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ABSTRACT

The Sunyaev—Zeldovich (SZ) effect provides a powerful cosmological probe, which traditionally is approached independently
as cluster number count (CNC) or power spectrum (PS) analysis. Here, we devise a new method for analysing the y-map by
introducing the survey completeness function, conventionally only used in the CNC analysis, in the yy-PS modelling. This
provides a systematic method, based mainly on SZ observables, for obtaining two complementary y-maps, one incorporating
detected/resolved clusters and the other relying only on diffuse/unresolved SZ contributions. We use the catalogue of clusters
obtained in the Planck CNC analysis to define the completeness function linking these two y-maps. The split depends on the
chosen signal-to-noise detection threshold, which we vary in our discussion. We carefully propagate the effect of completeness
cuts on the non-Gaussian error contributions in the yy-PS analysis, highlighting the benefits of masking massive clusters. Our
analysis of the Planck yy-PS for the unresolved component yields a mass bias of b = 0.15 &£ 0.04, consistent with the standard
value (b ~ 0.2), in comparison to b = 0.4 £ 0.05 for the total yy-PS. We find indications for this drift being driven by the
CIB-tSZ cross-correlation, which dominantly originates from clusters in the resolved component of the y-map. Another possible
explanation is the presence of a mass-dependent bias, which has been theoretically motivated and can be quantified with our
novel method. We furthermore find first hints for the presence of the 2-halo terms in the yy-PS. Finally, the proposed method
provides a new framework for combining the complementary information of the CNC and PS analyses in upcoming SZ surveys.
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1 INTRODUCTION

The standard ACDM model of cosmology has been remarkably
successful at explaining a number of observations of the Universe,
made using many different cosmological probes (Bennett et al. 2003;
Komatsu et al. 2011; Planck Collaboration et al. 2016a). One of the
standard predictions of the model is the evolution of the number of
gravitationally bound objects as a function of cosmic time. Galaxy
clusters are some of the largest gravitationally bound structures in the
Universe tracing this evolution. They are dominantly composed of
dark matter, while the small fraction of baryons and their interaction
with electromagnetic radiation is what allows us to directly observe
them and study their properties.

The Sunyaev—Zeldovich (SZ) effect offers a unique way for study-
ing galaxy clusters in microwave maps (Sunyaev & Zeldovich 1972).
This effect primarily entails the inverse Compton scattering of the
cosmic microwave background (CMB) photons by the hot electrons
inside the cluster, moving photons from low to high frequencies and
introducing a specific CMB spectral distortion referred to as the y-
distortion (Zeldovich & Sunyaev 1969). As such, this effect was long
realized to provide a powerful cosmological probe for the evolution
and growth of structures in the Universe (e.g. Carlstrom, Holder &
Reese 2002; Mroczkowski et al. 2019).
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With relatively recent advancements in measurements of the CMB,
specifically increased frequency coverage, sensitivity, and angular
resolution, the detection of galaxy clusters using the SZ effect
has become a routine exercise (e.g. Marriage et al. 2011; Planck
Collaboration VIII 2011; Bleem et al. 2015). The SZ analysis of
microwave maps is carried out using two complementary approaches.
The cluster number count (CNC) analysis focuses on detecting
individual clusters (e.g. Haiman, Mohr & Holder 2001; Battye &
Weller 2003). It achieves this by using prior information on the
spatial gas density profile inside clusters (e.g. Arnaud et al. 2010)
as well as the unique spectral signature of the clusters on the CMB
spectrum. This is often supplemented by external information on
the redshifts and masses, e.g. from optical surveys (e.g. von der
Linden et al. 2014; Hoekstra et al. 2015). Studying the abundance
of detected clusters at varying detection threshold can then be used
to derive cosmological/astrophysical constraints (e.g. Benson et al.
2011; Sehgal et al. 2011; Planck Collaboration XVI 2014a).

The other complementary analysis, usually carried out at the power
spectrum (PS) level, consists of constructing a Compton-y parameter
map, without the need to count systems. This is achieved by focusing
on extracting the spatial component of the multifrequency observa-
tions that contain the y-distortion spectral signature (Remazeilles,
Delabrouille & Cardoso 2011). The statistical properties of this map
(e.g. 2-point or 3-point correlations) can be related to theory and thus
used to derive cosmological/astrophysical constraints (Komatsu &
Kitayama 1999; Hill & Pajer 2013; Planck Collaboration XIII
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2016b). Since the map analysis itself uses only a spectral prior and
does not depend on any prior information on the spatial density
profiles of hot gas responsible for inducing the y-distortions, it can
in principle yield a map of all the hot gas in the Universe (Hill et al.
2015). It is therefore clear that the y-map reconstructed this way
has complementary information that is not captured by the CNC
modelling. In particular, the y-map includes both detected/resolved
and diffuse/unresolved SZ contributions.

The aforementioned methods have been independently used to
learn about clusters of galaxies, yielding comparable parameter
constraints (e.g. Bolliet et al. 2020). One puzzling outcome is that
the constraints on the amplitude of matter clustering oy deduced
from the Planck SZ data is slightly lower than the one deduced from
primary CMB anisotropies. This may have to do with an incomplete
modelling of the ICM (e.g. Henson et al. 2017; Pratt et al. 2019),
or with the tensions between low and high redshift probes reported
in the last few years (e.g. Beutler et al. 2014; Douspis, Salvati &
Aghanim 2019; Verde, Treu & Riess 2019).

Some recent works have combined the data from the PS and CNC
analyses in an attempt to extract all the parameter constraining power
of the SZ measurements, with some level of success (Hurier & Lacasa
2017; Salvati, Douspis & Aghanim 2018). These works follow the
conventional wisdom of combining data sets to enhance their joint
constraining power. However, it is important to realize that the CNC
and PS analyses do not constrain totally independent information.
The Compton-y map is furthermore highly non-Gaussian, which
introduces large data covariance at the PS level and thus limits the
ability of SZ measurements to constrain theoretical models (e.g.
Komatsu & Kitayama 1999; Hill & Pajer 2013). If it were possible to
devise an analysis strategy that reduces this covariance at a relatively
small signal cost, this could enhance the constraining power of the
SZ measurements. Alternatively, one has to directly model higher
order statistics, an approach that comes with its own challenges (e.g.
Bhattacharya et al. 2012; Ravenni et al. 2020).

Indeed, one might guess that removing high peaks from the y-
map, thereby essentially Gaussianizing the field, is a natural way
forward. This counterintuitive idea of subtracting the brightest SZ
clusters to reduce errors has been proposed in previous works (e.g.
Komatsu & Kitayama 1999; Hill & Pajer 2013; Osato & Takada
2020). These studies, however, focused on masking of clusters
based on their SZ/X-ray fluxes or by introducing effective mass
cuts, requiring independent measurements of the cluster field. Here,
we revisit this idea, and propose an analysis strategy based on the
cluster detection SNR, which in principle can be evaluated by only
using observations of the CMB sky without the need of external
measurements of the SZ field. In practice, some external ingredients
still enter in relating the SZ fluxes to the mass of the cluster, as
these are usually calibrated using X-ray or lensing observations (e.g.
Arnaud et al. 2010; von der Linden et al. 2014) instead of fully relying
on theoretical hydrosimulations that in fact make up the cluster halo
model (e.g. Battaglia et al. 2010).

Since the refined SZ analysis strategy proposed here uses a
combination of byproducts of the CNC analysis as well as the
y-map analysis, we begin by introducing the necessary concepts
involved in these two approaches (see Section 2). This allows us to
naturally progress to describing the amendments to the halo model
formalism, crucial for drawing the connections between theory and
the processed observations. Using this revised halo model formalism,
we make quantitative theoretical evaluations that clearly highlight
the SNR gains by adopting our analysis strategy. Consequently this
enhances the ability of SZ measurements to differentiate between
various theoretical models. With these theoretical motivations, we
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carry out this analysis using the SZ data products derived from Planck
measurements of the microwave sky, also highlighting some of the
potential for future SZ measurements.

Current Planck SZ analysis indicate a high mass bias, or equiva-
lently a low o3 (Planck Collaboration XVI2014a; Planck Collabora-
tion XIII 2016b). Our improved SZ analysis allows us to shed light on
the origin of the high mass bias observed in Planck measurement of
SZ clusters. Also, the 2-halo term (e.g. Hill & Pajer 2013) is deemed
largely unimportant for Planck measurements of the SZ spectrum.
Our preliminary analysis suggests that with Planck measurements we
could already be seeing a small excess of power at low multipoles,
which may be due to the 2-halo contribution or possibly a diffuse
SZ component (e.g. Hansen et al. 2005) not captured by the standard
halo model. These possibilities are illuminated in Section 4.

2 FORMALISM: A TOPOGRAPHIC Y-MAP
ANALYSIS

We work within the halo model (e.g. Sheth & Tormen 1999; Seljak
2000; Cooray & Sheth 2002), which allows us to predict the mean
number density of clusters in a given mass and redshift range, N(M,
z), and primarily depends on the cosmological parameters og, 2y,
and . By adding a cluster profile to the description, one can compute
both the SZ CNC and the yy-PS observables, which then allow
constraining cosmological/astrophysical parameters.

We now introduce a topographic method for analysing the y-map
by thinking of detected clusters as large peaks in the y-landscape.
This is achieved by noting the complementarity of information
encoded in the CNC and PS of the y-map. To do this we adopt a
pedagogical approach, which allows us to introduce central concepts
necessary to describe this new method. We therefore begin by briefly
describing the CNC analysis, which includes a discussion on the
survey completeness function and the role it plays. We then discuss
the main ingredients of the conventional SZ-PS analysis. En route
we highlight essential differences in these two methods. Having
developed the necessary tools, we layout the formalism for the topo-
graphic Compton-y parameter analysis. Finally we highlight some
of the expected benefits of this method using different theoretical
estimates.

2.1 SZ cluster number counts and the survey completeness

Any CMB experiment has limited sensitivity and frequency cover-
age, and as a consequence is only able to detect clusters above a
certain cut-off in the cluster mass-redshift distribution. The CNC
analysis directly relies on fitting the distribution function of the
detection signal-to-noise ratio (SNR), referred to as ¢, of the Compton
Y-parameter! of the galaxy cluster as a function of its redshift: N(g, z).
Many details of the completeness modelling can be found in Planck
Collaboration XVI (2014a). Since the spectrum of the y-distortion is
redshift independent, the cluster redshift is necessarily inferred from
external measurements.

To connect theory to the number count observable N(g, z) requires
a prescription for g(M, z). More massive clusters have a larger
Y-parameter, and larger angular size, 6, at a fixed redshift. All
observables are usually evaluated within Rsg, the prescription is
thus derived by assuming a form for 6599 — Msop, which is derived
from a mass volume relation for a spherical cluster. It also requires a
Y500 — Moo relation, which is empirically derived from a subsample

1Y is used to denote the integrated Compton y-parameter of the cluster.
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of clusters for which reliable measurements for the Compton Y-
parameter and the mass of the cluster are available. The Ysqy is
measured using the multimatched filter (MMF) technique which
requires a radial electron gas density profile for the cluster as an input
(Haehnelt & Tegmark 1995; Herranz et al. 2002; Melin, Bartlett &
Delabrouille 2006). Finally, we require the MMF noise as a function
of the projected angular size of the cluster oy, (6500) = 0 (@500),
which is derived empirically from the analysis of the multifrequency
microwave observations. Note that this noise estimate takes into
account all details of measurement noise, frequency coverage, and
foregrounds.

Schematically the prescription relating the halo model to observa-
tions is achieved by the following mapping:

0500 —Ms00. Y500 —M500
_—_9

N(M, z) N(q, 2).

Y500 (0500)
It is important to note that formally, i.e. in the CNC likelihood,
the counting is done in a probabilistic sense. Assuming Gaussian
statistics for the MMF noise, the cumulative probability for a clusters
with mass M5 at redshift z to be detected above the SNR threshold
geut 18 given by (Planck Collaboration XVI 2014a),

Ys00/0 (0500, ) — qeut )}
72 ,

where the MMF filter noise, o (6500, 1), changes as a function of
sky location 71, owing to changing foregrounds and any non-uniform
observing depth of the observations. While it is in principle possible
to use the full error information, the cosmological analysis can be
simplified by defining a sky-averaged completeness function, which
can be obtained by integrating over all sky patches on which the
MMF noise is evaluated:

1
X (Y500, 05005 Geuts 1) = 3 {1 +erf (

J x Y500, 6500, Geuts ) dQmasked
f deasked

Note that the resultant survey completeness function takes into
account the error on the inferred detection SNR of a cluster.
In addition, the Planck number count analysis also assumes the
Compton-Y parameter for clusters to have an intrinsic scatter. For
this, the Y parameter is assumed to follow a lognormal field and the
Gaussian width of In Y is estimated while empirically fitting the Ysq
— M5 relation. These factors make the detection SNR assigned to a
cluster fuzzy and are taken into account in the Planck CNC likelihood
function.

While other details of the Planck number count analysis are
important and interesting in their on right, for our discussion below,
the average survey completeness function is the crucial ingredient
we will borrow to formulate a topographic y-map power spectrum
analysis. It will essentially enter as a weight factor in the halo mass
function which amends the evaluation of the yy-power spectrum, as
we elucidate in the following section.

XM, z, qewt) = (D

2.2 Compton yy-power spectrum analysis

A map of the Compton y-parameter is composed of the cumulative
signal from all clusters and diffuse hot gas in the Universe. It can be
extracted from multifrequency microwave observations using an ILC
algorithm (e.g. Planck Collaboration XVI 2014b) and can similarly
be used to draw inferences on cosmological and astrophysical param-
eters (e.g. Bollietetal. 2018; Salvati et al. 2018). The usual theoretical
power spectrum analysis is based only on the contributions from
collapsed haloes, which we focus on here, considering both the one
and two halo terms (see Molnar & Birkinshaw 2000; Komatsu &
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Seljak 2002; Hill & Pajer 2013, for additional details). Additional
contributions from filaments and bridges are not accounted for but
could play a role at the largest scales (e.g. Hansen et al. 2005) as we
also discuss below.

As for the SZ number counts, the halo model is used to compute
the theoretical Compton y-map power spectrum. The 1-halo term can
be estimated using the following expression,

ny,lh B /Zlnax d dV Mmax dM | (M )|2
Ty Fa S S amay S
= (lye(M, 2)), @

where dN /(dM dV) is the halo mass function, which determines
the comoving number density of haloes of a given mass M at each
redshift z, and y, is the 2D Fourier transform of the pressure profile
projected along the line of sight. We also introduced the short-
hand notation, (X), for the average of the quantity X weighted by
the distribution of the number of haloes as a function of mass and
redshift.2 The resultant PS thus includes contribution from clusters at
all redshifts and for all masses. Details regarding the implementation
of AN(M, z)/(dM dV) and y,(M, z) can be found in Bolliet et al.
(2018). Notably, following the Planck SZ analysis, we use Tinker
et al. (2008) for the halo mass function with mass bias 1 — b = 0.8
[iie. B = 1/(1 — b) = 1.25] and the pressure profile from Arnaud
et al. (2010), which was also applied in the cluster finding algorithm
of the original Planck CNC analysis.

In addition to the 1-halo term described above, the 2-halo con-
tributions arising from correlation between the spatial position of
clusters are present and become relevant on large angular scales (¢
< 100). For simplicity we use the Limber approximation to estimate
this contribution. The 2-halo contribution can then be expressed as
(see Appendix of Hill & Pajer 2013),

, e QY 4172
c”’z"w/ dz— (b ZPi,,< ; ) 3a
p A ZdZ (b 1yel)y Py 4 b4 (3a)
by 1ye) —/MmdM AN M. 2) (M. ) (3b)
h\Yellm = . apmay > 2) 1 Ye M, 2)1,

where Py, (k, z) denotes the linear matter power spectrum, by (M, z) is
the halo bias (Kaiser 1984; Bardeen et al. 1986; Mo & White 1996;
Sheth, Mo & Tormen 2001; Dalal et al. 2008; Tinker et al. 2010)
and d(z) is the comoving distance. We refer to Komatsu & Kitayama
(1999) and Hill & Pajer (2013) for the use of the halo bias in the
context of the yy power spectrum.

We compute the linear matter power spectrum, and cosmological
distances, using CLASS (Blas, Lesgourgues & Tram 2011; Lesgour-
gues 2011) within CLASS_SZ (Bolliet et al. 2018). For the halo bias
we use the Tinker et al. (2010) formula (see their equation 6 and table
2), which gives the bias in terms of the ‘peak height’ v = §./0 (M),
where 4. is the critical overdensity for collapse and o (M) the variance
of the matter overdensity field smoothed over a sphere whose size
corresponds to the typical cluster size, R = (3M/4m py,)">. In this
model, the bias is unity at low v (i.e. when clustering is efficient,
typically for less massive haloes) and increases quickly for larger
v (i.e. larger masses). As we discuss in more detail below, the 2-
halo term usually only contributes at the level of ten percent to
the total C;” at £ < 100, but more interesting is that its relative
contribution increases significantly on progressively removing the
brightest clusters detected in the SZ survey.

2Note that ddN (M, z)/(dM dV) can be thought of as a probability distribu-
tion function, however it is not normalized to unity
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2.3 Power spectrum completeness modelling

The conventional PS analysis does not explicitly account for the
limited experimental sensitivity in its theoretical modelling as it
is done in the CNC analysis. This is a valid approach since it
is fair to assume that noise in the C;” measured from the data
naturally accounts for this limitation. As such, it is one of the
manifest differences between source counting and analyses that rely
on characterizing the n-point statistics of a field. However, through
masking one can remove clusters from the maps and thus subtract
their PS contribution.® In this step, mass cuts can usually not be
implemented easily and furthermore necessitate independent redshift
information. Thus, a more practical way to account for masking
effects in the theoretical PS modelling is to perform the separation
using a specified g, together with a CNC completeness model, as
we now elucidate.

In the brief recap of the CNC analysis in Section 2.1, we introduced
the sky-averaged survey completeness function j, which we now
combine with the PS analysis to perform a g.,-dependent yy-
power spectrum modelling. Note that this invariably relies on having
evaluated parts of the number count analysis to yield a cluster
catalogue with the detection SNRs for each cluster, a Y5090 — M50
scaling relation and the survey completeness function. Given this
data, the y-map can now be divided into two parts, one composed of
clusters above the preset SNR threshold g, and one with g below.
We will refer to these as resolved component (RC) and unresolved
component (uURC) of the y-map, respectively. While this reference is
only accurate for a reasonably low g, for simplicity we persist with
it for all g, considered in this work, owing to the lack of a better
nomenclature.*

To compare with theory, the RC and uRC yy-power spectra are
given by the following expressions:

VM (Gew) = (Iye(M, DIP® (M, 2, geud) ), (4a)
_ XM, z, qcul) RC
(M, 2, Geu) = {1 M gu) WRC” (4b)

Hence, according to this model when g, — oo and § — 0, the uRC
power spectrum becomes the total PS and the RC power spectrum
vanishes: this corresponds to the case where none of the haloes are
masked. On the contrary, when ¢., — 0 and jy — 1, the RC power
spectrum becomes the total and the uRC vanishes: this corresponds
to the case where all of the haloes are masked.’

For the 2-halo contribution, we include the completeness in a
similar way:

(%)

., e QY 12
Cé”Zh ~ /0 dZ(TZ (by 1yel D)3 Piin (7 ) ,

dz) ’

which naturally follows from thinking of the completeness cuts as
part of the halo model, dN*/(dM dV) = ®dN/(dM dV). Note
that the formalism presented here is generally applicable to any
microwave experiment. It is the functional form of the completeness
X (M, z, qew) that depends on the experiment used to measure the
clusters to be masked in the y-map.

3Note that this procedure might result in masking of multiple clusters aligned
along a line of sight, an effect which we do not account for in this work.
4Note that for sufficiently Iow gy, one can more simply think of the RC as
detected/resolved SZ sources, which can be directly modelled using number
count methods.

SNote that in practice it is not possible to take this limit on the data since as
for very low gy it becomes impractical to construct a reliable mask.
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Figure 1. The theoretical yy-power spectrum augmented by explicit com-
pleteness modelling. The dot-dashed lines depict the 1-halo contribution,
while the dashed lines indicate the 2-halo contribution to Cévy. The solid lines
denote the total C z ? which includes both the 1-halo and 2-halo contributions.
The top panel illustrates this decomposition for uRC of the y-map and the
bottom panel shows the same for RC of the y-map. Note that for low g, the
2-halo term has a dominant contribution for the uRC while for RC the 2-halo
contribution is always subdominant. Note that in the top panel the 1-halo term
curve is indistinguishable from the 14-2-halo curve for “Total’. Similarly, in
the bottom panel, the 1-halo term curves are barely visible because they
overlap with the 1 + 2-halo curves.

To illustrate several key points, as an example, we use the Planck
completeness function to evaluate the modified halo model. For
these illustrations we assume a spatially flat ACDM cosmology with
oy = 0.8, Q, = 0.05, Qegm = 0.27, h = 0.7 and three degenerate
massive neutrinos with Xm, = 0.06eV. It is important to bear in
mind that the key features of the results, which we now discuss,
depend only on the fact that the high ¢ clusters are removed from
uRC and therefore should not have any critical dependence on the
specifics of the survey completeness function. The resultant PS is
illustrated in Fig. 1 for various values of g.,. For completeness,
we show both the 1- and 2-halo contributions. Varying the gcu, we
observe that the uRC power spectrum is affected the most on large
angular scales, while the RC power spectrum changes mostly at
small angular scales. This immediately highlights that completeness
modelling affects the contributions from massive clusters for the uRC
and low mass haloes in the RC, a point that we will address more
rigorously in Section 2.3.1.

Looking at Fig. 1, it is important to notice that for the total yy
power spectrum, the 2-halo term only contributes at the level of a
few percent to the total yy-power spectrum at £ < 100. However,
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varying the value of ¢.,, we observe that the relative contribution
significantly changes for the uRC power, with the 2-halo contribution
becoming nearly equal to the 1-halo at g, = 6 and even being
the dominant contribution for lower values of g.,, at these low
multipoles. The effect is most significant at large angular scales,
£ < 100-200. For the RC power spectrum, the 2-halo term always
remains subdominant. For a ¢.,-dependent analysis it is thus more
important to carefully include the contributions from the 2-halo term
for the uRC, and we will return to discussing this point again in
Section 4.3.

It is also important to realize that all these features are likely to
have some dependence on details of the completeness function used
to evaluate the halo model. In addition, the relevance of the 2-halo
term needs to be compared to contributions from diffuse SZ effect,
e.g. due to filaments and bridges, which also contribute at similar
level on the largest angular scales (e.g. Hansen et al. 2005).

2.3.1 Mean masses for various values of Qe

The Planck completeness function is defined in terms of SNR
thresholds and not in terms of the cluster mass. To understand the ¢
— M correspondence, we thus define the mean mass for both 1-halo
and 2-halo contributions to the SZ power spectrum after integrating
over redshift and cluster mass (see Fig. 1). For the 1-halo term, the
mean mass can be estimated using

(My(M, 2)*® (M., 2, gewr))
(Iye(M, )P® (M, z, Gew))

where we simply think of the differential power spectrum contri-
butions, dInC;”/dM as a probability distribution function, as in
equation (25) of Komatsu & Seljak (2002) (see their fig. 6).

Similarly for the 2-halo contribution to C;”, the simplest way to
estimate the dominant mass contribution is to use the replacement
(bp |yel )yr — (Mby, |ye| P)py in equation (5). With this one can
compute the mass correlation function

(M), = (©)

Sy A28t (Mby yel @)% Pun (452425 2)

(MM}, = z +1/2
Sy 4295 (b Lyl @)} P (S524252)

N

We emphasize that in both equations (6) and (7), the completeness
function is part of the normalization condition.

In Fig. 2, we show (M), and /(M M’), for the uRC and RC.
Focusing on the uRC (upper panel of Fig. 2), we see that for the total
yy power spectrum massive clusters mostly contribute at large angular
scales, while the small scales are dominated by lower mass systems.
The mean mass of clusters contributing to the low multipoles reduces
significantly on lowering the value of g.,. Similarly, at intermediate
angular scales most relevant to the Planck analysis (¢ ~ 10> — 10%),
one observes a significant drop in the mean mass with g.,. These
statements are true for both the 1- and 2-halo contributions and are
naturally expected as the most massive systems are progressively
masked. Advanced ACT (Henderson et al. 2016) and SO (The SO
Collaboration 2019) will increase the relevant multipole-range to ¢
=~ 10, probing even smaller masses.

Turning to the RC (Fig. 2, lower panel), we see that in particular
the effective mass at small angular scales increases dramatically with
the chosen value for g.,. This indicates that only the most massive
but distant (i.e. small scale) cluster systems contribute. With an
increasing g, only the most massive systems remain in the RC, and
it becomes progressively inappropriate to perform a power spectrum
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Figure 2. This figure depicts the mean mass of clusters contributing to each
multipole in the yy-power spectrum. For the uRC (upper panel), high mass
systems dominantly contribute at low multipoles while less massive clusters
dominantly contribute at higher multipoles. For the RC (lower panel), the
picture is complicated by normalization effects (see the text for discussion).
The arrows indicate the multipole ranges corresponding to the y-map from
Planck (Planck Collaboration XVI 2014a), and future measurements from
Advanced ACT (Henderson et al. 2016) and SO (The SO Collaboration
2019).

analysis on this component of the y-map.® At large angular scales,
the variation of the effective mass with g.,, remains more moderate,
highlighting that these contribution come from close by. We note that
normalization effects are more pronounced for the RC than for the
uRC. This stems for the fact that due to the completeness modelling
the denominators of equations (6) and (8) can become very small for
the RC with increasing gcy;-

2.4 Theoretical modelling uncertainties

For the SZ power spectrum analysis, the measurement noise and
Gaussian cosmic variance form only a part of the noise budget,
and these are usually estimated directly from observations. In the
conventional C;” analysis, these form a subdominant contribution
to the total noise budget at multipoles below a few hundred, since
the y-map is highly non-Gaussian. The non-Gaussian component of

®In principle, however, there is no issue, since the 1-halo contribution to the
power spectrum is literally composed of combining single clusters ringing in
harmonic space on the sky.
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Figure 3. Theoretical uncertainties in the yy-PS computation. The dashed
lines depict the diagonal of the trispectrum error covariance, the dot-dashed
lines depict the covariance of the Gaussian part, and the solid lines show the
total. While the top panel shows the error decomposition for uRC, the bottom
panel illustrates the same for the RC of the y-map. Note that for this figure
we used fsky = 0.354, and that the errors are binned: a dot marker indicates
the centre of each bin. The error estimated from Planck total y-map is shown
for reference.

the noise is estimated by evaluating the trispectrum TZ’; (e.g. Cooray
2001; Komatsu & Seljak 2002; Hill & Pajer 2013),

TV — 1 d dV/deN(M,Z)r(M )|2|~ (M )|2
A amay e PR D
(IFe(M, 2150 (M, 2)|?)

47 ’

where we again use the Limber approximation (e.g. Hill & Pajer
2013, for more discussion). In the cosmic variance limited case, the
corresponding non-Gaussian noise contribution dominates the total
theoretical noise budget at all multipoles, as seen in Fig. 3. As alluded
to before, this significantly degrades the constraining power of the
C;” analysis but can be amended by reducing the non-Gaussian
error contribution (e.g. Hill & Pajer 2013). When augmenting the
PS analysis with the survey completeness function, it is important
to also update the trispectrum error by similarly incorporating the
completeness function in its evaluation. We can therefore define the
appropriate trispectrum error covariance as

(I5e(M, 2)]*50(M, 2)|*® (M, 2, gew) )
4

(®)

Ty (Gew) = , ©)
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which for g, — o0 reduces to the usual trispectrum contribution
for the uRC (while for the RC it vanishes).

In Fig. 3 we illustrate the corresponding diagonal of the non-
Gaussian error, o (7;”/ fuy)'/?, in comparison to the Gaussian
cosmic variance contribution. Here, fy, denotes the sky fraction
covered by the y-map after masking. For illustration, we binned
the errors in logarithmic bins with width Aln¢ = 0.4. Thus, the
number of modes in each bin is N =~ 2(A¢ =~ ¢*Alnl oc 2.
Since C}” =~ 1/¢ (cf. Fig. 1), the binned Gaussian cosmic error,
specifically (£ + 1)oy ~ €*C;*/N'/, is nearly constant at large
scales (see Fig. 3). The errors corresponding to low value of gy
show a suppression of power at low multipoles, as removal of high
mass clusters preferentially reduces the power on large scales.

For the uRC, the non-Gaussian contribution drops significantly
with the gey. For goye < 3, we even find that the Gaussian contribu-
tions start dominating in a small multipole window around ¢ ~ 102
This clearly suggests that the analysis of the uRC can theoretically
improve the constraining power of the yy-PS for cosmology (we
will quantify this in Section 3.2.6). However, even if the plain
instrumental PS noise is subdominant, foreground residuals and
marginalization play a crucial role in the discussion (see Fig. 8
for goyw = 6). For the RC, on the other hand, the non-Gaussian
error contributions always remain dominant, strongly hindering
cosmological inference.

It is important to mention that we omitted non-Gaussian variance
contributions from clustering (i.e. the so-called super sample covari-
ance, see Osato & Takada 2020). Their evaluation is beyond the scope
of this paper, which is a first attempt of propagating cluster masking
to the PS analysis using actual data. We expect this to mainly affect
the error bars, but not the main aspects of the conclusions.”

2.5 Interplay with cluster number counts

We close our theoretical considerations by again highlighting some
of the interplay of the proposed PS modelling with the usual CNC
method. First, the RC essentially accounts for a subsample of clusters
that are considered in the CNC analysis, but in this case by using
map-based methods. However, given the highly non-Gaussian nature
of the RC y-field, for large g.,, it is more sensible to use CNC methods
to extract information.

Secondly, to perform our ¢, power spectrum analysis we first
need to build the statistics for the CNC analysis, as already noted
above. As such, the CNC analysis can naturally be used to deal with
high SNR systems, while the uRC is best-modelled using power
spectrum methods. The covariance between these two observables is
indeed expected to be small, which provides a simple and powerful
avenue for combining both likelihoods for existing and future data.
However, as we showed in Fig. 2, the systems relevant to the RC and
uRC are quite different, such that also astrophysical properties (e.g.
mass bias) generally have to be dealt with independently.

Finally, the uRC also naturally includes contributions from diffuse
y. The halo model only accounts for collapsed systems and thus
cannot capture information from filaments and bridges. Their effect

"While we were preparing this manuscript for submission, Osato & Takada
(2020) presented a thorough theoretical treatment of the super sample
covariance for the tSZ power spectrum, including the effect of masking. Their
finding shows that the error bar on the mass-bias measured by a masked y-
map power spectrum analysis can be affected at the level of several per cents.
This is a small but potentially non-negligible effect which will be addressed
in future work.
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can become particularly relevant at large angular scales, with a
potential to bias cosmological inferences, as the C;” modelling omits
them.

3 FROM MICROWAVE OBSERVATIONS OF THE
CMB SKY TO A TOPOGRAPHIC y-MAP
ANALYSIS

In the previous section we illustrated, using theoretical estimates,
that removing some of the brightest clusters from the y-map should
enhance the ability of the yy-power spectrum to constrain model
parameters. In this section, we begin by laying out all the algorithmic
steps involved in carrying out the proposed topographic analysis,
starting right from the multifrequency measurements of microwave
maps. We end this section by describing details of the map level and
power spectrum analysis using actual Planck data. The parameter
constraints derived from this topographic analysis of the Planck SZ
data are discussed in Section 4.

3.1 A general algorithm

Performing the proposed topographic analysis starting from the
multifrequency observations of the CMB sky essentially consists
of the following algorithmic steps:

(1) Reconstructing the y-map from the multifrequency measure-
ments using a component separation algorithm (e.g. ILC).

(ii) Running the cluster detection algorithm (e.g. MMF) on the
multifrequency maps and tabulating the SNR with which each cluster
is detected. Here it is necessary to estimate the characteristic size of
the cluster, 6., at which the detection SNR is maximized, as this will
be used for masking the cluster. It is also important to estimate the
MMEF noise as a function of the filter size on different portions of the
sky as this will be used to define the survey completeness function.

(iii) Using the obtained cluster catalogue to construct a mask, that
excludes clusters detected above some preset detection threshold gcy.
Here, 0. determines the size of the mask surrounding each cluster.
This mask will be used to slice the y-map into RC and uRC

(iv) Evaluating the C;” corresponding to each slice of the y-map,
duly corrected for the partial sky coverage, owing to foreground
contamination and measurement footprint. Here one also estimates
the Gaussian component of the variance on C;”, which includes the
instrument noise variance.

(v) Revising the Compton-y power spectrum likelihood to include
the completeness function used in the number count analysis. This
essentially involves an update to the evaluation of C;” and the
trispectrum covariance 7}/, which accounts for the completeness
function @, as detailed in Section 2.

(vi) Finally, deriving cosmological constraints from the uRC as
well as the RC of the y-map, where this procedure can be performed,
for different values of gcy.

The topographic y-map analysis proposed here in principle does
not rely on using external measurements and can be completely
evaluated using only multifrequency microwave observations as
input. However, as mentioned above, the theoretical PS modelling
required for the analysis still contains data-driven ingredients related
to scaling relations and cluster profiles. Note that once these data
products are derived, it is easy to repeat the topographic analysis for
different values of g.,. These seemingly redundant analyses act as
consistency checks and increase the potential of unravelling the need
for a revised theory or systematics in the data. For instance, in an
ideal setting (i.e. when we have data which perfectly matches the
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theory model predictions), the expectation is that a model parameter
analysis on different decompositions of the y-map should yield
compatible constraints (with a certain g.,, optimizing the error bars).
Any deviations from this simple expectation would be indicative of
either systematics in the data that are poorly understood or potentially
an incomplete theory (e.g. mass-dependent hydrostatic mass bias)
or even a combination of the two. So while we arrived at this
analysis method motivated by its improved constraining power, this
framework also provides these additional diagnostic benefits.

3.2 A topographic analysis of the Planck y-map

Planck measurements of the microwave sky are already sensitive to
the measurement of the y-distortions and have therefore successfully
delivered maps of the Compton y parameter (Planck Collaboration
XII 2016b). The CNC analysis was carried out by the Planck
collaboration and the resultant catalogue of clusters detected using a
few different analysis pipelines are also available.®

Following the Planck number count analysis (Planck Collabora-
tion XVI 2014a), here we work with the MMF3 cluster catalogue
(Planck Collaboration XIII 2016e). From this catalogue we specif-
ically use the estimates of cluster detection SNR, the estimate of
the SZ mass, and the cluster sky coordinates, with details to follow.
The other important byproduct of the MMF analysis is the filter
noise as a function of the characteristic size of the cluster 6., which
is available as a part of the CosmoMC package.” As discussed in
Section 2.1, we need this filter noise estimate to define the survey
completeness function, a crucial input for making the connection
between theory and the edited observations. The Planck collaboration
has therefore already carried out many critical steps of the algorithm
outlined in Section 3.1 and these available data products facilitate
the topographic y-map analysis.

We now provide explicit details of how we use these data products
to evaluate the remaining steps of the analysis, which essentially
include slicing the y-map into uRC and RC by masking clusters
detected above certain SNR threshold, the power spectrum analysis
on the respective slices, and estimation of errors on the measured
power spectra. En route we carry out essential null tests, paving the
way for the final model parameter analysis which we discuss in detail
in Section 4.

3.2.1 Masking the giants

We begin by reiterating that we refer to components of the y-map
below the preset g, as uRC and the component of the y-map above
geut as RC. We slice the y-map using a variety of SNR thresholds,
specifically: gewe € [6, 9, 12, 20]. Fig. 4 depicts the distribution of
the clusters detected by Planck in the M — z plane. Note that higher
qeut 18 generally associated with clusters of higher mass and lower
redshifts. Also note that since we work with the MMF3 clusters in
the COSMO sample, for g, = 6, the corresponding RC y-map is
composed of the same subsample of clusters used in the Planck CNC
analysis. We now begin by describing how we construct the cluster
mask, that enables us to decompose the y-map into uRC and RC
for the different values of g.,. This mask is central to performing

8 All Planck compact object catalogues can be accessed at this link: https:
/lirsa.ipac.caltech.edu/data/Planck/release_2/catalogs/

9The MMF noise details are encoded in the files: SZ_skyfracs.txt,
SZ_ylims.txt & SZ_thetas.txt, which can be found inside the ‘data’ folder
of the CosmoMC package.
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Figure 4. Distribution of clusters in the M — z plane for different gcy. All
clusters with ¢ > 6 are included in the case ¢ > 3. Note that higher ¢ typically
corresponds to more massive clusters.

the PS analysis on the uRC and RC components of the y-map (see
Section 3.2.2).

The MMF3 sample of clusters is used for the CNC analysis (Planck
Collaboration XIII 2015). We extract the SZ mass Msy and sky
coordinate (¢, b, z) from this catalogue. Note that it is possible to
obtain an angular size estimate for the cluster from the MMF analysis,
by specifically providing 6 at which the SNR estimate for a cluster
detection is maximal. However, owing to the lack of this information
we resort to estimating the projected angular size of the clusters,
using the Msop — 0500, given in equation (9) of Planck Collaboration
XVI (2014a). We set b = 0.2 and also use the redshift of the cluster,
which is mostly available as part of the catalogue. Note that the
results do not depend on the choice of ‘b’, as our results are not
sensitive to the size of the cluster mask.

With the estimated 6599, we next construct a cluster mask by
punching a hole of radius 5 x 65y centred on the sky location of
each resolved cluster.!® For clusters in the sample with unknown
redshifts, we use the median value of 65, estimated from the rest
of the clusters. Since COMA and VIRGO are particularly large, we
further extend the corresponding masks by multiplying with 3 deg
radius masks centred on their galactic coordinates [i.e. VIRGO: (¢,
b) = (279.68°, 74.46°); COMA: (¢, b) = (58.08°, 87.96°)]. The net
resultant mask is denoted by M.

3.2.2 The Planck Compton y-map power spectrum analysis

Given M, we now have all the inputs necessary to carry out the
envisioned topographic y-map analysis. For most parts, our PS anal-
ysis follows closely the analysis carried out in Planck Collaboration
XIII (2016b); however, we use an independent pipeline. Specifically
in all our analysis, we cross-correlate half mission 1 (HM1) NILC
maps with half mission 2 (HM2) MILCA maps to estimate the yy-
power spectrum.!! To ease comparison with the Planck C}”, we

10We have tested a few different mask radii, specifically 3 x 6500, 5 X 6500,
and 10 x 65gp, and these yield very similar power spectra for the respective
components of the y-map. Since the filter used in the MMF analysis also cuts
of the profile at 5 x 0500, we shall use this for all our analyses.

"We also evaluate the yy-power spectra from NILC and MILCA maps by
cross-correlating HM1 x HM2, finding consistent results.
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Table 1. This table summarizes the effective sky fraction (post apodization)
associated with Myrc and Mpgc for different g... Note that these sky
fractions include losses due to foreground contamination. For comparison
note that the effective sky fraction associated with the foreground masks only

is: i’y = 35.44 per cent.

qeut 3 6 9 12 20
uRC (per cent) 34.36 34.46 34.90 35.07 35.26
RC (per cent) 1.22 1.10 0.60 0.41 0.20

use the same multipole binning as provided in table 12 of Planck
Collaboration XIII (2016b). We use the fi, = 0.50 mask for masking
the dominant galactic contamination and the extended point source
mask with fg, = 0.76 for removing contamination due to infrared red
and radio sources. We work with the union of these two masks which
is apodized using a cosine-square profile with tapering carried out
over a distance of 15 arcmin to reduce ringing near the sharp mask
boundaries. The apodized union mask has an effective sky fraction
f&, = 0.354 and will be denoted as M.

Given the masks M and M, we can now carry out three types
of analyses. Estimating the power spectrum from the y-map masked
with M results in the standard Planck PS analysis. Note that in the
language introduced in this work, this can also be interpreted as the
uRC power spectrum in the limit of g.,, — o0o. The power spectrum
estimated after masking the y-map with Myrc = Mg x M yields
C;}” corresponding to uRC. Finally, the power spectrum estimated
after masking the y-map with Mgrc = Mg x (1 — Mc) yields C}”
corresponding to RC. Note that the apodization procedure on each
of these masks is carried out after constructing the binary versions
of the respective union masks and that the apodization is performed
inside (i.e., in the region of the sky to be retained) the mask. This
apodization detail is particularly important for analysis carried out
with Mgc, which is a particularly aggressive mask (see Fig. Bl
for Mgc constructed assuming g, = 6). The cluster masks M
are constructed for different values of g, and the evolution in the
respective effective sky fractions (i.e. available sky fraction post
apodization) associated with RC and uRC of the y-map are tabulated
in Table 1. Note that the sky fractions associated with cluster masks,
for different values of ¢.,, change by at most 1 per cent.

We estimate the y-map power spectrum post masking using the
MASTER algorithm (Hivon et al. 2002). In order to test robust working
of our MASTER algorithm, we simulated a Gaussian y-map using a
fiducial C;” and checked that the recovered PS is consistent with
the input for both Mrc and Mgc (see Appendix B for details).
Since the Compton y-parameter field is highly non-Gaussian, there
are some subtle issues arising from this and we discuss these nuances
next. However, before venturing into this discussion, we would like to
draw attention to the fact that, while these nuances are important for
sensible evaluation of the RC power spectra, they are not as critical
to the estimation of the uRC power spectrum which will play a more
important role in discussions of the subsequent sections (recall that
it is the removal of high ¢ clusters, i.e. uRC of the y-map, which has
its constraining power enhanced).

3.2.3 Nuances of estimating the MASTER-corrected PS

The MASTER algorithm implicitly assumes that masked portion of
the sky is composed of a field with statistical properties similar to
that of the unmasked portion. Only under this assumption, it corrects
for the power lost in the masked sky fraction, while also accounting
for mode coupling artefacts induced by masking. When estimating
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the MASTER-corrected, total Compton y-map power spectrum this
assumption is valid, since it is reasonable to assume that the statistical
properties of the y-field in the sky fraction lost to foreground
contamination are identical to those in the sky fractions we observe.'?
However, when carving the y-map into portions that capture uRC
and RC, respectively, this assumption is strongly violated, since we
are specifically masking certain peaks of the y-map, consequently
altering the statistical properties of the field we observe. We can
thus expect the default MASTER correction procedure to fail. Indeed,
the 1-point PDF of the total y-map, the uRC, and the RC differ
significantly, supporting the idea that masking Gaussianizes the map
(see Appendix A for details). This can be verified by applying the
default MASTER algorithm to the RC of the y-map (as we have done)
and noted that this yields a C;” with an amplitude significantly larger
than the total C;”. Clearly this is a consequence of the MASTER
algorithm’s implicit assumption that masked portions of the sky are
covered with high SNR (massive) clusters as those included in the
RC of the y-map. Therefore, applying the MASTER correction in its
native form to estimate the PS of the RC is faulty. A similar issue
arises when estimating the PS corresponding to the uRC; however,
in this case the discrepancy is more subtle as the sky fraction is only
changed by a few percent (see Table 1). To circumvent this issue,
we present two prescriptions for appropriately estimating the power
spectrum corresponding to the RC and uRC of the y-map:

Method 1: In this approach, we first estimate the MASTER-corrected
PS using the default procedure and then correct the amplitude of
the power spectrum by the factors: ARC = fslﬁyc Sfy and A'RC =
fs‘f(l;c / fsfy for the respective components. These correction factors
can be interpreted as estimates of the mean sky fractions composed
of the RC and uRC components of the y-map, respectively. These
correction factors are evaluated for different values of g., and are
summarized in Table. 1.

Method 2: In this approach, the MASTER algorithm is evaluated
assuming only the foregrounds mask M ;, which then only corrects
for the sky fraction lost to galactic and point source contamination.
The additional area masked when using M gc or Mpc in this method
can be thought of as an effective M — z cut, bearing resemblance to
the completeness modelling of the CNC analysis.

3.2.4 Robustness tests

We now demonstrate that these two approaches result in consistent
evaluation of the PS, except for differences on large angular scales,
which can be expected. We also show that the sum of the RC and
uRC power spectra returns the total C;” as one expects. Finally
we also show that Gaussian errors on the respective power spectra,
when added in quadrature, yield the error on the total C;”, modulo
differences resulting from ignoring the noise contribution sourced by
the cross-correlation between RC and uRC of the y-map. We carry
out identical tests on RC and uRC spectra derived from all values of
geu Used in our analysis, finding similar results. However, for brevity,
we only present the specifics of tests carried out on spectral analysis
performed with g, = 6.

Total power spectrum evaluation: We first evaluate the SZ PS by
using only the galactic and point source mask M, appropriately

12Strictly speaking this is not true, since varying foregrounds and measuring
sensitivity amount to varying observing depths in different portions of the sky,
which consequently must result in a modulation of the statistical properties
of the y-map across these patches. In principle one would need to take this
into account, but following all other analyses we ignore this detail.
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Figure 5. The green, blue, and magenta curves show the yy-power spectrum
corresponding to the total, uRC, and RC of the Planck y-map, evaluated
for geyr = 6. The black and grey curves depict the total and simulated RC
component PS, as seen in fig. 12 of Planck Collaboration XIII (2016b).

apodized ( si’y = 0.354). We find good consistency between spectra

derived using our analysis pipeline and those used in the Planck
2015 analysis as seen in Fig. 5. This serves as an additional test of
our MASTER implementation, applied to real data.

uRC power spectrum evaluation: We estimate the power spectrum
corresponding to the uRC component of the y-map using both
methods prescribed in Section 3.2.3. The total y-map is masked
with Myrc = Mg X M, appropriately apodized (st]‘(l;C = 0.345).
With Method 1, we evaluate the corrected PS using default MASTER
algorithm and the amplitude of the resultant spectra is corrected by
the factor A"RC = 0.97. The obtained C;” from both methods are
found to be highly consistent (see Fig. 5). Note that the primary
effect of removing clusters detected above ¢, = 6 from the y-map is
that of preferentially reducing power at high multipoles as compared
to the total PS. This can also be seen in the top panel of Fig. 1, which
shows the theoretical C;” for different values of gey.

RC power spectrum evaluation: Similar to the uRC, we estimate
the contribution to the power spectrum from the clusters in the
MMEF3 COSMO sample, forming the RC. In this case, the total y-map
is masked with Mrc = Mg x (1 — M), appropriately apodized
(f& = 0.011). The resultant spectra estimated using both methods
are again found to be highly consistent for multipoles £ > 50 (see
Fig. 5). There are considerable differences in the power spectra
recovered on large angular scales (¢ < 50) and this is primarily
owing to the meagre sky coverage of Mgc (see Fig. B1). Note that
our data derived estimates of the RC power spectrum shows good
consistency with the COSMO sample PS depicted in fig. 12 of Planck
Collaboration XIII (2016b), and reproduced here in Fig. 5. Using both
methods, we find slightly higher power in the RC power spectrum
on large angular scales as compared to that presented by Planck. It
is important to appreciate the fact that, while the PS in the Planck
paper is estimated from a simulated y-map which assumes cluster
profiles and injects estimated amplitudes of the cluster Compton
y-parameter, the estimates presented here are direct measurements
from the reconstructed y-map.

Additional null test: We expect that C;” ~ CURC + CRC. We find
that RC and uRC spectra estimated using both the methods satisfy
this constraint. We evaluate the relative amplitudes C{R¢/C ! and
CRE/c o and show that, modulo expected variance, they sum to
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Figure 6. This figure depicts power spectrum contributions from the uRC
and RC of the y-map relative to the total power spectrum, evaluated for
geut = 6. Note that uRC and RC contributions add up to the total. uRC being
composed of relatively less massive clusters, contribute dominantly at high
multipoles while the contribution from the RC peaks at low multipoles owing
to contributions dominantly originating from larger mass clusters.

unity in each multipole bin as depicted in Fig. 6. Presenting this
test in terms of relative amplitude allows us to highlight the minor
differences in the total spectra evaluated directly and by summing
the uRC and RC contributions to the spectrum. Note that on large
angular scales ¢ < 100 the differences can be up to =~ 20 per cent;
however, for multipoles £ > 100 the consistency is extremely good.

Having demonstrated that the power spectra evaluated using the
two methods are consistent with each other, owing to the more stable
nature of the mode coupling matrix associated with M and the
desirable behaviour of the RC spectra evaluated using Method 2,
particularly on large angular scales, for the rest of the analysis we
work with spectra evaluated using this method.

3.2.5 Map-based Gaussian error estimation

The Gaussian part of the error on the measured C;” is estimated
directly from data and here we discuss the details of its evaluation.
It can be shown that the error on the power spectrum estimated from
two statistically independent measurements of the y-map is given by
the following equation,

AP+ (e + )+l

Q0+ 1ALy, f5T

[

, (10)

yy =
Cl

where C}" and C, denote the measurement noise power spectra of
the two statistically independent measurements and all other symbols
have their usual meaning. In practice the error on the measured power
spectrum is computed using (Tristram et al. 2005)

AHM1xHM2y\2 AHMI1xHM1 AHM2xHM2
(C, )+ Cy ¢!

2
Y= _ . (11)
< Q2+ DAL f5F

We compare our noise estimates on the total C;” with those from
Planck and find fully compatible results as shown in Fig. 7 (compare
dashed line with solid green line). We suspect that the small
differences between our noise estimates and those from Planck at
low multipoles are due to neglecting excess errors due to striping in
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Figure 7. Gaussian error estimates on the power spectrum for total, uRC, and
RC components of the y-map evaluated for g, = 6. The black dashed lines
depicts the error on the power spectrum evaluated by the Planck collaboration.
The difference in noise estimate on large scales is due to non-inclusion of
striping noise in our analysis.

the y-maps in our analysis.'> This detail makes little difference for
the total PS analysis since in this case the noise at low multipoles is
dominated by non-Gaussian terms, derived from theory. However on
using a low gy this error contribution can become important to the
uRC component at low-£ and we revisit this detail in Section 4.3. We
use an identical procedure to estimate errors on the power spectrum
corresponding to the RC and uRC of the y-map. Adding the noise
estimates on the power spectrum of uRC and RC components in
quadrature returns nearly the noise on the total C;”, but with a small
expected deficit. This deficit in noise power is the error on the cross-
correlation between the uRC and RC oc 2CYRCCRE,

3.2.6 Total error estimation

As noted before, the Compton-y field is highly non-Gaussian and
consequently the errors on the PS receive significant contribution
from the trispectrum. This non-Gaussian covariance is estimated
following the procedure detailed in Section 2.4. We draw attention to
Fig. 3, which shows the evolution of the diagonal of the trispectrum
covariance for different gy. In particular for the uRC note that
the trispectrum errors reduces on lowering the cluster detection SNR
threshold, even becoming comparable to the Gaussian noise variance
for sufficiently low values of gcy.

The total error covariance is now obtained as a sum of the Gaussian
covariance estimated from data and the trispectrum covariance which
is calculated duly accounting for f,. In Fig. 8, we show diagonal of
the error covariance along with a decomposition of the different
contributions to the yy power spectrum. First, we note that for
the total y-map the 2-halo contribution is buried under statistical
uncertainties when the trispectrum noise is properly accounted for
and the 2-halo term can be completely ignored. In the original
Planck analysis (Planck Collaboration XIII 2016b), the trispectrum
noise was omitted, thus necessitating the inclusion of the 2-halo
terms, although insignificant at the corrected error budget. More

3The Planck collaboration specifically mention that they add this to their
noise estimates, but neither this excess noise estimate nor the procedure to
estimate it are discussed.
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Figure 8. The yy-PS and their statistics for total y-map and for uRC corre-
sponding to gyt = 6. The gross total error on the power spectrum depicted here
includes the Gaussian as well as the trispectrum noise evaluated for Planck
binning. Note that for total y-map, the 2-halo contribution is statistically un-
detectable, whereas for uRC component the 2-halo contribution is above the
gross total error at £ >~ 40-500.

Table 2. Approximate SNR of the different components of the fiducial power
spectra, estimated assuming the total noise for each value of gy (cf. see
Fig. 7). Two treatments of the trispectrum contributions are used. The numbers
in brackets are Fisher estimates of the SNR after marginalizing over the
foreground templates for CIB, RS, and IR.

1 + 2 halo 1-halo 2-halo
Total (geut — 00) [Ter] 36 (3.7) 36 (3.4) 0.7 (0.3)
Gout = 6 [Teel 66 (8.6) 62(5.1) 6.1 (3.7)
Total (geut — 00) [Tyer] 25(3.5) 24 (3.3) 0.3(0.2)
Geut = 6 [Tyer] 47 (8.3) 45 (5.1) 4.6 (3.4)

interestingly, on masking ¢ > 6 clusters in the Planck y-map we
note that trispectrum is suppressed so much so that the total error
is nearly equal to the Gaussian noise alone (cf. Fig. 8). Although
the 2-halo contribution is mildly reduced, it is still above the total
expected statistical uncertainty at £ >~ 40-500. The corresponding
uRC power spectra are therefore expected to be sensitive to the 2-halo
contribution as is seen in Fig. 8. Note, however, that the Gaussian
variance estimated directly from the map is strongly dominated
by foreground residuals. The Gaussian error contribution is thus
still significantly above the expected theoretical Gaussian cosmic
variance terms (cf. Fig. 3).

To quantify this aspect further, we approximately estimate the
SNR with which the different components of a fiducial C;” power
spectrum are expected to be measured. The SNR is simply evaluated
using the following expression,

SNR = [C* M c]'"? (12)

where M, denotes the total noise covariance. Note that this
expression identically matches the Fisher estimate for a single
component analysis. In our approximate treatment, M, accounts
for the trispectrum error contributions, where we consider the cases
with and without off-diagonals.

The SNR estimates with and without foreground marginalization
are reported in Table 2. As expected, for the total y-map, the 1-
halo and 1 4 2-halo description of the yy-PS are indistinguishable.
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Figure 9. Final results for the obtained PS with completeness modeling.
The solid lines show the uRC power spectra and dashed lines depict the
RC power spectra, with different colours denoting the corresponding gcy. In
particular, note that the power in uRC power spectra preferentially reduces at
low multipoles which can be understood as an effect of removing relatively
high mass and nearby clusters which subtend larger angles on the sky. These
include foregrounds that are marginalized over in our analysis. The data for
this figure would be provided at TopoSZ.

On masking cluster ¢ > 6, the SNR improves by a factor of =~ 2,
suggesting an enhancement of the parameter constraint by a similar
factor. We further see that now the 2-halo contribution becomes
statistically important, suggesting a ~ 6.1o detection could be
possible with Planck data. On including foreground marginalization,
the estimated statistical significance of detection expectedly drops
but all the above discussed trends are retained. The foreground-
marginalized estimates continue to suggest a marginal detection of
the 2-halo at >~ 3.70. We also note that the 2-halo contribution is
less affected by foregrounds as the SNR is reduced only by a factor
of >~ 2 as opposed to the 1-halo term whose detection significance is
reduced by a factor of ~~ 10. Finally, off-diagonal contributions make
a =~ 30 per cent — 40 per cent difference in the expected SNR for our
analysis without foregrounds. When foregrounds are included, the
difference is minute. We discuss the implications of these estimates
in Section 4.

3.2.7 Final power spectra

In Fig. 9, we describe the dependence of the final power spectra on
Geut> both for the uRC (solid lines) and RC (dashed). These are the
sum of all contributions in the map, containing the y-distortion signal
and foregrounds that will be marginalized over in Section 4. At small
scales (£ > 10%), instrumental noise starts dominating for Planck,
such that we do not present this part in more detail. At £ < 103,
instrumental noise is mostly subdominant.

The amplitude of the uRC decreases when lowering gy, as less
power from SZ clusters remains in the map. The reduction is most
noticeable at £ ~ 50-100, suggesting that at both £ < 20-30 and ¢
2 200 foregrounds could be strongly contributing. Foregrounds can
potentially be further reduced in the y-map by using constrained-
ILC methods (e.g. Remazeilles et al. 2011; Remazeilles & Chluba
2020; Rotti & Chluba 2020), however, a more detailed discussion
is beyond the scope of this work, also because we want to stay as
close as possible to the standard Planck yy-PS analysis. For the RC
of the map, we observe the opposite trend with g.y, as expected.
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The shape and level of the RC-PS arguably resembles the theoretical
predictions shown in the lower panel of Fig. 1, building confidence
in the proposed approach.

4 MAXIMUM LIKELTHOOD ANALYSIS AND
RESULTS

Using the RC and uRC power spectra estimated for different values
of g., complemented with the corresponding estimates of Gaussian
and non-Gaussian noise as detailed in Section 2.4 and Section 3.2.5,
respectively, we now carry out the likelihood analysis on each of the
derived data sets. For this analysis we closely follow the procedures
detailed in'* Bolliet et al. (2018). There it was shown that the SZ
power spectrum is mainly sensitive to the parameter combination

0.35 —0.35
og Qm B 02
Fg=(—)(—= — hd2, 13
Sz (0.8) (0.3) (1‘25) 70 (13

The scaling with the Hubble constant slightly depends on the choice
of the pressure profile. Here, we quote the one for the Arnaud
et al. (2010) pressure profile parametrization. Written in this way,
Fgyz is expected to be close to unity for standard assumptions and
cosmological model. Since strictly speaking one cannot expect that
with the new completeness modelling or inclusion of the 2-halo
terms the parameter combination in equation (13) is exactly valid,
we consider the limitations of this treatment in Section 4.3; however,
the main conclusions are unaffected by this choice.

In our analysis we vary all relevant cosmological parameters, as
well as the mass bias (the neutrino masses are kept fixed to our
fiducial value), and obtain constraints on the parameter combination
of equation (13). The full trispectrum is taken into account in the
likelihood. We keep the amplitude of the correlated noise fixed
to Acn = 0.903 and eventually marginalize over the other three
amplitudes of foreground residuals corresponding to infrared source
(IR), cosmic infrared background (CIB), and radio sources (RS):
AR, Acis, and Ags. For these foregrounds we use the same power
spectrum templates as those used in the original Planck analyses
[Planck Collaboration XVI (2014b) and Planck Collaboration XIII
(2016b)] and these are available from table 3 of Bolliet et al.
(2018). For CIB in particular, we estimate the CIB power spectra
using the Planck CIB maps (Planck Collaboration XIII 2016f) to
confirm that there are no significant deviations in the shape of the
template for the different masks used in the uRC analysis, hence
justifying the continued use of the original CIB power spectrum
template.

The uniform priors we used for the varying parameters of the
MCMC are reported in Table C1. For the sampling we ran up-to-
date versions of Mont epython (Brinckmann & Lesgourgues 2018)
and cobaya (Torrado & Lewis 2020), which gave identical results.
To compute posterior probability distributions and contours we use
GetDist (Lewis 2019). For the theory predictions of the SZ power
spectrum we use CLASS_SZ (Bolliet et al. 2018; Bolliet et al. 2020).
Using this likelihood setup, we now focus on discussing the key
results of our analysis in the following sections.

14We explored the possibility of fixing the covariance matrix and combining
with an iterative approach, as suggested in Makiya, Hikage & Komatsu
(2020). While for gy = 6 this approximation did not affect the results,
for the total PS analysis, this increased the final error on b by a factor of
~ 4, introducing heavy wings to the posteriors of Fsz (see Appendix C for
discussion).
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Figure 10. Parameter constraints from the measured unresolved SZ power
spectrum for Planck. The CIB amplitude is highly degenerate with the SZ
power spectral amplitude. This decoupling can be understood from the distinct
CIB and resolved cluster SZ power spectral shapes.

4.1 A solution to the low £ degeneracy between foreground
residuals and SZ?

We begin by highlighting that in this section we only use the 1-halo
contribution to model the yy-PS. To understand the main effects of
the novel g.,-modelling, we present the 68 per cent and 95 per cent
Confidence Level (CL) parameter contours for various values of g,
in Fig. 10. The grey contours are the results from the total yy-PS
analysis, i.e. without using any completeness modelling in the SZ-
PS, thus resembling most closely the standard Planck PS analysis.

We note that here we chose to not use a prior bound for the
amplitude of total foreground residual, as usually imposed (e.g. see
equation 14 of Bolliet et al. 2018). This prior condition ensures
that the SZ contribution to the PS is always larger than the PS of
projected profiles of resolved clusters from the Planck catalogue.
Now this aspect becomes more important, since here we introduce a
new masking strategy and perform analyses where some of these
clusters are indeed masked, generally invalidating the condition.
Hence, for consistency, here we avoid any explicit condition on the
minimal amplitude that the SZ power spectrum of a masked map
should have. This allow us to quantitatively compare the results for
different g, with the Planck total SZ PS analysis.

For the total PS analysis, we can also observe a clear anticorrelation
between the cosmological parameter combination and the amplitude
of CIB (see top panel of 10). This arises because without this prior
bound, due to the large trispectrum at low ¢ (see Fig. 3), a significant
fraction of the yy-PS can be explained by a sum of foreground
residuals (mainly CIB and IR) with a reduced C;” amplitude. But as
we shall see now, masking the highest SNR clusters from the y-map
alleviates this problem.

As we decrease the cluster SNR cut from g,y = 20 (i.e. masking
17 haloes see Fig 4), to gew = 12 (i.e. masking 78 haloes) and
geut = 6 (i.e. masking 439 haloes), the surfaces of the 2d contours
tend to decrease in size for all pairs of parameters (see Fig. 10).
This is indeed expected, since masking the heavy clusters generally
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yields a gain in SNR for the SZ power spectrum as was discussed
in Section 3.2.6. Specifically, the constraint on Fsz improves from
Fsz = 0.935 4 0.026 for the total to Fsz = 1.017 £ 0.016 for gcy =
6. Most strikingly, as we mask more clusters, the CIB component
is driven to a nearly negligible level, where, e.g. for gox = 6
we find Acig < 0.2 (95 percent CL), as opposed to Acig < 0.9
(95 percent CL) for the total PS analysis. This means that the PS
of the masked y-map, which is slightly steeper than the total (see
Fig. 9), cannot accommodate a large CIB. Meanwhile, the posterior
of the IR amplitude remains roughly the same and the RS amplitude
is slightly less likely to take on large values as we mask more cluster.

Since the degeneracy between CIB and SZ is an anticorrelation
(i.e. more CIB requires less SZ and vice versa), having the CIB
amplitude driven to smaller values when we mask heavy clusters
implies an enhanced amplitude for the SZ-PS. As we mentioned
above, the amplitude of SZ is determined by Fs, and therefore the
central value for this parameter is seen to shift upwards (see bottom
left-hand corner of Fig. 10), towards values more consistent with
standard cosmology and assumptions (for which this combination
approaches unity). Our findings thus suggests that clusters detected
with a large SNR or correspondingly clusters of high mass have a
larger CIB contamination associated with them. This observation is
consistent with results of Planck Collaboration XIII (2016c), where
Planck team reported a high significance 60 detection of the CIB-tSZ
correlation by performing a stacking analysis of confirmed clusters.
In their analysis it was further noted that, the detection significance
drops to 30 on using the complete y-map, suggesting that uRC
component primarily adds noise, resulting in the reduction of the
detection significance of the CIB-tSZ correlation. This is also in line
with the more recent cross-correlation study (fig. 5 of Chiang et al.
2020), and thus highlights the potential of the proposed completeness
modelling as a diagnostic tool. Indeed, this also affects the constraints
on the mass bias, as we discuss next.

4.2 A consistent measurement of the mass bias in ACDM?

Since the y-map PS analysis provides a constraint on the combination
in equation (13) between cosmological parameters (og and 2,)
and pressure profile parameters (the mass bias B), it is difficult to
draw conclusions on the favoured cosmological model, or favoured
pressure profile model unless we bring in extra information. For
instance, one can assume a tight prior on the mass bias, motivated
by hydrodynamical simulations results, and derive constraints on
the cosmological parameters. This is what was originally done in
Planck Collaboration XVI (2014b) and Planck Collaboration XIII
(2016b), where assuming a standard mass bias of b = 0.2, the final
constraint on matter clustering was og = 0.77 £ 0.02 (68 per cent
CL). This is 2 standard deviations lower than the constraints from
primary CMB, namely o3 = 0.811 % 0.006 (68 per cent CL) (Planck
Collaboration et al. 2020), signifying one of the current cosmological
tensions. Alternatively, one can assume a cosmological model and
obtain a measurement of the mass bias within this model. This can
be achieved by jointly analysing primary CMB data with the y-
map PS, or, more simply, by combining the measurement of the
combination o 203345 % from the primary CMB with the constraint
on the combination of equation (13) to deduce the value of the bias
(see Bolliet et al. 2018).

The resulting value of the mass bias that was obtained in previous
works (Bolliet et al. 2018, 2020) can be summarized by b =
0.40 £ 0.05 (68 percent CL), using the Planck 2015 total y-map
power spectrum and primary CMB data. Note that this is nearly
the same as the constraint obtained using the Planck CNC (jointly
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Figure 11. Mass bias from our analyses with several values of the cluster
SNR cut gcyt, and measurements from previous work for comparison. See
Section 4.2 for detailed discussion. Here, we note that ‘Full-MCMC’ refers
to analyses where both the Planck y-map and primary CMB data was used
in the MCMC, while ‘Fgsz-scaling’ refers to analyses where only the Planck
y-map power spectrum were used in the MCMC and the bias constraints
was then derived from equation (13) assuming the Planck constraints of
equation (14).

with primary CMB data), namely b = 0.42 £ 0.04 (68 per cent CL)
(Planck Collaboration XIII 2016d), or the results from the re-analysis
of Salvati et al. (2019) who found b = 0.38 = 0.05 (68 per cent CL).
The Planck y-map power spectrum analysis paper did not present a
constrain on the mass bias parameter.

In what follows, we adopt the second method: we analyse the
Planck 2018 ACDM chains'> to obtain the constraint on cosmolog-
ical parameters:

Q 035
o ~
FMB — (&) (ﬁ) hoy® = 1.042 4 0.018 (68 per cent CL)
(14)

and then derive the constraints on the mass bias corresponding to the
Planck ACDM cosmological model, by combining equation (14)
with the constraints on the combination of equation (13) from our
analyses of the y-map (i.e. the 1d posterior PDF in the top panel of
Fig. 10).

Our results for several values of cluster SNR cut g, are shown in
Fig. 11 and reported in Table 3. For comparison, we also quote
several other measurements of b from the literature. These are
derived by combining SZ and CMB data from Planck with lensing
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Table 3. Mass bias measurements, including results from previous works.
For detailed discussion see the main text, and Fig. 11 for a summary of the
constraints.

Mass bias measurements (b = mean =+ 68 percent CL)

Zubeldia & Challinor (2019) 0.29 +0.10
Makiya et al. (2020) 0.277548

Koukoufilippas et al. (2020) 0.25 £0.03
Chiang et al. (2020) 0.21 £+ 0.03
Planck Collaboration XIII (2016d) [CNC] 0.42 4+ 0.04
Bolliet et al. (2018, 2020) [total PS] 0.40 &+ 0.05
Total (geut — 00) [1-halo] 0.41 £ 0.06
URC gy = 20 [1-halo] 0.34 £+ 0.06
uRC gy = 12[1-halo] 0.32 £ 0.06
UuRC gy = 9 [1-halo] 0.29 &+ 0.05
URC gyt = 6[1-halo] 0.25 £ 0.05
uRC gcye = 6 [1-halo, full MCMC] 0.13 +0.05
uRC gy = 6 [1 + 2-halo, full MCMC] 0.15 £ 0.04

measurements (Zubeldia & Challinor 2019; Makiya et al. 2020) and
by cross-correlating with galaxy catalogues (Chiang et al. 2020;
Koukoufilippas et al. 2020). As the cluster SNR cut decreases and
more clusters are masked, the posterior probability distribution of
the mass bias shifts towards lower values of the mass bias b, which
corresponds to a higher amplitude of SZ relative to CIB. Although
for Fsz we found error improvements with g, these do not translate
directly to b.

For g., = 20, when only a few clusters are masked, we find a
result close to the previously reported measurement, which lies in
the upper part of the range suggested by hydrodynamical simulation
and analytic calculations of non-thermal electron pressure with a
typical value of b >~ 0.2 £ 0.1 (see e.g. Nagai, Kravtsov & Vikhlinin
2007; Shaw et al. 2010; Battaglia et al. 2012; Shi & Komatsu 2014;
Biffi et al. 2016; Shi et al. 2016). For g, = 6, i.e. when we mask
all the clusters of the Planck COSMO sample, we find a mass
bias of b = 0.25 4= 0.05 (68 per cent CL), consistent with theoretical
expectations. Although other recent analyses (Zubeldia & Challinor
2019; Chiang et al. 2020; Koukoufilippas et al. 2020; Makiya et al.
2020) have reported measurements of the mass bias consistent with
the theory predictions, some of these works rely extensively on data
from galaxy surveys.

It is also important to highlight the noticeable evolution of the
central value in the mass bias when lowering the value of gy
(Fig. 11). This could be taken as a hint for mass-dependent bias in the
sample of clusters, since for varying g, the effective mass relevant to
the PS reduces (see Fig. 2). Recent numerical simulation indeed find
indications that support this finding, with the mass bias reaching b
=~ (.4 for massive clusters (e.g. Henson et al. 2017). However, given
the possibly significant contamination from CIB, more investigations
and data are needed to conclude in this matter. The addition of SZ
data from ACT and SPT could further help addressing this question,
but we leave an exploration to the future.

In this context, we also mention that the expected effect of relativis-
tic SZ (Challinor & Lasenby 1998; Itoh, Kohyama & Nozawa 1998;
Sazonov & Sunyaev 1998; Chluba et al. 2012, 2013) is progressively
reduced when lowering the g.,. Corrections from relativistic SZ to
the distortion shape are not included in the construction of the y-map,
but should lead to an underestimation of the yy-PS, thereby affecting
the inferred mass bias (Remazeilles et al. 2019). For g., = 6, the
average mass contributing to the SZ PS at £ ~ 100-1000 drops nearly
by a factor of 3 relative to the total PS calculations (see Fig. 2). For
the standard yy-PS analysis, the effect of relativistic SZ on the mass
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bias is expected to reach the level of ~ 1-2 standard deviations!®
for Planck (Remazeilles et al. 2019). Since the bias from relativistic
SZ is directly proportional to the power spectrum weighted mean
mass of the sample, we thus expect relativistic SZ to become less
important. The proposed completeness modelling of the PS again
provides the means to investigate this question in more detail.

4.3 Signatures of the 2-halo term in the Planck y-map?

The simple Fisher estimates presented in Section 3.2.6 suggested the
detection of the 2-halo contribution at >~ 3.4¢ after duly accounting
for the full trispectrum and marginalization over foregrounds could
be possible. Since the 2-halo contribution is only a part of the total
model describing C;”, it is not as useful to discuss its stand alone
detection. The more relevant quantity is the enhancement in the
SNR between the approximate 1-halo modelling and the 1 + 2-halo
modelling of the C;”, for which our Fisher estimates suggesta > 3.2¢
enhancement (see Table 2). Motivated by these observations we now
steer our attention to carefully studying the 2-halo contribution to the
yy-PS and seek its signatures in the C;” estimated from Planck data
for g., = 6. We also assess the importance of the 2-halo contribution
in the inference of the mass bias.

To detect signatures of this subtle 2-halo contribution, we revise
our simplified statistical analysis in favour of more robust approach.
The results presented in Section 4.2 relied on using the scaling
relation Fsz, and assuming this to be valid for different values of gy.
We already noted that this scaling relation in detail cannot be expected
to hold, as it was derived for the total yy-PS and only accounting
for the 1-halo prescription (Bolliet et al. 2018). It is therefore not
guaranteed to be perfectly valid for yy-PS corresponding to different
values of g, and likely will be even more inaccurate when working
with the full 1 + 2-halo model of C;”.

Here we derive the parameter constraints by running the MCMC
analysis using the joint CMB-SZ likelihood, which varies all the
standard cosmological parameters and mass bias b along with the
three SZ foreground template amplitude parameters (Acg, Ars, and
Ar). Here, while the cosmological parameters of interest o'g, €2,,, and
H, are primarily constrained by the CMB measurements the bias and
SZ foregrounds are constrained by the measurement of the SZ power
spectrum. This accounts for all the relevant parameter covariances
and data correlations.

We perform two separate analyses, one in which the SZ likelihood
uses the 1-halo model and the other in which the complete 1 + 2-
halo model is used to fit the measured SZ spectrum, simultaneously
fitting for the amplitudes of the foreground templates. Both analysis
yield cosmological constraints that are consistent with standard
cosmology. We first compare the quality of the two fits and find log
likelihood improvement of Alogl = —17 for the 1 + 2-halo model,
indicating a preference towards inclusion of the 2-halo contribution
in the theoretical modelling of the SZ-PS.

The best-fit spectrum C;” along with foreground marginalized
SZ power spectrum are presented in Fig. 12. We can see that the
measured SZ-PS continues to show power in excess of the best fit
theory at multipoles below ¢ < 40. The SZ contribution from the
diffuse warm gas in the local Universe has been suggested to have a
nearly constant shape and with an amplitude which closely matches
the low-multipole excess seen in the Planck yy-spectrum (Hansen
et al. 2005). This contribution is not included in the analytical

16The effect is increased when using more recent T — M scaling relations
from Lee et al. (2020).
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Figure 12. Marginalized unresolved SZ power spectrum from our analysis
with ey = 6, along with the best-fit model including foreground and noise
residuals. Here the best-fitting model is obtained from the analysis of the
Planck 2018 primary CMB data and our y-map. The main parameters are
Qph? = 0.022, Qch? = 0.12, ng = 0.96, 03 = 0.82, h = 0.67, B = 1.2 (i.e.
b =0.165), Acig = 4.71 x 1073, AR = 1.49, Ags = 0.19 and Acn = 0.9.
The data for this figure will be made available at TopoSZ.

estimates of the power spectrum and is one possible explanation
for the excess power seen at these low multipoles.

Evidently, a more mundane explanation exists: Planck y-maps are
known to suffer from foreground residuals and striping systematics
at low multipoles. In the total y-map analysis, the influence of these
artefacts is suppressed due to the large trispectrum errors at low
multipoles. However, in our topographic analysis, masking high ¢
clusters results in significant reduction in the trispectrum errors, thus
making our analysis more prone to large-angle systematics in the
y-map.

To quantify the effect of the low-¢ excess further we ran a
likelihood analysis in which we exclude the first 34 multipoles
(this corresponds to rejecting the first 5 bins in the Planck binning
scheme) of the estimated yy-PS. We found the same mean value for
the constraint on the bias, and a 15 percent enhancement on the
uncertainty. Hence, this leaves our conclusions unchanged, showing
that the parameter constraints are mostly driven by scales £ = 40.

Having noted the importance of the 2-halo component, we now
return to the discussion of the halo mass bias. The constraints on
parameters driven by the SZ measurements for the 1-halo and 1 + 2
halo likelihood analysis are depicted in Fig. 13. We first note that the
constraints on the mass bias when modelling the SZ power spectrum
with the 1-halo model are now b = 0.13 £ 0.05 as opposed to the
value reported with the simplified Fsz treatment, b = 0.25 £ 0.05.
This confirms that using the effective scaling derived for the total PS
becomes inaccurate when working with masked y-maps and would
have to be re-calibrated for each g This difference in analysis also
leads to an interpretation that suggest a lower IR contamination in
the SZ-PS by nearly a factor of ~ 2. Finally, we note that when
modelling the measured spectrum with complete model yields b =
0.15 £ 0.04, which is fully consistent with the value suggested by
simulations b >~ (.2 to within 1.30.

5 DISCUSSION AND CONCLUSIONS

We introduced a new topographic analysis of the Compton y-map
by decomposing it into a RC (resolved) and uRC (unresolved)
component, which is essentially achieved by masking the clusters
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Figure 13. Marginalized 2d posterior probability distribution for the analysis
with cluster SNR cut gy = 6.

detected above some preset SNR threshold. We demonstrated that this
analysis strategy can be carried out on multifrequency observations
of the microwave sky using only minimal external information. While
analogous ideas have been suggested in previous works, these relied
of supplementing CMB data with other observations. In addition to
introducing the topographic y-map analysis, we also use it to analyse
the Planck data, finding several new results.

The topographic analysis suggested here combines the data prod-
ucts resulting from an ILC like analysis that yields the Compton-y
map and an MMF analysis that yields characteristics of individual
cluster detections (SNR and sky location) as well as the survey
completeness function. Our formalism then introduces the survey
completeness function, traditionally used only in the CNC analysis,
into the y-map PS modelling (see Section 2). Applying this new
framework, we demonstrate that masking clusters detected above
a given SNR threshold results in a noticeable reduction of the
trispectrum errors at a relatively small loss of signal, resulting in
an overall enhancement of the SNR of the signal detection. Our
estimates further demonstrate that the detectability of the 2-halo
terms can be enhanced using the suggested strategy (see Figs 1
and 8). Since all these estimates were made accounting for Planck
measurement noise, this suggests that Planck measurements of the
Compton y-field could deliver new insights which previous analyses
were insensitive to.

Motivated by these observation, we carried out the topographic
analysis on the Planck y-map. To make sensible PS estimates for
the uRC and RC components, we developed an augmented MASTER
algorithm (see Section 3.2.3). Next, we performed a few variants of
the likelihood analyses on uRC and RC power spectra derived for
different SNR thresholds (see Section 4). The analysis of the total y-
map delivered constraints which are consistent with previous findings
(Planck Collaboration XIII 2016d; Bolliet et al. 2018), serving as a
benchmark for our analysis. We find that progressively reducing
the SNR threshold for masking clusters results in a reduction of
the Acip amplitude (see Fig. 10). This is qualitatively consistent
with findings of the CIB-tSZ correlation study reported in Planck
Collaboration XIII (2016c). At the same time, we find the mass
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bias b to systematically decrease, approaching the standard value of
b ~ 0.2 found in simulations (see Fig. 11). This suggests that the
tension between cosmological parameters derived from CMB and
clusters could be dominantly sourced by the CIB-tSZ correlation. In
future work this will be investigated using the halo model formalism
(Maniyar, Béthermin & Lagache 2020; McCarthy & Madhavacheril
2020) for the CIB power spectrum, and its cross-correlation with
tSZ. Alternatively, Planck data could contain observational hints for
mass-dependent bias, as seen in recent hydrodynamical simulation
(e.g. Henson et al. 2017). However, it is clear that additional data and
analysis are needed to reach a firm conclusion.

In Section 4.3, we focus on interpreting the low-multipole excess
power observed in the yy-PS for all our SNR thresholds. This excess
power is also seen in the total yy-PS but it becomes more prominent
for lower SNR thresholds (see Fig. 9). We find indications that adding
the 2-halo contribution to the theoretical SZ-PS computation provides
a better representation of the data. However, even on including the 2-
halo terms, the data still exhibits excess power at the largest angular
scales. We speculate that this excess power could be sourced by
diffuse SZ (Hansen et al. 2005) which is not included in the evaluation
of the theoretically yy-power spectrum; however residual foreground
contamination is likely to play a crucial role, warranting a more
careful reanalysis starting from the raw data products of Planck. By
excluding the first 34 multipoles of the SZ-PS from the analysis, we
verified that our conclusions on the mass bias are not affected by this
excess.

Our novel framework for the yy-PS analysis comes with several
important benefits. Since the same completeness modelling is an
essential ingredient to the corresponding CNC analysis, we can now
confidently combine this with the SZ-PS likelihood. The natural idea
is to use the PS modelling for the uRC component while treating the
RC component using CNC. Since the 2-halo term is a correction to
the RC component, the two data products are largely independent. By
repeating the analysis with varying g, we can study the dependence
of derived parameters on the chosen split, introducing a powerful new
diagnostic. This can in principle be used to obtain a mass-dependent!”
measurement of the bias parameter. In the future, with the advent of
more data from the SO (The SO Collaboration 2019) or CMB Stage-
IV (Abazajian et al. 2016), this can be further refined, potentially
even allowing to introduce g, bins. Given the important role of CIB
contamination, high frequency coverage provided by CCAT-prime
(Parshley et al. 2018) could become highly relevant. The method
could be additionally enhanced by adding information from higher
order statistics, which can help break degeneracies, as has recently
been demonstrated (Ravenni et al. 2020). Together this would provide
a powerful way to model the underlying bias parameter and halo-
mass function.

We finally emphasize that the uRC component contains new
complementary information with respect to the RC. Indeed, for low
qeut, 1t 1s largely impossible to speak of separate clusters. This means
that the yy-PS can become sensitive to new contributions such as
diffuse SZ (Hansen et al. 2005). Since this contribution is expected to
dominate at large angular scales, it will be very interesting to further
study this signal using space-based experiments such as Litebird
(Matsumura et al. 2014), PIXIE (Kogut et al. 2011, 2016), or more
futuristic CMB imagers (Hanany et al. 2019; Basu et al. 2019). Since
accessing the low multipoles from the ground is challenging, this
could be an exciting target for space-based experiments.

7In detail a precise weighting scheme has to be introduced to compute the
effective mass relevant to the observable.
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APPENDIX A: THE 1PPDF OF THE MASKED
y-MAPS

Ideally the Compton y-map is expected to be fully positive, since
it is a measure of the electron gas thermal pressure integrated
along the line of sight. However the y-map inferred from analysis
on multifrequency microwave maps does not have this property,
owing to contamination from foregrounds and measurement noise
(e.g. Rubifio-Martin & Sunyaev 2003). The negative excursions
in the 1-point PDF (1pPDF) due to measurement noise can be
estimated from differences between y-maps reconstructed using the
half mission 1 and half mission 2 data sets. Any excess negative
excursions in the 1pPDF of the reconstructed y-map, over and
above those expected from noise alone, must be due to residual
foregrounds.

Fig. A1 depicts the histogram of the reconstructed y-map and the
corresponding noise for different analysis masks. The black (grey)
curves depicts the 1pPDF of the noise in regions corresponding to
the uRC (RC) component of the reconstructed y-map. Subtracting
the RC component from the y-maps, results in the blue histogram
which has a weaker positive skewness tail, since the high mass
cluster contribution to the y-map have been removed, Gaussianizing
the distribution of the reconstructed y-map. However note that
the negative excursion is identical to the excursion seen in the
green histogram corresponding to the total y-map, indicating that
a dominant portion of the galactic foreground contamination is in the
uRC of the y-map. The remnant excess positive skewness seen in the
blue histogram can be attributed to un-subtracted clusters and some
foreground residuals in the y-map.

The 1pPDF corresponding to the RC component of the y-map
has a negative tail, which appears consistent with the excursion
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Figure Al. This figure depicts the un-normalized histogram of total, uRC,
and RC component of the NILC y-map for gcy = 6. The black histogram is that
of the measurement noise while the green histogram is that of the NILC y-map
in the analysis region defined by the mask M. The blue histogram depicts
the histogram of the uRC component of the y-map and notably it overlays the
negative excursion seen in the green histogram. The grey histogram depicts
the un-normalized noise histogram while the magenta histogram is that of the
RC component defined by Mpgc. Notably the magenta histogram overlays
the positive end of the green histogram and appears consistent with noise on
the negative end.

expected from measurement noise, while almost completely ac-
counting for the positive skewness originally seen in the green
histogram (capturing a dominant fraction of the non-Gaussian peaks
in the y-field). While galactic and extragalactic foregrounds (e.g.
CIB) can also add in positive to the y-map, these cannot be simply
diagnosed by inspecting the 1pPDF of the y-map and requires a more
detailed model-dependent analysis which is discussed in the main
text.

APPENDIX B: MASTER ALGORITHM TO
MEASURING THE PS IN THE PRESENCE OF A
MASK

The masks used in the analysis are fairly complicated. This is
particularly true while estimating the PS contribution from the
RC component. The respective masks are depicted in Fig. Bl.
To ensure our implementation of the MASTER algorithm works as
expected even on this aggressive RC mask we ran several null
tests. We simulate a Gaussian realization of the y-map using the
fiducial Compton y-map power spectrum. To this simulation, we
apply the masks corresponding to the uRC and RC components
of the y-map. Finally we estimate the master corrected power
spectrum of the respective fields and the results from this exercise
are summarized in Fig. B2. This exercise confirms that our imple-
mentation of the MASTER algorithm is able to make an unbiased
recovery of the input fiducial power spectrum even for the very
aggressive mask used to estimate the contribution from the resolved
clusters.
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Gal. + PS + Cluster mask apodized (fsy = 0.345)

(a) Un-resolved cluster mask

Gal. + PS + Diffuse mask apodized (fgy = 0.011)

(b) Resolved cluster mask

Figure B1. The mask depicted on top is used to estimate the contribution to
the power spectrum sourced by the uRC while that in the bottom is used to
estimate the contribution from the RC of the Compton y-map.
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Figure B2. The corrected power spectrum estimated using the conventional
MASTER algorithm for masks used total, RC and uRC analysis. Note that the
recovered spectra in the three different analysis yield power spectra which
are consistent with the injected fiducial spectrum.
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Figure C1. Comparison of the posteriors for different methods and codes
to perform the maximum likelihood analysis for the total yy-PS case.
MontePython [MP] and Cobaya [CB] agree well. The fixed covariance
matrix approach followed here increases the width of the posteriors when
compared to the varying covariance matrix approach.

APPENDIX C: TREATMENT OF THE
PARAMETER DEPENDENCE OF THE
COVARIANCE MATRIX

We explored the possibility of fixing the covariance matrix and
combining with an iterative approach, as suggested in Makiya et al.
(2020). This iterative approach has been argued to change the results
of the inference for Gaussian fields (Carron 2013). Following Makiya
et al. (2020), here we keep the non-Gaussian covariance fixed in the
likelihood evaluation. The latter is estimated from some fiducial
set of parameters while only updating the theoretical C;” power
spectrum. The parameter optimization procedure is repeated multiple
times, using the best-fitting parameters inferred from the previous
iteration to define the covariance matrix and this is repeated until
convergence.

For the total PS analysis, this increased the final error on b
by a factor of ~ 4, i.e. b = 0.46 £ 0.21, by introducing heavy
wings to the posteriors of Fsz (see Fig. C1). Once completeness
modelling is included, we find a small effect when using fixed versus
varying covariance. In this case the trispectrum error (which depends
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Figure C2. Comparison of the posteriors for gc, = 6 with and without
varying covariance matrix. This choice has a marginal effect on the result.

Table C1. Range of the uniform prior probability distri-
bution used in our maximum likelihood analyses.

Parameter min. max.
h 0.55 0.90
Quh? 0.020 0.025
Qch? 0.11 0.13
10%A, 0.1 10
ng 0.94 1
B 1 2
Acis 0 5
AR 0 5
Ags 0 5

on cosmology) is significantly reduced and is even sub-dominant
to the Gaussian error for g, = 6. Consequently, irrespective of
whether we use varying covariance or a fixed covariance scheme,
the posteriors are nearly identical, as shown in Fig. C2. Our
main results are therefore not affected by these differing analysis
choices.

This paper has been typeset from a TgX/IATgX file prepared by the author.
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