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ABSTRACT
We present a method to compute the magnification of a finite source star lensed by a triple lens system based on the image
boundary (contour integration) method. We describe a new procedure to obtain continuous image boundaries from solutions
of the tenth-order polynomial obtained from the lens equation. Contour integration is then applied to calculate the image areas
within the image boundaries, which yields the magnification of a source with uniform brightness. We extend the magnification
calculation to limb-darkened stars approximated with a linear profile. In principle, this method works for all multiple lens
systems, not just triple lenses. We also include an adaptive sampling and interpolation method for calculating densely covered
light curves. The C++ source code and a corresponding PYTHON interface are publicly available.

Key words: gravitational lensing: micro – methods: numerical – software: public release.

1 IN T RO D U C T I O N

Gravitational microlensing has opened a unique window for probing
extrasolar planets beyond the snowline (the minimum radius from
a star at which water ice could have condensed) (Mao & Paczynski
1991; Gould & Loeb 1992; Gaudi 2012; Mao 2012; Gould 2016).
Among the 132 confirmed microlens planets, 12 were detected in a
triple lens event.1

Triple lens systems are usually categorized into two groups, a host
star plus two planets or a binary star system plus a single planet.
Three two-planetary systems have been firmly established (OGLE-
2006-BLG-109, Gaudi et al. 2008; Bennett et al. 2010; OGLE-2012-
BLG-0026, Han et al. 2013; Beaulieu et al. 2016; Madsen & Zhu
2019; OGLE-2018-BLG-1011, Han et al. 2019), and three likely
candidates (OGLE-2014-BLG-1722, Suzuki et al. 2018; OGLE-
2018-BLG-0532, Ryu et al. 2019; KMT-2019-BLG-1953, Han et al.
2020). A planet in a binary star system (i.e. circumbinary planet)
is another triple lens case. So far, six cases have been reported in
the literature (OGLE-2006-BLG-284, Bennett et al. 2020; OGLE-
2007-BLG-349, Bennett et al. 2016; OGLE-2008-BLG-092, Poleski
et al. 2014b; OGLE-2013-BLG-0341, Gould et al. 2014; OGLE-
2016-BLG-0613, Han et al. 2017; OGLE-2018-BLG-1700, Han et al.
2020).

The discovery rate of triple lens systems has nearly doubled since
2016, which is mainly attributed to the inauguration of the Korea
Microlensing Telescope Network (KMTNet; Kim et al. 2016) in that
year. With the continuous operation of KMTNet and the upcoming
new facilities like EUCLID (Beaulieu et al. 2010; Bachelet & Penny
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1Information on the confirmed extrasolar planets is from http://exoplanet.eu
as of 2020 November 20.

2019) and WFIRST (Penny et al. 2019), we expect to encounter more
triple lens events.

Analysing microlensing event is time-consuming. Some binary
events may even take years (Bozza 2010). The situation will be even
worse when handling triple lens events because of the exponentially
increasing parameter space. Thus, an efficient method is needed
to model light curves for such systems. However, due to the
inverse nature of solving the lens equation, and the finite source
effect, the computation of magnification by a triple lens system is
challenging. Three aspects need to be addressed, namely solving the
lens equation numerically, dealing with complex caustic structures
and image topologies, and handling finite source effects including
limb darkening. Our approach is explained in the next section.

Currently, there are two main schemes for modelling triple lens
events. The first approach is based on the ‘binary superposition’
approximation method (Han et al. 2001; Rattenbury et al. 2002; Han
2005; Han et al. 2013), while the second is based on the ray-shooting
method (Kayser, Refsdal & Stabell 1986; Schneider & Weiss 1987).
Neither scheme is completely satisfactory however.

For some triple events, their light curves can be approximated as a
superposition of two binary light curves. Nevertheless, the superpo-
sition method is not always valid and sometimes the detectability of
a second planet will be suppressed by the presence of the first planet
(Zhu et al. 2014; Song, Mao & An 2014). In ‘binary superposition’,
several methods may be used to calculate the binary light curves,
including the contour integration method (Gould & Gaucherel 1997;
Dominik 1998). In this work, the general contour integration method
introduced in Gould & Gaucherel (1997) is implemented in the triple-
lens scenario.

To calculate magnification for finite sources, Vermaak (2000)
started from finding the image positions corresponding to the source
centre, then used a recursive flood-fill algorithm to check whether
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neighbouring integration elements in the image plane can be mapped
on to the source through the lens equation. Dong et al. (2006), Dong
et al. (2009) and Poleski et al. (2014a) advocated the map-making
method, which is a hybrid of the ray-shooting and contour integration
methods. Bennett (2010) proposed a method for modelling high
magnification events for multiple-lens microlensing events, based on
the image centred ray-shooting approach of Bennett & Rhie (1996).

In contrast, Mediavilla et al. (2006, 2011) proposed an approach
based on inverse polygon mapping to compute the magnification
maps. For ray-shooting methods, if the source radius is small or close
to the caustics, high-density light rays are needed. Other than for
validation purposes, in this work we choose not to use ray-shooting
for triple microlensing light-curve calculations.

The purpose of this paper is to present a method for calculating
the magnification of a limb-darkened finite source lensed by a triple
lens system. Our approach, overviewed in Section 2, is based on
calculating image areas by contour integration but with an alternative
procedure for obtaining the image boundaries. In Section 3, we
introduce the complex lens equation and our notations, while in
Section 4, we present the details of our method. In Section 5, we
present the results. Finally, a short summary is given in Section 6.

2 A PPROACH

Modelling lensed light curves is achieved by setting up a represen-
tation of the lensing system and then repeatedly moving a source
across the lensing system and using its magnifying effect to generate
model light curves. Every model light curve is compared with the
observed light curve and various lensing parameters are adjusted
until a best-fitting curve is found. The focus of this paper is on the
magnification calculation required for a limb-darkened, finite-sized
source.

Real source stars have finite sizes, and this causes their light curves
to be significantly modified in high magnification regions (Witt &
Mao 1994; Gould 1994). Finite source effects are essential for binary
and triple lens systems because they are related to the mass ratios of
the lens components, and can lead to measurements of the angular
Einstein radius θE when combined with knowledge of the angular
source radius θ∗ (e.g. Yoo et al. 2004). Finite source effects are
particularly important when the source crosses a caustic (where the
magnification diverges to infinity) or comes close to a cusp caustic
(Witt & Mao 1994; Gould 1994; Nemiroff & Wickramasinghe 1994).
In these cases, the source cannot be regarded as point-like, and the
observed magnification is an average of the magnification pattern
over the face of the source. The surface brightness of a star is however
not uniform (Milne 1921). This is known as the limb-darkening
effect, which also affects the microlensing magnification (Gould &
Welch 1996; Gaudi & Gould 1999; Heyrovský 2003; Dominik 2005).
Limb-darkening effect needs to be considered to model precisely
observed light curves, e.g. as in the first limb-darkening measurement
by microlensing, the event MACHO 1997-BLG-28 (Albrow et al.
2001). It is thus crucial to have a reliable and efficient way to calculate
the magnification of a limb-darkened, finite size source for triple lens
systems.

For every position of the finite source, the lens equation has to
be solved at multiple points around the source boundary so that the
boundaries of the images can be determined. Gravitational lensing
preserves surface brightness (Misner, Thorne & Wheeler 1973). For
a source with uniform surface brightness, the magnification due to
lensing is equal to the ratio of the total image area and the source
area. Usually, a two dimensional image area is computed with double
integrals but these can be converted into a line integral accord-

ing to Stokes’ theorem. This is the contour integration technique
(Schramm & Kayser 1987; Dominik 1993, 1995, 1998; Gould &
Gaucherel 1997; Bozza 2010; Bozza et al. 2018) that we use in our
work.

The triple lens equation has to be solved numerically. The lens
equation for a single lens can be easily solved: the two image
positions and magnifications can be derived analytically (Einstein
1936; Paczynski 1986). The lens equation for a binary lens is
considerably more complicated, as it is no longer analytically
tractable. The binary lens equation can be transformed into a fifth-
order complex polynomial (Witt 1990). Skowron & Gould (2012)
provided an algorithm to solve complex polynomial equations, and
we use this algorithm in our modelling. It has been used elsewhere in
a public package named VBBinaryLensing to calculate microlensing
light curves for binary lens systems (Bozza 2010; Bozza et al. 2018).
They found that ∼ 80 per cent of computer time is spent in the root
finding routine (Bozza 2010). This usage would increase for the tenth
order polynomial for a triple lens system if they were to extend their
method to the triple lens scenario.

We choose not to use the image boundaries obtaining method in
VBBinaryLensing, as we believe it would require significant effort
to extend it to the triple lens scenario. We have implemented an
alternative strategy for determining image boundaries which we
describe in Section 4.2, and then compare with previous methods
in Section 4.5.

3 G E N E R A L C O N C E P T S

In this section, we introduce the complex lens equation and the
parametrizations we use.

3.1 Lens equation for N point lenses

Using complex notations, the N point lens equation can be written
as (Witt 1990)

ζ = z + f (z), f (z) ≡ −
N∑

j=1

mj

z − zj

, (1)

where ζ = y1 + i y2 is the source position, z = x1 + i x2 is the
corresponding image position. mj , zj are the fractional mass and
position of jth lens,

∑
jmj = 1, z and zj are the complex conjugates

of z and zj. If a point z in the lens plane satisfies the lens equation,
it will map back to the source position ζ through the lens equation,
in this case we call z a true image of ζ . The position coordinates
ζ, z, zj are in units of the angular Einstein radius θE of the lensing
system,

θE =
√

4GM

c2

Dls

DlDs
, (2)

where Dl, Ds are the angular diameter distances of the observer to the
lens and to the source, Dls is the angular diameter distance between
the lens plane and the source plane, M is the total mass of the lens
system, c is the speed of light, G is the gravitational constant.

Taking the conjugate of equation (1), we obtain an expression for z,
which one can substitute back into the original lens equation to obtain
an N 2 + 1 order complex polynomial in z only (Witt 1990). So the
maximum number of roots (images) cannot exceed N 2 + 1. In fact,
some of these roots are not true images, i.e. although they satisfy the
complex polynomial, they do not satisfy the original lens equation,
in this case, they are called false images. In Bozza (2010), such
images are called ghost images. It has been shown that the true upper
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limit of true images is 5(N − 1) (Rhie 2001, 2003; Khavinson &
Neumann 2004). Notice that for N > 3, there must be false images
from solving the polynomial for any given source position. We will
introduce how to distinguish true and false images in Section 4.3.

For each image position z, its magnification (μ) is related to the
Jacobian J by

μ = J−1, J = 1 − f ′(z)f ′(z), f ′(z) = df (z)/dz, (3)

where f (z) is defined in equation (1). Some image positions will
lead to J = 0 with the magnification μ becoming infinite. These
image positions constitute ‘critical curves’ in the lens plane, with
the corresponding source positions forming ‘caustics’ in the source
plane. The total magnification μPS can be obtained by summing the
inverse Jacobian determinant for each true image zI (I = 1, · · ·, Nim),
corresponding to the source ζ

μPS =
Nim∑
I=1

1

|J (zI )| , (4)

where Nim is the total number of true images.

3.2 Triple lens systems: parametrization

We ignore the source baseline flux (source flux before microlensing
event happens, Han 2000) and blending flux (flux that is not
physically associated with the lensed source, Di Stefano & Esin
1995; Smith et al. 2007), which are easy to model linearly. With
this simplification, there are ten parameters in modelling triple lens
light curve, five lens parameters (s2, q2, s3, q3, ψ) and four trajectory
parameters (t0, u0, tE, α), plus the source radius ρ. ρ = θ∗/θE, where
θ∗ and θE are the angular source radius and the angular Einstein ring
radius of the lensing system, respectively. s2 and q2 are the separation
and mass ratio between the first and second lenses, i.e. q2 = m2/m1.
Similarly, s3 and q3 are the separation and mass ratio between the
first and third lenses. ψ is the orientation angle of the third body.
t0 is the time when the source is closest to the primary mass m1.
The impact parameter u0 is the primary lens-source separation at t0.
s2, s3 and u0 are in units of θE. The Einstein time-scale tE controls
the duration of the event. α is the source trajectory angle with respect
to the m1–m2 axis. We note that the number of parameters in many
triple events is even higher due to non-trivial lens motion (parallax or
orbital motion effects). In addition, for a finite source, limb-darkening
parameters (filter-specific) are relevant too. To start, we focus on the
magnification of a uniform brightness star. A graphical illustration
of the triple lens system (similar to fig. 1 of Han et al. 2017) is shown
as Fig. 1.

Since most of the observed triple microlensing events have a third,
low-mass body (either a second planet or a planet in a binary), we
choose the origin of the coordinate system to be the centre of mass
of the first two masses. Thus, the conversion from (s2, q2, s3, q3, ψ)
to mj, zj is as follows:

m1 = 1/(1 + q2 + q3),

m2 = q2 m1,

m3 = q3 m1 = 1 − m1 − m2,

z1 = −q2 s2/(1 + q2) + i 0,

z2 = s2/(1 + q2) + i 0,

z3 = −q2 s2/(1 + q2) + s3 cos(ψ) + i s3 sin(ψ). (5)

We note that whichever coordinate system is chosen, magnification
can still be calculated using this method. The input parameters are
mj , zj , ρ, and ζ , and the output is the magnification at ζ .

Figure 1. Schematic diagram of a triple lens system. m1, m2, and m3 are the
fractional masses of the three lenses (m1 + m2 + m3 = 1, m1 ≥ m2 ≥ m3).
The separations of m2, m3 relative to m1 are labelled as s2 and s3, m1 and
m2 are on the horizontal axis, ψ is the direction angle of m3 relative to the
horizontal axis. The source trajectory is parametrized by the trajectory angle
α and the impact parameter u0.

3.3 Finite sources: parametrization

For a circular source with radius ρ, centred at ζ (c) = y
(c)
1 + i y

(c)
2 , its

boundary can be represented as

ζ (θ ) = ζ (c) + ρeiθ , θ ∈ [0, 2π]. (6)

In practice, we approximate the circular source boundary by a
polygon with n different vertices ζ (θ k), where θ0 < θ1 < · · · <

θ k < · · · < θn = θ0 + 2π . The images of the source are distorted
by the lens system (see Fig. 3). The θ k are not necessarily sampled
at equal intervals. For each θ k, we need to solve the corresponding
lens equation to obtain both true and false images, and attach them
to image tracks. Then we pick the true image segments out to obtain
the true image boundaries. Finally, we can apply Stokes’ theorem to
obtain the enclosed area of these image boundaries.

4 FI N I T E SO U R C E M AG N I F I C AT I O N FO R
TRIPLE LENSES

Before applying Stokes’ theorem to calculate the magnification of
a uniform brightness star, one needs to obtain continuous image
boundaries. In Section 4.2, we discuss the new method we have
developed to connect the image boundaries. In Section 4.7, we have
also adopted Bozza’s quadrupole test (Bozza et al. 2018) to decide
whether point source magnification μPS is sufficient to approximate
the magnification μFS of a uniform brightness star. The flowchart in
Fig. 2 shows the major stages we execute. Once we can calculate
the magnification of a uniform brightness star, we can model limb-
darkening light curves by regarding the source star as a set of
annuli weighted by the radial limb-darkening profile, as introduced
in Section 4.8.

4.1 Topology of image boundaries

We first illustrate the topology of both true and false image bound-
aries for the circular source lensed by a triple system in Fig. 3.
We adopt the parameters of the triple lens solution ‘Sol C (wide)’
of microlensing event OGLE-2016-BLG-0613 (Han et al. 2017).
According to their table 3, t0 = 7494.153; u0 = 0.021; tE = 74.62;
s2 = 1.396; q2 = 0.029; α = 2.948; s3 = 1.168; q3 = 3.27 × 10−3;
ψ = 5.332. Instead of ρ = 2.2 × 10−4 in their solution, to visualize
better the image boundaries, we set ρ = 0.1. Two source centres are
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Figure 2. A flowchart describing our procedure to calculate the magnification of a uniform brightness star. The three procedures along the bottom of the
flowchart (solve the lens equations, remove false images, and connect segments) are described in detail in Section 4.2.

Figure 3. Illustrations of image boundary topologies formed by the roots of the complex polynomial for a triple lens system. Parameters of this system are
introduced in Section 4.1. The three plus signs indicate the lens positions, the red solid and dashed curves show the caustic and the critical curve. The circular
source is indicated by the black circle (ρ = 0.1). The blue curves are true image boundaries while the grey curves are false image boundaries arising from the
tenth-order polynomial. Insets show the detail around the third mass. In the left-hand panel, the source is at (0.7, 0), while in the right-hand panel it is at (0, 0) in
the source plane. In the right-hand panel, the two primary image boundaries are nested, forming a ‘ring-like’ image, which needs special care when calculating
the enclosed image area inside that ‘ring’.

shown. In the right-hand panel, the two primary image boundaries
are nested, forming a ‘ring-like’ image, which needs special care
when calculating the enclosed image areas.

In Fig. 3, the blue curves are true image boundaries, and the
grey curves are false image boundaries arising from the tenth-

order polynomial. In the left-hand panel, there are four true image
boundaries (three large ones plus a small one near the third lens mass,
in blue) and six false image boundaries (three large ones and a small
one near the second mass plus two small ones near the third mass, in
grey). In the right panel, there are four true image boundaries (two
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Figure 4. Illustrations of the N 2 + 1 = 10 linked lists after triple lens
equation solving and preliminary points-connecting. Parameters are the same
as the left-hand panel of Fig. 3. Points in different linked lists are plotted with
different colours, and the head point of the ith linked list is labelled as H{i}.
Arrows are added to indicate the direction in which points are linked inside
each linked list, from head to tail. We just show part of all ten linked lists to
help visualization.

large ones form the ring structure, and the smaller two are close to the
second and third lens masses) and four false image boundaries (two
large mushroom-like images and two small circular boundaries close
to the second and third lens masses). Such topological figures merely
give a preliminary impression about the shape and configuration of
the image boundaries. The plotted data are created by solving the lens
equation to give points along the boundary. Quantitative information,
i.e. enclosed areas cannot be calculated using line integrals until these
points are connected in order (clockwise or anticlockwise).

4.2 Connecting image points to obtain continuous image
boundaries

We use the configuration in the left-hand panel of Fig. 3 as an
example, i.e. the source centred at (0.7, 0), to illustrate how we
construct the continuous image boundaries.

The outer limb of the source is approximated by a polygon as
described in Section 3.3. We first initialise N 2 + 1 linked lists to
store images from solving lens equations, here N is the number of
lenses. At each source position ζ (θ k), k = 0, 1, · · ·, n, we solve
the corresponding polynomial lens equation, which will generate
N 2 + 1 solutions. Each solution is attached to a linked list, depending
on its distance from the tails of linked lists.

After the above process, we will obtain N 2 + 1 linked lists, which
store the image points. Each linked list contains the same number of
points. As Fig. 4 shows, points in different linked lists are plotted
with different colours, and the head point of the ith linked list is
labelled as H{i}. We add arrows to indicate the direction in which
points are linked from the head to the tail of a linked list. For triple
lens, i.e. N = 3, there are ten linked lists. In Fig. 4, we show only a
subset of those ten linked lists to help visualization.

Figure 5. Demonstration of true image solution segments after removing
false image points in Fig. 4. Different segments are labelled with S{i}. The
colour of each segment is inherited from their original linked list in Fig. 4.
Arrows indicate the direction in which points are linked from the head to the
tail of each individual segment.

Connecting points at this stage is just a preliminary procedure,
since it is not guaranteed that every point will be attached to the right
place. Some linked lists contain only true images (e.g. the 9th list in
Fig. 4), some contain only false images (e.g. the 8th list in Fig. 4),
while others may contain both (e.g. the 0, 1, 6th list in Fig. 4).
Mixing will happen, especially during caustics crossing, when two
image boundaries are very close to, or intersect with each other. In
such cases, we need to go through several steps to obtain true image
boundaries that contribute to the total magnification. We want to
emphasize that, false images actually help us to connect true image
points correctly later in the process. False images can be considered
as ‘bridges’ that link different true image segments together. If we do
not use the position information of the false images, it would be hard
to link all the true image points into continuous boundaries. Because
the number of true images would change over the source boundary
(as the sampled point crosses the caustics).

We use the lens equation to check whether a root is a true image
(as described in Section 4.3). We then remove all false images from
the linked lists. After this, one usually breaks the N 2 + 1 linked
lists obtained previously into several image segments, as shown in
Fig. 5. Notice that the number of resulting segments is not necessarily
N 2 + 1 anymore. Different segments are labelled as S{i}. Arrows
indicate the direction in which points are linked in each segment
from head to tail. The colour of each segment is inherited from the
original linked list in Fig. 4. The last step before applying Stokes’
theorem is to connect those image segments into closed continuous
image boundaries.

To do this, we first check whether any given segment is closed
by evaluating the distance d between the head and tail of a segment
(we choose a threshold 10−5, which will be explained in more detail
in Section 4.4). If d ≤ 10−5, then this completes our task for the
current segment (see segment ‘S7’ in Fig. 5). We move to the next
segment until all segments are processed. If the current segment is
not closed, we first check whether its tail connects with the head or
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tail of other image segments by checking whether they have identical
image positions. If not, we also conduct the check for the head of
the current segment (see the segment ‘S0’ and ‘S1’ in Fig. 5, the
head of ‘S0’ is connected with the tail of ‘S1’). Another possibility
to connect two segments occurs when the image boundary crosses
the critical curve (see the tail of ‘S0’ and ‘S2’ in Fig. 5). In this
case, one must ‘jump’ over the critical curve to connect a close pair
of images. The condition is that the close image pair must have the
same source position, and their magnifications have a comparable
absolute value but with opposite sign. In practice, the ‘connecting’
procedure is repeated until all the image segments are closed.

Once the connecting procedure is complete, we obtained closed
image boundaries from previously un-closed true solution segments.2

And finally, we can move on to calculate the enclosed area using line
integral.

4.3 Finding true images of the lens equation from its complex
polynomial

For a triple lens system (N = 3), the lens equation can be converted
into a tenth-order complex polynomial (Rhie 2002), which can be
solved numerically (Skowron & Gould 2012), yielding ten (complex)
roots. In most cases, however, not all of these are necessarily
true images of the original lens equation, i.e. equation (1). In the
following, we discuss in more detail how to check whether a root
from the complex polynomial roots solver is a true root to the original
lens equation.

Numerically, the complex roots solver in Skowron & Gould (2012)
locates roots one by one. At each step, they deflate the original
polynomial by the found root, then proceed to search for the next
root. The deflation process introduces numerical noise, so they also
conduct a ‘root polishing’ procedure. This involves taking each root
as the initial guess in Newton’s (or Laguerre’s) method to find a more
accurate root of the full polynomial.

The roots coming from the polynomial solver are not necessarily
true images of the original lens equation. For a given source position
ζ , theoretically a true solution z should satisfy: δ = |ζ − z − f (z)| =
0. Nevertheless, due to numerical noise, in practice δ is not strictly
zero even for true images. We found that in general, true images
correspond to δ ∼10−16 to 10−8 while false images lead to δ ∼10−1

to 100. There is usually a clear separation between true images and
false images in terms of δ. We set the criterion to be 10−5, i.e. an
image is true if it satisfies δ < 10−5.

We note that 10−5 is not valid in all cases. When the source is
just outside cusps or folds, there will be ‘nearly true’ false images.
Alternatively, if the source is just inside cusps or folds, there will be
‘nearly false’ true images. Skowron & Gould (2012) implemented
their algorithm in double precision. They found for fifth order
polynomials, the limiting precision for very close roots is 10−7.7

for two close roots (near a fold caustic), and 10−5.2 for three very
close roots (near a cusp).

The situations discussed above do not affect our whole method for
the following reasons:

(i) Only a small fraction of the source boundary will experience
caustic crossing. The probability that discretely sampled points
happen to be very close to the caustics is low. Thus only a few
points or no points will experience this ambiguity.

2An animation shows how closed image boundaries are linked can be
visualized at: https://github.com/rkkuang/triplelens, together with the source
code and documentation.

(ii) Even if we miss several true images, we can still link the
points into image boundaries using procedures which introduced in
Section 4.2.

(iii) If we include some false image points, since they are close to
the true images, they would not affect the final area significantly.

4.4 Criterion for image segment connection

In Section 4.2, we check whether two segments are connected by
checking the distance d between their heads or tails, or the distance
between corresponding source positions. We now elaborate further
why we choose a threshold of 10−5. It actually relies on several
numerical observations. The first is that although we use n different
points to approximate the source boundary, there are actually n +
1 points for us to use in the code with θn = θ0 + 2π . These two
source positions, ζ (θ0) and ζ (θn), corresponding to exactly the same
image points, and they usually correspond to the head and tail of
a linked list. Thus,the distance d between the head and the tail in
this case is exactly zero. The second is when two segments happen
to be separated by the critical curves. The segments’ head or tail
corresponds to exactly the same source positions. Finally, in our
method, we use this connection check only a few times. It is used
after the linked lists are linked and the false images are removed.
At that time, several segments are left. They correspond to either
individual boundaries (e.g. ‘S7’ in Fig. 5), or they are connected at
the same points (e.g. ‘S0’ and ‘S1’ in Fig. 5), or they are ‘jumping’
over critical curves (e.g. ‘S6’ and ‘S3’ in Fig. 5).

It may seem that the threshold 10−5 is too large when there
are multiple close images, but we note that in a previous step the
procedure has already separated different segments from each other.
Additionally, in general, image segments which belong to different
image boundaries are well separated, or at least their heads and
tails are not in the same place. By checking head-tail distance,
we will not mix different segments together if they do not belong
to the same image boundary. One could set a stricter threshold,
e.g. 10−10 (although for a typical source radius in microlensing
events, 10−5 is already sufficient). It is also possible to check for
segments connectivity by looking for the nearest loose end (head
or tail) of a segment. However, when sampled points are not dense
enough, the segments obtained in the previous step may be incorrectly
linked (especially when two image boundaries are very close to each
other, or when a ring-like structure is formed), and the image areas
calculated could be wrong. Taking all these points into account, we
choose to use the distance criterion.

4.5 Comparison with previous image boundary obtaining
methods

Previously published papers use different ways to obtain the im-
age boundaries. Gould & Gaucherel (1997), which introduced the
contour integration method, included a method for constructing
continuous image boundaries. To avoid inverting the lens equation,
Schramm & Kayser (1987) proposed the contour plot method to
find the image positions. This contour plot method was improved
by Dominik (1995). By constructing a squared deviation function
and plotting its contour, the image boundaries corresponding to a
circular source can be obtained. The overall image information, such
as image numbers and shapes, are encoded in the contour plot of
the squared deviation function. This method has a limitation: it only
provides plots, but not precise numerical values about the image
boundaries. To find more precise image contours, one needs high-
density sampling in the lens plane.
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Dominik (1993), Dominik (1995) further promoted this idea into a
contour-plot-and-correct method. The contour plot data can be stored
in purpose designed structures, which can potentially be analysed to
obtain microlensing light curves. Dominik (1998) used the contour
plot method to obtain image boundaries and then applied Stokes’s
theorem to calculate image areas. In a further development, Dominik
(2007) proposed an adaptive contouring algorithm to determine the
image contour.

Later works used numerical algorithms to solve the lens equation.
In Bozza (2010), he introduced several error estimators that enable
adaptive sampling on the source boundary. He starts with two points
on the source boundary, and then inserts new points one by one,
between the pair of points that has the largest error estimate. This
strategy allows efficient sampling near caustics. Accurate image areas
can be obtained with the minimum number of calculations. This
method has been developed into the widely used VBBinaryLensing
package (Bozza et al. 2018), which has been integrated into some
microlensing events modelling PYTHON packages like pyLIMA
(Bachelet et al. 2017) and MulensModel (Poleski & Yee 2019).

The caustic structures in triple lenses are much more intricate
(Daněk & Heyrovský 2015, 2019) than those for binary lenses,
resulting in more complicated image topologies and degeneracies
(Song et al. 2014). This poses challenge on obtaining the area of
highly distorted images of a source star. Bozza’s strategy will require
effort to extend it to the triple lens scenario. As a consequence, we
have designed and implemented a different approach to determine
image boundaries (see Section 4.2).

4.6 Stokes’ theorem and magnification

Given any continuous image boundaries,
{

z(k) = x
(k)
1 + i x

(k)
2

}
, k =

0, 1, · · ·, n, where the first and last points are identical, the enclosed
area can be calculated as

A = 1

2

n∑
k=1

(x(k)
2 + x

(k−1)
2 )(x(k)

1 − x
(k−1)
1 ), (7)

or as a more symmetrical expression (Dominik 1998),

A = 1

4

[ n∑
k=1

(x(k)
2 + x

(k−1)
2 )(x(k)

1 − x
(k−1)
1 )

+(x(k)
1 + x

(k−1)
1 )(x(k)

2 − x
(k−1)
2 )

]
. (8)

If there are no nested image boundaries, the magnification is then
simply the total area of all the image boundaries divided by the source
area. However, there will be nested images in some cases. We handle
this by assigning each image boundary object a ‘parity’ attribute
with value +1 or −1, according to the sign of magnification at the
head of the image boundary. For example in Fig. 5, the heads of ‘S1’
and ‘S3’ are separated by the critical curve with their magnifications
having opposite signs, and thus they are assigned opposite parities.
The total area covered by the source is found by summing up all the
boundary areas multiplied by the ‘parities’. Notice that the (signed)
area of each image boundary does not depend on the initial starting
point. If we start on ‘S1’ with positive parity counterclockwise, the
parity of the boundary will be assigned positive, and the enclosed
area calculated with equation (8) will be negative. On the other hand
if we start on ‘S3’ with negative parity (clockwise), the calculated
area will be positive, and so the product of the initial parity with
the area calculated with equation (8) will remain the same. The total
magnification is then simply the sum divided by the area of the source
πρ2.

The simplest scheme is to start with an approximation of the
source limb with e.g. n = 256 uniformly sampled points, and find
the finite source magnification. We can then double n, and compare
the change in the magnification. We iterate until the relative change
is smaller than a preset accuracy, e.g. ε = 10−3. However, sampling
the source boundary uniformly does not take care of special places
on the source boundary, for example, when the source straddles the
caustics; these special source boundary places need denser sampling.
So we first uniformly sample e.g. n = 45 different points on the
source boundary, i.e. the kth point ζ (θ k) corresponding to an angle
θ k = 2πk/n, with θ0 = 0, θn = 2π. For each θ k, we compute the
point source magnification μPS(ζ (θ k)), which controls the density of
points to be sampled around ζ (θ k). In this way, we will get an initial
sample on the source boundary that takes special care around high
magnification places.

4.7 Bozza’s Quadrupole test in deciding whether finite source
computation is necessary

Since there is no fundamental difference between binary and triple
lens system, we adopt the quadrupole test as introduced in Bozza
et al. (2018), to detect that whether the source star is close to the
caustics, and decide if it is necessary to use finite source computation.
If it is not necessary, we use point source magnification μPS as an
approximation.

The finite source magnification of a uniform brightness source can
be expanded as (Pejcha & Heyrovský 2009)

μFS = μPS + ρ2

8
�μPS + ρ4

192
�2μPS + O(ρ5), (9)

where � = ∂2

∂x2 + ∂2

∂y2 is the Laplacian and �2 = �� is the
biharmonic operator. The quadrupole term in equation (9) for each
image zI can be written as (Bozza 2018)

μQI
= −2 Re[3f

′3
f ′′2 − (3 − 3J + J 2/2)|f ′′|2 + Jf

′2
f ′′′]

J 5
ρ2,

(10)

where f
′
(z) = df/dz, f

′′
(z) = d2f/dz2 and f

′′′
(z) = d3f/dz3.

To detect the cusp caustic, Bozza et al. (2018) also constructed an
error estimator

μC = 6 Im[f
′3
f ′′2]

J 5
ρ2. (11)

Thus, the condition in the quadrupole test can be written as∑
I

cQ(|μQI
| + |μCI

|) < δ, (12)

where cQ and δ are to be chosen empirically so as to make sure there
is enough safety margin, in our code, cQ = 1, δ = 10−6 ∼ 10−2,
similar to those chosen in Bozza et al. (2018).

4.8 Limb darkening

In practice, precise modelling of observed light curves needs to
include limb darkening. The linear profile is a reasonable approx-
imation to the limb darkening for most stars (Milne 1921):

I (r) = If (r), f (r) = 3

3 − u

[
1 − u(1 −

√
1 − r2)

]
, (13)

where r = ρ i/ρ is the fractional radius at a certain radius ρ i to the
source radius ρ, and I is the average surface brightness. u is the limb-
darkening coefficient. It relates to the  convention limb-darkening
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Figure 6. The dashed magenta line shows the source trajectory for which
the light curves will be shown in Fig. 7 for four source sizes indicated by
three circles and a dot (for a point source) at the upper right. The red curve
shows the caustics.

law (An et al. 2002):

I (ϑ) = I

[
(1 − ) + 3

2
cos ϑ

]
, (14)

by u = 3/(2 + ) and r = sin ϑ, where ϑ is the emergent angle, 0 ≤
 ≤ 1.

We choose the method introduced by Bozza (2010) where they
use annuli to approximate the source, summing up the magnification
in each annulus weighted by the limb-darkening profile. Error
estimators can also be constructed, which allow adaptive sampling of
the source profile. If an annulus has the maximum error, it can be split
into two sub-annuli. The dividing radius is chosen to equipartition
the cumulative function, defined as

F (r) = 2
∫ r

0
xf (x)dx. (15)

We note that Dominik (1998) introduced a different method to
calculate the magnification of a limb-darkened source star, involving
two-dimensional numerical integration.

5 R ESULTS

5.1 Light curves

We show several examples of light curves, the triple lens parameters
(other than ρ) are the same as in Section 4.1. For the trajectory as
shown in Fig. 6, their corresponding light curves are shown in Fig. 7
for four source sizes. As the source size increases, the values of
magnification peaks are more smoothed out compared to the point
source case, and the number of magnification peaks may differ for
different source sizes.

We show an example of a light curve of a limb-darkened source
in Fig. 8. The source radius ρ = 0.01, the limb-darkening coefficient
 = 0.51. To test our method, we compare our results with those
from ray-shooting. The rays are uniformly generated in the lens
plane, with 1.6 × 109 rays per θ2

E. Thus, without lensing, there will
be ∼5 × 105 rays inside the source boundary. We make comparisons
both with and without limb darkening. The top panel of Fig. 8
shows two light curves calculated using our method for the uniform
brightness (blue) and limb-darkened (red) cases. The second and
third panels show the relative error of magnification of our method
(μours) relative to the result from ray-shooting (μray) for the uniform
brightness and limb-darkened cases, respectively. In both cases, the
relative errors are ∼5 × 10−5. The bottom panel shows the residual of
magnification of limb-darkened star to the magnification of uniform
brightness star using ray-shooting results, i.e. (μlimb − μuni)/μuni,

which shows that the limb-darkening deviation mainly happens
during caustics crossing. For example, during caustic entrance (HJD
− 2450000 ∼ 7480), the limb of the star intersects with the
caustic, and the magnification for limb-darkened star is less than the
magnification for uniform brightness star. Because from the centre
to the edge of a limb-darkened star, the surface brightness decreases
gradually.

Each light curve in Fig. 8 contains 500 points. If no limb-darkening
is involved, it takes ∼1 CPU minute to calculate the light curve
using our code. If limb-darkening is considered, it takes ∼20 CPU
minutes. This is due to the need to use 15–30 annuli to reduce the
modelling error of limb-darkening light curves to be ∼5 × 10−5.
In practice, the computing speed can be adjusted by changing the
accuracy goal, and by avoiding unnecessary calculations, e.g. during
HJD − 2450 000 = 7470 to HJD − 2450 000 = 7480 in Fig. 8,
limb-darkening calculations are unnecessary.

5.2 Magnification maps

Since the strategy we adopted to model limb-darkening light curves
is based on the magnification calculation of uniform brightness stars,
we compare the magnification map from our method with both ray-
shooting and VBBinaryLensing results for a uniform brightness star.

5.2.1 Comparison with ray-shooting

We show one magnification map generated using our method, and
compare it with one generated using ray-shooting to test the accuracy
of our computation. The triple lens parameters (other than ρ) are
the same as in Section 4.1. Since the ray-shooting method is more
suitable for a large source radius, we choose ρ = 0.01. The number
density of rays shot is 2.95 × 109 per θ2

E. The left-hand panel of
Fig. 9 shows the magnification map generated by our method. The
right-hand panel of Fig. 9 shows the relative error of magnification
compared with the ray-shooting result, which is of the order of 10−4,
with the maximum relative error of magnification (absolute value)
being 5.9 × 10−5.

In generating our magnification maps, obtaining polynomial
coefficients from lens equations costs 24 per cent of computation
time, 59 per cent for solving complex polynomials, 4.7 per cent
for initial sampling on the source boundary, and 2.7 per cent for
checking whether a solution is true. The rest part (9.6 per cent) of
the computation time is mainly spent on obtaining continuous image
boundaries.

5.2.2 Comparison with VBBinaryLensing

We have applied our code to the binary lens case, and compared our
code to the VBBinaryLensing package (Bozza et al. 2018). We used
the MulensModel3 to calculate the full finite source magnification.
To obtain a suitable run for comparison purpose, the accuracy goal
(VBBL.Tol) is set to be 10−5.

We choose the binary lens separation s = 0.8, mass ratio q = 0.1,
and source radius ρ = 0.01. The results are shown in Fig. 10. The left-
hand panel shows the magnification map generated by our method,
and the right-hand panel shows the relative error of magnification
compared with the result from the VBBinaryLensing package. We
note that, although both software packages use contour integration
to obtain the image areas, this does not imply that the resultant

3https://github.com/rpoleski/MulensModel
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Figure 7. Light curves corresponding to the trajectory indicated in Fig. 6 for four source sizes, ρ = 0, 0.01, 0.05, 0.15 (black, green, gold, and blue). The time
starts from HJD − 2450 000 = 7430 to HJD − 2450 000 = 7510, and μ is the magnification. Notice that as the source size increases, the values of magnification
peaks usually decrease.

Figure 8. Example light curves for the green source in Fig. 6. ρ = 0.01. The time starts from HJD − 2450 000 = 7470–7510, and μ is the magnification. The
top panel shows two light curves calculated using our method for the uniform brightness (blue) and limb-darkened (red) cases. The second and third panels show
the relative error of magnification of our method (μours) to the result from ray-shooting (μray) for the uniform brightness and limb-darkened cases, respectively.
In both uniform brightness and limb-darkened cases, relative errors of magnification are ∼5 × 10−5. The bottom panel shows the residual of magnification of
limb-darkened star to the magnification of uniform brightness star, i.e. (μlimb − μuni)/μuni.

magnification maps will be exactly the same. Although we both
use polygons to approximate source boundaries as well as image
boundaries, our sampling strategies are different. In addition, the
stopping criteria of Bozza’s algorithm is more optimized, being
controlled by error estimators. Even though the results are different,

the maximum relative error is 3.1 × 10−4. Overall, we find our
magnification calculating code to be slower by a factor of ∼15
compared to Bozza’s package for binary lens systems. This is mostly
due to more efficient sampling of points on the limb of source star
according to error estimators in their package.
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Figure 9. Triple lens magnification (μ) map of a uniform brightness star generated by our method (left-hand panel), and the relative error of magnification
between the results from our method and ray-shooting (right-hand panel), the source radius is ρ = 0.01. The yellow curves in both panels show the caustics.
The pixel size of each map is 100 × 60. The colourbar scale goes from −6 × 10−5 to 6 × 10−5 in the right-hand panel, the maximum error (absolute value) is
5.9 × 10−5. The triple lens parameters (other than ρ) are the same as in Section 4.1.

Figure 10. Binary lens magnification (μ) map of a uniform brightness star generated by our method (left-hand panel), and the relative error of magnification
between the results from our method and the VBBinaryLensing package (right-hand panel). Binary lens separation s = 0.8, mass ratio q = 0.1, and source radius
ρ = 0.01. The yellow curve in the left-hand panel shows the caustics. The pixel size of each map is 128 × 128. The colourbar scale goes from −3 × 10−4 to
3 × 10−4 in the right-hand panel, the maximum relative error (absolute value) is 3.1 × 10−4. VBBinaryLensing package is used to calculate the finite source
magnification as a baseline. Other than the region close to the caustics, our code uses the point source approximation, and the relative error of this approximation
is ∼−3 × 10−5 .

5.3 High cadence light curves with adaptive sampling

In our method, which based on Stokes’ theorem, the light-curve
calculation is time-consuming since we have to solve the lens
equation many times and need many points to connect the image
boundaries. To remedy the situation, we introduce another refinement
to speed up the light-curve calculation with adaptive sampling.

As shown in Fig. 7, the light curve of a typical event is globally
smooth except when approaching/crossing the caustic. Thus, we can
sample the most important points (usually places with large slopes)
in the light curve adaptively, and perform interpolation elsewhere to
obtain the full light curve. In this way, we can reduce the number of
finite source computations substantially.

The adaptive sampling procedure is performed as follows: we first
compute the magnification A1, A2 at points p1, p2, we then compute
the magnification Ac in the mid-point, pc, and compare with Amid =
(A1 + A2)/2. If the difference between Ac and Amid is larger than a
threshold, e.g. ε = 5 × 10−4, then we add pc to our sampled points
and repeat the procedure for p1, pc and pc, p2. This process is stopped
until the error is smaller than ε.

Fig. 11 shows one example of this adaptive sampling procedure.
The full light curve is uniformly sampled with 104 points, while
for the adaptive sampled light curve only 314 points are needed.
With linear interpolation, we recover the full light curve with a
relative error ∼5 × 10−4 and the CPU time is reduced by a factor
of ∼3. Notice that the speedup is not simply the ratio of the number
of points (104/314 ≈ 30). This is because the adaptively sampled
points are mostly at places with large slopes (e.g. when the source
is near caustics) in the light curve, where more time is needed
to calculate their magnifications with the finite source effect. We
note that, higher order spline interpolations converge faster globally,
yet at the entrance and exit of caustics, the light curve is steeper
and higher order interpolation yields oscillations. This is known as
‘Runge phenomenon’ (Runge 1901).

6 SU M M A RY

Currently modelling of microlensing light curves of triple lens
events often uses methods based on perturbation or ray-shooting. We
have developed a method based on establishing continuous image
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Figure 11. Result of adaptive sampling of the light curve (top panel), the full light curve (green solid line) uniformly sample 104 points, corresponding to a
sampling of 5.76 × 104 min. By adaptive sampling, merely 314 points (red dot) are sampled, and the linear interpolated light curve (blue solid line) deviates
from the full light curve within a relative error 5 × 10−4 (bottom panel), μ is the magnification.

boundaries and contour integration to calculate triple microlensing
light curves. Before this work, the contour integration method has not
been developed beyond binary lens systems. We first implemented
a procedure to obtain the magnification of a source star with
uniform brightness, and then extended the procedure to handle limb
darkening. It is efficient for small source sizes, and complements the
ray-shooting method. Our approach has two advantages: (1) Unlike
the contour plot method, we obtain image boundaries accurately
from solving lens equations. (2) It starts from successively sampled
points on the source boundary, which corresponds to successive
image tracks. From these image tracks, which contain both true and
false images, we identify the true image boundaries and calculate the
enclosed areas. Our method is a general method that can be applied
to any multiple lens system, not just to triple lens systems. Ray-
shooting is efficient for big finite source sizes, due to Poisson noise
in the number of rays each pixel collects. Our independent modelling
code is available to be used for cross-checking with other methods.

We have tested our method on light curves and magnification maps,
and compared the results with the ray-shooting method. Due to the
need to connect continuous closed image boundaries, our method
requires more CPU time when the source radius is large (e.g. ρ =
0.01). We have implemented an adaptive sampling scheme in the
light-curve calculation. This may be relevant, for example for the
KMTNet (Kim et al. 2010; Atwood et al. 2012; Kim et al. 2016):
its cadence can be as short as 10 min (10m/tE ∼ 3 × 10−4 for tE =
20 d). In such cases, there is no need to calculate the magnification
for every epoch. In practice, the speedup will likely depend on the
source size and the number of data points in the light curve.

Our code is publicly available,4 including both the C++ source
codes and materials to build a PYTHON module ‘TripleLensing’ to
call the C++ codes from PYTHON scripts. We plan to improve further
the efficiency of our code and apply it to real triple lens events.

4https://github.com/rkkuang/triplelens
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