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ABSTRACT
We analyse the first measurements from precision weak lensing (PWL): a new methodology for measuring individual galaxy–
galaxy weak lensing through velocity information. Our goal is to understand the observed shear distribution from PWL, which
is broader than can be explained by the statistical measurement errors. We identify two possible sources of scatter to explain
the observed distribution: a shape noise term associated with the underlying assumption of circular stable rotation, and an
astrophysical signal consistent with a lognormal dispersion around the stellar-to-halo mass relation (SHMR). We have modelled
the observed distribution as the combination of these two factors and quantified their most likely values given our data. For the
current sample, we measure an effective shape noise of σγ = 0.024 ± 0.007, highlighting the low noise impact of the method
and positioning PWL as ∼10 times more precise than conventional weak lensing. We also measure an average dispersion in
shears of ξγ = 0.53+0.26

−0.28 dex over the range of 8.5 < log M� < 11. This measurement is higher than expected, which is suggestive
of a relatively high dispersion in halo mass and/or profile.

Key words: gravitational lensing: weak – galaxies: evolution – galaxies: formation – galaxies: general – galaxies: haloes – dark
matter.

1 IN T RO D U C T I O N

Relating galaxies to their dark matter haloes remains a complex
issue. One avenue that has proven very successful for measuring
halo masses is weak gravitational lensing (WL). WL describes subtle
distortions on the images of background sources when observed
on sightlines travelling close to a foreground mass distribution
referred to as the lens (see reviews by, e.g. Bartelmann & Schneider
2001; Hoekstra & Jain 2008; Hoekstra 2013). In simple terms,
the observational signature of WL is that the observed shapes of
background galaxies appear stretched in the tangential direction
and contracted in the radial direction to the lens. The amount of
deformation, or shear, depends on the total lensing mass and the lens–
source geometry. Since the halo mass overwhelmingly dominates
the lensing mass, for a particular lens–source system WL provides a
direct measurement of the halo mass.

The underlying assumption of these WL methods is that observed
galaxies are randomly oriented, and thus the mean axial ratio
should be 1 (i.e. circular) when averaged over large ensembles.
Any deviation from that idealization can then be attributed to the
effects of lensing. While assuming that an individual galaxy is
perfectly circular is clearly not true, it remains reasonable if averaged
over a sufficiently large number of randomly oriented galaxies. The
statistical description of errors associated with the assumption of
random orientations (or combined circularity), commonly referred
to as ‘shape noise’, is by far the largest source of uncertainty in WL
(e.g. Leauthaud et al. 2007; Kuijken et al. 2015).

The common approach to reduce the effects of shape noise is to
co-add or ‘stack’ results from many individual sources at the cost of
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only being sensitive to an average shear signal for the ensemble (but
see, e.g. Dvornik et al. 2020; Taylor et al. 2020). However, several
different studies have tried to reduce shape noise by also identifying
the best morphologies and/or galaxy properties to target (e.g Niemi,
Kitching & Cropper 2015; Croft et al. 2017), including additional
morphological information (e.g. Brown & Battye 2011; Huff et al.
2013) or even using machine-learning approaches (e.g. Springer
et al. 2020).

Despite all these efforts, shape noise still remains the limiting
factor in WL studies, which restricts their sensitivity to stacked
(or averaged) halo measurements. As an example, WL has been
used to measure the stellar-to-halo mass relation (SHMR), an
important relation that connects galaxy’s stellar masses to their halo
counterparts, based on stacked lensing profiles for galaxies binned
by stellar mass (e.g. Sifón et al. 2015; van Uitert et al. 2016; Dvornik
et al. 2020). However, while it is expected that two haloes with
the same mass will harbour galaxies with different stellar mass and
properties (e.g. Mandelbaum et al. 2006; Li, Wang & Jing 2013), WL
remains insensitive to the particularities of the individual galaxies.
As a result, WL studies are unable to provide strong constraints on,
for example, the dispersion around a median SHMR (but see, e.g.
Taylor et al. 2020), a property that encodes important information to
understand the different effects that dark matter has on the formation
and evolution of galaxies.

Aiming to avoid the need for stacking, a new way to perform WL
with the potential to be sensitive to individual galaxies was proposed
by Blain (2002), followed by Morales (2006) and de Burgh-Day et al.
(2015), de Burgh-Day et al. (2016), and first applied to data by Gurri,
Taylor & Fluke (2020, hereafter Paper I). The new methodology,
precision weak lensing (PWL), builds on the assumption that the
velocity fields of stably rotating galaxies can be fitted accurately
by pure circular rotation motions (e.g. Mo, van den Bosch &
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White 2010). Under that assumption, the observed velocity fields
of galaxies must be axisymmetric (their maximum and minimum
velocity gradients must be orthogonal). As lensing shears the shape
of galaxies, their observed velocity maps get distorted as well and
are no longer axisymmetric. The amount of non-axisymmetry is
proportional to the shear and thus can be related to the halo mass of
the lens. Using these ideas, de Burgh-Day et al. (2015) undertook a
numerical study to understand the data requirements and limitations
of PWL and predicted that PWL measurements could be achieved
with current telescopes.

In Paper I, we have selected, observed, and analysed 19 systems
using PWL to demonstrate the usability of PWL by showing that the
combined lensing signal of our sample dominated over any source of
random noise: the variance weighted mean of observed shears for the
sample is 0.020 ± 0.008, which represents a detection of the lensing
signal at >99 per cent confidence. However, the limiting precision
of PWL methods is still to be determined.

Similar to the idealization of combined circularity in the shapes of
galaxies from conventional WL, it is not expected that all galaxies
rotate with perfectly circular motions. We use the term ‘dynamical
shape noise’ to refer to the statistical description of errors associated
with the assumption of axisymmetry or stable circular rotation. To
test the impact of dynamical shape noise, in Paper I we have analysed
a set of unlensed galaxies and found that the extent to which the
assumption holds is sample-specific but showing that dynamical
shape noise has the potential to be much lower than the limiting
shape noise in conventional WL experiments: a simple estimate from
Paper I being of order ∼0.03 compared to shape noises of ∼0.2–0.3
from conventional WL studies (see Section 5 for more discussion on
this topic).

Here, we analyse the PWL measurements presented in Paper I,
with the aim of describing a methodology to determine the limiting
precision of PWL for specific samples. At the same time, we will use
this methodology to disentangle the amount of noise in PWL from a
real astrophysical signal motivated by the expected dispersion in the
SHMR.

We have structured this paper as follows: In Section 2, we briefly
present the sample and results from Paper I, which will be used
for the study. In Section 3, we provide an analysis of the possible
sources of scatter between expected shear values and measured ones.
These include a description of how deviations from axisymmetry
propagate through PWL measurements and the distribution of shears
we expect from a dispersion in the SHMR. In Section 4, we present
our measured constraints on shape noise and the dispersion together
with a discussion on the implications of the findings. We offer a brief
summary and vision for the future in Section 5.

2 DATA

In this paper, we focus on 21 PWL shear measurements for a sample
of 19 weakly lensed galaxies. Here, we briefly review the sample,
which is fully described in Paper I.

Our targets (or sources) have been selected from a compendium of
spectroscopic redshifts surveys, including the 2dF Galaxy Redshift
Survey (2dFGRS; Colless et al. 2001), 6dF Galaxy Survey (6dFGS;
Jones et al. 2009), Sloan Digital Sky Survey (SDSS; Aihara et al.
2011), and the Galaxy And Mass Assembly (GAMA; Driver et al.
2011; Liske et al. 2015) survey. We have identified source candidates
as being in close projection to an intervening lens galaxy, with large
enough redshift separation (�z > 0.05) and small enough angular
separation (∼10 s of kpc) to ensure an appreciable degree of lensing.

For each candidate lens–source pair, we obtain a median expecta-
tion for the shear as follows. We use optical/near-infrared photometry
from GAMA–KiDS/VIKING (Wright et al. 2016), SDSS, or Pan-
STARRS1 (Chambers et al. 2016) to derive a stellar mass estimate
for the lens galaxy, following Taylor et al. (2011). We then use the
van Uitert et al. (2016) SHMR determination to obtain a median
expectation for the halo mass of the lens based on its stellar mass. A
median expectation for the shear, γ pred then follows via:

γ (r) = �(r) − �(r)

�crit
, (1)

where �(r) is the surface density at r, �(r) the mean surface density
inside the given radius r, defined as �(r) = 1/r

∫
�(r ′)dr ′, and �crit

the critical surface density, which depends (only) on the lens–source
geometry (e.g. Miralda-Escude 1991; Wright & Brainerd 2000).
Following van Uitert et al. (2016), we have assumed a (Navarro,
Frenk & White 1996, NFW) halo profile and a mass–concentration
relation based on Duffy et al. (2008). We only considered systems
with a non-negligible amount of shear, γ pred > 0.001. The values
for the expected shears within our sample span the range of 0.001 <

γ pred < 0.012, with a mean value of 〈γ pred〉 = 0.005.
Our source targets have been selected to be bright (apparent i-

band magnitude <17.4) and large so that they can be well resolved
(∼5 arcsec). When selecting targets to observe, we tried to minimize
potential errors and maximize signal by giving preference to sources
with (1) spiral morphologies for which the assumption of stable
rotation is more robust (see Paper I), and (2) orientations that max-
imize the observable shear via PWL, where the major velocity axis
of the source is at ∼±45◦ with respect to the lensing direction (see
Section 3). The sources in our sample span the redshift range of 0.06
< z < 0.15, with stellar masses in the range of 9.5 < log M� < 11.25.

Our only selection criterion for lenses was to discard systems
where the lens was part of a cluster/rich group or had signs of a
recent merger or disturbance. We placed this selection in order to
ensure that we measure the effects of individual, undisturbed haloes.
To the extent that our target selection is based on the properties of the
background source galaxies and not the lenses, our sample represents
an unbiased set of 19 central lenses in the local Universe (0.006 < z

< 0.06) and with stellar masses spanning the range of 8.5 < log M�

< 11. The median and mean values for log M� for the lenses are
10.49 and 10.28, respectively.

All source galaxies were observed with the Wide-Field Spectro-
graph (WiFeS), an optical-slicing integral field unit mounted on the
Australian National University 2.3-m telescope (Dopita et al. 2007,
2010). The resulting data consist of gas velocity fields with a mini-
mum of 50 well-resolved spatial elements with useful signal to noise
(S/N > 2) and low-velocity uncertainty (σ (v) < 50 km/s). This data
quality is predicted to be sufficient to obtain an unbiased measure of
the lensing signal (see de Burgh-Day et al. 2015). We obtained shear
measurements, γ obs, by modelling every velocity field as a linearly
lensed stably rotating disc, with the shear included as a free parameter
(see Paper I for a complete description). The measured variance-
weighted mean shear via PWL is 〈γ obs〉 = 0.020 ± 0.008, which rep-
resents a detection of the lensing signal at >99 per cent confidence.

3 A NA LY SI S: SI GNAL AND NOI SE IN THE
DI STRI BU TI ON O F O BSERVED SHEARS

Fig. 1 shows the distribution of observed shears across our sample.
As discussed in Paper I, the fact that the mean observed shear is
positive shows that the lensing signal dominates over any source of
noise (>99 per cent confidence), at least when averaged over our
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Figure 1. We plot the total observed distribution of shears from the sample
described in Section 2. In red, we plot the posterior probability density
function (PDF) for each shear measurement (small distributions at the
bottom) together with its predicted shear as a small blue line. The total
shear distribution, plotted in a black solid line, represents the distribution
of observed shears convolved with the measurement errors. The signature of
lensing is to shift and/or skew the distribution towards positive values. The red
and blue large lines represent the variance weighted mean of the measured
shears and the mean of the predicted shears, respectively. Negative shear
measurements indicate the presence of shape noise, while the skewness of
the total distribution suggests a non-negligible dispersion in shears consistent
with a dispersion in the SHMR.

ensemble of 21 measurements. At the same time, the scatter of the
observed values around our expectations is large: ∼2.5 times larger
than can be explained by the formal statistical measurement errors.
Our goal here is to better understand the distribution of observed
values, including the contributions of potential astrophysical sources
of scatter and of error/uncertainty.

There are at least three mechanisms capable of creating a signifi-
cant dispersion in the observed distribution of shears:

(i) random/statistical measurement errors associated with PWL
measurements;

(ii) deviations from axisymmetry in the intrinsic velocity fields for
some or all of the target galaxies (i.e. there is some effective shape
noise); and

(iii) real astrophysical variations in the properties of the lenses,
relative to the median SHMR.

We also note that another possibility is that our median expecta-
tions for the observed shears, which are derived using the results from
van Uitert et al. (2016), are incorrect. There could be issues in the
SHMR determination itself, and/or deviations from an NFW profile,
and/or halo substructure. Apart from mentioning this possibility and
including a short discussion in Section 4, further consideration of
this point is beyond the scope of this paper.

The first source of dispersion (i.e. statistical measurement er-
rors/uncertainties) is explicitly accounted for in the process of
fitting for the observed shears. As these measurements have been
derived using Markov Chain Monte Carlo modelling, we have fully
propagated the observational uncertainties from the reduced and
calibrated spectra through to the inferred shears. These errors are
shown in Fig. 1 as red shaded areas.

The fact that the observed distribution is broader than can be
explained by the measurement errors alone shows that the second
and/or third mechanisms (i.e. effective shape noise and/or genuine
astrophysical differences in the lenses) are significant. While it is not
possible to constrain those phenomena in an individual case basis, it
is possible to statistically recover information from the ensemble. In
the following subsections, we focus on the distinct phenomenology
of these two processes.

3.1 Dynamical and effective shape noise

The necessary assumption that underpins our analysis is that, apart
from the action of lensing, our target galaxies are intrinsically
axisymmetric, as would be expected for pure circular rotation.
In the presence of a bulge, bar, spiral arms, warp, interaction,
inflow/outflow, etc., this idealization will necessarily be wrong
at some level. The critical question is how deviations from pure
rotation and strict axisymmetry (what we call ‘dynamical shape
noise’) will, in a statistical sense, limit the precision of individual
shear measurements.

To guide this discussion, in Fig. 2 we use an unlensed but
non-axisymmetric galaxy to illustrate the two phenomenologically
distinct components of a linearized shear. The data shown have been
obtained from the Calar Alto Legacy Integral Field Area (CALIFA;
Sánchez et al. 2012). In the left-hand panel, we show the galaxy as
observed and the shear that we would infer from its non-axisymmetric
velocity field. In the middle panel and the right-hand panel, we have
recreated the same CALIFA galaxy under the different effects of
linearized WL.

The first-order component of linearized WL, convergence,
stretches the image of the lensed galaxy by the same amount in
all directions. This magnifying effect is observationally indistin-
guishable from a ‘larger’ galaxy. The second-order effect, shear (γ ),
comes from differential magnification in different directions. Shear
is a tensor property that can be factorized into two independent
and orthogonal components, γ + and γ ×, which we refer to as the
‘plus’ and ‘cross’ terms of the shear. The relative strength of the
two components is governed by the angle between the major axis
of the source and the direction to the lens, φ, which we refer to
simply as ‘the lensing angle’, specifically: γ + = |γ |cos (2φ) and γ ×
= |γ |sin (2φ).

In the middle panel of Fig. 2, we have positioned an imaginary
lens at φ = ±90◦ (aligned with the minor velocity axis of the galaxy)
to show the pure plus term scenario; i.e. γ + = γ and γ × = 0. The
effect of γ + is to stretch the image of the source through one of its
axes while compressing it in the other. As a result, if the direction
to the lens is aligned with one of its axis (φ = 0◦, ±90◦, and 180◦),
only the effects of γ + are present, and the changes to the observed
velocity field are indistinguishable from an increase (or decrease) in
the scale radius and a decrease (or increase) in the inclination angle.
In other words, because the plus term does not change the degree of
axisymmetry in the observed velocity field, our PWL approach is not
sensitive to γ +.

To show the effect of the cross term, in the right-hand panel of
Fig. 2, we have positioned an imaginary lens at φ = 45◦ (to the left of
the figure) so that γ × = γ and γ + = 0. In this case, the stretching and
compressing of the galaxy happen through the bi-section of the axis,
which changes the angle between the major and minor axes of the
galaxy and breaks the axisymmetry in the velocity field (see Blain
2002; Morales 2006; de Burgh-Day et al. 2015). We can see how γ ×
drives a noticeable change in the axisymmetry of the velocity field
as the major and minor axes form a greater angle than what they
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Figure 2. Left: Velocity map of an unlensed galaxy from CALIFA (UGC00005). In grey lines, we plot the best-fitting model for the velocity field and in solid
lines the maximum and minimum velocity gradients. This galaxy is not perfectly axisymmetric, and our best-fitting model returns a γ obs× = 0.005. Middle:
The same galaxy with the effects of a fictitious lens aligned with the minimum velocity gradient (φ = 90◦). This panel highlights the effects of γ +, which are
to expand and contract the galaxy through the tangential and radial lensing directions, respectively. The effects of γ + do not change the axisymmetry of the
galaxy, and our best-fitting model recovers γ obs× = 0.005 consistent with the original non-axisymmetry. Right: The same galaxy, this time with a fictitious lens
aligned at φ = 45◦ (to the left of the panel) inducing a γ × = 0.1. This panel highlights the effects of γ ×, which are to change the relative angles between the
major and minor velocity axis and as a result, change the axisymmetry of the galaxy. In this scenario, our model would recover a γ obs× = 0.105 as the intrinsic
axisymmetry is linearly added with the lensing effect of γ × = 0.1. This is the lensing signal that PWL studies are sensitive to.

did. PWL operates by measuring this cross-component of the shear,
γ ×, through its distorting effects on the symmetry of the projected
velocity field. Then, knowing the lensing angle φ, the cross term is
used to obtain the total shear as γ = γ ×/sin (2φ).

Since PWL is sensitive only to the cross term of the shear, any
error in the shear measurement arising from a non-axisymmetry in the
intrinsic (unlensed) velocity field can impact only the inferred γ obs

× .
We describe the error due to a non-axisymmetry, ε×, as the (generally
unknown) value for γ × that we would infer in the absence of any
lensing (e.g. ε× = 0.005 for the galaxy in Fig. 2). This error then
propagates as γ obs

× = γ true
× + ε×, with γ true

× being the astrophysical
shear due to lensing (also unknown). This behaviour can be seen
in the right-hand panel of Fig. 2 where ε× is linearly added to the
true lensing (γ true

× = 0.1) and the observed cross shear is the sum of
the two γ obs

× = 0.105. As the quantity of interest is γ , estimated as
γ ×/sin (2φ), the full propagation of errors becomes:

γ obs = γtrue + ε×
sin(2φ)

+ σ obs, (2)

where γ obs is the total shear that we observe/measure, γ true is the
total, unknown astrophysical shear, and σ obs represents a random
error/statistical uncertainty on the total shear measurement. This
equation also highlights why we have preferred targets where sin (2φ)
∼ 1, as the noise/error term ε× can be seen to be amplified for each
individual target by a factor of 1/sin (2φ).

Fig. 3 shows explicitly how a deviation from axisymmetry prop-
agates through to the final value of γ obs depending on the lensing
angle. Note that all else being equal, the sin (2φ) dependence means
that the contribution of ε× to γ obs will flip signs if the lensing
angle is changed by φ ± 90◦. For an ensemble, dynamical shape
noise propagates through to the final measurements according to the
distribution of ε×/sin (2φ). Since galaxy orientations are random, the
lensing angles φ and φ ± 90◦ are equally likely, and therefore we
expect as many positive contributions to γ obs as negative. A similar
argument can be made based on the viewing/inclination angle: the
sign of ε× itself will flip depending on whether a galaxy is viewed
from above (i > 0) or below (i < 0). As a result, the distribution
of ε×/sin(2φ) is necessarily symmetric and centred at zero, which

means that the effect of dynamical shape noise can only be random,
symmetric, and zero-centred noise.

While we have framed this discussion around intrinsic irregular-
ities in the velocity field of galaxies, it is worth highlighting that
the arguments pertain to any and all sources of shape noise. For
example, if there were some distortions in the detector astrometry,
the effect would be to introduce an error in the observations via
the cross term of the shear.1 Again, the resulting error distribution
would be symmetric and zero-centred, with the relevant quantity
being the uniformly distributed angle between the source position
angle and the detector roll angle. Similarly, any sources of error tied
to the lens coordinate system (e.g. halo triaxiality) will propagate to
shear measurements through to a symmetric and zero-centred error
distribution, depending on the relation between φ and the position
angle of the lens.

The aggregate of all effects capable of mimicking a shear defines
an ‘effective shape noise’, which operates as a quantitative, statistical
description of the validity of the assumption of axisymmetry in
the observed velocity fields, regardless of the origin of the non-
axisymmetry. For the purposes of this paper, we will describe this
effective shape noise in terms of the rms error in the inferred value
of ε×, which we denote as σγ . In making this choice, we are
implicitly or explicitly assuming Gaussian statistics. While this is
the simplest and most convenient choice, one could adopt more
flexible parametrization for the distribution: like the Student or t-
distribution, with a shape parameter to describe the relative power in
the wings. In principle, the exact shape of the distribution could be
measured with a sufficiently large ensemble, especially if spanning
a broad range in φ. However, in practice, we cannot support either
approach with the current data. Nevertheless, as we present next,
the fact that the effective shape noise must be symmetric and zero-
centred is enough to distinguish between this kind of random noise
and a genuine astrophysical signal.

1In Paper I, we have limited detector-tied, systematic contributions to the
observed shear for our sample to be ε× < 0.02 (95 per cent conf.), i.e. small
compared to our expectations for dynamical shape noise.
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Figure 3. We present an example of a galaxy that is affected by dynamical
shape noise and thus mimics a shear signal. In our example, the unlensed
galaxy has major axis and minor axis b1 and b2 that are not orthogonal
(B > 90◦) due to some sort of intrinsic irregularity (similar to Fig. 2, left-
hand panel). Axis a1 and axis a2 represent the axisymmetric system that
PWL assumes. In this example, PWL would mistakenly measure a shear
signal γ obs. The sign of the recovered γ obs depends on the lensing angle φ,
defined as the angle between a1 and the lensing direction. The outer ring
with lines represents all possible directions to a lens. Lines facing outwards
(red) represent directions for which we would measure a positive shear, while
inwards lines (blue) show directions that would lead to a negative shear
measurement with the length of each line representing the magnitude of
the measured shear (dotted lines are not in scale). Because the position of
galaxies is random, we are equally as likely to obtain a positive or a negative
measurement of γ obs. This ensures that the distribution of dynamical shape
noise will be symmetrical and centred at zero. This plot also highlights the
importance of targeting systems where the lensing direction is not aligned
with the major or minor axis of the galaxy, as the error in the measured shear
is far greater in these situations.

3.2 Dispersion in SHMR

The third possible source of scatter between predicted and observed
shears is real astrophysical differences in the lensing mass distri-
butions. Our median shear predictions are based on a one-to-one
relation between stellar mass and shear (assuming a median SHMR
and a fixed concentration as a function of halo mass). However, at a
given stellar mass, we expect galaxies to span a range of halo masses
around the median halo prediction (i.e. a dispersion in the SHMR).

Since for isolated lenses shear is proportional to the halo mass2

(via the excess surface density, and all else being constant), a
dispersion around the median SHMR should propagate directly into

2We note that shear is proportional to the mass contrast between a region and
its surroundings and so not strictly proportional to the mass directly. That
said, given the relatively strong shears within our sample, the cosmological
shear from structure around or along the line of sight is negligible: in the
order of γ < 10−4 compared to our expectations of γ = 0.005–0.01.

a dispersion in the observed shear distribution around our median
shear expectations.

At a fixed mass, the dispersion in the SHMR is usually described
as a lognormal distribution (e.g. Behroozi, Conroy & Wechsler
2010; Reddick et al. 2013; Rodrı́guez-Puebla et al. 2015; Zu &
Mandelbaum 2015; Lange et al. 2019). While most of these studies
consider a lognormal dispersion in stellar masses (at fixed halo mass),
from an observational point of view the natural choice is to describe
it as a lognormal dispersion in halo masses (at fixed stellar mass).
While some models predict the amount of dispersion to be a function
of mass, we describe it with a single value. This choice implies that
if there was a mass dispersion dependence, we would be sensitive to
only an averaged dispersion across the range of our lenses. We return
to this issue and its implications in Section 4.

From these considerations, there are three significant expectations
about the astrophysical shear distribution of isolated lenses: (1)
because mass is strictly positive, the distribution should be strictly
positive; (2) the median SHMR provides a median expectation for
the shear distribution for any specific lens–source pair; and (3) the
prospect that the dispersion around the SHMR should be approx-
imately lognormal means that the dispersion in the astrophysical
shear distribution will be skewed to higher values. These features
of the astrophysical shear distribution are in direct contrast to the
expectations for the effective shape noise, which is symmetric and
zero-centred.

As such, for a given system, we describe the distribution of possible
shears as a lognormal distribution of width ξγ and median γ pred. In
a similar way that using a normal distribution lets us quantify the
effective shape noise in terms of the rms in shears, using a lognormal
distribution lets us quantify astrophysical dispersion in terms of
the rms in log-shear. An advantage of describing astrophysical
differences directly in terms of shear is that we are agnostic to the
precise nature of what might be the cause of these variations and we
are simply recovering the amount of variation. We return to this issue
later in the discussion.

3.3 Modelling the shear distribution

In line with the arguments above, we create a generative model for the
observed shear distribution in terms of a lognormal distribution (to
encapsulate an astrophysical dispersion in the properties of lenses)
and two Gaussian distributions (to describe the effective shape noise
and observational errors, respectively). Then, the probability of
observing a shear γ obs is defined as the convolution of these three
distributions.

In more detail, for a given lens–source pair (denoted with the sub-
index i), the lens mass and the lens–source geometry define γ pred

i

and φi. We can then define the probability that the true astrophysical
shear takes the value γ

′
as a function of the dispersion ξγ :

fi(γ
′|ξγ ) = 1

γ ′ξγ

√
2π ln(10)

exp

⎡
⎢⎣−

log10

(
γ ′/γ pred

i

)2

2ξ 2
γ

⎤
⎥⎦ . (3)

Experimental error and effective shape noise mean that the shear
that we observe, γ obs

i , will be different from the true astrophysical
value of γ

′
by some amount. The propagation of these two sources of

error is described as the convolution of two Gaussian distributions,
which is analytic: the result being a Gaussian distribution with
standard deviations added in quadrature. With our PWL observations
determining the values of γ obs

i and σ obs
i , we can define the probability

of observing γ obs
i as:
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gi(γ
obs
i − γ ′|σ tot

i ) = 1

σ tot
i

√
2π

exp

[
−
(
γ obs

i − γ ′)2

2
(
σ tot

i

)2

]
, (4)

where

(
σ tot

i

)2 =
(

σγ
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Finally, to recover the total probability of observing a shear
γ obs

i , we need to account for all possible scenarios leading to the
measurement of γ obs

i , given the true astrophysical shear taking a value
of γ

′
multiplied by the probability of the true astrophysical shear

taking the value of γ
′
. Formally, this is done by taking a probability

weighted integral over all possible values of the (unknown) true
astrophysical shear:

Pi(γ
obs
i |ξγ , σγ ) = (fi ∗ gi)(γ

obs
i )

=
∫ ∞

0
fi(γ

′|ξγ ) gi(γ
obs
i − γ ′|σ tot

i ) δγ ′. (6)

As this integral is not analytic, it needs to be computed numerically
for each pair of ξγ , σγ .

To illustrate how the observed shear distribution depends on
the two parameters ξγ and σγ , in Fig. 4, we plot possible shear

distributions for a galaxy resulting from different scenarios with
high and low dispersion and effective shape noise. By comparing
Fig. 1 to Fig. 4, we can make some preliminary conclusions about
the dispersion and effective shape noise of our sample. First, the
distribution cannot be easily explained with only noise as there is
a clear skew towards positive values. This can be explained only
with a large real astrophysical signal coming from a dispersion term
(similar to the right column in Fig. 4). Together with the positive
mean of γ obs, this further confirms that the lensing signal dominates
over noise for the ensemble. At the same time, because large negative
values of γ obs can be explained only by an effective shape noise, the
observed negative outliers inform about a non-negligible effective
shape noise (similar to the bottom row in Fig. 4).

4 R ESULTS AND D I SCUSSI ON

With a descriptive model for the observed shear distribution, the
aim of this paper is to quantify the impact of an effective shape
noise (which defines the limiting precision of PWL in our sample)
and disentangle it from an astrophysical dispersion. Within the
framework of Bayesian statistics, the probability of ξγ and σγ can
be determined by analysing the joint likelihood of observing the full

Figure 4. We present different possible shear distributions coming from scenarios with low and high dispersion and shape noise. The top two panels (purple
distributions, denoted with fi) display a low and high lognormal dispersion in shears consistent with a dispersion in the SHMR. Both distributions share a median
equal to γ pred. The mean of each distribution is represented with a grey line. The left two panels (blue distributions, denoted with gi) display the Gaussian
distribution expected from a low and high effective shape noise. Both distributions share a zero mean and median. The four middle panels (red distributions,
denoted with fi∗gi) show the expected distribution of shears as the convolution of the corresponding dispersion and dynamical shape noise. We can see that
the mean of the corresponding dispersion distribution is conserved in the convolution and how negative values of γ obs indicate the presence of non-negligible
effective shape noise. From the right column, we can observe that skewness is a good indicator of a high dispersion.
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sample as a function of the unknown dispersion and effective shape
noise, L(ξγ , σγ ) = ∑

ln Pi(γ obs
i |ξγ , σγ ). To do so, we have assumed

uniform priors on both parameters and mapped the likelihood
function L across the ξγ and σγ parameter space.

In Fig. 5, we present the joint constraints on the dispersion and
effective shape noise for our sample. We find that the maximum
likelihood values for the effective shape noise and dispersion in
shears are σγ = 0.024 and ξγ = 0.53 dex, respectively. The marginal
constraints on each parameter are also shown. Because the constraint
on the dispersion is non-Gaussian, we prefer to report our results
in terms of the 16/50/84 percentiles: Our results with uncertainties
become σγ = 0.024 ± 0.007 and ξγ = 0.53+0.26

−0.28 dex. Note that there
is some covariance between the two parameters within these ranges,
such that if the effective shape noise is higher, then the astrophysical
dispersion will be lower, and vice versa.

Our results point to a low effective shape noise (σγ < 0.04
at 95 per cent confidence), might suggest a higher than expected
astrophysical dispersion (although uncertainties are large), and place
a constraint on ξγ > 0 at the 90 per cent confidence level. We discuss
these points and their implications in the next two subsections.

4.1 The effective shape noise is low

Our primary goal has been to describe a method to constrain the
limiting precision of PWL. Because the effective shape noise is,
in general, sample-specific (especially depending on how well the
central assumption of stable rotation holds), the first significant result
is that we have shown how the effective shape noise can be inferred
directly from the main science sample. This can be viewed as an
avenue to self-calibrate the amount of effective shape noise, which
we anticipate will be an important component and/or a cross-check
on future PWL studies. This will be especially important if, as in
our case, an astrophysical parameter of interest has the potential to
covary with the effective shape noise. To provide a point of reference,
the described methodology would be similar to using the tangential
projection of the shear to identify/limit random and systematic errors
in conventional WL (e.g. Viola et al. 2015).

Probably the most significant implication of our analysis is the
demonstration that the impact of an effective shape noise can be
very small for PWL studies. For our sample, we have measured σγ

∼ 0.024 and σγ < 0.04 (95 per cent conf.). While shape noise is
sample-specific, our recovered value is in good agreement with our
expectations from the analysis of unlensed CALIFA galaxies in Paper
I, where we found that for an appropriately selected sample like ours,
the effective shape noise would be ∼0.03.

When comparing the impact of shape noise to that of observational
uncertainties, even for such a small sample, their contributions
are similar; with 〈σ obs〉 = 0.024 and 〈0.024/sin (2φ)〉 = 0.027,
highlighting the low impact of shape noise in our PWL measure-
ments. Similarly, when considering the mean observed shear 〈γ obs〉
= 0.020 ± 0.008 (see Paper I), a shape noise contribution of
0.024/

√
21 ∼ 0.005 is actually smaller than the measurement errors

in the mean. In other words, even with only 21 measurements, our
mean shear measurement is currently limited by data quality, more
so than shape noise.

Compared to conventional WL, where shape noise is σγ ∼ 0.2−0.3
(e.g Leauthaud et al. 2007; Niemi et al. 2015; Kuijken et al. 2015), an
effective shape noise of σγ ∼ 0.024 means that PWL measurements
are ∼10 times more precise. Even when compared against proposed
methods to reduce conventional shape noise, PWL is still 5−10 less
affected by noise. In other words, each PWL measurement in our
sample carries similar information to ∼100 equally lensed galaxies

analysed through conventional WL studies. The fact that the ∼100
galaxies would need to be equally lensed is very significant, pointing
towards the potential for PWL to analyse rare and high-value targets
where it is impossible or just very costly to build signal through
sheer weight of numbers. We highlight, however, that the greatest
strength of PWL is not simply a higher signal-to-noise ratio but the
possibility of avoiding stacking, which opens an avenue to new kinds
of measurements.

The most consequential assumption of describing the effective
shape noise within our sample is that of Gaussian statistics. In Sec-
tion 3, we provided strong arguments to support the modelling of the
effective shape noise as a symmetric and zero-centred distribution,
but the exact shape of the distribution is beyond our ability to predict.
In the immediate context of this paper, it is conceivable that the true
noise distribution has broad wings and/or that our sample includes
one or two large and positive outliers that would lead us to infer
a larger dispersion than we might otherwise. However, even if that
were the case, outliers alone cannot explain the clear skew observed
in Fig. 1. Further, their presence would mean that real limiting
effective shape noise for well-behaved targets is even smaller than we
think.

These issues can in principle be addressed with more robust
statistics. Large sample sizes would ensure that outliers carry less
weight and lose the potential to affect results, as well as allowing
us to test different distributions. A second option would be to
make use of the potential for stellar dynamics to further validate
the assumption of stable rotation. From our analysis of unlensed
galaxies in Paper I, we found that the best test of axisymmetry is
requiring consistency between stellar and gas velocity fields: the
gas and stellar velocity fields giving inconsistent results are a clear
indication of complex dynamics beyond pure rotation. In such a
way, it would be possible to identify and exclude targets that are
likely to have greater dynamical shape noise. Further, where the two
measurements are consistent, the stellar-derived shear measurements
act as an independent measurement, effectively doubling the sample
size.

4.2 The astrophysical shear dispersion is high

A secondary goal of this paper has been to quantify the amount of
dispersion in the lensing properties of our sample of galaxies. From
our analysis, we can conclude that there is a non-zero astrophysical
dispersion in shears at the 90 per cent confidence level. In a similar
way to how we argued in Paper I that the positive mean shear
shows that the astrophysical lensing signal dominates over any
source of noise, the non-zero constraint for the dispersion shows
that the observed shear distribution for our sample of just 19 galaxies
is genuinely probing real astrophysical differences in the lensing
properties of galaxies at z < 0.06.

A naive approach to allow for comparison would be to interpret the
dispersion in the observed shear distribution as reflecting a dispersion
in the SHMR under the simple assumption that shear is proportional
to halo mass γ∝Mh so that ξMh

∼ ξγ = 0.53+0.26
−0.28 dex. While we have

described the dispersion using a single number, the SHMR dispersion
is itself likely to vary as a function of mass. In this case, our measured
value should be interpreted in terms of a weighted average across the
mass range of our set of lenses (8.5 < log (M�) < 11). As more data
become available, the same process can be applied to smaller ranges
of M� to measure how the dispersion changes as a function of mass.

For comparison, in Fig. 6 we show the results of different
studies/models reporting a dispersion in halo masses. The compa-
rable values coming from theoretical/computational models would
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Figure 5. Joint constraints on the dispersion and dynamical shape noise coming from the maximum likelihood grid search applied to the Paper I’s sample. The
colour intensity levels represent the likelihood of the data coming from that particular combination. We have added contours highlighting the 1-, 2-, and 3-σ
confidence levels in the measurement. On the right-hand side and on top, we present the marginalized distributions of the two parameters, the dispersion and the
dynamical shape noise, respectively. We measure a maximum likelihood dynamical shape noise of σγ = 0.024 ± 0.007, which is slightly lower than expected,
and a higher-than-expected dispersion in shears of ξγ = 0.53+0.26

−0.28 dex.

be 0.35 dex, 0.37 dex, and 0.32 dex (Stevens et al. 2016; Lagos
et al. 2018; Pillepich et al. 2018, respectively). Results from halo
occupation modelling usually used in weak lensing return averaged
values of 0.19 dex, 0.22 dex, and 0.27 dex (respectively Moster et al.
2010; Moster et al. 2013; van Uitert et al. 2016). Taking our results
at face value, this naively inferred ξMh

= 0.53+0.26
−0.28 dex would be

rather high compared to models and especially compared to weak
lensing/halo occupation results.

In this simplistic comparison, we have neglected the contribution
of other expected sources of dispersion. As one example, the com-
parison above neglects both scatter in the halo shape/concentration
at fixed halo mass and any covariance between halo mass and halo
concentration at fixed stellar mass. If, following Duffy et al. (2008),
we assume a lognormal dispersion in concentration of ξ c = 0.12 dex,
we find that such dispersion in concentration would account for
ξγ ∼ 0.1. As a result, our measurement of the dispersion in the
SHMR would be lowered to ξMh

∼ 0.4: still high but in slightly
better agreement with models and past observational results.

Another possibility to resolve this apparent tension is that our me-
dian expectations for the predicted shears are wrong. To explore this,
we have repeated our analysis with the inclusion of a multiplicative
scale factor A to all predicted shears. We found a maximum likelihood
A = 3.5 ± 1 and a measured dispersion of ξγ = 0.2 ± 0.2. While these
findings suggest that different SHMR parametrizations could result
in tighter measurements, changing A on its own would violate some
of the constraints used to derive the SHMR: particularly, the halo
mass function and/or stellar mass function constraints. Interestingly,
our dynamical shape noise estimator was not covariant with A,
meaning that different SHMR parametrizations would not impact

our measurement of the limiting precision of the method. Based on
this, future research could investigate new constraints on the SHMR
including PWL data.

In conclusion, although uncertainties are high, we measure a larger
than expected dispersion in shears but with multiple nonexclusive
possibilities for what might be driving this. Without speculating,
possible explanations include: the dispersion around the SHMR is
much larger than suggested by previous observational studies, and/or
our assumed SHMR relation is off, and/or we are seeing other sources
of variation like halo substructure, variations in the inner slope, etc.

5 SU M M A RY A N D C O N C L U S I O N S

In this paper, we have presented a methodology for PWL studies
to statistically measure the limiting precision of a given sample
and differentiate the contribution of noise terms from that of an
astrophysical signal.

We have used the sample from Gurri et al. (2020), which consists
of 21 individual shear measurements from the velocity fields of 19
weakly lensed galaxies. The source galaxies are bright (15 < imag <

17) and nearby (0.06 < zS < 0.15) to ensure well-resolved velocity
fields. The lenses in the sample represent an unbiased selection with
masses within the range of 8.5 < log (M�) < 11 and redshift range
of 0.006 < z < 0.06. We have used van Uitert et al. (2016) SHMR
determination to determine halo masses for the lenses and predict
a median shear signal expected for each system. Expected shears
span the range of 0.001 < γ pred < 0.012 and have a mean value of
〈γ pred〉 = 0.005. For each system, a shear measurement was obtained
by fitting the observed velocity field with a linearly sheared model
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Figure 6. Our measurement of the SHMR dispersion in context. With a
red box and red lines, we show our 84 per cent and 95 per cent confidence
constraints. The circles show the masses of individual lenses, with sizes
reflecting their relative weights in the measurement. Our measurement
represents a weighted average dispersion across the range of 8.7 < log (M�)
< 11.3. For comparison, we have plotted with a blue arrow the upper limit in
the dispersion at log (M�) ∼ 10.5 from Taylor et al. (2020) obtained through
lensing data alone. We plot with coloured lines the predictions from three
popular models (from Stevens, Croton & Mutch 2016; Lagos et al. 2018;
Pillepich et al. 2018, respectively), and with black lines the results from halo
occupation modelling style analysis (from Moster et al. 2010; Moster, Naab
& White 2013; van Uitert et al. 2016), which typically assume a low value
for the SHMR dispersion as a function of halo mass. Our results suggest a
substantially higher dispersion than other studies.

of perfect circular rotation. The mean measured shear is 〈γ obs〉 =
0.020 ± 0.008, in agreement with our expectations.

Compared to our predicted shears, the distribution of observed
shears is broader than can be explained by errors alone, which moti-
vated the main aim of this paper: describing and quantifying different
possible sources capable of inducing scatter in the observed shear
distribution. Apart from observational uncertainties, in Section 3,
we have described the two other main sources of scatter, an effective
shape noise and a dispersion in the SHMR. We discuss how deviations
from axisymmetry in the velocity fields (the underlying assumption
of PWL) propagate through shear measurements with a sin (2φ)
dependence, which ensures that the effective shape noise must have
a symmetric distribution centred at zero. We also argue that physical
differences in the properties of lenses in the form of a dispersion in
the SHMR will result in a skewed distribution in shears. Following
the literature, we assumed this distribution to be lognormal.

For each galaxy, we have generated a model for the distribution
of possible observed shears as a lognormal dispersion distribution
with median γ pred convoluted with: (1) a Gaussian effective shape
noise modulated by sin (2φ) and (2) a Gaussian measurement error.
We constructed a likelihood estimator for the parameters ξγ and σγ

representing the dispersion in shears and the effective shape noise.
In Section 4, we present our maximum likelihood measurements of
σγ = 0.024 ± 0.007 and ξγ = 0.53+0.26

−0.28 dex.

In Section 4, we discuss the importance of a method to self-
calibrate PWL samples against an effective shape noise and highlight
the low impact of shape noise in our sample, which is 10 times
less affected by noise than conventional WL. We also show that,
even with a sample of only 21 PWL measurements, our mean shear
measurement is currently limited by data quality and not shape noise
(see Section 4.1). Finally, we quantify the lognormal dispersion
in shears due to astrophysical variations in the properties of the
lenses: ξγ = 0.53+0.26

−0.28 dex. While the uncertainties are large, this
value would be high compared to naive expectations based on models
and measurements of the SHMR. Without speculating, we discuss
several possible explanations for this suggestive result, including a
larger dispersion around the SHMR, variations in inner halo profiles,
and/or halo substructure.

The overall result of this paper has been to provide a way to
self-calibrate PWL experiments and demonstrate the potential of
these techniques, given the low impact of shape noise. However, at
the moment this unprecedented precision comes at the cost of rather
expensive observations and dedicated target selection. As PWL needs
well-resolved velocity maps, observations are costly and science
targets are limited to bright and nearby galaxies. This cost motivates
the use of PWL to analyse rare and high-value systems where the
effects of lensing are more apparent or where it is not feasible to
build signal by increasing sample size. In turn, this ‘sweet spot’
requires that targets have been selected in advance, and with high-
value systems often being at very low impact parameters, PWL needs
more/better spectroscopic surveys with good pair completeness (see,
for example, de Burgh-Day et al. 2016). In the future, we expect
surveys like DESI-BGS (DESI Collaboration 2016), WAVES (Driver
et al. 2019), and especially a proposed 4MOST Hemisphere Survey
to provide many new candidates for PWL. At the same time, with
telescopes like the Square Kilometer Array routinely outputting
thousands of well-resolved velocity fields, we expect PWL to provide
a new avenue for larger cosmology experiments.
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