude is evaluated (see figs 1 and 2 of Houdek
2010).

In this paper, we investigate the relationship between photometric
and spectroscopic measurements of stellar oscillations. We quantify
the amplitude ratio in an essentially parameter-free manner, by
carrying out detailed ab initio 3D hydrodynamical simulations of
stellar surface convection. We base our analysis on realistic synthetic
spectra, calculated using 3D radiative transfer and taking into account
departures from local thermodynamic equilibrium (LTE) where
necessary.

2 O BSERVATIONA L DATA

In this pilot study, we focus on the Sun and on the G-type red giant
star ε Tau (HD 28305). As a bright star residing in the nearest open
Cluster, Hyades, and known exoplanet host, ε Tau is of great interest
to stellar physics for a variety of reasons (Sato et al. 2007).

We adopt the stellar parameters provided in Arentoft et al. (2019):
Teff = 4976 K, log g = 2.67 dex, [Fe/H] = 0.15 dex, as reference
values. This effective temperature was determined via the bolometric
flux measured by Baines et al. (2018) and the angular diameter
measured interferometrically from the CHARA array (Arentoft
et al. 2019). The surface gravity was determined from the observed
frequency of maximum power, νmax , for this star (Stello et al. 2017;
Arentoft et al. 2019) through the νmax scaling relation (Brown et al.
1991; Kjeldsen & Bedding 1995). Moreover, detailed asteroseismic
observations for ε Tau using both K2 (the successor of Kepler; Howell
et al. 2014) and SONG yield individual oscillation frequencies for
more than 20 modes as well as the amplitude ratio between K2 and
SONG, which makes ε Tau an ideal target to investigate in this
work. Analogous parameters for the Sun are, of course, known to the
highest degrees of precision and accuracy of any star. Observational
parameters are included in Table 1.

Table 1. Fundamental parameters and basic information about the simulation
of the Sun and ε Tau. Reference values are adopted from Prša et al. (2016)
and Arentoft et al. (2019), respectively. We note that the effective temperature
fluctuates over time in 3D models therefore both mean effective temperature
and its standard deviation are given. Also, both minimum and maximum
vertical grid spacing are provided, as mesh points are not uniformly distributed
vertically.

Sun ε Tau

Teff (K) Reference 5772.0 ± 0.8 4976 ± 63
Modelling 5773 ± 16 4979 ± 18

log g (cgs) Reference 4.438 2.67
Modelling 4.438 2.67

[Fe/H] (dex) Reference 0.00 0.15 ± 0.02
Modelling 0.00 0.00

Numerical resolution 2403 2403

Time duration (h) 24 1205.8
Sampling interval (s) 30 1447
Vertical size (Mm) 3.6 250

Vertical grid spacing (km) 7–33 562–2650
Horizontal grid spacing (km) 25 2165

3 3 D STELLAR ATMOSPHERE MODELS

In this section, we introduce the 3D hydrodynamic stellar atmosphere
models that are the basis of our analysis. All 3D models are computed
with a customized version of the STAGGER code (Nordlund & Gals-
gaard 1995; Collet et al. 2018), a radiative-magnetohydrodynamic
code that solves the time-dependent equations of mass, momentum,
and energy conservation, as well as the magnetic-field induction
equation and the radiative transfer equation on a 3D staggered
Eulerian mesh. The stellar models in this study have been constructed
without magnetic fields. All scalars are evaluated at cell centres,
whereas vectors, such as velocity, are staggered at the centres of cell
faces in order to improve numerical accuracy. The code incorporates
realistic microphysics and a detailed radiative transfer scheme. An
updated version of the Mihalas, Dappen & Hummer (1988) equation
of state (Trampedach et al. 2013) is adopted, which accounts for all
ionization stages of the 17 most abundant elements in the Sun plus
the H2 molecule. A comprehensive collection of relevant continuous
absorption and scattering sources is included as described in Hayek
et al. (2010). The pre-computed, sampled line opacities are taken
from the MARCS model atmosphere package (Gustafsson et al. 2008).
Radiative energy transport is modelled by solving the equation of
radiative transfer at every time-step of the simulation for all mesh
points above a certain Rosseland mean optical depth (τRoss ≤ 500
throughout this work) under the assumption of LTE. The frequency
dependence of the radiative transfer equation is approximated via
the opacity binning method (Nordlund 1982; Collet et al. 2018), in
which 12 opacity bins are divided based on wavelength and strength
of opacities. Consequently, the integration over wavelength reduces
to the summation over 12 selected bins. The spatial dependence of
the radiative transfer equation is represented by solving along a set
of inclined rays in space. Nine directions – one vertical and eight
inclined directions representing combinations of two polar and four
azimuthal angles – are considered for all models presented in this
work. The integration over polar angle is carried out using the Gauss–
Radau quadrature scheme. The thus evaluated radiative heating rates
can be used to calculate the surface flux (i.e. the emergent radiative
flux at the top boundary of simulation domain) and subsequently the
effective temperature via the Stefan–Boltzmann law.

The basic configurations of our 3D models are summarized in
Table 1. For both the Sun and the red giant ε Tau, the STAGGER
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Luminosity and velocity oscillation amplitude 15

model atmospheres are constructed based on the reference effective
temperatures and surface gravities (Table 1). The Asplund et al.
(2009) solar chemical composition is adopted in both cases. Though
we do not expect stellar metallicity to introduce any significant
differences for the purposes of this study, we intend to consider
the effects of stellar metallicity in detail in a later investigation.

Spatially, the simulation domain is discretized in a box located
around the stellar photosphere. Horizontally, the simulation domain
is a square with 240 × 240 evenly distributed mesh points. The
horizontal size of the box is large enough to enclose at least 10
granules at any time of the simulation (Magic et al. 2013a). There
are 240 mesh points in the vertical direction covering roughly the
outer 1 per cent of the stellar radius, extending from the upper part
of the surface convection zone, including the entire optical surface,
and reaching the lower part of the chromosphere; we note that the
outermost layers are likely the least realistic given our neglect of
magnetic fields in these simulations. Because the vertical scale of
the simulation is very small compared to the total stellar radius, the
spherical effects are negligible and gravitational acceleration can be
regarded as a constant (i.e. the surface gravity). Mesh points are not
evenly distributed vertically: the highest numerical resolution is ap-
plied around the optical surface to resolve the transition between the
optically thick and thin regimes. Furthermore, in the case of ε Tau, a
separate vertical mesh structure is employed for the radiative transfer
calculation in order to resolve the extremely steep temperature and
opacity gradients near the optical surface of red giants adequately
(see e.g. fig. 3 of Collet et al. 2018). Adaptive mesh refinement
was used when constructing the vertical radiative mesh; the radiative
mesh of each vertical sub-domain within the simulation domain is
arranged based on the distribution of Rosseland optical depth in
this sub-domain, resulting in highest numerical resolution near the
photosphere (see fig. 6 in Collet et al. 2018 for an illustration). At each
simulation time-step, radiative transfer calculations are performed on
the radiative mesh and then interpolated back to the aforementioned
hydrodynamical mesh. We refer the reader to section 2.7 in Collet
et al. (2018) for a detailed introduction to this technique.

Boundaries are periodic in the horizontal direction, while open in
the vertical (Collet et al. 2018). At the bottom boundary, outgoing
flows (vertical velocities towards stellar centre) are free to carry their
entropy fluctuations out of the simulation domain, whereas incoming
flows have invariant entropy and thermal (gas plus radiation) pres-
sure. Temporally, the duration of the simulation is 1 day for the Sun,
and about 50 days for ε Tau. Simulation data is stored every 30 s in
the solar simulation, while every 1447 s for the red giant case. A long
stellar time coverage like this is necessary for an accurate analysis
of stellar oscillations.

Sound waves and the resulting p-modes are natural phenomena
in surface convection simulations, which can be directly identified
by looking at the power spectrum of the vertical velocity of the
simulations. Because p-mode oscillations in the simulation domain
periodically shift the optical surface up and down, causing coherent
changes in surface temperature, simulation modes can also be
identified indirectly from the power spectrum of the bolometric flux
variation. The relative variation of the bolometric flux, in parts per
million (ppm), is defined as

δFbol

Fbol,0
= Fbol − Fbol,0

Fbol,0
× 106 = δL

L0
. (1)

This is essentially equivalent to the relative variation in luminosity
δL/L0 (in ppm) because oscillations hardly change the total stellar
radius. The subscript ‘0’ indicates time-averaged quantities, i.e. the
equilibrium state.

The power spectra (PS) of the vertical velocity variation and
the relative luminosity variation (luminosity spectrum for short
hereinafter) are computed via

PS[f ](ω) = 4

N2

∣∣∣∣∣
N−1∑
s=0

f (ts)e
iωs�t

∣∣∣∣∣
2

ω = 2π

N�t

(
1, 2, ...,

N

2
− 1

)

f = V̄y or
δL

L0
. (2)

Here, V̄y is the horizontally averaged vertical velocity, and the terms
t, �t and ω are time, time interval between two consecutive snapshots
and angular frequency, respectively. The symbol s denotes individual
simulation snapshots, and N is the total number of snapshots.

Fig. 1 shows the results for the solar and the red giant simulations.
Three radial simulation modes with frequencies of approximately
2.1, 3.3, and 4.7 mHz are seen in the vertical velocity spectrum of
the solar simulation. These are the fundamental, first overtone, and
second overtone radial modes in the simulation box, respectively.
Among the three, only the intermediate-frequency, first overtone
simulation mode is clearly recognizable from the luminosity spec-
trum. The reason is that at low frequencies, the granulation signal
is relatively strong, causing the signature of the low-frequency
simulation mode to be overwhelmed by ‘convective noise.’ On the
other hand, the amplitude of the high-frequency simulation mode
is too small to be clearly identified in the luminosity spectrum (the
black line in Fig. 1a). We therefore refer to the first overtone radial
mode as the dominant simulation mode, as it is the only one that is
identifiable in both the vertical velocity and luminosity spectra in the
solar case. The situation for the ε Tau simulation is different. The
three simulation modes are visible in both the velocity and luminosity
spectra owing to their large amplitude. We note that for both the Sun
and ε Tau, the duration of the simulation is long enough to cover
at least 200 periods of the dominant simulation mode. Likewise, the
sampling interval is short enough in both cases such that at least
10 snapshots are stored within one pulsation cycle of the dominant
simulation mode. These two factors together ensure that the dominant
simulation mode is well resolved in the frequency domain. The exact
frequency of the dominant simulation mode is important for the
analysis below (Sections 5 and 6). It is determined by looking for the
local maximum V̄y for all vertical layers in the simulation domain,
which is similar to the method used in Belkacem et al. (2019). The
exact frequency values are 3.299 and 0.051 mHz for the solar and
ε Tau simulation, respectively, which are also highlighted in the
red-dotted lines in Fig. 1.

It is worth noting that the amplitude of simulation mode is on the
order of 100 m s−1. This is much greater than the observed amplitude
of radial p-modes as measured in the solar flux spectrum, which is
around 0.2 m s−1. This difference in amplitude between the simula-
tion mode and the observed stellar p-mode was explained in detail in
Belkacem et al. (2019) and Zhou, Asplund & Collet (2019). In short,
the discrepancy emerges from the difference between the volume of
the simulation box and the volume of the real star. Stellar p-modes
propagate throughout the entire stellar surface and interior, whereas
the simulation modes are confined to the simulation box whose
horizontal and vertical extents are significantly smaller than the
dimensions of a star. Therefore, the luminosity or velocity amplitudes
from 3D atmosphere simulations are not directly comparable to the
corresponding asteroseismic observations. A natural question is then
whether realistic ratio between luminosity and velocity amplitude
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Figure 1. (a) The power spectrum of luminosity amplitude (the black line) calculated from the 3D solar atmosphere model is plotted together with the power
spectrum of the horizontally averaged vertical velocity amplitude around the photosphere (the grey line). Three simulation modes are clearly seen in the velocity
spectrum, whereas only the simulation mode with frequency slightly greater than 3 mHz is recognizable in the luminosity spectrum. The red-dotted vertical line
indicates the frequency of the dominant simulation mode. (b) Power spectra calculated from the 3D atmosphere model for ε Tau. Three simulation modes are
visible in both the velocity and luminosity spectra.

can be predicted from our simulations? We address this question in
detail in the subsequent section.

4 PRO O F O F C O N C E P T

We demonstrate in this section that, in principle, 3D surface convec-
tion simulations are able to reliably predict the relationship between
the luminosity and velocity amplitudes (the amplitude ratio) despite
their individual values not being comparable with observations. We
begin with the relative luminosity variation defined in equation (1).
Assuming the source function in the radiative transfer equation Sν

(ν is the radiation frequency) is a linear function of optical depth τ ν

(i.e. equivalent to the Eddington–Barbier approximation), the surface
flux at a given frequency is given by

Fν(τν = 0) = πSν(τν = 2/3). (3)

Further assuming LTE gives

Fν(τν = 0) = πBν(τν = 2/3) = π
2hν3

c2

1

exp
[

hν
kBT (τν=2/3)

]
− 1

. (4)

Here, Bν is the Planck function, c, h, and kB are the speed of light, the
Planck constant, and the Boltzmann constant, respectively. The term
T(τ ν = 2/3) is the temperature at optical depth τ ν = 2/3. Because
at different frequencies, the τ ν = 2/3 layer corresponds to different
locations in the stellar atmosphere due to opacity variations, T(τ ν =
2/3) depends on frequency in general. In the case of a grey atmosphere
where optical depth has no frequency dependence, the integration of
Fν over frequency gives the Stefan–Boltzmann law. The bolometric
flux is hence

Fbol = π

∫ ∞

0
Bν(τ = 2/3) dν = σT 4(τ = 2/3), (5)

where σ is the Stefan–Boltzmann constant. Combining equations (1)
and (5) yields

δL

L0
= 4δT (τ = 2/3)

T0(τ = 2/3)
× 106, (6)

where δT denotes temperature fluctuation at constant optical depth.
From equation (6), we can then recognize that the luminosity varia-
tion essentially captures the fluctuation in temperature at the optical

surface. For solar-type stars without strong stellar activity, such
fluctuation is due primarily to surface convection and secondarily due
to acoustic oscillations. The contribution due to surface convection
will be separated from the acoustic oscillations in Section 5.1.

Next, we connect fluid velocity V with the fluctuations of thermo-
dynamical quantities. Following the discussion in Aerts, Christensen-
Dalsgaard & Kurtz (2010; see Chapter 3.1.4), we assume V is caused
solely by sound waves and is small compared to the sound speed.
It is worth noting that convective velocities are non-negligible in
stellar convection zones; their magnitude can even be comparable
to the local sound speed in the near-surface region. Nevertheless,
convective velocities are effectively regarded as ‘equilibrium state,’
since oscillation is the focus here. Under this assumption, density ρ,
pressure P and temperature T can be written as f = f0 + f

′
, where f

′

is the small Eulerian perturbation1 (second and higher order terms
are ignored). After further assuming that the medium is spatially
homogeneous, all derivatives of equilibrium quantities vanish. The
fluid continuity equation

∂ρ

∂t
+ ∇ · (ρ �V ) = 0 (7)

then becomes

∂ρ ′

∂t
+ ρ0∇ · �V = 0, (8)

while the equation of motion

ρ
∂ �V
∂t

+ ρ �V · ∇ �V = −∇P + ρ �g (9)

becomes

ρ0
∂ �V
∂t

= −∇P ′ + ρ0 �g′, (10)

where g is gravitational acceleration. If we ignore the perturbation
to gravitational acceleration �g′ (i.e. Cowling approximation), this
simplifies to

ρ0
∂ �V
∂t

+ ∇P ′ = 0. (11)

1Perturbations at constant geometric depth (or radius).
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Now taking the time derivative of equation (8) and using equa-
tion (11), we have

∂2ρ ′

∂t2
− ∇2P ′ = 0. (12)

In the case of adiabatic oscillation, pressure and density fluctuations
are connected by

P ′ = c2
s,0ρ

′, (13)

where cs = √
(∂P/∂ρ)ad is the adiabatic sound speed. Substituting

equation (13) into equation (12) gives the wave equation (Aerts et al.
2010, equation 3.51):

∂2ρ ′

∂t2
− c2

s,0∇2ρ ′ = 0. (14)

If we now consider a pure radial sound wave in which all
quantities depend only on the y-coordinate, then density and pressure
fluctuation can be written as

ρ ′ = a cos(ky − ωt),

P ′ = c2
s,0a cos(ky − ωt),

(15)

where a and k denote the amplitude and the wavenumber, respec-
tively. The dispersion relation is therefore

ω2 = c2
s,0k

2. (16)

Based on equations (11), (15), and the dispersion relation (16), the
expression of fluid velocity can be written as

V = cs,0

ρ0
a cos(ky − ωt). (17)

Comparing equations (15) and (17) gives the relation between
pressure fluctuation and fluid velocity:

P ′ = ρ0cs,0V . (18)

We recall that, for adiabatic oscillations, pressure and temperature
fluctuations are related via

T ′

T0
= ∇ad,0

P ′

P0
, (19)

with ∇ad = (∂ln T/∂ln P)ad being the adiabatic temperature gradient.
The relation between the temperature fluctuation and the fluid
velocity is given by

T ′ = ρ0cs,0T0∇ad,0

P0
V . (20)

For additional information about relevant discussion and derivations,
see Landau & Lifshitz (1987) chapter 64 and Aerts et al. (2010)
chapter 3.1.4.

We have now obtained the relationship between δL/L0 and δT
(the temperature fluctuation at constant optical depth), as well
as the relationship between V and T

′
(the temperature fluctuation

at constant geometric depth). The next step is to link these two
temperature fluctuations. Considering only first-order perturbations,
the temperature at given optical depth τ at any given time can be
separated as

T (τ, t) = T0(τ ) + δT (τ, t). (21)

At fixed geometric depth near the photosphere, the optical depth
varies with time because of the time-dependent nature of convection.
Therefore, the temperature at fixed geometric depth, if expressed as
a function of τ , reads

T (τ + dτ, t) = T (τ, t) + ∂T

∂τ
dτ = T0(τ ) + δT (τ, t) + ∂T

∂τ
dτ. (22)

Because T0(τ ) represents the equilibrium state, the Eulerian pertur-
bation to temperature is therefore

T ′(τ, t) = T (τ + dτ, t) − T0(τ ) = δT (τ, t) + ∂T

∂τ
dτ. (23)

This equation demonstrates the relationship between two different
kinds of perturbation, it can be expanded further by analysing the
term dτ . In the equilibrium state, the optical depth is, by definition,

τ =
∫ y0

−∞
α0 dy, (24)

where y is the geometric depth as before and α0 is the mean absorption
coefficient. Recalling that at a given time t, τ + dτ corresponds to
the same geometric depth y0, we have

τ + dτ =
∫ y0

−∞
α(t) dy. (25)

Subtracting equation (24) from equation (25) gives

dτ =
∫ y0

−∞
δα(t) dy, (26)

which relates the perturbation of the absorption coefficient at constant
τ to the change in optical depth at fixed geometric depth. The
value of the absorption coefficient, however, depends on the opacity
source of the plasma in a complex way. As such, there is no
simple analytical function to describe the relationship between α

and the thermodynamical quantities. Nevertheless, given the fact
that the H− opacity is the dominant source of opacity near the solar
photosphere, we adopt the simplification that the mass absorption
coefficient consists only of H− opacity: κH− (units cm2g−1). Here,
we adopt a power-law fit of κH− (Hansen, Kawaler & Trimble 2004,
equation 4.65), which gives reasonable results in our range of interest
(3000 � T � 6000 K; 10−10 � ρ � 10−5 g/cm3; hydrogen mass
fraction of around 0.7; metal mass fraction 0.001 � Z � 0.03):

κH− 	 2.5 × 10−31(Z/0.02)ρ1/2T 9 cm2 g−1,

α 	 ρκH− 	 2.5 × 10−31(Z/0.02)ρ3/2T 9 cm−1. (27)

The perturbation of the absorption coefficient is then

δα 	 α0

(
3δρ

2ρ0
+ 9δT

T0

)
, (28)

where δρ is the perturbation of density at fixed optical depth. As
indicated by 3D surface convection simulations, the magnitude of δρ

and ρ
′

is similar around photosphere (fig. 3 of Magic et al. 2013b).
Hence, using also equations (13), (18), and (20), we have

δρ 	 ρ ′ = P0

c2
s,0∇ad,0T0

T ′. (29)

Substituting equations (28) and (29) into equation (26) yields

dτ 	
∫ y0

−∞
α0

(
3P0

2ρ0c
2
s,0∇ad,0T0

T ′ + 9

T0
δT

)
dy. (30)

As the absorption coefficient α0 increases rapidly when moving
from the upper atmosphere to photosphere (equation 27), the main
contribution to the right-hand side of equation (30) comes from a thin
layer just above y0. Therefore, equation (30) can be approximated
by

dτ 	 τ

(
3P0

2ρ0c
2
s,0∇ad,0T0

T ′ + 9

T0
δT

)
τ

. (31)
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Under the assumption of the Eddington grey atmosphere and LTE,
the temperature stratification is

T (τ ) = Teff

(
3

4
τ + 1

2

) 1
4

, (32)

which is the so-called Eddington T−τ relation. Using the Eddington
T−τ relation and plugging equation (31) into equation (23), we have

T ′ 	 δT + 3

16
Teff,0

(
3

4
τ + 1

2

)− 3
4

τ

(
3P0

2ρ0c
2
s,0∇ad,0T0

T ′ + 9

T0
δT

)
τ

. (33)

Evaluating the equation above at τ = 2/3 gives the relationship
between T

′
and δT at the optical surface:(

1 − 3P0

16ρ0c
2
s,0∇ad,0

)
τ= 2

3

T ′(τ = 2/3, t) 	 17

8
δT (τ = 2/3, t).

(34)

The ratio between T
′

and δT at τ = 2/3 computed based on
equation (34) is approximately 3.2 for our solar atmosphere model,
in reasonable agreement with the corresponding result evaluated
directly from simulation data, which is approximately 2.3 (see also
Magic et al. 2013b, section 4.1).

Finally, combining equations (6), (20), and (34) gives the relation-
ship between the luminosity and velocity amplitudes:

δL

L0
	 32

17
× 106

(
ρ0cs,0∇ad,0

P0
− 3

16cs,0

)
τ= 2

3

V (τ = 2/3). (35)

Equation (35) demonstrates that, to first order, the ratio between
relative luminosity variation and photosphere velocity depends only
on the equilibrium state of the thermodynamic quantities. We are now
equipped to address the question put forward at the end of Section 3: it
is thus demonstrated that 3D surface convection simulations do have
the potential to reliably predict the luminosity and velocity amplitude
ratio, because the ratio does not depend on the luminosity or velocity
amplitude nor on any other term that is subject to overestimation by
our box-in-a-star models.

We note that a number of approximations and simplifications
have been employed when deriving equation (35). Itemized, these
assumptions are as follows:

(i) The Eddington–Barbier approximation
(ii) LTE
(iii) Grey atmosphere
(iv) Convective velocities are regarded as the ‘equilibrium state’,

such that fluid velocity V consists only of an oscillation component
and is small compared to the sound speed

(v) Spatially homogeneous medium
(vi) The Cowling approximation
(vii) Adiabatic oscillations
(viii) H− is the only source of opacity in the stellar photosphere,

such that it can be represented by a power law κH− ∝ ρ1/2T 9

(ix) The magnitude of δρ and ρ
′
are similar around photosphere

Some of these assumption, such as the grey atmosphere and
spatially homogeneous medium assumptions, are obviously not
correct in the near-surface regions. Therefore, the analysis above
is only to illustrate that 3D simulations are capable of providing
a reliable luminosity and velocity amplitude ratio. We emphasize,
however, that equation (35) is not used to calculate the ratio between
luminosity and velocity amplitude; rather, we evaluate luminosity
variation and radial velocity directly from 3D simulations that do not
rely on these assumptions.

5 EVA LUATI NG LUMI NOSI TY A MPLI TUDE

5.1 Intrinsic bolometric amplitude

Intrinsic bolometric flux is an output quantity from the 3D stellar
surface convection simulations. It is computed from the radiative
transfer calculations performed at each time-step of the simulation
(Section 3). The theoretical bolometric flux as a function of time,
which is analogous to the intrinsic light curve of star, is converted
to δL/L0 according to equation (1). This is then transformed to the
(oscillation) frequency domain using a Lomb–Scargle Periodogram
algorithm (Lomb 1976; Scargle 1982) to obtain the luminosity
power spectrum shown in Fig. 2 (the grey lines). A general trend
of the luminosity PS is that the luminosity power is higher at low
frequencies and decreases with increasing frequency. In the solar
case, a peak located around 3.3 mHz is clearly seen in the spectrum.
This feature is associated with surface convection (granulation),
where up- and down-flows shift the location of the optical surface,
producing fluctuations in bolometric flux. The peak around 3.3 mHz
is caused by the main oscillation mode of the simulation box. Acous-
tic waves naturally excited in the simulation domain periodically
change the location of optical surface, leading to coherent variations
in bolometric flux. The variation due to granulation happens on all
time-scales and thus provides the background signal in the power
spectrum; for an even longer time-sequence this granulation signal
becomes more and more smooth, making it easier to discern the
frequencies of the oscillation modes.

In order to obtain the luminosity amplitude for the simulation
mode, it is necessary to filter out the contribution from granulation.
At a given spatial position near the photosphere, granulation emerges,
evolves, and disappears with a typical time-scale tgran. Having
the insight that granulation (essentially surface velocity field) is
constantly evolving, Harvey (1985) proposed that the autocorrelation
function of stellar granulation can be described by exponential
function exp (− t/tgran). That is, the correlation between granulation
at moments t0 and t0 + t decreases exponentially with increasing
time interval. Because the autocorrelation of a signal corresponds to
the Fourier transform of its power spectrum, the power spectrum of
granulation background is the Fourier transform of

V(t) =
{
V0e

−t/tgran (t ≥ 0)
0 (t < 0)

, (36)

which is

B(ν) = CV2
0 tgran

1 + (2πνtgran)2
. (37)

This is a Lorentzian function. The term V0 is the velocity amplitude
associated with granulation, ν is cyclic frequency, and C is a
normalization constant such that the power spectrum satisfies the
Parseval theorem (see also equation 5 of Lund et al. 2017). In
recognition of this, we modelled the oscillation background caused
by granulation with the sum of one or more (generalized) Lorentzian
profiles:2

B(ν) =
N∑

i=1

2
√

2

π

a2
1,i/a2,i

1 + (ν/a2,i)a3,i
, (38)

which is similar to the functional forms commonly applied to real
observational data (e.g. Lund et al. 2017; Li et al. 2020). Here, the free

2Strictly speaking, equation (38) is the sum of generalized Lorentzian profiles
because a3, i is a free parameter rather than fixed to 2. Here, we refer them as
Lorentzian profiles for simplicity.
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Figure 2. (a) The grey line is the luminosity power spectrum computed from the solar simulation, and the black curve is the result after smoothing with a running
mean with width equals to 100 μHz. The red solid line represents the granulation background of the solar simulation, as modelled based on equation (38). A
Lorentzian fit to the dominant simulation mode is also shown in the red- dashed line. (b) Luminosity power spectrum and granulation background predicted
from our ε Tau simulation. The black curve is obtained by smoothing the luminosity power spectrum with a running mean with width equals to 10 μHz.

parameters are {a1, i, a2, i, a3, i} and N is the number of Lorentzian
components. As multiple Lorentzian components are often employed
to achieve a better fit to the observed stellar background, the interpre-
tation is that in real stars, there exists more than one granulation scale
as well as contributions from stellar activity. Nevertheless, the true
analytical form of stellar granulation background remains elusive
(Lundkvist et al. 2021). Therefore, we test granulation background
models with one, two, and three components (N = 1, 2, 3) by
computing the Bayesian evidence (marginal likelihood) for each
model. The Bayesian evidence p(D|M), which is the probability
of the power spectrum data D given a granulation model M, is
frequently used to evaluate the relative probability of the models for
given data. We find that for both the Sun and ε Tau, the Bayesian
evidence of the single-component background model is significantly
smaller than multicomponent models, while p(D|M) of N = 2 and
N = 3 models are not significantly different. Our Bayesian approach
therefore shows that given the theoretical luminosity spectrum,
the granulation background is better described by multicomponent
Lorentzian profiles. In this study, we choose the two-component
(N = 2) model because it performs equally well as the three-
component one but involves fewer free parameters. We refer the
readers to Lundkvist et al. (2021) for a detailed examination of
different granulation background models against results from 3D
surface convection simulations.

The granulation background fitting is performed with the parallel
tempering Markov chain Monte Carlo (MCMC) algorithm of Vous-
den, Farr & Mandel (2016). The best-fitting results are demonstrated
in the red solid lines in Fig. 2. The amplitude of the granulation
background at the frequency of the dominant simulation mode is
343.6 ± 14.7 ppm for the solar simulation and 726.0 ± 31.2 ppm for
the ε Tau case. Uncertainties presented here are returned from the
MCMC samples, representing the statistical errors associated with
the background fitting. We then subtracted the power spectrum with
the best-fitting background. The bolometric oscillation amplitude is
determined by taking the square root of the peak value (corresponds
to the value at the frequency of the dominant simulation mode)
of the subtracted spectrum, which is 1714.0 ± 3.0 ppm for the
solar simulation and 3070.3 ± 7.4 ppm for ε Tau (also tabulated
in Table 4). We note that another frequently used method to extract
the oscillation amplitude is to fit a parametric model to the peak
region, then take the peak value of the fitted curve. However, in
our solar simulation, the width of the simulation mode, which is

connected to the mode damping rate, is on the order of 10−100μHz
(see also table 1 of Belkacem et al. 2019), being much larger than
the width of solar p-modes. The reason is that the simulations modes
have much less mode mass than stellar p-modes. Therefore, to avoid
further complications about the reliability of the width, we measure
only the peak amplitude at the frequency of the dominant simulation
mode in our analysis.

5.2 The conversion factor between intrinsic and measured
luminosity amplitude

Space-based missions such as CoRoT, Kepler, and TESS measure
starlight in a certain band-pass. What is measured from these space-
based observations is stellar flux in certain wavelength ranges, rather
than the intrinsic bolometric stellar flux. In order to connect the
luminosity amplitude provided by 3D simulations with observables,
it is necessary to quantify the conversion factor between intrinsic and
measured luminosity amplitude (also called bolometric correction
factor for luminosity amplitude), which is defined as

Abol = cP−bolAP , (39)

where cP−bol is the conversion factor. The term Abol and AP are
the intrinsic luminosity amplitude and the luminosity amplitude
measured in a certain band-pass, respectively. The conversion factor
was first investigated by Michel et al. (2009) for CoRoT and Ballot,
Barban & van’t Veer-Menneret (2011) for Kepler. Recently, Lund
(2019) quantified cP−bol values for CoRoT, Kepler and TESS across
the HR diagram based on a grid of ATLAS9 model fluxes (Castelli &
Kurucz 2003). Here, we follow their theoretical formulation, but
we calculate the flux spectrum from our 3D models to obtain self-
consistent conversion factors for the two stars investigated in this
work. For radial oscillations, the expression of cP−bol, as given in
Lund (2019), is

cP−bol = 4
∫

TP (λ)F (λ)dλ

Teff

∫
TP (λ) ∂F (λ)

∂Teff
dλ

, (40)

where λ is wavelength. Note that the stellar spectral flux F(λ) also
depends on basic stellar parameters, i.e. Teff, log g, and [Fe/H].
The instrumental transfer function TP (λ) is connected with the
spectral response function Sλ via TP (λ) = Sλ/(hc/λ), where the
latter represents the band-pass of the instrument. In this study, we
choose the Kepler spectral response function as an example.
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The stellar spectral flux F(λ) in equation (40) is computed using the
3D radiative transfer code SCATE (Hayek et al. 2011). SCATE solves the
3D, time-dependent radiative transfer problem for both spectral lines
and the background continuum. The computation is carried out under
the LTE assumption, but with the ability to include isotropic contin-
uum scattering in opacities and source functions. Simulation snap-
shots generated from the STAGGER code are input models in SCATE.
The equation-of-state, continuum absorption and scattering coeffi-
cients, and the pre-tabulated line opacities adopted in SCATE are iden-
tical to those used in STAGGER, thereby ensuring full consistency be-
tween the 3D surface convection simulations and 3D LTE line forma-
tion calculations. For more information about the code and the numer-
ical method therein, we refer the readers to Hayek et al. (2010, 2011).

Here, we use the spectrum synthesis mode of SCATE. In this
scenario, the code delivers the angle-resolved surface fluxes for many
wavelength points while treating scattering as pure absorption; test
calculations reveal that for our target stars and for the wavelengths
of interest here, this is an excellent approximation. At a given
wavelength, continuum opacities are computed on-the-fly based on
the microphysics and 3D atmosphere models mentioned above;
line opacities are read from the pre-tabulated opacity sampling
data. Specific intensities are calculated by tilting the simulation
domain to represent five different polar angles θ , and rotated to
yield four equidistant azimuthal angles φ, for a total of 20 rays.
The emergent flux is finally computed through integration of the
specific intensities on a Gauss–Legendre quadrature in the polar
direction, and trapezoidal integration in the azimuthal direction. We
compute the emergent flux between 350 and 950 nm, covering the
entire spectral response function of Kepler, in steps of 1 nm. In order
to reduce the computational cost, we compute the spectral energy
distribution only for a subset of the simulation sequence covering
four periods of the dominant simulation mode. This corresponds to
40 snapshots in the solar simulation and 55 snapshots in the red giant
simulation. The spectral flux distributions computed based on one
example snapshot of our 3D solar and ε Tau model atmosphere are
depicted in Fig. 3, together with the spectral response function Sλ for
Kepler which is taken from Thompson et al. (2016). From Fig. 3, we
can see that for both stars, the predicted spectral flux distributions
agree reasonably well with observations, both in magnitude and in
overall trend.

The time-averaged (average over all selected snapshots) spectral
flux F(λ) is used to calculate cP−bol through equation (40). The deriva-
tive term ∂F(λ)/∂Teff can be evaluated from the same simulation
snapshots. More specifically, by synthesizing the flux spectrum for
each individual simulation snapshot, we can obtain F(λ) as a function
of Teff because different simulation snapshots correspond to different
bolometric flux, hence effective temperature. This then permits
the numerical evaluation of ∂F(λ)/∂Teff at the reference effective
temperature of the star. The cP−bol values computed based on the
aforementioned simulation configuration are presented in Table 2. In
the case of ε Tau, the conversion factor calculated from the 3D model
is 0.68, more than 10 per cent less than the corresponding ATLAS9
result given in Lund (2019). We have verified for both the Sun and
ε Tau that our cP−bol value is robust, as (1) increasing the number of
polar angles in the radiative transfer calculation from 5 to 10 has neg-
ligible effect on the final cP−bol value; and (2) neither increasing the
wavelength resolution from 1 nm to 1 Å nor doubling the simulation
time sequence in the flux spectrum calculation changes the outcome.
Different model atmospheres is a likely cause of the discrepancy in
cP−bol, as cP−bol computed from the blackbody spectrum also differs
clearly from the one computed from ATLAS9, as seen in Table 2.

It is worth noting that in principle the conversion factor cP−bol is not
strictly a constant because the flux emitted by a star fluctuates with

time. The fluctuation is caused by stellar granulation and oscillation
for solar-type stars with the contribution from granulation generally
being much larger (Kallinger et al. 2014). According to Kallinger
et al. (2014), the measured solar bolometric granulation amplitude
is Agran = 41 ppm, corresponding to a fluctuation of approximately
0.06 K in effective temperature. Assuming a blackbody spectrum,
the 0.06 K fluctuation in Teff will result in a relative change of less
than 10−5 in cP−bol. For ε Tau, the bolometric granulation amplitude,
estimated from the scaling relation Agran ∝ (g2M)−1/4 (Kallinger et al.
2014, equation 5), is roughly 250 ppm, corresponding to a ∼0.3 K
temperature fluctuation and a relative change in cP−bol of less than
10−4. Therefore, regarding the conversion factor as a constant is a
suitable approximation.

6 EVA L UAT I N G R A D I A L V E L O C I T Y
AMPLI TUDE

In the spectroscopic method of measuring stellar oscillations, vari-
ations in the radial (i.e. line-of-sight) velocity near the stellar
photosphere are quantified by analysing the Doppler shift of certain
spectral lines. Two representative efforts based on this method are
the BiSON (Chaplin et al. 1996) and SONG (Grundahl et al. 2006).
As implied by its name, BiSON focus solely on helioseismology: it
detects solar oscillations using the Doppler shift of the disc-integrated
solar potassium (K I) 7698 Å line. The spectrograph operates by
imposing a magnetic field on a sample of potassium gas; the
anomalous Zeeman effect produces line splitting where the σ− and
σ+ line components located in the blue and red wings of the solar K I

line exhibit circular polarization with opposite orientation. Incident
sunlight fed through the instrument passes through a linear polarizer
and a quarter-wave plate, which induces circular polarization that can
be rapidly switched between left- and right-handedness in order to
produce resonant scattering with either line component. This allows
the measurement of the relative intensity between the blue and red
wing, which reflects the Doppler shift of solar K I line that is caused
by the velocity field of the solar surface. A thorough explanation of
the BiSON instrumentation and observation technique can be found
in Chaplin et al. (1996).

In contrast, SONG measures the radial velocity signal simultane-
ously from a large number of spectral lines through a traditional
echelle spectrograph that covers the wide spectral range 4400–
6900 Å (Grundahl et al. 2017). The incident starlight passes through
an iodine cell, which superimposes on the stellar spectrum a large
number of weak absorption lines; these act as a highly accurate
simultaneously recorded wavelength reference. The overall Doppler
shift is inferred by cross-correlating the observed spectrum with a
reference spectrum that was recorded without the iodine cell. Because
radial velocity quantified in this manner takes many spectral lines
into account, the result reflects the mean velocity of the photosphere
rather than the velocities at the specific heights where certain lines
are formed. A more detailed description of the iodine cell method
is given by Butler et al. (1996), and its application to SONG is
described in detail by Antoci et al. (2013). To make theoretical
predictions as consistent as possible with observations, we extract
the radial velocity from our 3D atmosphere models through line
formation calculations with a method resembling the BiSON and
SONG observational setups in the following subsections.

6.1 Simulating the BiSON radial velocity signal

Although 3D hydrodynamic simulations are able to realistically
predict the convective velocities throughout the simulation domain
(e.g. Asplund et al. 2000; Nordlund, Stein & Asplund 2009; Pereira
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Figure 3. Upper panel: The thin grey line is the emergent flux between 3500 and 9500 Å computed based on one example snapshot of our 3D solar model
atmosphere (at a resolution of 15 km s−1). The re-sampled synthetic spectrum using a 5 Å wavelength bin is depicted with the black line. The observed high
resolution solar flux spectrum of Kurucz (2005) is also binned every 5 Å (the blue line) in order to facilitate comparison between simulation and observation. The
red dash–dotted line is the mean spectral response function of Kepler averaged from its 84 channels (Thompson et al. 2016). Lower panel: Similar to the upper
panel, but the result for ε Tau. Because the observed ε Tau spectrum of Valdes et al. (2004) lacks an absolute flux level, we normalize the original observation
data such that its magnitude generally matches the 4976 K (the reference effective temperature of ε Tau) blackbody spectrum between 7000 and 9000 Å. We
note that data shown in this figure is not used to calculate cP−bol. Instead, the synthetic spectra that enter into equation (40) have a lower wavelength resolution
(1 nm, see text).

Table 2. Conversion factor cP−bol computed for Kepler
for the Sun and ε Tau. ‘3D’ , ‘ATLAS9’ and ‘Planck’
represent the choice of model atmosphere (3D model
atmosphere in this work, ATLAS9 model atmosphere,
and blackbody, respectively) applied in the computation.
The ‘ATLAS9’ and ‘Planck’ results are obtained by
interpolating the data provided in Lund (2019).

Star 3D ATLAS9 Planck

Sun 0.92 0.94 0.98
ε Tau 0.68 0.79 0.87

et al. 2013), what BiSON measures is a radial velocity as imprinted
on a particular spectral line, which is connected but not equivalent
to the fluid velocity given by 3D simulations. In practice, spectral
lines form over a range of atmospheric heights, and velocity fields
are thus imprinted to varying extent on the core and wings (see e.g.

Asplund et al. 2000; Chiavassa et al. 2018). We therefore opt to carry
out a forward-modelling approach by performing line formation
calculations for the solar K I line. Due to the pronounced departures
from LTE for the K I 7698 Å resonance line (Bruls, Rutten &
Shchukina 1992; Reggiani et al. 2019), it is crucial to carry out
full 3D non-LTE radiative transfer computations to obtain realistic
atmospheric velocity information.

The line formation calculations are performed using BALDER

(Amarsi et al. 2016a, b, 2018), a 3D non-LTE radiative transfer code
based on the MULTI3D code (Botnen & Carlsson 1999; Leenaarts &
Carlsson 2009). Our model atom contains 29 levels of K I plus the
K II ground state, and resolves the fine structure in all doublets of K I.
Atomic energy levels and oscillator strengths originate from National
Institute of Standards and Technology (NIST; Sansonetti 2008),
and collisional line broadening is computed following the method
of Barklem, Anstee & O’Mara (1998). We implement transition
rates due to collisions with electrons and hydrogen atoms following
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Figure 4. Spatially averaged K I line profiles predicted from our 3D non-LTE
line formation calculations. The line formation calculation is done for every
simulation snapshot, but only one in every 100 snapshots are shown here to
avoid overcrowded figure. The observed solar K I line profile is plotted in the
black line for comparison (Neckel 1999). The effects of gravitational redshift
(633 m s−1 for the Sun, Dravins 2008) are included in both the theoretical and
the observed line profiles. The blue and red Gaussian profiles schematically
represent the two laboratory potassium lines used in BiSON, whose central
wavelengths are marked by the vertical dotted lines.

Reggiani et al. (2019). For radiative transitions our simplified atom
considers only the 7664–7698 Å resonance line doublet, as their de-
parture from LTE is almost entirely explained through photon losses
in the resonance lines themselves that produces a characteristic sub-
thermal source function that deepens the line (Reggiani et al. 2019).
This simplification was a necessary trade-off to obtain line profiles
across the entire simulation time series. In any case, test calculations
indicated that this two-line atom differs from a comprehensive
K I model atom with 134 levels and 250 bound-bound radiative
transitions (Reggiani et al. 2019) by about 1 per cent in the depth
of the 7698 Å line and with negligible differences in inferred radial
velocities. Moreover, we rescaled the hydrodynamic simulations
from a resolution of 2403 to 1202 × 220. We solve the statistical
equilibrium by computing the monochromatic radiation field using
26 short characteristics (eight polar angles, and four azimuthal angles
for each non-vertical ray), and typically find convergence after six
accelerated lambda iterations. The emergent spectra are computed
with 57 rays (seven outgoing polar angles, and eight azimuthal angles
for each non-vertical ray), sampling the spectral line at a spectral
resolution of 40 m s−1.

We adopted a solar abundance A(K) = 5.10 as this produced
good agreement with observations of the K I 7698 Å line, but did
not fine-tune this value. Fig. 4 demonstrates the spatially averaged,
disc-integrated K I line profiles computed with BALDER, which are in
excellent agreement with the observed line profile. The calculations
were carried out for every snapshot in the 3D solar simulation (2880
in total) to obtain the temporal evolution of the solar K I line. The
location and shape of the line varies from snapshot to snapshot as
a consequence of varying line-of-sight velocity fields in the line-
forming region.

Radial velocities are extracted from our theoretical K I lines in
a way that is fully consistent with the BiSON observational setup.
Under a magnetic field of 0.2 T, which is approximately the magnetic
field strength imposed in the BiSON spectrometer (Brookes, Isaak &
van der Raay 1978), the K I 7698 Å line is split into two components
centred at λ− = 7698.8907 Å and λ+ = 7699.0384 Å due to the
Zeeman effect. Assuming the apparatus holds a temperature of 400 K

yields a thermal broadening of 400 m s−1for the two laboratory lines.
Their Gaussian profiles are schematically shown in Fig. 4. We com-
pute the convolution between the spatially and temporally averaged
theoretical solar K I line profile and each of the laboratory lines:

FB = fλ ∗ Gλ−

FR = fλ ∗ Gλ+ , (41)

and subsequently the normalized flux difference

R = FB − FR

FB + FR
, (42)

where ‘∗’ is the convolution operator, fλ is the solar flux spectrum,
and Gλ−(+) is the blue (red) component of laboratory potassium
line after Zeeman splitting.3 The normalized flux difference R is
proportional to the radial velocity (Chaplin et al. 1996). In order
to quantify the proportionality constant, we translate the averaged
K I line back and forth in velocity space in steps of 3 m s−1. The
aforementioned calculation (equations 41 and 42) is repeated each
time to obtain the velocity shift as a function of R, which is well
described by a linear function

v = 3020.576R − 556.903 m s−1, (43)

over the interval [−500, 500] m s−1. The slope of equation (43) is in
good agreement with the proportionality constant used in BiSON,4

which is typically 3000 m s−1 (Chaplin et al. 1996), implying that our
synthesized line profile describes the solar K I line in a realistic way.

The above procedure is identical to the means by which BiSON
extracts radial velocity from the solar K I line. We therefore apply
equations (41)–(43) to every snapshot in the 3D solar simulation. The
thus evaluated radial velocity v as a function of time has the same
physical meaning as what BiSON measures. The fluctuation of radial
velocity is mainly caused by radial oscillations in the simulation box.
We note that temporal variations of granulation also contribute to a
velocity fluctuation. However, by performing a horizontal average
over more than 10 granules, the influence of granulation on velocity
fluctuation largely cancels out (Asplund et al. 2000, Section 4.2).
Finally, we apply a Fourier transform to the temporal evolution of
v into the frequency domain to obtain the radial velocity power
spectrum presented in Fig. 5. The radial velocity amplitude of the
dominant simulation mode is 81.6 m s−1 at frequency 3.299 mHz.

6.2 Simulating the SONG radial velocity signal

SONG is a high-resolution spectrograph that covers a broad wave-
length range, 4400–6900 Å, containing thousands of spectral absorp-
tion lines. For computational reasons, it is not feasible to perform
high-resolution 3D radiative transfer over such a broad wavelength
range for our very long hydrodynamic time series. Instead, we
develop a simplified method that relies on computing synthetic
spectra for representative lines covering a range of atomic line
properties.

First, in order to have a macroscopic perception of absorption
lines in the wavelength region covered by SONG, we computed the
strength of every atomic absorption line between 4400 and 6900 Å

3We note that the magnitude of Gλ−(+) has no effect on our results, as it
cancels out in equation (42).
4In practice, the diurnal change of the measured normalized flux difference
R due to the rotation of the Earth is used to calibrate the proportionality
constant. A third-order polynomial relation, calibrated on a daily basis, is
used.
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Figure 5. The power spectrum of radial velocity amplitude, with three peaks
correspond to three simulation modes. The power spectrum here should not
be confused with the grey line in Fig. 1(a), the plot here reflects radial velocity
variation in the K I line-forming regions, while the latter is the fluctuation of
vertical component of fluid velocity near the photosphere.

with the TurboSpectrum code (v15.1; Plez 2012) for the stellar
parameters of the Sun and ε Tau, using an atomic linelist from the
Vienna Atomic Line Database (Ryabchikova et al. 2015). Selecting
only lines with a line strength Wλ/λ ≥ 10−5 (corresponding to an
equivalent width Wλ = 5 mÅ at λ = 5000 Å), we find a total of 4100
atomic lines for the Sun, and 7000 for ε Tau. Of these, 40 per cent
are due to Fe I, and another 40 per cent are due to neutral species
of other Fe-peak elements. These numbers are in good agreement
with the list of lines identified over the same wavelength range in the
spectrum of Arcturus by Hinkle et al. (2000). As the vast majority of
spectral lines in the optical region are due to the neutral species of
iron or elements with similar electron structure to iron, we use Fe I

as a representative species.
The problem now is to determine a set of Fe I lines that can

reasonably simulate SONG observations. The strength and shape
of an absorption line is mainly governed by three parameters: the
wavelength λ, which controls the background opacity due largely to
H−, the excitation potential of the lower ionization state Elow, which
determines the population of the level in LTE and thus the number
of absorbers, and the oscillator strength log(gf), which represents
roughly the likelihood that a photon is absorbed by the line. It is
therefore necessary to select representative values of λ, Elow, and
log(gf) combinations, ensuring the corresponding artificial Fe I lines
cover the properties of most observed Fe I lines. First, we choose three
wavelength ranges: 4400–4600, 5400–5600, and 6400–6600 Å. In a
given wavelength region, we pick all Fe I lines with equivalent width
greater than 10 mÅ from the aforementioned solar and ε Tau line
lists. All selected lines from the two theoretical line lists are then
classified into different groups based on their Elow. For example,
the thus determined typical Elow values for Fe I lines between 4400
and 4600 Å are 2.5, 3.5, and 4.5 eV. Next, for a given Elow, we
further select a set of log(gf) values that span the entire log(gf) range
seen in the theoretical line list. The selection procedure gives 49
line parameter combinations listed in Table 3, which are reasonable
representation of Fe I lines from the Sun and ε Tau between 4400
and 6900 Å.

We carry out 3D LTE line formation calculations for these 49
fictitious Fe I lines using the SCATE code (Hayek et al. 2011). In
these high-resolution calculations, we tabulate continuum opacities
and photon destruction probabilities for a set of temperatures and

Table 3. Selected parameters of fictitious Fe I lines.
Here, log(gf) values are distributed in steps of 0.5. There
are totally 49 lines covering typical Fe I lines in the Sun
and ε Tau within the SONG wavelength range.

Wavelength (Å) Elow (eV) log(gf)

4500 2.5 [−5, −1]
3.5 [−4, 0]
4.5 [−3, −1]

5500 3.5 [−4, −1]
4.5 [−3, 0]

6500 2.5 [−3, −1]
4.5 [−3, 0]

densitites and use these to compute the effects of continuum
scattering at run time. Line opacities are likewise evaluated at run
time, taking into account local velocity fields that produce Doppler
shifts in the line profiles. Specific intensities are computed for 20
rays, along five different polar and four azimuthal angles; the former
are distributed on a Gauss–Legendre quadrature and the latter are
equidistant. We compute the spectral lines at high resolution, with a
velocity step of just 40 m s−1, over a range ±10 km s−1 that samples
the entire line. We perform these calculations on each snapshot from
the simulations of the Sun and ε Tau, and note that in the case of ε Tau,
the Fe abundance used in the line formation calculation is adopted
from the reference metallicity [Fe/H] = 0.15. Example theoretical
line profiles, i.e. the normalized emergent flux as a function of
wavelength, computed from one simulation snapshot of the Sun and
ε Tau are shown in Fig. 6. The theoretical lines in ε Tau are broader
than the corresponding solar lines for all line parameters, due to the
larger velocity field in red giant stars.

The line formation calculation introduced above gives the time
evolution of all 49 fictitious Fe I lines, from which we can then
extract the corresponding radial velocity variation. As reference, we
use template spectra computed as the temporal averages from the
two simulation sequences. For each {λ,Elow, log(gf)} combination,
a certain theoretical Fe I line from a given snapshot is fitted to the
template line profile using a χ2 technique to obtain the wavelength
shift �λ of this line. This method closely resembles the cross-
correlation technique often used in observational work (e.g. Butler
et al. 1996).

The thus obtained radial velocity as a function of time is translated
to the frequency domain through a Fourier transform, which gives
radial velocity amplitude at the frequency of the dominant simulation
mode. Radial velocity amplitudes for the 49 lines range from roughly
60–80 m s−1 in the solar case and 80–110 m s−1in the case of ε Tau, as
shown in Fig. 7. The next question is how then to reliably determine
a final radial velocity amplitude, given these 49 different values.
Recall that strong absorption lines tend to form higher up in the
stellar photosphere than weak lines (e.g. Rutten 2003), where the
velocity fields are typically larger due to the substantially smaller
densities. It is therefore anticipated that the magnitude of radial
velocity amplitude is correlated with the strength of the line, and
Fig. 7 indeed follows an approximately linear relationship between
the radial velocity amplitude and equivalent width for the Fe I lines
considered for both stars.

We select from our theoretical line list every Fe I line in the SONG
spectral range with equivalent width between 10 and 200 mÅ, and
use our fitted linear relations to estimate the radial velocity variation
amplitude for each line. We exclude weaker lines as these are unlikely
to significantly influence the radial velocity determination in a real
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24 Y. Zhou et al.

Figure 6. Spatially averaged Fe I line profiles of all line parameters tabulated in Table 3 computed from SCATE. Results from one example simulation snapshot
are shown here for both the Sun (the solid lines) and ε Tau (the dashed lines). Reference wavelength λ0 and Elow are marked in the figures, and log(gf) values
are colour-coded as indicated in the legend. The top middle and middle right-hand panels are left blank because the corresponding {λ, Elow} combinations are
not selected as representative line parameters (see Table 3).

stellar spectrum. Very strong lines with Wλ > 200 mÅ are also
excluded because extrapolations to even higher equivalent width
are not guaranteed to be reliable. In total, 1407 and 2224 lines are
selected this way for the Sun and ε Tau, respectively. The ensemble
of estimated radial velocity amplitudes is averaged to a final value,
weighted by the equivalent width. The weighted average is performed
with the understanding that the signal-to-noise ratio of weak lines
is typically smaller than stronger lines, meaning a relatively larger

error and thus a smaller influence on the final result (see fig. 2 of
Antoci et al. 2013).

Although the method developed here is not identical to the means
by which SONG determines radial velocity from the observed
spectra, it simulates the SONG observations sufficiently well. First,
the set of fictitious Fe I lines carefully chosen in this work is able
to represent the properties of most Fe I lines seen between 4400 and
6900 Å, which constitute a large part of all lines in this wavelength
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Figure 7. Radial velocity amplitude at the frequency of the dominant
simulation mode evaluated from 49 fictitious Fe I lines are plotted against
the equivalent width of these lines. Results from the solar and red giant
simulations are shown in the black dots and the red asterisks, respectively.
Linear fits to these data points are presented in the dashed lines.

interval. Secondly, the procedure to extract radial velocity from
theoretical spectral lines is similar to how radial velocities are
typically obtained from observed spectra. Thirdly, the evaluation of
our final radial velocity amplitude includes the information of many
spectral lines that span the whole range in observation. The major
uncertainty in our method is associated with the linear relationship
between radial velocity amplitude and equivalent width. Due to the
complicated physical processes involved in spectral line formation in
a 3D atmosphere (e.g. Asplund et al. 2000), it is difficult to quantify
higher order effects beyond the linear relation between v and Wλ; that
is, the systematic uncertainty of the linear fitting. Nevertheless, it is
still illuminating to provide the statistical uncertainty. The statistical
uncertainty is quantified using the bootstrap method. The data set
considered here is the radial velocity amplitude and equivalent width
of 49 fictitious Fe I lines. We conduct 10 000 bootstrap samplings, that
is, generating 10 000 data sets each containing 49 randomly sampled
v and Wλ pairs. A linear regression between equivalent width and
radial velocity is then performed for each re-sampled data set. For
each fitting, we compute the equivalent width weighted mean radial
velocity amplitude for all selected Fe I lines. The bootstrap method
therefore results in 10 000 weighted mean radial velocity amplitudes,
their mean and variance is the desired final radial velocity amplitude
and its statistical uncertainty, which is 72.2 ± 0.5 m s−1 for the 3D
solar model and 93.2 ± 0.3 m s−1 for the ε Tau model.

7 R ESULTS

Our results, together with the corresponding observations, are sum-
marized in Table 4.

The predicted ratio between luminosity and BiSON radial velocity
amplitude at approximately 3.3 mHz is 1714.0 ppm ÷ 81.6 m s−1

≈ 21.0 ppm [m s−1]−1. Observationally, the measured maximum
bolometric amplitude per radial mode for the Sun is 3.58 ± 0.16 ppm
according to Michel et al. (2009); the value presented in their paper is
multiplied by

√
2 to convert the root-mean-square luminosity varia-

tion to luminosity amplitude. The peak radial velocity amplitude per
radial mode measured by BiSON is 18.7 ± 0.7 cm s−1 (Kjeldsen et al.
2008). Therefore, the amplitude ratio determined from observation
is approximately 19.1 ± 1.1 ppm [m s−1]−1, in good agreement with
the result predicted by our simulations. However, we caution that the

Table 4. Summary of predicted and observed oscillation amplitudes and
amplitude ratios for the Sun and ε Tau. Here, we emphasize again that
individual oscillation amplitudes from 3D atmosphere simulations are not
comparable to the corresponding observations (cf. Sections 3 and 4).

Sun Modelling Observation

Bolometric (ppm) 1714.0 ± 3.0 3.58 ± 0.16 (a)
BiSON (m s−1) 81.6 0.187 ± 0.007 (b)
SONG (m s−1) 72.2 ± 0.5 0.166 ± 0.004 (c)
Bolometric/BiSON
(ppm [m s−1]−1)

21.0 ± 0.04 19.1 ± 1.1

Bolometric/SONG
(ppm [m s−1]−1)

23.7 ± 0.2 21.6 ± 1.1

ε Tau Modelling Observation

Bolometric (ppm) 3070.3 ± 7.4 —
K2 (ppm) 4515.1 ± 10.9 39.8 ± 1.4 (d)
SONG (m s−1) 93.2 ± 0.3 0.94 ± 0.04 (d)
K2/SONG (ppm [m s−1]−1) 48.4 ± 0.2 42.2 ± 2.3 (d)

Notes. Reference: (a): Michel et al. (2009); (b): Kjeldsen et al. (2008); (c):
Fredslund Andersen et al. (2019); (d): Arentoft et al. (2019).

above observed solar amplitude ratio is evaluated at the frequency of
maximum power νmax , that is, 3.1 mHz for the Sun (Kjeldsen et al.
2008), whereas our theoretical result is obtained at the frequency
of the dominant simulation mode (3.3 mHz). The two values are
hence not strictly comparable because amplitude ratio depends on
frequency in principle. Nevertheless, the frequency dependence is
weak, especially for frequencies near νmax , as shown in detailed
asteroseismic observations (for example, fig. 13 of Arentoft et al.
2019). Therefore, as an initial effort to this topic, a single amplitude
ratio value is likely to be sufficient to describe the relationship
between luminosity and radial velocity variation for a given star.

The predicted ratio between luminosity and SONG radial velocity
amplitudes (at approximately 3.3 mHz) is 23.7 ± 0.2 ppm [m s−1]−1

for the Sun. We emphasize that the presented uncertainty reflects
the combined statistical error of the granulation background fitting
(Section 5.1) and the linear fit to radial velocities (Section 6.2). On
the other hand, the measured solar maximum bolometric amplitude
is 3.58 ± 0.16 ppm, whereas the maximum radial velocity amplitude
obtained from SONG observations of the Sun is 16.6 ± 0.4 cm s−1

(Fredslund Andersen et al. 2019). Together, the observed solar am-
plitude ratio is 21.6 ± 1.1 ppm [m s−1]−1, being consistent with our
theoretical result. For ε Tau, the amplitude ratio measured by Arentoft
et al. (2019) is 42.2 ± 2.3 ppm [m s−1]−1, which is the ratio between
K2 luminosity amplitude and the SONG radial velocity amplitude.
The intrinsic luminosity amplitude computed from our simulations is
3070.3 ± 7.4 ppm at the frequency of the dominant simulation mode,
and the conversion factor between intrinsic and Kepler luminosity
amplitude is 0.68 for ε Tau as quantified in Section 5.2. According
to equation (39), the theoretical luminosity amplitude in the Kepler
band-pass turns out to be 4515.1 ± 10.9 ppm. Dividing this value by
the theoretical SONG radial velocity amplitude gives the predicted
amplitude ratio between Kepler (K2) and SONG for ε Tau, which
is 48.4 ± 0.2 ppm [m s−1]−1. Again, we find reasonable agreement
between our theoretical calculations and the observations.

We note that the amplitude ratio estimated from the widely used
empirical relationship of Kjeldsen & Bedding (1995, their equation 5)
is 23.2 ppm [m s−1]−1 for ε Tau, being significantly lower than
the observed value by almost a factor of 2. The good agreement
between observation and our theoretical result based on detailed
modelling therefore shows great potential to accurately quantify
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the relationship between luminosity and radial velocity amplitude,
especially for red giant stars where the empirical amplitude ratio
relation may fail. None the less, we are aware that our predicted
ratios are systematically larger than corresponding observations by
about 10 per cent. The underlying reason for this small discrepancy
is not entirely clear and will be investigated in future work.

8 C O N C L U S I O N S

In this work, we investigated the relationship between photometric
and spectroscopic measurements of solar-like oscillations using 3D
radiative-hydrodynamical stellar atmosphere simulations with the
STAGGER code. We used as test cases the Sun and the Hyades red giant
ε Tau. Our simulations provide realistic descriptions of fluid motions
from first principles, hence naturally yield compressible effects such
as sound waves. Although sound waves emerging in the simulation
domain are analogous to p-modes in solar-type oscillating stars,
the simulation modes have much larger oscillation amplitudes than
observed stellar p-modes due to the limited extent of simulation box.
Therefore, we first analytically demonstrated that 3D simulations
are still able to reliably predict the ratio between luminosity and
velocity amplitudes, despite the individual amplitude values not
being comparable with observations.

Having established the basis of our analysis, we computed the
spectrum of luminosity variation based on bolometric fluxes pre-
dicted by the state-of-the-art radiative transfer module in our simula-
tion. Contribution from the granulation background was modelled in
a way similar to what is applied to real observations. The modelled
granulation background was then subtracted from the luminosity
spectrum to obtain the intrinsic luminosity amplitude of the dominant
simulation mode. To enable comparison with amplitudes measured
with a given spacecraft, it was necessary to quantify the conversion
factor (also called bolometric correction) between the intrinsic
and measured luminosity amplitudes. We adopted the theoretical
formulation of Michel et al. (2009), Ballot et al. (2011), and Lund
(2019) for the evaluation of the conversion factor, whose components
are consistently computed via 3D spectrum synthesis using the code
SCATE. As an initial step, we evaluated the conversion factor between
intrinsic and Kepler luminosity amplitude for the two stars studied in
this work. For ε Tau, our result differs from Lund (2019) by roughly
10 per cent, implying that the conversion factors of red giant stars
are likely to be sensitive to the choice of model atmosphere.

In turn, we have developed novel methods to simulate the spec-
troscopic measurement of stellar oscillations from numerical simu-
lations for the first time. Theoretical radial velocities are obtained
from realistic spectral line formation calculations with 3D time-
dependent atmosphere models as input. In order to simulate BiSON,
which measures solar oscillations through the K I line, we performed
detailed 3D non-LTE K I line formation calculations with BALDER

for our solar model atmosphere. The computed K I line profile is in
excellent agreement with observation, its temporal evolution (that
is, Doppler shift) gives radial velocities whose physical meaning is
identical to what measured by BiSON. In addition, we carried out 3D
LTE line formation calculations for a large set of fictitious Fe I lines
using SCATE to simulate SONG observations that determine radial
velocities from a forest of absorption lines between 4400 and 6900 Å.
The parameters of the chosen Fe I lines were carefully selected such
that their properties cover most lines typically seen in the Sun and a
warm giant within the SONG wavelength range. For each selected
line, radial velocities were extracted according to the Doppler shift of
line profiles with method that resemble observations. This procedure
was repeated for all selected lines, thereby giving rise to a set of

independent radial velocity amplitudes. With the insight that the
radial velocity amplitude computed from a certain line is correlated
with its strength, we fit a linear function between radial velocity
amplitude and equivalent width based on results from all selected
fictitious lines. The linear relation was further used to estimate radial
velocity amplitudes for all visible lines within the SONG wavelength
range in our theoretical line list, which were subsequently reduced
to a final radial velocity amplitude value via weighted average.

In concert, the calculations gave us the ratio between luminosity
and radial velocity amplitude, which characterize the relationship
between photometric and spectroscopic measurement of stellar
oscillations. Given the 3D atmosphere simulations and line formation
calculations presented in this work, our approach to quantify the
amplitude ratio is free from any empirical parameters that have to
be assumed or calibrated from observations. The ab initio nature
of our numerical modelling therefore not only reveals the underly-
ing physics behind asteroseismic observations but also enables an
independent comparison between theoretical results and observed
amplitude ratio. For the Sun, our theoretical bolometric and BiSON
ratio as well as bolometric and SONG ratio are compared with
helioseismic observations with good agreements, thus validate our
numerical approach. In the case of ε Tau, the predicted ratio between
K2 and SONG amplitude matches corresponding observations as
well, which is particularly encouraging as the observed amplitude
ratio of this star cannot be explained by the widely used empirical
amplitude ratio scaling relation. The good theoretical–observational
consistency achieved for both the Sun and a red giant star suggested
that our method of connecting the luminosity and radial velocity
measurements of solar-like oscillations is robust, effective, and likely
applicable to a wide range of stellar parameters. This demonstrates
great potential in the era of simultaneous observations of stellar
oscillation with both space-photometry (such as TESS) and ground-
based spectroscopy (such as SONG).

In the future, we plan to extend our analysis to cover the
parameter space of solar-like oscillating stars across the HR diagram
(i.e. dwarfs, subgiants, and red giants), which will give amplitude
ratios as a function of basic stellar parameters. These theoretical
amplitude ratios can provide valuable insight to asteroseismic obser-
vations by helping to determine whether a star is better observed in
photometry or spectroscopy. Conversely, it is possible to determine
radial velocity oscillation amplitude from Kepler or TESS data
through the theoretical amplitude ratio relation, thereby quantifying
the oscillation part of the so-called ‘radial velocity jitter’ (see Yu
et al. 2018 for a pioneering study in this direction), which is of great
importance in exoplanet science.
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