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ABSTRACT
The radius distribution of small, close-in exoplanets has recently been shown to be bimodal. The photoevaporation model
predicted this bimodality. In the photoevaporation scenario, some planets are completely stripped of their primordial H/He
atmospheres, whereas others retain them. Comparisons between the photoevaporation model and observed planetary populations
have the power to unveil details of the planet population inaccessible by standard observations, such as the core mass distribution
and core composition. In this work, we present a hierarchical inference analysis on the distribution of close-in exoplanets using
forward models of photoevaporation evolution. We use this model to constrain the planetary distributions for core composition,
core mass, and initial atmospheric mass fraction. We find that the core-mass distribution is peaked, with a peak-mass of ∼4M⊕.
The bulk core-composition is consistent with a rock/iron mixture that is ice-poor and ‘Earth-like’; the spread in core-composition
is found to be narrow (� 16 per cent variation in iron-mass fraction at the 2σ level) and consistent with zero. This result favours
core formation in a water/ice poor environment. We find the majority of planets accreted a H/He envelope with a typical mass
fraction of ∼ 4 per cent; only a small fraction did not accrete large amounts of H/He and were ‘born-rocky’. We find four times
as many super-Earths were formed through photoevaporation, as formed without a large H/He atmosphere. Finally, we find
core-accretion theory overpredicts the amount of H/He cores would have accreted by a factor of ∼5, pointing to additional
mass-loss mechanisms (e.g. ‘boil-off’) or modifications to core-accretion theory.

Key words: planets and satellites: atmospheres – planets and satellites: interiors – planets and satellites: physical evolution –
planet–star interactions.

1 IN T RO D U C T I O N

A decade since the launch of NASA’s Kepler Space Telescope
(Borucki et al. 2011), over 4000 extra-solar planets have now been
confirmed. Of these, the vast majority are small (� 4R⊕), low mass
(� 50M⊕) and located close to their host star (� 100 d) (Howard
et al. 2010; Batalha et al. 2013; Petigura, Howard & Marcy 2013;
Mullally et al. 2015), demonstrating a stark difference to the planets
of our own Solar system. As population studies imply > 30 per cent
of GK stars host one or more of these planets (Fressin et al. 2013;
Silburt, Gaidos & Wu 2015; Mulders et al. 2018; Zhu et al. 2018;
Zink, Christiansen & Hansen 2019), understanding their origins is a
key challenge in this field.

One popular planet formation theory that was developed in
response to the ubiquity of such planets is the in situ model (e.g.
Hansen & Murray 2012; Chiang & Laughlin 2013), in which
planetary embryos form in the inner disc, close to the location we
observe them at today. As a result, the constituents that accreted
to build up their cores are the silicate materials that drifted into
the inner-disc (Chatterjee & Tan 2014; Jankovic, Owen & Mohanty
2019). One would thus predict a core composition of such planets
to be similar to that of Earth. Another approach is the migration
model (e.g. Ida & Lin 2005, 2010; Bodenheimer & Lissauer 2014;
Raymond & Cossou 2014; Bitsch et al. 2018; Raymond et al. 2018),
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in which planets form further out whilst immersed in a solid enhanced
region beyond the water ice-line. The planets then migrate inwards
to the orbital period we observe them at today and will therefore have
core compositions consistent with one rich in water/ice. In reality,
core formation may draw upon physics from both schemes as it is
well established that solids must migrate towards the star in the form
of pebbles or embryos. What is not clear is which of the models is
the main driver of core formation.

To test the formation models, one can combine transit, radial veloc-
ity (RV) and transit timing variation (TTV) data to calculate the bulk
density (Hadden & Lithwick 2014; Weiss & Marcy 2014; Dressing
et al. 2015; Jontof-Hutter et al. 2016). Studies have shown that many
planets � 2R⊕ have a density consistent with that of Earth (e.g. Dress-
ing et al. 2015; Dorn et al. 2019), whilst larger planets have lower bulk
densities, consistent with a rocky core surrounded by H/He atmo-
spheres (e.g. Rogers 2015; Wolfgang & Lopez 2015). Alternatively,
these reduced densities are also consistent with ‘water-worlds’ (e.g.
Valencia, Sasselov & O’Connell 2007; Zeng et al. 2019). Clearly,
bulk densities alone are not capable of differentiating between the
two planet formation models (e.g. Rogers & Seager 2010).

The degeneracy between internal compositions illuminates a larger
problem in understanding planet formation. It demonstrates that
standard exoplanet survey data provides only highly correlated in-
formation on three important quantities required to place constraints
on planet formation models: the core mass distribution, the H/He
atmospheric mass fraction distribution and, as discussed, the core
density distribution. However, progress can be made if we exploit an
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evolutionary process, namely EUV/X-ray photoevaporation (Lam-
mer et al. 2003; Baraffe et al. 2004; Murray-Clay, Chiang & Murray
2009; Lopez & Fortney 2013; Owen & Wu 2013; Jin et al. 2014;
Chen & Rogers 2016), that sculpts the exoplanet population and
allows one to ‘rewind the clock’ of planet evolution and reveal the
distributions of interest.

The photoevaporation model gained success in predicting one
of the most intriguing features of planet demographics; a bimodal
distribution in the sizes of small, close-in exoplanets (Lopez &
Fortney 2013; Owen & Wu 2013). In this model, many planets
receive an integrated high-energy stellar luminosity in the first few
100 Myr (Jackson, Davis & Wheatley 2012) that is comparable
to the binding energy of their atmospheres (Lammer et al. 2003;
Lecavelier Des Etangs 2007; Davis & Wheatley 2009), which can
result in significant atmospheric mass-loss. Depending on their
initial conditions, close-in planets either maintain an extended H/He
atmosphere, or have their H/He atmosphere completely stripped,
leaving a bare core (Owen & Wu 2017; Owen 2019). It was suggested
that this dichotomy in atmospheric evolution would produce an
abundance of planets detected at their core radius (i.e. a sample
of bare cores), and another detected at approximately double their
core radius (i.e. cores with extended H/He atmosphere). Indeed,
in Fulton et al. (2017), Van Eylen et al. (2018), two peaks were
observed at ∼1.3R⊕ and ∼2.4R⊕, labelled as ‘super-Earths’ and ‘sub-
Neptunes’, respectively. In addition to this observation, confirmation
of the photoevaporation model has come from transit spectroscopy
of close-in exoplanets in which outflowing atmospheric gas causes
increased absorption of atomic lines such as Lyman-α or He-I (Vidal-
Madjar et al. 2003; Kulow et al. 2014; Ehrenreich et al. 2015; Spake
et al. 2018).

In Owen & Morton (2016), photoevaporation was used to break
internal structure degeneracies of Kepler-36b and c. It was shown
that by incorporating an evolutionary model, constraints could be
placed on the core mass, atmospheric mass fraction and core density
of the planets, the latter of which was consistent with an Earth-
like composition for both planets. This work showed the power of
incorporating an evolutionary model: not all compositions consistent
with a planet’s measured properties today are consistent with its
evolutionary history. Kubyshkina et al. (2019a), Kubyshkina et al.
(2019b) have applied this approach to a number of other planetary
systems, even constraining the activity evolution of the star. However,
this kind of analysis is only applicable to planets with measured
masses; the vast majority of which the observed exoplanet population
do not possess.

However, the power of the exoplanet statistics is in number,
therefore information contained in the radius distribution alone can
be used to learn about composition. Owen & Wu (2017), compared
evolutionary models including photoevaporation to the observed
bimodal distribution in planet sizes from the California-Kepler
Survey (CKS) (Fulton et al. 2017). This involved choosing a core
mass distribution, initial atmospheric mass fraction distribution, and
a core composition to tune the final evolved population to the data.
Although phenomenological in nature, this work provided further
evidence of an Earth-like composition for close-in exoplanets, as well
as a typical core mass of a few Earth masses. In Wu (2019), further
work was done to constrain the initial atmospheric mass fraction and
core mass distributions by fitting the exoplanet radius histogram,
concluding the core-mass distribution was peaked and Earth-like in
composition. These works clearly demonstrated that the data could
be neatly explained via the photoevaporation process and that the
bimodal distribution of super-Earths and sub-Neptunes arose from
the same underlying populations of planets. It thus did not depend
upon more complex formation processes, such as those which require

two populations of planets to fit the data. On the other hand, these
works lacked a rigorous statistical inference methodology. They were
also restrictive in their distribution functional form and assumed
an identical core density for all planets. In this work, we use an
evolutionary model which includes photoevaporation to robustly fit
the exoplanet radius and period distributions simultaneously. In doing
so, we are able to ‘wind back the clock’ and unveil the properties of
the planet population at birth.

In Section 2, we present the hierarchical inference model required
to place constraints on the distributions of interest. This involves
the choice of data to compare with, as well as methodology for
incorporating the detection efficiency and measurement uncertainty.
In Section 3, we present results from the inference model and discuss
their implications on planet formation models in Section 4.

2 M E T H O D

This study invokes the photoevaporation process to infer properties of
Kepler planets that are undetectable from standard survey techniques.
Specifically, we wish to infer the following population demographics:
core-mass distribution, f(Mcore), initial atmospheric mass fraction
distribution,1 f (Xinit

atm ≡ Matm/Mcore), and core density distribution,
f(ρcore). Whilst directly computing exact synthetic populations of
planets from these distributions is impossible, one can sample from
the distributions and thus synthesize planet populations and compare
with real data. To this end, we forward model an ensemble of
planets, each with a separate core mass, (Mcore), initial atmospheric
mass fraction (Xinit

atm), and core density (ρcore) drawn from the above
distributions. By then performing a synthetic transit survey on the
evolved planets and comparing to real Kepler data, we determine
how well the population distributions can reproduce the data. One
crucial philosophy we adopt in this work is that any inference of
demographic properties should be done by comparing synthetic
measurements with real observations, as opposed to completeness-
corrected data compared directly to the models. In this manner, we
accurately incorporate the noise and biases inherent in the data
into our model and hence have a better handle on the underlying
property of question. Our adopted method is thus akin to Bayesian
Hierarchical Model.2

An important caveat is that all results from this work will be
conditioned on the fact that photoevaporation is the leading driver in
exoplanet evolution. Whilst this model is successful in explaining a
cause for the bimodal distribution in planet radii, other models have
been proposed. The leading alternative is the core-powered mass-loss
model (Ginzburg, Schlichting & Sari 2018; Gupta & Schlichting
2019, 2020), which draws upon the accretion luminosity from a
planet’s core in order to strip its atmosphere and produce the observed
sparsity of planets at ∼1.8R⊕. Further, Zeng et al. (2019) have also
proposed that the bimodal radius distribution is created through
two independent formation mechanisms. The impact of adopting
a different evolutionary model is discussed in Section 4.

The natural choice for the data set comes from the CKS (Petigura
et al. 2017; Johnson et al. 2017) - the sample is large, with well-
defined cuts and is of high purity. Additionally, the derived planetary
radii are sufficiently accurate to resolve a bimodality in planet

1I.e. the atmospheric mass fraction distribution at the start of the photoevap-
oration process, typically after protoplanetary disc dispersal.
2Although it is technically not a Bayesian Hierarchical Model: This is because
our model of the underlying exoplanet population cannot be computed
explicitly, and is thus generated by random sampling (as discussed in the
following sections).

MNRAS 503, 1526–1542 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/1/1526/6149157 by guest on 19 April 2024



1528 J. G. Rogers and J. E. Owen

Define f(Mcore), f(Xinit
atm) and

f(ρcore) using model parameters �θ.

Draw {Porb,M∗,Mcore, X
init
atm, ρcore}

for 5000 planets according to above
distributions as well as fits to

CKS data for f(M∗) and f(Porb).

Evolve planets through 3Gyr of
EUV/Xray photoevaporation.

Use evolved planets to calculate
PDF of Kepler detecting modelled
planets in the Porb − Rp plane.

Calculate likelihood between syn-
thetic observations and CKS data.

MCMC

Figure 1. Flowchart to demonstrate the hierarchical inference process. Each
MCMC iteration involves the construction of planetary distributions from
model parameters, from which 5000 planets are evolved through EUV/X-ray
photoevaporation and used to calculate a PDF for planet detection in the
orbital period–radius plane. Finally, a likelihood is calculated between the
synthetic data and the CKS data set. Each of these five-steps is described
separately in Sections 2.1–2.5.

sizes between ∼1 and 4R⊕ (Fulton et al. 2017). We discuss how
additional data sets, particularly RV/TTV mass measurements could
be incorporated into the model in Section 4. One advance over the
study of Wu (2019), which only used the planetary radius distribution
in their inference method, is that we choose to compare our models
in the orbital period–radius plane, which gives us far greater leverage
on the data. Photoevaporation is after all a period dependent process.
Fig. 1 shows a schematic outline of the inference problem, which
is split into five sections: (1) Constructing the distributions, (2)
Drawing the planets, (3) Evolving the planets, (4) Observing the
planets, and (5) Calculating a likelihood. We will now follow the
order of this outline and describe each of these individual processes
in the following subsections.

2.1 Constructing the Distributions

In order to forward model exoplanets in this framework, we require
distributions for core mass, initial atmospheric mass fraction and bulk
core density. For the latter, we choose to quantify this by adopting
the approach from Owen & Morton (2016), whereby core density is
interpreted by a single parameter ρ̃ ∈ [−1, 1], which tracks the linear
fraction of ice, rock and iron as used in mass–radius relationships
from Fortney, Marley & Barnes (2007). A composition of ρ̃ ≤ 0
signifies a ice-rock mixture, with ρ̃ = −1 implying a 100 per cent ice
core, ranging to ρ̃ = 0 implying a 100 per cent rocky core. Similarly,
ρ̃ ≥ 0 relates to a rock-iron mixture, with ρ̃ = 1 resulting in a
100 per cent iron core.3 In this parametrization the Earth has a value

3We emphasize that the actual quantity we are constraining is the bulk core
density, yet we choose to interpret this density in terms of a composition
according to a specific mass–radius relationship.

of one-third implying a one-third iron, two-third rock mass fraction in
the Fortney et al. (2007) mass–radius relations. This parametrization
allows us to use a single parameter to specify the core density. In
Section 4, we expand this parametrization and constrain the full
water/rock/iron distribution of the cores.

Choosing a functional form for these planet properties, namely
core mass, initial atmospheric mass fraction and core density is
a challenge as there is insufficient observational or theoretical
information to make an informed choice for any distribution. In Wu
(2019), the functional forms for core mass and initial atmospheric
mass fraction are log-Gaussians, and all planets share the same mean
core composition. In the first part of this work, we aim perform a
similar analysis to Wu (2019), but comparing to the data in both
radius and period, rather than radius alone. Thus, the distributions
for Mcore and Xinit

atm are set to be log-Gaussians:

dN

d log Mcore
∝ exp

[
− (log Mcore − log μM )2

2σ 2
M

]
,

dN

d log Xinit
atm

∝ exp

[
− (log Xinit

atm − log μX)2

2σ 2
X

]
. (1)

The model parameters for these distributions are thus the means
and standard deviations for each respective function (e.g {μM, σ M,
μX, σ X}). Thus, with regards to the planet distributions, the model
parameters we wish to infer are θ = {ρ̃, μM, σM, μX, σX}. We label
this simulation as MODEL I.

We then go on to relax the constraint of a specific functional
form for core mass and initial atmospheric mass fraction to allow
these distributions to be completely arbitrary. Despite being a more
challenging inference problem, this choice is necessary as one can
now infer new and unexplored features in the distributions of interest,
e.g. are the distributions truly peaked, are they skewed? To do so, we
employ Bernstein polynomials to define non-parametric distributions
for Mcore and Xinit

atm. Similar to other expansions, Bernstein polyno-
mials are capable of approximating any well-behaved function and
are an attractive choice as they have convenient degree reduction
properties that simplify inference problems. More information can
be found in Farouki (2012) or Ning, Wolfgang & Ghosh (2018) and
in Appendix A. Thus, in addition to a mean core composition ρ̃,
our model parameters are changed to be the Bernstein polynomial
coefficients that define the probability density functions for log Mcore

and log Xinit
atm. We assume uniform priors on these coefficients in the

domain [0,1], which thus leads to a log-uniform prior to the core mass
and atmosphere mass fraction distributions. The relaxed inference
problem thus has the following parameters to fit: NM coefficients
for the core mass PDF, NX coefficients for initial atmospheric
mass fraction PDF and one value for the mean core composition.
While there is a strong theoretical prejudice to suspect the initial
atmospheric mass fraction correlates with core mass, we choose not
to implement this coupling here. This correlation can be explored in
future work. This simulation is labelled as MODEL II

Our third and final model is similar to MODEL II in that we
use Bernstein polynomials to constrain the core mass and initial
atmospheric mass fraction distribution. However, unlike MODEL II,
we also attempt to fit the core composition distribution with a
Gaussian function. As shown in Owen & Wu (2017), the core density
of a planet controls the maximum size at which it can be stripped (at
a given core mass and orbital period) and therefore strongly controls
the location of the radius gap. The effect of allowing a range of
core densities in a given population is to ‘smear’ out the radius gap
and thus reduce its depth. In order to maintain the observed sparsity
of planets ∼1.8R⊕ in our model, we already expect the width of
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this Gaussian function to be very narrow (Owen & Wu 2017; Van
Eylen et al. 2018); however, it is yet to be quantified. The final
simulation, including the Bernstein polynomials for core mass and
initial atmospheric mass fraction, as well as a Gaussian distribution
for core composition is labelled as MODEL III.

2.2 Generating the planet sample

In addition to core mass, initial atmospheric mass fraction and
composition, we require values for host stellar mass M∗ and orbital
period Porb in order to model a planet’s atmospheric evolution.
Whilst, strictly speaking, these distributions should be inferred as
part of our full hierarchical model, we choose not to include them for
a variety of reasons. First, stellar mass measurements are essentially
decoupled as they are directly measured as part of the CKS program.
One can therefore fit this distribution independently without affecting
the other distributions. The orbital period distribution on the other
hand is coupled, albeit weakly, with the other model parameters,
meaning it is more important to include in the full inference
problem. However, when this was attempted, the Markov chain
Monte Carlo (MCMC) chain became stuck in local minima, resulting
in uninformative posteriors and computationally infeasible runtimes.
As this removed the possibility of fitting the period distribution in
the full model, we choose to fit it independently, drawing upon
multiple previous works that achieve the same task (e.g. Howard
et al. 2012; Fressin et al. 2013; Petigura et al. 2018). The added
benefit of not including the fit of either stellar mass of orbital period
distributions is that is it reduces the number of model parameters
and hence simplifies the inference problem. As previously stated,
we choose to infer exoplanet demographic properties by comparing
synthetic measurements with real observations. To this end, we fit
the stellar mass and orbital period distribution by forward modelling
the detections of such quantities, given an underlying population. For
the orbital period, motivated by previous works (e.g. Howard et al.
2012; Fressin et al. 2013; Dressing & Charbonneau 2015; Petigura
et al. 2018), we choose our underlying distribution to be a smooth
broken power law:

dN

dP
∝ 1(

P
P0

)−k1 + (
P
P0

)−k2
, (2)

where we find the power law break at P0 = 5.75 d, with k1 =
2.31 and k2 = −0.08, as shown in Fig. 2. Whilst completeness
effects are included in this fitting, we choose not to add noise to
the modelled orbital periods as the fractional error from Kepler is
typically ∼10−6 and hence negligible. More details of this fit can be
found in Appendix B.

When fitting the host stellar mass distribution we choose an
underlying Gaussian function and add noise to the data in the form
of Gaussian perturbations that are typical of the CKS catalogue. The
best fit and hence the distribution we draw our host stellar masses
from is

dN

dM∗
∝ exp

−(M∗ − μM∗ )2

2σ 2
M∗

. (3)

where we find μM∗ = 1.04 M� and σM∗ = 0.15 M�. This distribution
is shown in Fig. 3, with further information found in Appendix C.
Including these fits into our model allows us to evolve each planet
with a core mass, initial atmospheric mass fraction, core density,
host stellar mass and orbital period drawn from their respective
distributions.

Figure 2. Best-fitting orbital period distribution when fit to the CKS planets,
parametrized by a smooth broken power law (equation 2). Shaded region
shows 1σ uncertainties. More information on this fitting can be found in
Appendix B.

Figure 3. A histogram of CKS host stellar masses is plotted with best-fitting
Gaussian distribution on top. This has mean μM∗ = 1.04 M� and standard
deviation σM∗ = 0.15 M�. The width of the best-fitting line represents 1σ

uncertainties. More detail can be found in Appendix C.

2.3 Evolving the Planets

The evolution of the planets’ atmosphere arises in this model due to
EUV/X-ray photoevaporation and cooling. In Owen & Wu (2017),
a planet’s photospheric radius is calculated by approximating the
evolution of the H/He atmosphere, allowing one to evaluate the
photospheric radius of a exoplanet as a function of time. In this work,
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1530 J. G. Rogers and J. E. Owen

however, we adopt the methodology of Owen & Campos Estrada
(2020), that relaxed some of the assumptions of Owen & Wu (2017)
in determining the planet’s radius. We do note that our planetary
structure and evolutionary calculations are still approximate, and
we are not solving the full stellar structure equations (unlike, e.g.
Owen & Wu 2013; Chen & Rogers 2016; Owen & Morton 2016);
however, in this work, we perform approximately ∼1010 planetary
evolution calculations, something only possible with the simplified
scheme. Within this formalism, calculating the atmospheric evolution
involves solving an ordinary differential equation for the evolution
of a planet’s atmospheric mass fraction X ≡ Matm/Mcore:

dX

dt
= − X

tẊ
, (4)

where tẊ is the atmospheric mass-loss time-scale, given by

tẊ ≡ X

Ẋ
= Matm

Ṁatm
. (5)

The mass-loss rate Ṁatm is calculated using the energy-limited mass-
loss model (e.g. Baraffe et al. 2004; Erkaev et al. 2007), which
provides a self-consistent method for calculating the photospheric
radius Rp of a planet given its atmospheric mass fraction:

Ṁatm = η
πR3

pLXUV

4πa2GMp
, (6)

where a is the orbital semimajor axis, LXUV is the high-energy
luminosity from the host star and η is the mass-loss efficiency. To
quantify this efficiency, we adopt an approximate fit to mass-loss
simulations from Owen & Jackson (2012), as used in Owen & Wu
(2017, 2019):

η = η0

(
vesc

25km s−1

)−αη

(7)

where vesc is the escape velocity of the planet, η0 is the normalization
and αη is the power-law index. Whilst the value for η0 is taken to
be 0.17; motivated by hydrodynamic simulations (Owen & Jackson
2012), we choose to add αη to our inference parameters in MODEL

III. The reason for not incorporating η0 is due to a strong degen-
eracy shared with core composition (Owen & Adams 2019), which
would require either perfect numerical photoevaporation models, or
planet mass data (either RV or TTV) in order to break. Therefore,
as described in Owen & Adams (2019), Mordasini (2020), our
constraints on core-composition are completely dependent on the
accuracy of photoevaporation simulations; as discussed further in
Section 4. In practice, equation (4) is solved using an RK45 adaptive-
step numerical integrator with an error tolerance of 10−5, which can
handle the sharp changes in X as seen in Fig. 4. Note that we assume
a planet has been completely stripped when its atmospheric mass
fraction falls below 10−4, a value at which the planet’s radius is
indistinguishable from the core’s radius in transit observations.

As shown in Wright et al. (2011), Jackson et al. (2012), Tu et al.
(2015), stellar LXUV/Lbol decays quickly once a star begins to spin-
down and the production of high-energy photons weakens, which
typically happens at ∼100Myr for Sun-like stars. In our model, we
take the LXUV magnitude and evolution from Owen & Wu (2017)

LXUV =
⎧⎨
⎩

Lsat for t < tsat,

Lsat

(
t

tsat

)−1−a0

for t ≥ tsat,
(8)

where a0 = 0.5, tsat = 100 Myr and the saturation luminosity follows

Lsat ≈ 10−3.5L�

(
M∗
M�

)
, (9)

Figure 4. Solid lines show the evolution of varying initial atmospheric mass
fractions for a 5M⊕ core with Earth-like composition, orbiting a Sun-like star
at 10-d orbital period. Calculations are performed using the analytic model of
Owen & Campos Estrada (2020). The dashed line tracks an atmospheric mass
fraction required to double the core radius. This plot reproduces results from
Owen & Wu (2017) in which a planet either loses its gaseous atmosphere
within 100 Myr, or retains an atmospheric mass fraction ∼ 1 per cent which
approximately doubles its core radius. This bimodal evolution essentially
forms the basis for the origin of the radius gap (see Owen 2019).

which is motivated from both observational and theoretical studies
(e.g. Güdel, Guinan & Skinner 1997; Ribas et al. 2005; Wright et al.
2011; Jackson et al. 2012; Tu et al. 2015). Crucially, the time-scale
for this decay is far shorter than atmospheric mass-loss time-scales
for small, close-in exoplanets. In our model, each planet is evolved
for 3Gyr to match the typical ages of Kepler systems. Recall that
the majority of mass-loss occurs during the first few 100 Myr, so
changing the total evolution time by even Gyrs has little to no effect
on the final size distribution of the simulated planets as seen in Fig. 4.

2.4 Detecting the Planets

Once the planets have been evolved through 3 Gyr of photoevap-
oration, we perform a synthetic Kepler transit survey with the
intention of then comparing it with real CKS data. We add errors
to the simulated photospheric radii of the evolved planets as well as
introduce observational biases that match the real data. To quantify
the radii errors of the real data, we take the typical fractional error of
the CKS planets (∼ 6 per cent) and add a similar fractional error to
our evolved planet radii by adding a random Gaussian perturbation
with zero-mean and standard deviation of σ = 0.06. This has the
effect of adding noise to the data - which shifts some planets into the
radius valley, as opposed to a clean valley as seen in asteroseismic
surveys (Van Eylen et al. 2018), see Petigura (2020). We choose not
to add fractional errors to the orbital period measurements as these
were measured with extreme precision by Kepler, typically ∼10−6.
As a result, the main source of noise in the CKS data set is from the
planet size measurements, as well as sampling uncertainty (Poisson
shot noise).
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Unveiling the planet population at birth 1531

Figure 5. The left-hand panel shows an example PDF for synthetic occurrence of exoplanets in the orbital period–radius plane. This is produced by forward-
modelling an ensemble of planets through photoevaporation, producing the bimodal distribution of super-Earths and sub-Neptunes. The central panel shows the
completeness of the Kepler survey in the same domain. Contours represent the product of ptransit · pdet, which is increased for close-in, large planets and reduced
for far-out, small planets. In the right-hand panel we show the synthetic detection PDF λ(P, Rp), which is the product of the occurrence and the completeness
and represents the planet occurrence weighted by the Kepler survey biases. One can see that planets with a large orbital period and hence a small ptransit are
heavily disfavoured to be detected.

We must now introduce the biases associated with the Kepler
survey. The most rigorous method to achieve this would be to
directly inject the modelled planets into the Kepler pipeline and
determine whether they would have been detected around the CKS
stars. However, this task is computationally unfeasible for a large
hierarchical model such as this. We therefore decide to take an
average approach, following the prescription from Fulton et al.
(2017), in which forward models of planets are biased by their
associated probability of being detected. The first contribution to
this derives from the geometric probability of transit:

ptransit = bcut
R∗
a

, (10)

where bcut = 0.7 represents the cutoff in transit impact parameter
chosen in Fulton et al. (2017) to avoid grazing transits. The second
contribution to the completeness is the probability of detection,
resulting from the Kepler pipeline efficiency:

pdet = 1

N∗

N∗∑
i

C(mi), (11)

where N∗ = 36 075 is the number of stars in the Stellar17 catalogue4

(Mathur et al. 2017) that pass the Kepler pipeline (Christiansen et al.
2012, 2015, 2016) as well as CKS filters. The fraction of injections
C recovered in the Kepler pipeline is a function of injected signal-
to-noise ratio mi. As in Fulton et al. (2017), we choose the pipeline
efficiency C(mi) to be a � cumulative distribution function of form,

C(mi ; k, θ, l) = �(k)
∫ mi−l

θ

0
t k−1 e−t dt, (12)

with k = 17.56, l = 1.00, and θ = −0.49. The product of ptransit ·
pdet is used is calculated to produce a mean completeness map for
the entire CKS sample (similar to Fig. 6 in Fulton et al. 2017) that
captures the completeness probability of the survey for a given Porb

and Rp. This is shown in the centre panel of Fig. 5.

4https://archive.stsci.edu/kepler/stellar17/search.php

Figure 6. Percentage error in log-likelihood is plotted as a function of
number of planets simulated for MODEL II. The stochastic nature of the model
introduces noise into error calculations, which is quantified by repeating each
simulation 100 times and determining the standard deviation for each value of
simulated planets. Dotted lines represent our adopted compromise between
likelihood accuracy and computational speed, with a percentage error of
0.3 per cent, achieved by simulating 5000 planets per MCMC iteration.

In order to introduce the completeness map to the evolved and
noisy (i.e. including Rp errors) synthetic planet data, we adopt the
following process: First, we perform a 2D Gaussian Kernel Density
Estimation (KDE) on the synthetic planet population in Porb–Rp

space. Crucially, the bandwidth of the KDE generator σ KDE = 0.05 is
chosen to be less than typical planet radii uncertainty, as this ensures
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the behaviour of the function is set by the planet distribution and
not numerical effects from the construction of the KDE (discussed
in Section 2.5.1, see Fig. 6). This KDE can be thought to be an
approximation to the PDF for planet occurrence. We then bias this
PDF with the Kepler completeness map and normalize to unity, which
results in a PDF for planet detections, which we label λ(Porb, Rp). In
other words, this PDF represents the probability of detecting a planet
at a given orbital period and planet radius, given a set of model
parameters. An example of synthetic occurrence and synthetic-
detection PDFs are shown in Fig. 5. This PDF is then used as the
basis for our Likelihood calculation.

2.5 Likelihood Calculation

The final step in the inference problem is to compare the real CKS
data to the noisy, incomplete synthetic data. As used in previous
works (e.g. Foreman-Mackey, Hogg & Morton 2014; Hsu et al. 2018;
Bryson et al. 2020), we assume that the detection of an exoplanet is an
independent process. Thus, we model the detection of an exoplanet
with the transit method as an inhomogeneous Poisson point process.
We can calculate the total occurrence factor 
:


 = N∗ · f∗ ·
“

λ(P ,Rp) dP dRp, (13)

where N∗ = 36 075 is again the number of stars in the filtered
Stellar17 catalogue and f∗ is the mean number of planets per star
in the Kepler field. We allow f∗ to vary as a model parameter in all
simulations in the aim of inferring its value. Whilst in our model, f∗
is a nuisance parameter, other works have derived this value in far
more detail (e.g. Howard et al. 2012; Fulton et al. 2017; Zhu et al.
2018; Hsu et al. 2019; Zink et al. 2019). The probability of detecting
n planets is

P (n) = e−
 
n

n!
, (14)

whereas the probability density of observing a planet at (Pi, Rp, i) is

ρ (Pi, Rp,i) = λ(Pi, Rp,i)



. (15)

Assuming that all observations are independent,5 the probability of
detecting an ensemble of planets at π = {(P1, Rp, 1), ..., (Pn, Rp, n)}
is

P (π) =
n∏
i

λ(Pi, Rp,i)



. (16)

The likelihood of observing this sample is thus

L(π ) = P (n) · P (π ) = e−
 
n

n!

n∏
i

λ(Pi, Rp,i)



. (17)

In this hierarchical inference model, we wish to sample a posterior
with the assumption that the ensemble of planets π is the CKS
sample, whilst the detection rate λ(P, Rp) is calculated using a
forward modelled sample of planets drawn from distributions defined
by our model parameters θ . As a result, the final likelihood is

L(πCKS) = P (NCKS) · P (πCKS)

= e−
 
NCKS

NCKS!

NCKS∏
i

λ(Pi, Rp,i)



. (18)

5In this calculation, we are thus assuming single and multiple transiting
systems are implicitly drawn from the same formation model. As a result this
ignores the detection bias that occurs in multi systems (Zink et al. 2019).

where NCKS is the number of planets in the CKS sample and πCKS is
the set of values of (Porb, Rp) for all CKS planets within our chosen
domain. Similarly to Fulton et al. (2017), we restrict the orbital
period to lie between 1 and 100 d, whilst the planet size at 3 Gyr
can vary between 0.95 and 6R⊕. The lower bound here is chosen to
avoid areas of low-completeness which are almost devoid of planets,6

whilst the upper bound is chosen to avoid modelling large planets
hosting self-gravitating atmospheres which are not accounted for in
the evolution model and may form in a different way (e.g. Owen &
Lai 2018). Our likelihood function (equation 18) can be interpreted
in two parts: the Poisson pre-factor is maximized when the number of
synthetically observed planets from the model matches the number
observed in the CKS data set. Therefore, this factor allows us to put
realistic uncertainties on our distribution of interest due to the finite
sampling of the exoplanet data. The product factor on the other hand
is maximised when the shape of the modelled planet distribution in
Porb–Rp space matches that of the CKS planets. We therefore find a
high likelihood when the number of observed planets and shape of
the planet distribution match the CKS data.

In order to sample from our posterior, the log-likelihood (i.e.
ln L(πCKS)) is fed into an MCMC algorithm, specifically the EMCEE

Python implementation (Foreman-Mackey et al. 2013) of the affine-
invariant ensemble sampler from Goodman & Weare (2010). We
run with 150 walkers and a sufficient number of iterations required
for chain convergence, which varies for each of the models and is
discussed further in the supplementary material.

2.5.1 Likelihood convergence

In order to ensure our planet occurrence PDF λ(P, Rp), and hence
likelihood is accurate and converged, we require a suitably large
number of planets to be simulated for each iteration of the MCMC.
This is so that the planet radii errors we add in the synthetic
detection process are integrated over and the PDF for planet occur-
rence/detections are controlled by the planet distribution shape, and
not subject to sampling noise. On the other hand, however, simulating
a large number of planets (albeit semi-analytically) can become
a computationally expensive process. We therefore wish to find a
compromise. Fig. 6 shows convergence tests for MODEL II. This is
done by calculating the percentage difference of the likelihood from
the ‘true’ value for a range of simulated planets. We approximate
the true likelihood by evaluating our likelihood (equation 18) with
100 000 planets and thus achieving an extremely high-accuracy.

The error in the log-likelihood changes as a power law with an
increasing number of planets indicating convergence. We choose
to use 5000 planets as this provides an error of � 0.3 per cent and
provides a balance between accuracy and computational efficiency.

3 R ESULTS

3.1 Model I

MODEL I is the simplest of our inference problems. We choose to
adopt the same parametric forms for core mass, initial atmospheric
mass fraction and core composition as in Wu (2019), with our
new and improved inference methodology. We place flat priors

6More specifically, this lower limit of 0.95R⊕ is chosen as a compromise
between inferring the core mass distribution to smaller masses whilst still
allowing smaller cores to have an icy composition and still be detected.

MNRAS 503, 1526–1542 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/1/1526/6149157 by guest on 19 April 2024



Unveiling the planet population at birth 1533

Table 1. Comparing constrained parameters from MODEL I and Wu (2019),
in which core mass and initial atmospheric mass fraction are restricted to be
log-Gaussian. Here, μM and σM are mean and standard deviation for core
mass distribution, whilst μX and σX are mean and standard deviation for
initial atmospheric mass fraction distribution (equation 1). Quoted errors for
MODEL I are the 1σ percentiles calculated from marginalized posteriors.

Parameter MODEL I Wu (2019)

μM (M⊕) 3.72+0.45
−0.33 7.70+1.50

−1.50

σM 0.44+0.06
−0.03 0.29+0.06

−0.06

μX 0.040+0.015
−0.016 0.026+0.006

−0.006

σX 0.51+0.20
−0.12 0.29+0.06

−0.06

Figure 7. Synthetic detection PDF is shown in orange contours for best-
fitting parameters from MODEL III. CKS planets from Fulton et al. (2017) are
also shown to demonstrate the goodness of fit of model and data.

on all parameters, with the exception of the log-Gaussian mean-
values, which have log-flat priors. Values compared with that of
Wu (2019) are shown in Table 1. We note that whilst our adopted
methodologies are similar, there are distinct differences, hence we
expect to see the difference in the results. We therefore include
this comparison to demonstrate how different results are found
with different methodologies. One of the main differences which
likely has the largest effect is that our model infers a 2D planet
distribution, as opposed to a 1D radius histogram, which likely
widens our constrained distributions. In addition, we adopt a more
accurate completeness model and hence allow a larger fraction of
smaller planets to be detected – which results in a lower mean core
mass. Finally, in Wu (2019), core masses were scaled with stellar
mass which will also act to narrow constrained distributions (further
discussed in Section 4). This comparison indicates that performing
this inference in the 2D planet distribution is important.

3.2 Model II

MODEL II relaxes the condition of a specific functional form for
the core masses and initial atmospheric mass fractions. For both

distributions, we use a fifth-order Bernstein polynomial expansion
with model parameters being the five polynomial coefficients. As
with MODEL I, we also constrain a single value for core composition,
and the mean number of planets per star. The left-hand panel of Fig. 8
demonstrates a good agreement of model and data by comparing
radius histograms. This is produced by resampling 1000 sets of model
parameters from the MCMC chain and evolving 5000 planets for each
sample. By then calculating a PDF for planet detection (as laid out in
Section 2.4), we can determine the observed radius distribution and
thus 1σ errors across the resampled models. MODEL II can be seen to
reproduce the bimodal distribution with peaks and gap in the correct
positions.

The best-fitting core mass and initial atmospheric mass fraction
distributions, produced from their associated Bernstein polynomial
are shown in the middle- and right-hand panel of Fig. 8. Similar
to Wu (2019), we find a peaked core mass distribution with most
planets hosting a core of a few earth masses. Crucially, we see this
distribution is not symmetric, unlike a log-Gaussian, with a positive
skewness of 0.04 ± 0.01 and kurtosis of 0.15+0.02

−0.03. This result thus
confirms the requirement of relaxing assumptions from MODEL I.
Similarly, and starkly different to the latter, the initial atmospheric
mass fraction distribution is asymmetric and strongly peaked at
∼10−2, implying that the majority of Kepler planets were born with
a significant H/He atmosphere of ∼ 1 per cent mass, instead of being
born with a negligible atmosphere. The skewness and kurtosis of this
distribution are −0.16+0.12

−0.09 and 1.45+0.21
−0.13, respectively.

In addition to core mass and initial atmospheric mass fraction,
we also constrain the mean number of planets per star to be f∗ =
0.72 ± 0.03 and the core composition to be ρ̃ = 0.18 ± 0.09. This
composition equates to a bulk density for a 1M⊕ core of ρM⊕ =
4.74+0.40

−0.36 g cm−3, pertaining to a slightly lower density to that of
Earth.

3.3 Model III

MODEL III is the most ambitious of our inference problems. We
retain the fitting of core mass and initial atmospheric mass fraction
distributions with fifth-order Bernstein polynomials, but additionally
choose to infer the index of photoevaporation efficiency scaling αη

(equation 7) assuming a uniform prior, as well as the core compo-
sition distribution with a Gaussian function (also assuming uniform
prior on mean and standard deviation). We show the detection PDF
λ(P, R) for best-fitting parameters alongside the real CKS planets in
Fig. 7, which demonstrates that our adopted likelihood is effective
in capturing the shape of the planet distribution. As before, the best-
fitting radius distribution for MODEL III is shown in the left-hand
panel of Fig. 8. Similar to MODEL II, we get an excellent agreement of
model and data. As well as a mean number of planets per star of f∗ =
0.70 ± 0.03, the Bernstein coefficients (and hence distribution shape)
for core mass and initial atmospheric mass fraction are consistent to
1σ between MODEL II and MODEL III. In particular, we find the
skewness and kurtosis of the core mass distribution to be 0.04+0.02

−0.01

and 0.14 ± 0.02, respectively, and −0.23+0.13
−0.08 and 1.52+0.30

−0.18 for initial
atmospheric mass fraction, consistent within 1σ of those derived in
MODEL II.

Fig. 9 shows marginalized posteriors for three model parameters of
interest. The left and middle panel show constraints we place on the
mean and standard deviation of the composition distribution, under
the assumption that it follows a Gaussian function. Consistent with
MODEL I and II, we find a mean composition of ρ̃ = 0.26+0.08

−0.09, which
is iron-rich/water-poor and consistent with that of Earth (which has
a value ∼0.33). As predicted in Section 2.1 and shown in Table 2,
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1534 J. G. Rogers and J. E. Owen

Figure 8. Left-hand panel shows radius histogram comparison of CKS data with best fit from MODEL II and MODEL III. The shaded line represents 1σ errors of
1000 forward-models resampled from the MCMC chains, whilst grey histogram bins are the CKS data from Fulton et al. (2017). Middle- and right-hand panels
show constrained core mass and initial atmospheric mass fraction distribution for MODEL II and MODEL III, both of which are described by fifth-order Bernstein
polynomial expansions. Shaded regions are representative of a 1σ confidence interval, calculated from 1000 resamples from the MCMC chains. Grey region in
core mass distribution represents masses <1M⊕ and hence under the current detection limit.

Figure 9. Marginalized posteriors from MODEL III. Left-hand panel shows the mean μρ for the Gaussian function used to fit the core composition distribution,
with 1σ uncertainties quoted. The area μρ < 0 represents the region of parameter space corresponding to ice-rich cores, whilst μρ > 0 corresponds to iron-rich
cores. Middle panel shows posterior for Gaussian composition distribution standard deviation, whilst right-hand panel shows posterior for photoevaporation
mass-loss index from equation (7). Note that due to uniform priors on core composition and mass-loss index, we are only able to place 2σ upper-bounds on
quantities of interest.

Table 2. Comparison of constrained parameters from MODELS I, II, and III for core composition and mean number of
planets per star in the domain of 1 ≤ P ≤ 100 d and 0.95 ≤ Rp ≤ 6R⊕. Note that MODEL III is the only model which
attempts to fit composition with a Gaussian function and hence constrains a value for composition distribution standard
deviation.

Parameter MODEL I MODEL II MODEL III

Mean number of planets per star (f∗) 0.70+0.04
−0.03 0.72+0.03

−0.03 0.70+0.03
−0.03

Composition mean 0.27+0.08
−0.08 0.18+0.09

−0.09 0.26+0.08
−0.09

Composition standard deviation – – <0.16
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Unveiling the planet population at birth 1535

we also find an extremely narrow standard deviation of the core
composition distribution with 2σ upper-limit of σρ̃ < 0.16, which
is evidently consistent with zero. This points towards a singular
formation pathway for small, close-in exoplanets, which is discussed
in Section 4. Finally, as shown in the right-hand panel of Fig. 9, we
place a 2σ upper limit on the index for the photoevaporative mass-loss
efficiency scaling αη < 1.36, which is consistent with the findings of
Wu (2019).

4 D ISCUSSION

Our analysis provides an illuminating view of the exoplanet popu-
lation at birth. We have used the photoevaporation model to undo
the billions of years of evolution experienced by the observed
exoplanet population. While photoevaporation has evidently sculpted
the exoplanet population and hidden its initial conditions, they have
not been destroyed. In fact, we have been able to leverage the
photoevaporation model to uncover the ‘birth’ properties of the close-
in, low-mass exoplanet population. According to our results as shown
in Figs 8 and 9, the population of planets typically have cores ∼4M⊕
and began with an atmospheric mass fraction of ∼ 1 per cent. The
core compositions are decidedly terrestrial, with a ratio of silicates
to iron consistent with Earth’s, and inconsistent with a significant
amount of water. We now discuss the implication of such findings.

4.1 Atmospheric mass fraction distribution

The inferred atmospheric mass fraction distribution is strongly
peaked at ∼ 4 per cent. Unlike the previous results in Owen & Wu
(2017), who only put weak constraints on the initial mass fraction
we are able to constrain a precise distribution. This is due to the fact
that photoevaporation becomes ineffective at longer orbital periods.
Hence, the larger observed sub-Neptunes at longer periods in the
CKS sample provide upper limits on the atmospheric mass fraction
distribution. This result is further evidence that fitting the planet
population in the period–radius plane (as opposed to the 1D radius
distribution) is crucial in order to reveal more information of the
underlying demographics.

Furthermore, the atmospheric mass fraction distribution points
heavily towards the fact that the majority of Kepler planets were not
‘born terrestrial’ i.e. with negligible atmosphere. Fig. 10 demon-
strates the evolution of atmospheric mass fractions according to
MODEL III, with initial and final populations represented in blue
and red, respectively. As found in Wolfgang & Lopez (2015), the
final distribution shows a peak at a few per cent, as this corresponds
to the population of sub-Neptunes, i.e. those with large extended
H/He atmospheres that double their core radius. On the other hand,
the large spike of evolved planets with an atmospheric mass fraction
of X = 10−4 indicates that these planets have been stripped of their
natal H/He atmosphere. As a result, these bare rocky cores form
the large population of super-Earths that we observe today. In order
to quantify this, we estimate the ratio between number of planets
that were born rocky, and number of planets that evolved to become
so. By integrating the initial and final distribution below X = 10−3,
we find that ∼four times as many planets evolved to become super-
Earths as a result of photoevaporation, rather than be born with
negligible atmosphere. We note that our results do indicate that at
least some of the super-Earth’s formed without a significant H/He
atmosphere; however, it is clearly a sub-dominant mode. We therefore
gain insight into the origin of super-Earths and sub-Neptunes and
can state that they both predominantly evolved from the same initial
population. These results are consistent with Neil & Rogers (2020),

Figure 10. Evolution of atmospheric mass fractions from MODEL III. Initial
mass fractions shown in blue come from the constrained distribution shown
in Fig. 8, whilst final mass fractions have been evolved through 3 Gyr of
photoevaporation. Error bars come from resampling from MCMC chain. The
final distribution shows a large spike at X = 10−4, which corresponds to
planets which have been completely stripped of their H/He atmospheres.

in which three sub-populations of small, close-in exoplanets are
identified: sub-Neptunes, super-Earths that were photoevaporated
and super-Earths that were born terrestrial. Although each of the
sub-populations was identified with a separate mass function, as
opposed to our method which used a common function for all cores,
both inference problems find a best fit to the data arises with when all
three populations are present. Owen & Murray-Clay (2018) found
evidence that the population of born terrestrial planets was common
around lower mass or lower metallicity stars and speculated that the
transition between accreting or not accreting a large H/He atmosphere
was related to the supply of solids to the inner disc. It is worth
emphasizing that core accretion models (e.g. Lee & Chiang 2015)
indicated a 1M⊕ core will accrete a 1 per cent H/He atmosphere by
mass under typical nebula conditions. Therefore, while we see these
born terrestrial planets with radii and masses above Earth’s today,
they must have been significantly less massive at the time of gas disc
dispersal and continued accretion after disc dispersal, akin to the
standard model for terrestrial planet formation in the Solar system.

4.2 Core mass distribution

The core mass distribution, shown in Fig. 8, indicates a strong peak
at ∼4M⊕, additionally confirming previous works which required a
peaked distribution to fit data (e.g. Owen & Wu 2017; Wu 2019). This
feature implies that a common core mass and thus formation pathway
is favoured in planetary systems. In addition, the steeper slope beyond
∼20M⊕ indicates that very few cores are produced beyond this range.
This result confirms the predictions that cores growing to this size
will begin to host self-gravitating atmospheres and undergo runaway
gas accretion (Pollack et al. 1996). As these planets grow towards
Jovian masses, they reach the ‘thermal mass’ and may carve gaps
in their protoplanetary discs, perhaps slowing accretion. This idea
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Figure 11. Comparison of inferred initial atmospheric mass fraction from
MODEL III (shown in blue) with core accretion model from Lee & Chiang
(2015), adapted in Jankovic et al. (2019) (equation 19). Red region shows the
predicted atmospheric mass accreted, assuming the core mass distribution
found in MODEL III. Grey region represents accreted atmospheric mass
fractions calculated by extrapolating our constrained core mass distribution
to smaller cores masses (<0.6M⊕).

was put forward by Wu (2019) as to the origin of the peak, which
was strengthened by the fact they found this peak mass became
smaller at lower-stellar mass. This trend is something that should be
investigated in our inference framework, but is not possible with the
narrow range of stellar masses in the CKS data set and the use of non-
parametric functions for the core-mass distribution. Nevertheless,
we do require a non-zero fraction of cores � 20 M⊕ to explain the
data. This appears consistent with recent NGTS and TESS detections
that have discovered a number of 30–40 M⊕ planets residing in the
desert (West et al. 2019; Armstrong et al. 2020). While these planets
are certainly consistent with photoevaporation, how they formed and
why they did not accrete a massive H/He envelope remains a mystery.

One benefit of the adopted EUV/X-ray photoevaporation evolution
model is that it is capable of providing core mass, final atmospheric
mass and photospheric radius for an ensemble of planets. Thus, one
can produce a synthetic mass–radius diagram as shown in the left-
hand panel of Fig. 12. Here, we have added 6 per cent fractional
errors to planet radii and 20 per cent errors to planet masses. In
addition, we have limited planets to have RV semi-amplitude of
>1ms−1, which represents current detection limits. Note, however,
that we have not included survey biases (as performed in our
inference model) as these are currently not quantifiable for mass
measurements. As a result, the mass–radius plot, we provide should
be interpreted as an underlying distribution with added noise. As
observed in multiple works (e.g. Hadden & Lithwick 2014; Marcy
et al. 2014; Weiss & Marcy 2014; Dressing et al. 2015; Jontof-Hutter
et al. 2016; Dorn et al. 2019), we see a large population on a single
composition line (i.e. super-Earths with terrestrial cores) and another
population at a larger radius for a similar mass. This latter group
corresponds to the sub-Neptune population, harbouring extended
H/He atmospheres that approximately double their observed radius.

As a result, the mass distribution, as observed with RV or TTV
surveys, for super-Earths and sub-Neptunes will be different. This is
demonstrated in the left-hand panel of Fig. 12, in which the relative
occurrence for super-Earths (Rp < 1.8R⊕) and sub-Neptunes (Rp

< 1.8R⊕) is separated and plotted as PDFs, with sub-Neptunes
typically occurring at larger masses. We also plot the same PDFs
for a minimum RV semi-amplitude of 30 cm s−1 which represents
the precision on next-generation RV instruments. We see that by
improving this minimum value allows smaller planets to be detected
and thus both distributions extend further to lower mass. In addition,
we also take planets from the NASA Exoplanet Archive7 with mass
and radius measurement uncertainty < 20 per cent and plot them on
top of our expected occurrence. In the right-hand panel of Fig. 12, we
show the bulk density for the same population of modelled planets as
a function of planet size. A clear bimodality is observed, with super-
Earths centred at ∼6 g cm−3, owing to their terrestrial composition,
whilst sub-Neptunes lie at a lower bulk-density ∼2 g cm−3 as a small
increase in H/He atmosphere increases the planet’s photospheric
radius non-linearly.

An interesting question one can pose is, given the inferred core
mass distribution, how much H/He should the cores accrete whilst
immersed in a protoplanetary disc? Taking this further, we can
determine if the constrained core mass distribution can predict the
constrained initial atmospheric mass fraction distribution. To do so,
we employ a core accretion scaling relation from Lee & Chiang
(2015) for a dust-free H/He atmosphere in order to calculate the
accreted mass fraction for a given core mass.8 As used in Jankovic
et al. (2019), the scaling relation is adapted for varying gas surface
density (Fung & Lee 2018; Lee, Chiang & Ferguson 2018):

X(t) = 0.18

(
t

1 Myr

)0.4 (
0.02

Z

)0.4 (
μ

2.37

)3.3

×
(

Mcore

5M⊕

)1.6 (
1600 K

Trcb

)1.9 (
f�

0.1

)0.12

, (19)

where Z is atmospheric metallicity, μ is mean molecular weight,
Trcb is the temperature at the radiative-convective boundary inside
the atmosphere and f� is the ratio of gas surface density to that
of the minimum mass solar nebula (Hayashi 1981). Fig. 11 shows
the inferred initial atmospheric mass fraction distribution (from
MODEL III) in blue, whilst the accreted mass fraction (according to
equation 19) in red. In order to produce a full range of atmospheric
masses, the constrained core mass distribution is extrapolated below
the range used in our inference model – this untrustworthy region of
parameter space is shown in grey. We see clearly that the atmospheric
mass predicted by core accretion is ∼five times larger than our
constrained distribution.

This discrepancy has been found in other previous works. In
Jankovic et al. (2019), magnetorotational instability (MRI) simu-
lations were performed to reveal that the masses of cores forming in
the inner disc would result in atmospheres that were too large to be
photoevaporated and thus evolve into the typical size of planet we
observe today. Possible mechanisms to resolve this tension include
forming the planets at the very end of the disc lifetime (Ikoma & Hori
2012; Lee & Chiang 2016), or alternatively improving the accuracy
of gas accretion models to include the effects of giant mergers Liu
et al. (2015), Inamdar & Schlichting (2016) which would result
in potentially significant atmospheric mass-loss and the production

7Accessed on 2020 March 4.
8Although as shown by Jankovic et al. (2019) choosing this specific model
over others makes little difference
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Figure 12. Left-hand panel shows mass–radius plot for forward modelled planets from MODEL III for which RV semi-amplitude is >1ms−1. Whilst we have
added 6 per cent fractional errors to planet radii and 20 per cent errors to planet masses, we have not included survey biases similar to those in the main
inference problem. In addition, planet mass PDFs are also provided for super-Earths and Sub-Neptunes, defined by Rp < 1.8R⊕ and Rp > 1.8R⊕, respectively
with minimum RV semi-amplitude of 1ms−1 (solid and dashed, respectively) as well as 30cms−1 (dash-dotted and dotted, respectively). Black points represent
confirmed planets taken from the NASA Exoplanet Archive, for which mass and radius measurement uncertainty is < 20 per cent. In addition we do not include
biases of surveys, hence this should be interpreted as an underlying mass–radius distribution.

of heat which would take typically kyrs to disperse. The inclusion
of 3D simulations has additionally shown that recycling of high-
entropy gas during the accretion phase can act to reduce the final
atmospheric mass of the planet (Fung, Artymowicz & Wu 2015;
Ormel, Shi & Kuiper 2015; Cimerman, Kuiper & Ormel 2017; Ali-
Dib, Cumming & Lin 2020; Chen et al. 2020)

Finally, a different approach is the hypothesized ‘boil-off’ mech-
anism (Owen & Wu 2016) in which, during protoplanetary disc
dispersal, low-mass exoplanets may launch a Parker wind (Parker
1958) due to the quick reduction in confining gas pressure. This rapid
mass-loss mechanism may account for the disagreement between our
constrained atmospheric mass fraction distribution and that provided
by core accretion theory.

4.3 Core composition

As with all models presented in this work, the inferred mean core
composition is found in a silicate/iron dominated regime. Taking
the value from MODEL III, we find a mean value of ρ̃ = 0.26+0.08

−0.09,
which is equal to a bulk core density for a 1M⊕ core of ρ =
5.10+0.39

−0.40 g cm−3. Interpreting this composition using the Fortney
et al. (2007) mass–radius relations, suggests that cores of this nature
would have a silicate-to-iron ratio of ∼3:1, which is consistent with

that of Earth and confirms findings of previous works (e.g. Owen &
Wu 2017; Wu 2019). Additionally, the typical bulk core density
of observed planets beneath the gap (and hence host negligible
atmosphere) are consistent with this value (Dressing et al. 2015;
Dorn et al. 2019). Taking this interpretation of the core composition
further, it follows that in order to form cores dominated by silicate
material and absent of ices, it is necessary to build them interior to
the water–ice line (Chatterjee & Tan 2014; Jankovic et al. 2019). A
possible restriction in our adopted methodology is that our core
composition analysis has implemented the Fortney et al. (2007)
mass–radius relationships, which only allow two species to be present
in a core at one time: Either an ice–silicate mixture or a silicate-iron
mixture. In reality, all three species are likely to coexist in cores and
hence we use an exoplanet interior model from Zeng & Seager (2008)
to calculate the allowed composition fractions for a planet with our
inferred bulk core density ∼5 g cm−3. Fig. 13 shows the iron and
silicate mass fractions as a function of ice mass fraction for a 4M⊕
planet with a ∼1.63R⊕ core radius - not only does this combination
ensure matching bulk core densities with our inferred distributions,
but also is a typical mass and radius for a super-Earth. We see that
in order to increase the ice mass fraction by a small amount, the
iron content must increase dramatically. Furthermore, if we wish to
match ice mass fractions predicted by formation models beyond the
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Figure 13. Mass fractions of iron and silicate as a function of ice mass
fraction for a 4M⊕ planet according to core interior models from Zeng &
Seager (2008). We fix the core radius to be ∼1.63R⊕ in this calculation as
this requires that an ice-free core has a silicate-to-iron composition ratio of
∼3:1 and hence aligns with our constrained distributions.

water-ice line, the iron mass fraction must rise to unphysical levels
and remove the vast majority of the silicate mass. We thus conclude
that, although our adopted composition interpretation is limited to
two species, only a negligible ice content would be introduced with
more sophisticated interior models. Although this points towards the
in situ formation pathways, additional physics such as the presence of
planetary magnetic fields (Owen & Adams 2019) can act to suppress
atmospheric mass-loss, leading to a lower inferred core density and
hence ice-rich cores. This would, however, result in an inconsistency
between inferred planet masses and those observed with RV or TTV
surveys.

4.4 Core Composition Spread

In fitting a Gaussian function to core compositions, MODEL III not
only provides a mean-value, but also a width to the core composition
distribution. As shown in Fig. 9, we can only place a 2σ upper limit
on this width to be σρ̃ < 0.16, which is evidently consistent with
zero. This composition spread corresponds to 2σ upper limit in the
variation of the density of an Earth-mass core of <1.5 g cm−3. It was
shown in Owen & Wu (2017) that for a decrease in bulk core density
for constant mass, a planetary core expands to a larger radius. As
a result, a larger atmosphere can be stripped and thus the location
of the radius gap moves to a larger value. To produce a clean gap
i.e. one with a greater sparsity of planets, such as that found in Van
Eylen et al. (2018), the spread in bulk core densities must be very
narrow. As this has now been quantified in MODEL III, it suggests
that, despite different host stars and stellar neighbourhoods, small,
close-in exoplanet cores all attain a very similar core density. Whilst
there exist strong degeneracies in core composition, which allow
different fractions to equate to the same bulk core density, it still
raises the question of why such fine-tuning of bulk density would
arise in a stochastic core assembly process (Michel et al. 2020).

Figure 14. As a comparison to the asteroseismic survey of Van Eylen et al.
(2018), here we show 117 forward modelled planets randomly selected from
MODEL III. Blue crosses are planets where no radii errors are added, hence
we produce a clean gap. Black dots represents the same planets with typical
CKS errors added instead, which can shift some planets into the gap. Hence,
despite using a data set with larger radii uncertainties, we still predict a clean
gap in the underling planet distribution.

It is worth noting that whilst the cleaner gap found in the
asteroseismic sample of Van Eylen et al. (2018) is more accurate
and therefore desirable (Petigura 2020), the survey is currently not
large enough to yield meaningful results if included in this forward
modelling methodology. In addition, in order for the model to be
computationally efficient, a completeness map is required in order to
calculate synthetic planet detections, which is not available for the
Van Eylen et al. (2018) sample. To check whether our model can
produce a clean gap in the absence of radius errors, Fig. 14 shows
a random draw of 117 planets (the same as the Van Eylen et al.
2018 sample) forward modelled using MODEL III with and without
radius errors included. This shows that the underlying distribution
of planets produces a clean radius gap, and it is the uncertainty in
planetary radii that pushes planets into the valley.

4.5 Planet distribution beyond 100-d orbital period

Whilst current detection limits prevent surveys probing exoplanet
distributions at larger orbital periods, one can postulate as to
whether the distribution we observe today extends beyond 100 d.
As shown in Fig. 15, extrapolating the period distribution used in
this work (equation 2) and modelling planets according to MODEL

III demonstrates that the sub-Neptune population would in-fact be
far greater in number than that of the super-Earths. This is because
planets at greater orbital separations are less prone to atmospheric
mass-loss and therefore retain a few per cent mass atmosphere. If, on
the other hand, we were to observe a distribution in which the relative
occurrence of super-Earths and sub-Neptunes remains approximately
equal beyond 100 d, it would suggest that the number of planets that
were born terrestrial might increase with orbital period.
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Figure 15. Planet-size distribution as a function of orbital period for best-
fitting MODEL III parameters under the assumption that the inferred period
distribution (equation 2) extends beyond 100 d.

4.6 Changing the evolution model

As discussed in Section 2, all results presented in this work hinge
on the EUV/X-ray photoevaporation model and accurate photo-
evaporation rates, which forms a strong prior on all constrained
quantities. Other evolution models, such as core-powered mass-loss,
are similarly capable of reproducing the observed data (Gupta &
Schlichting 2019, 2020). Whilst both models have similar depen-
dencies and hence inferred quantities (e.g. core composition), they
differ in some regards, particularly in planet radius evolution. As
the majority of the mass-loss in photoevaporation occurs during the
first few 100 Myr before the host star begins to spin-down, the
radius gap is predominantly formed at the end of this stage (see
Fig. 16). Core-powered mass-loss on the other hand invokes the
core’s accretion luminosity to provide the energy source required to
induce atmospheric mass-loss. As the time-scales for this energy-
transfer are far greater than that of EUV/X-ray photoevaporation,
the radius gap takes far longer to form, typically of order Gyrs. This
difference in evolution my lead to different inferred demographics,
especially initial atmospheric mass fraction. We therefore suggest
that comparisons of inferred quantities from both models can act as
further tests between the two mechanisms. As a very basic statistic,
we measure the occurrence ratio of super-Earths to sub-Neptunes
defined by number of planets with Rp ≤ 1.8R⊕ and Rp > 1.8R⊕,
respectively. We find ratio values of 0.77 ± 0.08 for stellar ages t∗ <

1Gyr and 0.95 ± 0.08 for t∗ > 1Gyr. This indicates that, while the
majority of planets cross the gap on 100 Myr time-scales, there are a
minority that do so at later times (as can be seen in Fig. 16). Works
are beginning to constrain the time-dependence of the exoplanet
population (such as Berger et al. 2020) but, a single cut at a specific
time is particularly sensitive to the underlying age distribution either
side of the cut. However, trying to constrain the evolution of the ratio
of super-Earths to sub-Neptunes as a function of time will provide a
constraint on the driving mass-loss model.

Figure 16. Planet-size distribution as a function of time (or similarly host
star age). The bimodality can be seen to emerge after 100 Myr, typically
when the star begins to spin-down and the XUV luminosity drops off
precipitously. When compared to core-powered mass-loss (i.e. fig. 10 in
Gupta & Schlichting 2020), we see the time-scale for radius gap emergence
is of order Gyrs.

4.7 Improving the Model

In general, this work has been a proof of concept that observationally
unobtainable demographic quantities can be inferred from preexist-
ing data by utilising an evolutionary model. One key limitation is
the amount of data included. As new transit surveys such as TESS
(Ricker et al. 2014) begin to reveal a myriad of small, close-in
exoplanets, the inclusion of the such data will only increase the
constraining power of the model. Despite what we have shown is
possible, the limited CKS sample (∼900 planets) meant that we
limited our non-parametric Bernstein polynomial approximations of
core mass and initial atmospheric mass fraction distributions to fifth-
order. To confirm a fifth-order expansion is sufficient to characterize
the distributions, we performed a repeat of MODEL III to convergence
with eight-order Bernstein polynomials. This test yielded results that
were consistent with the ones shown here. We therefore conclude
that with the current limited data, we are unable to extract more
detailed features in the distributions of interest. In addition to more
transit data, mass measurements may be included such as from RV
or TTVs, again improving the constraining ability of the model. We
do note, however, that the observational biases of any new data must
be quantifiable in order to include it in our inference model.

In the presence of more data, more complex trends can be
explored. One such trend that was probed in Wu (2019) was the
dependency of core mass with stellar mass, i.e. do larger stars host
larger planets? We therefore aim to determine whether the peak of
the inferred core mass distribution increases for larger host stars.
Furthermore, one might expect the core mass and initial atmospheric
mass fraction distributions to be correlated due to the fact that
larger cores are able to accrete larger atmospheres. Furthermore,
more data could be used to determine dependencies of core mass or
initial atmospheric mass fraction distributions with stellar mass or
orbital period, the latter of which might aid in placing constraints on
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core formation pathways, atmospheric accretion rates or ‘boil-off’
style mass-loss mechanisms. Stellar mass trends on the other hand
will be pivotal in comparing photoevaporation with core-powered
mass-loss. A key prediction of photoevaporation is that, at lower
stellar mass, stars produce a higher relative EUV/X-ray flux, and are
hence capable of stripping larger atmospheres for a fixed equilibrium
temperature. On the other hand, core-powered mass-loss will have
no such dependency on stellar mass as the energy source comes
from within the planet’s core. Extracting the presence, or lack of,
these trends will be a crucial step in determining which mechanism
is the dominant driver of planet evolution.

A final note is that the success of this inference model is pivotal on
the fact that the analytic model from Owen & Wu (2017) is capable of
rapidly calculating planetary evolution due to photoevaporation. The
down-side of this, however, is that this is an approximation of full
numerical simulations, such as those from Owen & Jackson (2012),
Owen & Wu (2013). As a result, accurately modelling aspects such
as mass-loss efficiency, atmospheric opacity and envelope equation
of state is limited. Further refinements to such analytic models is thus
also worth investing time in.

5 C O N C L U S I O N

In this work, we have used an evolutionary model for EUV/X-
ray photoevaporation and the CKS data to infer the core mass
distribution, the initial atmospheric mass fraction distribution and
the core composition distribution for small close-in exoplanets.
This is achieved by invoking the photoevaporation model to evolve
populations of exoplanets and then synthetically observe them with
the observational biases and noise of the Kepler Space Telescope. By
then comparing the modelled detections with the real CKS data, we
infer which underlying planet demographics are required to match
the model with the data. Our main conclusions are as follows:

(i) The core mass distribution is peaked at ∼4M⊕, with a steep
decline of occurrence towards higher masses. This points towards
a singular formation pathway of planetary cores, preferentially
produced at a few earth masses.

(ii) The core composition distribution is centred at a bulk core den-
sity for an Earth mass core of ρ1 M⊕ ≈ 5.1 g cm−3. This corresponds
to 4:1 to 3:1 silicate iron composition ratio, which is consistent with
Earth and heavily favours forming cores interior to the water ice-line.

(iii) The core composition distribution has an extremely narrow
width, which is consistent with zero. This suggests a fine tuning
of bulk core density, despite difference in host stars and stellar
neighbourhoods.

(iv) The initial atmospheric mass fraction distribution is strongly
peaked at ∼ 4 per cent. Evolving this forward in time shows that
approximately four times as many planets evolved to become stripped
rocky cores, than those that were born rocky with no extended H/He
atmosphere.

(v) Core accretion models overpredict the initial atmospheric
masses of small exoplanets when compared to that which photo-
evaporation can strip. To resolve this tension, more sophisticated
simulations of core accretion are needed. Alternatively, additional
mass-loss mechanisms such as late-stage giant mergers or ‘boil-off’
phases may further reduce the atmospheric mass and hence bring
these models into agreement.

These conclusions are all dependant on the fact that we assume
the main driver of small, close-in exoplanet evolution is EUV/X-
ray photoevaporation. Changing the adopted evolution model to
alternative theories, such as core-powered mass-loss may result in
differing constrained distributions, which may provide tests between

the models. In particular, determining trends with stellar mass may
provide the best differentiation between the two mechanisms.
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APPENDI X A : BERNSTEI N POLYNOMI ALS

Bernstein polynomials are effective in approximating well-behaved
functions. They are formed as an nth-order expansion of Bernstein
basis polynomials:

Bn(x) =
n∑

ν=0

βν,n bν,n(x), (A1)

where βν are the Bernstein coefficients and the basis functions bν, n(x)
are given by

bν,n(x) =
(

n

ν

)
xν (1 − x)n−ν . (A2)

For a given function f(x) to be approximated, the Bernstein coeffi-
cients are calculated by

βν,n = f

(
ν

n

)
, (A3)

hence, combing equations (A1)–(A3) leads to an approximation of
f(x) to nth order

Bn(f )(x) =
n∑

ν=0

f

(
ν

n

)(
n

ν

)
xν (1 − x)n−ν . (A4)

In this work, Bernstein polynomials are used to model the
initial atmospheric mass fraction distribution f(Xinit) and core mass
distribution f(Mcore) in the inference model. For the latter, the
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Bernstein coefficients simply control the PDF of log Mcore in the
chosen domain between 0.6 and 100M⊕. The lower limit was chosen
such that a pure ice composition would be at the current detection
limit. The upper limit on the other hand was required to be sufficiently
large to avoid boundary issues with the Bernstein polynomials.
Whilst the coefficients for core mass control a PDF, the coefficients
for log Xinit

atm control an inverse CDF. On other words, we construct
a Bernstein polynomial function in the domain [0,1] and range
[log Xmin, log Xmax]. By drawing a random number x ∈ [0, 1], we
can therefore read off an initial atmospheric mass fraction according
to the desired distribution. By adapting A4, we can approximate our
desired inverse CDF C(x) as

C(x) ≈
{

ymax − ymin

B(1) − B(0)

×
n∑

ν=0

C

(
ν

n

)(
n

ν

)
xν (1 − x)n−ν

}
+ ymin, (A5)

where B(0) and B(1) are equation (A4) evaluated at x = 0, 1 for
the Bernstein coefficients βν, n = C(ν/n) to be determined in the
inference problem. The choice of PDF versus CDF between f(Xinit)
and f(Mcore) came about due to convergence issues of MCMC chains
with both distributions controlled by a CDF or both with a PDF. It
was found that the core mass and initial atmospheric mass fraction
distributions were effectively constrained if they were fit with a PDF
and CDF, respectively.

A P P E N D I X B: FI T T I N G TH E O R B I TA L P E R I O D
DISTRIBU TION

The orbital period distribution is found by fitting the CKS data
with a separate inhomogeneous point Poisson process, i.e. the same
underlying statistical model used for the main inference problem of
this paper. We approximate the underlying distribution for orbital
period as a smooth broken power law,

dN

dP
∝ 1(

P
P0

)−k1 + (
P
P0

)−k2
. (B1)

Once normalized as a PDF, we bias this function with a 1D integral
of the completeness map of the CKS data set (i.e. integrate middle

panel of Fig. 5 along the R-direction). In this way, we calculate the
probability of detecting a planet for a given orbital period, which we
label λ(P). As with our likelihood for the main inference problem
(equation 18), we construct a likelihood from an inhomogeneous
point Poisson process, now in 1D,

L(πCKS) = P (NCKS) × P (πCKS)

= e−
 
NCKS

NCKS!

NCKS∏
i

λ(Pi)



, (B2)

where,


 = N∗ × f∗ ×
∫

λ(P ) dP , (B3)

is the total number of planets expected to be detected and πCKS is the
population of CKS planets (see Section 2.5 for more details). This
likelihood is given to the affine invariant MCMC of Goodman &
Weare (2010) from the EMCEE package (Foreman-Mackey et al.
2013) with 500 walkers in order to infer P0, k1, and k2 from
equation (B1).

APPENDI X C : FI TTI NG THE HOST STELL AR
MASS DISTRIBU TION

Similar to the orbital period distribution, we fit the stellar mass
distribution of Kepler planets using an inhomogeneous point Poisson
process. We do not, however, quantify the selection biases and
instead choose to simply infer the underlying distribution as Gaussian
function. In order to forward model the stellar mass errors, we take
the typical fractional uncertainties from the CKS catalogue (typically
∼ 4 per cent) and add them to a population of stellar masses drawn
from a Gaussian function. We then calculate a PDF from this new
distribution of noisy stellar masses λ(M∗) and, as with equation (B2),
measure a likelihood by taking the value of this PDF for each of the
CKS stellar mass measurements. We provide this likelihood function
to EMCEE (Foreman-Mackey et al. 2013) in order to infer the mean
and standard deviation of the underlying stellar mass distribution
from the CKS catalogue.
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