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ABSTRACT
Weight sharing in convolutional neural networks (CNNs) ensures that their feature maps will be translation-equivariant. However,
although conventional convolutions are equivariant to translation, they are not equivariant to other isometries of the input image
data, such as rotation and reflection. For the classification of astronomical objects such as radio galaxies, which are expected
statistically to be globally orientation invariant, this lack of dihedral equivariance means that a conventional CNN must learn
explicitly to classify all rotated versions of a particular type of object individually. In this work we present the first application of
group-equivariant convolutional neural networks to radio galaxy classification and explore their potential for reducing intra-class
variability by preserving equivariance for the Euclidean group E(2), containing translations, rotations, and reflections. For the
radio galaxy classification problem considered here, we find that classification performance is modestly improved by the use
of both cyclic and dihedral models without additional hyper-parameter tuning, and that a D16 equivariant model provides the
best test performance. We use the Monte Carlo Dropout method as a Bayesian approximation to recover epistemic uncertainty
as a function of image orientation and show that E(2)-equivariant models are able to reduce variations in model confidence as a
function of rotation.

Key words: methods: data analysis – techniques: image processing – radio continuum: galaxies.

1 IN T RO D U C T I O N

In radio astronomy, a massive increase in data volume is currently
driving the increased adoption of machine learning methodologies
and automation during data processing and analysis. This is largely
due to the high data rates being generated by new facilities such
as the Low-Frequency Array (LOFAR; Van Haarlem et al. 2013),
the Murchison Widefield Array (MWA; Beardsley et al. 2019),
the MeerKAT telescope (Jarvis et al. 2016), and the Australian
SKA Pathfinder (ASKAP) telescope (Johnston et al. 2008). For
these instruments a natural solution has been to automate the data
processing stages as much as possible, including classification of
sources.

With the advent of such huge surveys, new automated classification
algorithms have been developed to replace the ‘by eye’ classification
methods used in earlier work. In radio astronomy, morphological
classification using convolutional neural networks (CNNs) and deep
learning is becoming increasingly common for object classification,
in particular with respect to the classification of radio galaxies. The
ground work in this field was done by Aniyan & Thorat (2017)
who made use of CNNs for the classification of Fanaroff–Riley (FR)
type I and type II radio galaxies (Fanaroff & Riley 1974). This was
followed by other works involving the use of deep learning in source
classification. Examples include Lukic et al. (2018) who made use of
CNNs for the classification of compact and extended radio sources
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from the Radio Galaxy Zoo catalogue (Banfield et al. 2015), the
CLARAN (Classifying Radio Sources Automatically with a Neural
Network; Wu et al. 2018) model made use of the Faster R-CNN (Ren
et al. 2015) network to identify and classify radio sources; Alger et al.
(2018) made use of an ensemble of classifiers including CNNs to per-
form host galaxy cross-identification. Tang, Scaife & Leahy (2019)
made use of transfer learning with CNNs to perform cross-survey
classification, while Gheller, Vazza & Bonafede (2018) made use of
deep learning for the detection of cosmological diffuse radio sources.
Lukic et al. (2018) also performed morphological classification using
a novel technique known as capsule networks (Sabour, Frosst & E
Hinton 2017), although they found no specific advantage compared
to traditional CNNs. Bowles et al. (2021) showed that an attention-
gated CNN could be used to perform Fanaroff–Riley classification
of radio galaxies with equivalent performance to other applications
in the literature, but using ∼50 per cent fewer learnable parameters
than the next smallest classical CNN in the field.

Convolutional neural networks classify images by learning the
weights of convolutional kernels via a training process and using
those learned kernels to extract a hierarchical set of feature maps
from input data samples. Convolutional weight sharing makes CNNs
more efficient than multilayer perceptrons (MLPs) as it ensures
translation-equivariant feature extraction i.e. a translated input signal
results in a corresponding translation of the feature maps. However,
although conventional convolutions are equivariant to translation,
they are not equivariant to other isometries of the input data, such
as rotation i.e. rotating an image and then convolving with a fixed
filter is not the same as first convolving and then rotating the
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result. Although many CNN training implementations use rotation
as a form of data augmentation, this lack of rotational equivariance
means that a conventional CNN must explicitly learn to classify all
rotational augmentations of each image individually. This can result
in CNNs learning multiple copies of the same kernel but in different
orientations, an effect that is particularly notable when the data itself
possesses rotational symmetry (Dieleman, De Fauw & Kavukcuoglu
2016). Furthermore, while data augmentation that mimicks a form
of equivariance, such as image rotation, can result in a network
learning approximate equivariance if it has sufficient capacity, it is
not guaranteed that invariance learned on a training set will generalize
equally well to a test set (Lenc & Vedaldi 2014). A variety of different
equivariant networks have been developed to address this issue, each
guaranteeing a particular transformation equivariance between the
input data and associated feature maps. For example, in the field of
galaxy classification using optical data, Dieleman, Willett & Dambre
(2015) enforced discrete rotational invariance through the use of
a multibranch network that concatenated the output features from
multiple convolutional branches, each using a rotated version of
the same data sample as its input. However, while effective, the
approach of Dieleman et al. (2015) requires the convolutional layers
of a network architecture and hence the number of model weights
associated with them to be replicated N times, where N is the number
of discrete rotations.

Recently, a more efficient method of using convolutional layers
that are equivariant to a particular group of transforms has been
developed, which requires no replication of architecture and hence
fewer learnable parameters to be used. Explicitly enforcing an
equivariance in the network model in this way not only provides a
guarantee that it will generalize, but also prevents the network using
parameter capacity to learn characteristic behaviour that can instead
be specified a priori. First introduced by Cohen & Welling (2016),
these Group equivariant Convolutional Neural Networks (G-CNNs),
which preserve group equivariance through their convolutional
layers, are a natural extension of conventional CNNs that ensure
translational invariance through weight sharing. Group equivariance
has also been demonstrated to improve generalization and increase
performance (see e.g. Weiler, Hamprecht & Storath 2017; Weiler &
Cesa 2019). In particular, steerable G-CNNs have become an
increasingly important solution to this problem and notably those
steerable CNNs that describe E(2)-equivariant convolutions.

The Euclidean group E(2) is the group of isometries of the plane
R2 that contains translations, rotations, and reflections. Isometries
such as these are important for general image classification using
convolution as the target object in question is unlikely to appear at a
fixed position and orientation in every test image. Such variations are
not only highly significant for objects/images that have a preferred
orientation, such as text or faces, but are also important for low-level
features in nominally orientation-unbiased targets such as astrophys-
ical objects. In principle, E(2)-equivariant CNNs will generalize over
rotationally-transformed images by design that reduces the amount of
intra-class variability that they have to learn. In effect such networks
are insensitive to rotational or reflection variations and therefore learn
only features that are independent of these properties.

In this work we introduce the use of G-steerable CNNs to
astronomical classification. The structure of the paper is as follows:
in Section 2 we describe the mathematical operation of G-steerable
CNNs and define the specific Euclidean subgroups being considered
in this work; in Section 3 we describe the data sets used in this
work and the preprocessing steps implemented on those data; in
Section 4 we describe the network architecture adopted in this work,
explain how the G-steerable implementation is constructed, and

specify the group representations; in Section 5 we give an overview
of the training outcomes including a discussion of the convergence
for different equivalence groups, validation, and test performance
metrics, and introduce a novel use of the Monte Carlo Dropout
method for quantitatively assessing the degree of model confidence
in a test prediction as a function of image orientation; in Section 6 we
discuss the validity of the assumptions that radio galaxy populations
are expected to be statistically rotation and reflection unbiased and
review the implications of this work in that context; in Section 7 we
draw our conclusions.

2 E(2 ) -EQU I VARI ANT G-STEERABLE CNNS

Group CNNs define feature spaces using feature fields f : R2 → Rc,
which associate a c-dimensional feature vector f (x) ∈ Rc to each
point x of an input space. Unlike conventional CNNs, the feature
fields of such networks contain transformations that preserve the
transformation law of a particular group or subgroup, which allows
them to encode orientation information. This means that if one
transforms the input data, x, by some transformation action, g,
(translation, rotation, etc.) and passes it through a trained layer of the
network, then the output from that layer, �(x), must be equivalent to
having passed the data through the layer and then transformed it i.e.

�(Tgx) = T ′
g �(x), (1)

where Tg is the transformation for action g. In the case where the
transformation is invariant rather than equivariant i.e. the input does
not change at all when it is transformed, T ′

g will be the identity
matrix for all actions g ∈ G. In the case of equivariance, Tg does not
necessarily need to be equal to T ′

g and instead must only fulfil the
property that it is a linear representation of G i.e.T (gh) = T (g)T (h).

Cohen & Welling (2016) demonstrated that the conventional
convolution operation in a network can be re-written as a group
convolution

[f ∗ φ](g) =
∑

h∈X

∑

k

fk(h)φk(g−1h), (2)

where X = R2 in layer one and X = G in all subsequent layers. Whilst
this operation is translationally-equivariant, φ is still rotationally
constrained. For E(2)-equivariance to hold more generally, the kernel
itself must satisfy

φ(gx) = ρout(g)φ(x)ρin(g−1) ∀ g ∈ G, x ∈ R2, (3)

(Weiler et al. 2018), where g is an action from group G, and φ : R2 →
Rcin×cout , where cin and cout are the number of channels in the input and
output data, respectively; ρ is the group representation that specifies
how the channels of each feature vector mix under transformations.
Kernels that fulfil this constraint are known as rotation-steerable
and must be constructed from a suitable family of basis functions.
As noted above, this is a linear relationship, which means that G-
steerable kernels form a subspace of the convolution kernels used by
conventional CNNs.

For planar images the input space will be R2, and for single
frequency or continuum radio images these feature fields will be
scalar, such that s : R2 → R. The group representation for scalar
fields is also known as the trivial representation, ρ(g) = 1 ∀ g
∈ G, indicating that under a transformation there is no orientation
information to preserve and that the amplitude does not change.
The group representation of the output space from a G-steerable
convolution must be chosen by the user when designing their network
architecture and can be thought of as a variety of hyper-parameter.
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However, whilst the representation of the input data is in some
senses quite trivial for radio images, in practice convolution layers are
interleaved with other operations that are sensitive to specific choices
of representation. In particular, the range of non-linear activation
layers permissible for a particular group or subgroup representation
may be limited. Trivial representations, such as scalar fields, do not
transform under rotation and therefore conventional nonlinearities
like the widely used ReLU activation function are fine. Bias terms
in convolution allow equivariance for group convolutions only in
the case where there is a single bias parameter per group feature
map (rather than per channel feature map) and likewise for batch
normalization (Cohen & Welling 2016).

In this work we use the G-steerable network layers from Weiler &
Cesa (2019) who define the Euclidean group as being constructed
from the translation group, (R, +), and the orthogonal group, O(2) =
{O ∈ R2×2 | OT O = id2×2}, such that the Euclidean group is congru-
ent with the semi-direct product of these two groups, E(2) ∼= (R, +)�
O(2). Consequently, the operations contained in the orthogonal group
are those which leave the origin invariant i.e. continuous rotations and
reflections. In this work we specifically consider the cyclic subgroups
of the Euclidean group with form (R2, +) � CN , where CN contains
a set of discrete rotations in multiples of 2π /N, and the dihedral
subgroups with form (R2, +) � DN , where DN

∼=CN�({ ± 1}, ∗),
which incorporate reflection around x = 0 in addition to discrete
rotation. As noted by Cohen & Welling (2016), although convolution
on continuous groups is mathematically well defined, it is difficult to
approximate numerically in a fully equivariant manner. Furthermore,
the complete description of all transformations in larger groups is
not always feasible (Gens & Domingos 2014). Consequently, in this
work we consider only the discrete and comparatively small groups,
CN and DN, with orders N and 2N, respectively.

3 DATA

The data set used in this work is based on the catalogue of
Miraghaei & Best (2017), who used a parent galaxy sample taken
from Best & Heckman (2012) that cross-matched the Sloan Digital
Sky Survey (SDSS; York et al. 2000) data release 7 (DR7; Abazajian
et al. 2009) with the Northern VLA Sky Survey (NVSS; Condon et al.
1998) and the Faint Images of the Radio Sky at Twenty centimetres
(FIRST; Becker, White & Helfand 1995).

From the parent sample, sources were visually classified by
Miraghaei & Best (2017) using the original morphological definition
provided by Fanaroff & Riley (1974): galaxies that had their most
luminous regions separated by less than half of the radio source’s
extent were classed as FRI, and those that were separated by more
than half of this were classed as FRII. Where the determination of
this separation was complicated by either the limited resolution of
the FIRST survey or by its poor sensitivity to low surface brightness
emission, the human subjectivity in this calculation was indicated
by the source classification being denoted as ‘Uncertain’, rather than
‘Confident’. Galaxies were then further classified into morphological
sub-types via visual inspection. Any sources which showed FRI-like
behaviour on one half of the source and FRII-like behaviour on the
other were deemed to be hybrid sources.

Each object within the catalogue of Miraghaei & Best (2017)
was given a three-digit classification identifier to allow images
to be separated into different subsets. Images were classified by
FR class, confidence of classification, and morphological sub-type.
These are summarized in Table 1. For example, a radio galaxy that
was confidently classified as an FRI type source with a wide-angle
tail morphology would be denoted 102.

Table 1. Numerical identifiers from the catalogue of Miraghaei & Best
(2017).

Digit 1 Digit 2 Digit 3

0 - FRI 0 - Confident 0 - Standard
1 - FRII 1 - Uncertain 1 - Double-double
2 - Hybrid 2 - Wide-angle tail
3 - Unclassifiable 3 - Diffuse

4 - Head-tail

We note that not all combinations of the three digits described in
Table 1 are present in the catalogue as some morphological classes are
dependent on the parent FR class, with only FRI type objects being
sub-classified into head-tail or wide-angle tail, and only FRII type
objects being sub-classified as double-double. Hybrid FR sources
are not considered to have any non-standard morphologies, as their
standard morphology is inherently inconsistent between sources.
Confidently classified objects outnumber their uncertain counterparts
across all classes, and in classes that have few examples there may
be no uncertain sources present. This is particularly apparent for
non-standard morphologies.

From the full catalog of 1329 labelled objects, 73 were excluded
from the machine learning data set. These include (i) the 40 objects
denoted as 3 - unclassifiable, (ii) 28 objects which had an angular
extent greater than a selected image size of 150 × 150 pixels, (iii) four
objects with structure that was found to overlap the edge of the sky
area covered by the FIRST survey, and (iv) the single object in three-
digit category 103. This final object was excluded as a minimum of
two examples from each class are required for the data set: one for
the training set and one for the test set. Following these exclusions,
1256 objects remain, which we refer to as the MiraBest data set and
summarise in Table 2.

All images in the MiraBest data set are subjected to a similar data
pre-processing as other radio galaxy deep learning data sets in the
literature (see e.g. Aniyan & Thorat 2017; Tang et al. 2019). FITS

images for each object are extracted from the FIRST survey data
using the Skyview service (McGlynn, Scollick & White 1998) and
the astroquery library (Ginsburg et al. 2019). These images are
then processed in four stages before data augmentation is applied:
first, image pixel values are set to zero if their value is below a
threshold of three times the local rms noise; secondly, the image
size is clipped to 150 by 150 pixels i. e. 270 arcsec by 270 arcsec
for FIRST, where each pixel corresponds to 1.8 arcsec. Thirdly,
all pixels outside a square central region with extent equal to the
largest angular size of the radio galaxy are set to zero. This helps to
eliminate secondary background sources in the field and is possible
for the MiraBest data set due to the inclusion of this parameter in
the catalogue of Miraghaei & Best (2017). Finally the image is
normalized as:

Output = 255 · Input − min(Input)

max(Input) − min(Input)
, (4)

where ‘Output’ is the normalized image, ‘Input’ is the original
image and ‘min’ and ‘max’ are functions which return the single
minimal and maximal values of their inputs, respectively. Images are
saved to PNG format and accummulated into a PyTorch batched
data set.1

For this work we extract the objects labelled as Fanaroff–Riley
Class I (FRI) and Fanaroff–Riley Class II (FRII; Fanaroff & Riley

1The MiraBest data set is available on Zenodo: 10.5281/zenodo.4288837
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Table 2. MiraBest data set summary. The original data set labels (MiraBest Label) are shown in relation to the labels
used in this work (Label). Hybrid sources are not included in this work, and therefore have no label assigned to them.

Class No. Confidence Morphology No. MiraBest Label

FRI 591 Confident Standard 339 0
Wide-angle tailed 49 1

Head-tail 9 2
Uncertain Standard 191 3

Wide-angle tailed 3 4
FRII 631 Confident Standard 432 5

Double-double 4 6
Uncertain Standard 195 7

Hybrid 34 Confident NA 19 8
Uncertain NA 15 9

Table 3. Data used in this work. The table shows the number of objects of
each class that are provided in the training and test partitions for the MiraBest
data set, containing sources labeled as both Confident and Uncertain, and the
MiraBest∗ data set, containing only objects labeled as Confident, as well as
the mean and standard deviation of the training sets in each case.

Train Test
Data FRI FRII FRI FRII μ σ

MiraBest 517 552 74 79 0.0031 0.0352
MiraBest∗ 348 381 49 55 0.0031 0.0350

1974) radio galaxies with classifications denoted as Confident (as
opposed to Uncertain). We exclude the objects classified as Hybrid
and do not employ sub-classifications. This creates a binary classifi-
cation data set with target classes FRI and FRII. We denote the subset
of the full MiraBest data set used in this work as MiraBest∗.

The MiraBest∗ data set has pre-specified training and test data
partitions and the number of objects in each of these partitions is
shown in Table 3 along with the equivalent partitions for the full
MiraBest data set. In this work we subdivide the MiraBest∗ training
partition into training and validation sets using an 80:20 split. The test
partition is reserved for deriving the performance metrics presented
in Section 5.2.

To accelerate convergence, we further normalize individual data
samples from the data set by shifting and scaling as a function of the
mean and variance, both calculated from the full training set (LeCun
et al. 2012) and listed in Table 3. Data augmentation is performed
during training and validation for all models using random rotations
from 0 to 360 degrees. This is standard practice for augmentation and
is also consistent with the G-steerable CNN training implementations
of Weiler & Cesa (2019), who included rotational augmentation
for their own tests in order to not disadvantage models with lower
levels of equivariance. To avoid issues arising from samples where
the structure of the radio source overlaps the edge of the field and
is artificially truncated in some orientations during augmentation,
but not in others, we apply a circular mask to each sample image,
setting all pixels to zero outside a radial distance from the centre
of 75 pixels.

An example data sample is shown in Fig. 1, where it is used to
illustrate the corresponding C4 and D4 groups. As noted by Weiler &
Cesa (2019), for signals digitised on a pixel grid, exact equivariance
is not possible for groups that are not symmetries of the grid itself and
in this case only subgroups of D4 will be exact symmetries with all
other subgroups requiring interpolation to be employed (Dieleman
et al. 2016).

4 A R C H I T E C T U R E

For our architecture we use a simple LeNet-style network (LeCun
et al. 1998) with two convolutional layers, followed by three fully-
connected layers. Each of the convolutional layers has a ReLU
activation function and is followed by a max-pooling operation. The
fully-connected layers are followed by ReLU activation functions
and we use a 50 per cent dropout before the final fully-connected
layer, as is standard for LeNet (Krizhevsky, Sutskever & Hinton
2012). An overview of the architecture is shown in Table 4. In
what follows we refer to this base architecture using conventional
convolution layers as the standard CNN and denote it {e}. We also
note that the use of conventional CNN is used through the paper to
refer to networks that do not employ group-equivariant convolutions,
independent of architecture.

For the G-steerable implementation of this network we use the
e2cnn extension2 to the PyTorch library (Weiler & Cesa 2019)
and replace the convolutional layers with their subgroup-equivariant
equivalent. We also introduce two additional steps into the network
in order to recast the feature data from the convolutional layers into
a format suitable for the conventional fully-connected layers. These
steps consist of reprojecting the feature data from a geometric tensor
into standard tensor format and pooling over the group features, and
are indicated in italics in Table 4. Since the additional steps in the G-
steerable implementations have no learnable parameters associated
with them, the overall architecture is unchanged from that of the
standard CNN; it is only the nature of the kernels in the convolutional
layers that differ.

For the input data we use the trivial representation, but for
all subsequent steps in the G-steerable implementations we adopt
the regular representation, ρreg. This representation is typical for
describing finite groups/subgroups such as CN and DN. The regular
representation of a finite group G acts on a vector space R|G| by
permuting its axes, where |G| = N for CN and |G| = 2N for
DN, see Fig. 1. This representation is helpful because its action
simply permutes channels of fields and is therefore equivariant under
pointwise operations such as the ReLU activation function, max, and
average pooling functions (Weiler & Cesa 2019).

We train each network over 600 epochs using a standard cross-
entropy loss function and the Adam optimizer (Kingma & Ba 2014)
with an initial learning rate of 10−4 and a weight decay of 10−6.
We use a scheduler to reduce the learning rate by 10 per cent each
time the validation loss fails to decrease for two consecutive epochs.
We use mini-batching with a batch size of 50. No additional hyper-

2https://github.com/QUVA-Lab/e2cnn
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Figure 1. Illustration of the C4 and D4 groups for an example radio galaxy postage stamp image with 50 × 50 pixels. The members of the C4 group are each
rotated by π /2 radians, resulting in a group order |C4| = 4. The members of the D4 group are each rotated by π /2 radians and mirrored around x = 0, resulting
in a group order |D4| = 8.

Table 4. The LeNet5-style network architecture used for all the models in
this work. G-Steerable implementations include the additional steps indicated
in italics and replace the convolutional layers with the appropriate group-
equivariant equivalent in each case. Column [1] lists the operation of each
layer in the network, where entries in italics denote operations that are applied
only in the G-steerable version of the network; Column [2] lists the kernel
size in pixels for each layer, where appropriate; Column [3] lists the number
of output channels from each layer; Column [4] denotes the degree of zero-
padding in pixels added to each edge of an image, where appropriate.

Operation Kernel Channels Padding

Invariant projection
Convolution 5 × 5 6 1
ReLU
Max-pool 2 × 2
Convolution 5 × 5 16 1
ReLU
Max-pool 2 × 2
Invariant projection
Global average pool
Fully-connected 120
ReLU
Fully-connected 84
ReLU
Dropout (p = 0.5)
Fully-connected 2

parameter tuning is performed. We also implement an early-stopping
criterion based on validation accuracy and for each training run we
save the model corresponding to this criterion.

5 R ESULTS

5.1 Convergence of G-steerable CNNs

Validation loss curves for both the standard CNN implementation,
denoted {e}, and the group-equivariant CNN implementations for
N = {4, 8, 16, 20} are shown in Fig. 2. Curves show the mean
and standard deviation for each network over five training repeats.
It can seen from Fig. 2 that the standard CNN implementation
achieves a significantly poorer loss than that of its group-equivariant
equivalents. For both the cyclic and dihedral group-equivariant
models, the best validation loss is achieved for N = 16. Although the
final loss in the case of the cyclic and dihedral-equivariant networks

is not significantly different in value, it is notable that the lower
order dihedral networks converge towards this value more rapidly
than the equivalent order cyclic networks. We observe that higher
order groups minimize the validation loss more rapidly i.e. the initial
gradient of the loss as a function of epoch is steeper, up to order N =
16 in this case. Weiler & Cesa (2019), who also noted the same thing
when training on the MNIST datasets, attribute this behaviour to the
increased generalization capacity of equivariant networks, since there
is no significant difference in the number of learnable parameters
between models.

Final validation error as a function of order, N, for the group-
equivariant networks is shown in Fig. 3. From this figure it can be seen
that all equivariant models improve upon the non-equivariant CNN
baseline, {e}, and that the validation error decreases before reaching
a minimum for both cyclic and dihedral models at approximately 16
orientations. This behaviour is discussed further in Section 6.4.

5.2 Performance of G-steerable CNNs

Standard performance metrics for both the standard CNN
implementation, denoted {e}, and the group-equivariant CNN
implementations for N = {4, 8, 16, 20} are shown in Table 5. The
metrics in this table are evaluated using the reserved test set of
the MiraBest∗ data set, classified using the best-performing model
according to the validation early-stopping criterion. The reserved
test set is augmented by a factor of 9 using discrete rotations of 20◦

over the interval [0◦, 180◦). This augmentation is performed in order
to provide metrics that reflect the performance over a consistent
range of orientations. The values in the table show the mean and
standard deviation for each metric over five training repeats. All
G-steerable CNNs listed in this table use a regular representation
for feature data and apply a G-invariant map after the convolutional
layers to guarantee an invariant prediction.

From Table 5 it can be seen that the best test accuracy is achieved
by the D16 model, highlighted in bold. Indeed, while all equivariant
models perform better than the standard CNN, the performance of
the dihedral models is consistently better than for the cyclic models
of equivalent order.

For the cyclic models it can be observed that the largest change
in performance comes from an increased FRI recall. For a binary
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Figure 2. Validation losses during the training of the standard CNN, denoted {e}, and (i) CN-equivariant models for the MiraBest∗ data set (left), and (ii)
DN-equivariant models for the MiraBest∗ data set (right). Plots show mean and standard deviation over five training repeats. Curves are smoothed over 20 epochs
to eliminate small-scale variability.

Figure 3. Validation errors of CN and DN regular steerable CNNs for different
orders, N, for the MiraBest∗ data set. All equivariant models improve upon
the non-equivariant CNN baseline, {e}.

classification problem, the recall of a class is defined as

Recall = TP

TP + FN
, (5)

where TP indicates the number of true positives and FN indicates
the number of false negatives. The recall therefore represents the
fraction of all objects in that class which are correctly classified.
Equivalently, the precision of the class is defined as

Precision = TP

TP + FP
. (6)

Consequently, if the recall of one class increases at the expense of
the precision of the opposing class then it indicates that the opposing
class is being disproportionately misclassified. However, in this case
we can observe from Table 5 that the precision of the FRII class is also
increasing, suggesting that the improvement in performance is due to
a smaller number of FRI objects being misclassified as FRII. For the
cyclic models there is a smaller but not equivalent improvement in
FRII recall. This suggests that the cyclic model primarily reduces the
misclassification of FRI objects as FRII, but does not equivalently
reduce the misclassification of FRII as FRI.

The dihedral models show a more even distribution of improve-
ment across all metrics, indicating that there are more balanced reduc-
tions across both FRI and FRII misclassifications. This is illustrated
in Fig. 4, which shows the average number of misclassifications over
all orientations and training repeats for the standard CNN, the C16

CNN and the D16 CNN for the reserved test set.
The test partition of the full Mirabest data set contains 153 FRI

and FRII-type sources labelled as both Confident and Uncertain, see
Table 3. When using this combined test set the overall performance
metrics of the networks considered in this work become accordingly
lower due to the inclusion of the Uncertain sources. This is expected,
not only because the Uncertain samples include edge cases that
are more difficult to classify but also because the assigned labels
for these objects may not be fully accurate. However, the relative
performance shows the same degree of improvement between the
standard CNN, {e}, and the D16 model, which havepercentage
accuracies of 82.59 ± 1.41 and 85.30 ± 1.35, respectively, when
evaluated against this combined test set.

We note that given the comparatively small size of the Mirabest∗

training set, these results may not generalise equivalently to other
potentially larger data sets with different selection specifications and
that additional validation should be performed when considering
the use of group-equivariant convolutions for other classification
problems.

5.3 On the confidence of G-steerable CNNs

Target class predictions for each test data sample are made by se-
lecting the highest softmax probability, which provides a normalized
version of the network output values. By using dropout as a Bayesian
approximation, as demonstrated in Gal & Ghahramani (2015), one is
able to obtain a posterior distribution of network outputs for each
test sample. This posterior distribution allows one to assess the
degree of certainty with which a prediction is being made i.e. if
the distribution of outputs for a particular class is well separated
from those of other classes then the input is being classified with
high confidence; however, if the distribution of outputs intersects
those of other classes then, even though the softmax probability for a
particular realisation may be high (even as high as unity), the overall
distribution of softmax probabilities for that class may still fill the
entire [0,1] range, overlapping significantly with the distributions
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Table 5. Performance metrics for classification of the MiraBest∗ data set using the standard CNN ({e}) and G-steerable CNNs for different cyclic and dihedral
subgroups of the E(2) Euclidean group. All G-steerable CNNs use a regular representation for feature data and apply a G-invariant map after the convolutions
to guarantee an invariant prediction.

FRI FRII
MiraBest∗ Accuracy [%] Precision Recall F1-score Precision Recall F1-score

{e} 94.04 ± 1.37 0.935 ± 0.018 0.940 ± 0.024 0.937 ± 0.015 0.946 ± 0.020 0.941 ± 0.018 0.944 ± 0.013
C4 95.24 ± 1.23 0.942 ± 0.018 0.959 ± 0.015 0.950 ± 0.013 0.963 ± 0.013 0.947 ± 0.018 0.955 ± 0.012
C8 95.96 ± 1.06 0.950 ± 0.020 0.966 ± 0.016 0.958 ± 0.011 0.969 ± 0.013 0.954 ± 0.019 0.961 ± 0.010
C16 96.07 ± 1.03 0.953 ± 0.020 0.964 ± 0.013 0.959 ± 0.011 0.968 ± 0.011 0.958 ± 0.019 0.963 ± 0.010
C20 95.88 ± 1.12 0.951 ± 0.019 0.962 ± 0.013 0.957 ± 0.012 0.966 ± 0.011 0.956 ± 0.018 0.961 ± 0.011
D4 95.45 ± 1.38 0.948 ± 0.024 0.957 ± 0.017 0.952 ± 0.014 0.962 ± 0.015 0.952 ± 0.023 0.957 ± 0.013
D8 96.37 ± 0.95 0.960 ± 0.019 0.964 ± 0.014 0.962 ± 0.010 0.968 ± 0.012 0.964 ± 0.018 0.966 ± 0.009
D16 96.56 ± 1.29 0.963 ± 0.025 0.965 ± 0.014 0.964 ± 0.013 0.969 ± 0.012 0.966 ± 0.023 0.967 ± 0.012
D20 96.39 ± 1.00 0.959 ± 0.018 0.966 ± 0.015 0.962 ± 0.010 0.969 ± 0.013 0.962 ± 0.017 0.966 ± 0.010

Figure 4. Average number of misclassifications for FRI (cyan) and FRII
(grey) over all orientations and training repeats for the standard CNN, denoted
{e}, the C16 CNN and the D16 CNN, see Section 5.2 for details.

from other target classes. Such a circumstance denotes a low degree
of model certainty in the softmax probability and therefore in the
class prediction for that particular test sample.

By re-enabling the dropout before the final fully-connected layer
at test time, we estimate the predictive uncertainty of each model
for the data samples in the reserved MiraBest∗ test set. With dropout
enabled, we perform T = 50 forward passes through the trained
network for each sample in the test set. On each pass we recover
(xt, yt), where x and y are the softmax probabilities of FRI and FRII,
respectively. An example of the results from this process can be
seen in Fig. 5, where we evaluate the trained model on a rotated
version of the input image at discrete intervals of 20◦ in the range
[0◦, 180◦) using a trained model for the standard CNN (left-hand
panel) and for the D16-equivariant CNN (right-hand panel). For each
rotation angle, a distribution of softmax probabilities is obtained.
In the case of the standard CNN it can be seen that, although the
model classifies the source with high confidence when it is unrotated
(0◦), the softmax probability distributions are not well separated
for the central image orientations, indicating that the model has a
lower degree of confidence in the prediction being made in at these
orientations. For the D16-equivariant CNN it can be seen that in this
particular test case the model has a high degree of confidence in its
prediction for all orientations of the image.

To represent the degree of uncertainty for each test sample
quantitatively, we evaluate the degree of overlap in the distributions
of softmax probabilities at a particular rotation angle using the

distribution-free overlap index (Pastore & Calcagnı́ 2019). To do
this, we calculate the local densities at position z for each class using
a Gaussian kernel density estimator, such that

fx(z) = 1

T

T∑

t=1

1

β
√

2π
e−(z−xt )2/2β2

, (7)

fy(z) = 1

T

T∑

t=1

1

β
√

2π
e−(z−yt )2/2β2

, (8)

where β = 0.1. We then use these local densities to calculate the
overlap index, η, such that

η =
Nz∑

i=1

min
[
fx(zi), fy(zi)

]
δz, (9)

where {zi}Nz

i=1 covers the range zero to one in Nz steps of size δz.
For this work we assume Nz = 100. The resulting overlap index, η,
varies between zero and one, with larger values indicating a higher
degree of overlap and hence a lower degree of confidence.

For each test sample we evaluate the overlap index over a range
of rotations from 0◦ to 180◦ in increments of 20◦. We then calculate
the average overlap index, 〈η〉, across these nine rotations. In Fig. 5
the value of this index can be seen above each plot: in this case, the
standard CNN has 〈η〉 {e} = 0.30 and the D16-equivariant CNN has
〈η〉D16 < 0.01.

Of the 104 data samples in the reserved test set,
27.7 ± 11.0 per cent of objects show an improvement in aver-
age model confidence i.e. 〈η〉{e} − 〈η〉D16 > 0.01, when classified
using the D16-equivariant CNN compared to the standard CNN,
8.4 ± 2.5 per cent show a deterioration in average model confidence
i.e. 〈η〉D16 − 〈η〉{e} > 0.01, and all other samples show no significant
change in average model confidence i.e. |〈η〉{e} − 〈η〉D16 | < 0.01.
Mean values and uncertainties are determined from 〈η〉 values for all
test samples evaluated using a pairwise comparison of five training
realizations of the standard CNN and five training realizations of the
D16 CNN.

Those objects that show an improvement in average model
confidence are approximately evenly divided between FRI- and FRII-
type objects, whereas the objects that show a reduction in model
confidence exhibit a weak preference for FRII. These results are
discussed further in Section 6.1.
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2376 A. M. M. Scaife and F. Porter

Figure 5. A scatter of 50 forward passes of the softmax output for the standard CNN (left) and the D16-equivariant CNN (right). The lower panel shows the
rotated image of the test image. As indicated, the average overlap index for the standard CNN is 〈η〉 = 0.30, and 〈η〉 < 0.01 for the D16-equivariant CNN.

6 D ISCUSSION

6.1 Statistical distribution of radio galaxy orientations

Mathematically, G-steerable CNNs classify equivalence classes of
images, as defined by the equivalence relation of a particular group,
G, whereas conventional CNNs classify equivalence classes defined
only by translations. Consequently, by using E(2)-equivalent convo-
lutions the trained models assume that the statistics of extra-galactic
astronomical images containing individual objects are expected to
be invariant not only to translations but also to global rotations and
reflections. Here we briefly review the literature in order to consider
whether this assumption is robust and highlight the limitations that
may result from it.

The orientation of radio galaxies, as defined by the direction of
their jets, is thought to be determined by the angular momentum axis
of the super-massive black hole within the host galaxy. A number of
studies have looked for evidence of preferred jet alignment directions
in populations of radio galaxies, as this has been proposed to be a
potential consequence of angular momentum transfer during galaxy
formation (e.g. White 1984; Codis et al. 2018; Kraljic, Davé &
Pichon 2020), or alternatively it could be caused by large-scale
filamentary structures in the cosmic web giving rise to preferential
merger directions (see e.g. Kartaltepe et al. 2008) that might result in
jet alignment for radio galaxies formed during mergers (e.g. Croton
et al. 2006; Chiaberge et al. 2015). The observational evidence for
both remains a subject of discussion in the literature.

Taylor & Jagannathan (2016) found a local alignment of radio
galaxies in the ELAIS N1 field on scales <1◦ using observations
from the Giant Metrewave Radio Telescope (GMRT) at 610 MHz.
Local alignments were also reported by Contigiani et al. (2017)
who reported evidence (>2σ ) of local alignment on scales of ∼2.5◦

among radio sources from the FIRST survey using a much larger
sample of radio galaxies, catalogued by the radio galaxy zoo project.
A similar local alignment was also reported by Panwar et al. (2020)
using data from the FIRST survey. Using a sample of 7555 double-
lobed radio galaxies from the LOFAR Sky Survey (LoTSS; Shimwell
et al. 2019) at 150 MHz, Osinga et al. (2020) concluded that a statis-
tical deviation from purely random distributions of orientation as a
function of projected distance was caused by systematics introduced
by the brightest objects and did not persist when redshift information
was taken into account. However, the study also suggested that larger
samples of radio galaxies should be used to confirm this result.

Whilst these results may suggest tentative evidence for spatial
correlations of radio galaxy orientations in local large-scale structure,
they do not provide any information on whether these orientations
differ between classes of radio galaxy i.e. the equivalence classes
considered here. Moreover, the large spatial distribution and com-
paratively small number of galaxies that form the training set used in
this work mean that even spatial correlation effects would be unlikely
to be significant for the data set used here. However, the results of
Taylor & Jagannathan (2016), Contigiani et al. (2017), Panwar et al.
(2020) suggest that care should be taken in this assumption if data
sets are compiled from only small spatial regions.

In Section 5.1 we found that the largest improvement in perfor-
mance was seen when using dihedral, DN, models. We suggest that
this improvement over cyclic, CN, models is due to image reflections
accounting for chirality, in addition to orientations on the celestial
sphere which are represented by the cyclic group. Galactic chirality
has previously been considered for populations of star-forming, or
normal, galaxies (see e.g. Slosar et al. 2009; Shamir 2020), as the
spiral structure of star-forming galaxies means that such objects
can be considered to be enantiomers i.e. their mirror images are not
superimposable (Capozziello & Lattanzi 2005). It has been suggested
that a small asymmetry exists in the number of clockwise versus
anticlockwise star-forming galaxy spins (Shamir 2020). As far as
the authors are aware there have been no similar studies considering
the chirality of radio galaxies. However, a simple example of such
chirality for radio galaxies might include the case where relativistic
boosting causes one jet of a radio galaxy to appear brighter than
the other due to an inclination relative to the line of sight. Since
the dominance of a particular orientation relative to the line of sight
should be unbiased then this would imply a global equivariance
to reflection. Since the dihedral (DN) models used in this work are
insensitive to chirality, the results in Section 5.1 suggest that the radio
galaxies in the training sample used here do not have a significant
degree of preferred chirality. Whilst this does not itself validate the
assumption of global reflection invariance, in the absence of evidence
to the contrary from the literature we suggest that it is unlikely to be
significant for the data sample used in this work.

From the perspective of classification, equivariance to reflections
implies that inference should be independent of reflections of the
input. For FRI and FRII radio galaxy classification, incorporating
such information into a classification scheme may be important more
generally: the unified picture of radio galaxies holds that both FRI
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and FRII, as well as many other classifications of active galactic
nuclei such as quasars, quasi-stellar objects, blazars, BL Lac objects,
Seyfert galaxies etc., are in fact defined by orientation-dependent
observational differences, rather than intrinsic physical distinctions
(Urry 2004).

Consequently, under the assumptions of global rotational and
reflection invariance, the possibility of a classification model pro-
viding different output classifications for the same test sample at
different orientations is problematic. Furthermore, the degree of
model confidence in a classification should also not vary significantly
as a function of sample orientation i.e. if a galaxy is confidently
classified at one particular orientation then it should be approximately
equally confidently classified at all other orientations. If this is not
the case, as shown for the standard CNN in Fig. 5 (left), then it
indicates a preferred orientation in the model weights for a given
outcome, inconsistent with the expected statistics of the true source
population. Such inconsistencies might be expected to result in biased
samples being extracted from survey data.

In this context it is then not only the average degree of model
confidence that is important as a function of sample rotation, as
quantified by the value of 〈η〉 in Section 5.3, but also the stability
of the η index as a function of rotation i.e. a particular test sample
should be classified at a consistent degree of confidence as a function
of orientation, whether that confidence is low or high. To evaluate the
stability of the predictive confidence as a function of orientation, we
examine the variance of the η index as a function of rotation. For the
MiraBest∗ reserved test set we find that approximately 30 per cent
of the test samples show a reduction of more than 0.01 in the
standard deviation of their overlap index as a function of rotation,
with 17 per cent showing a reduction of more than 0.05. Conversely
approximately 8 per cent of test samples show an increase of >0.01
and 4 per cent samples show an increase of >0.05. In a similar manner
to the results for average model confidence given in Section 5.3, those
objects that show a reduction in their variance i.e. an improvement
in the consistency of prediction as a function of rotation, are evenly
balanced between the two classes; however, those objects showing a
strong improvement of >0.05 are preferentially FRI type objects.

6.2 Comment on capsule networks

The use of capsule networks (Sabour et al. 2017) for radio galaxy
classification was investigated by Lukic et al. (2018). Capsule
networks aim to separate the orientation (typically referred to as the
viewpoint or pose in the context of capsule networks) of an object
from its nature i.e. class by encoding the output of their layers as
tuples incorporating both a pose vector and an activation. The purpose
of this approach is to focus on the linear hierarchical relationships in
the data and remove sensitivity to orientation; however, as described
by Lenssen, Fey & Libuschewski (2018), general capsule networks
do not guarantee particular group equivariances and therefore cannot
completely disentangle orientation from feature data. It is perhaps
partly for this reason that Lukic et al. (2018) found that capsule
networks offered no significant advantage over standard CNNs for
the radio galaxy classification problem addressed in that work.

In Section 5, we found that not only is the test performance
improved by the use of equivariant CNNs, but that equivariant
networks also converge more rapidly. For image data, a standard
CNN enables generalization over classes of translated images, which
provides an advantage over the use of an MLP, where every image
must be considered individually. G-steerable CNNs extend this
behaviour to include additional equivalences, further improving gen-
eralization. This additional equivariance enhances the data efficiency

of the learning algorithm because it means that every image is no
longer an individual data point but instead a representative of its
wider equivalence group. Consequently, unlike capsule networks,
the equivalence groups being classified by a G-steerable CNN are
specified a priori, rather than the orientations of individual samples
being learned during training. Whilst this creates additional capacity
in the network for learning intra-class differences that are insensitive
to the specified equivalences, it does not provide the information on
orientation of individual samples that is provided as an output by
capsule networks.

Lenssen et al. (2018) combined group-equivariant convolutions
with capsule networks in order to output information on both
classification and pose, although they note that a limitation of this
combined approach is that arbitrary pose information is no longer
available, but is instead limited to the elements of the equivariant
group. For radio astronomy, where radio galaxy orientations are
expected to be extracted from images at a precision that is limited
by the observational constraints of the data, it is unlikely that pose
information limited to the elements of a low-order finite group, G
< E(2), is sufficient for further analysis. However, given particular
sets of observational and physical constraints or specifications it is
possible that such an approach may become useful at some limiting
order. Alternatively, pose information might be used to specify a
prior for a secondary processing step that refines a measurement of
orientation.

6.3 Local versus global equivariance

By design, the final features used for classification in equivariant
CNNs do not include any information about the global orientation
or chirality of an input image; however, this can also mean that
they are insensitive to local equivariances in the image, when these
might in fact be useful for classification. The hierarchical nature
of convolutional networks can be used to mitigate against this, as
kernels corresponding to earlier layers in a network will have a
smaller, more local, footprint on the input image and therefore be
sensitive to a different scale of feature than those from deeper layers
that encompass larger-scale information. Therefore, by changing the
degree of equivariance as a function of layer depth one can control the
degree to which local equivariance is enforced. Weiler & Cesa (2019)
refer to this practice as group restriction and find that it is beneficial
when classifying data sets that possess symmetries on a local scale
but not on a global scale, such as the CIFAR and unrotated MNIST
datasets. Conversely, the opposite situation may also be true, where
no symmetry is present on a local scale, but the data are statistically
invariant on a global scale. In this case the reverse may be done and,
rather than restricting the representation of the feature data to reduce
the degree of equivariance, one might expand the domain of the
representation at a particular layer depth in order to reflect a global
equivariance.

We investigate the effect of group restriction by using a DN|1{e}
restricted version of the LeNet architecture i.e. the first layer is
DN equivariant and the second convolutional layer is a standard
convolution. Using N = 16, the loss curve for this restricted
architecture relative to the unrestricted D16 equivariant CNN is shown
in Fig. 6. From the figure it can be seen that while exploiting local
symmetries gives an improved performance over the standard CNN,
the performance of the group restricted model is significantly poorer
than that of the full D16 CNN. This result suggests that although local
symmetries are present in the data, it is the global symmetries of the
population that result in the larger performance gain for the radio
galaxy data set.
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2378 A. M. M. Scaife and F. Porter

Figure 6. Validation losses during the training of the standard CNN, denoted
{e} (blue), the D16 CNN (orange), and the restricted DN|1{e} CNN (green;
dashed) for the MiraBest∗ data set. Plots show mean and standard deviation
over five training repeats.

6.4 Note on hyper-parameter tuning

In Section 5 we found that the N = 16 cyclic and dihedral models
were preferred over the higher order N = 20 models. This may
seem counter-intuitive as one might assume that for truly rotationally
invariant data sets the performance would converge to a limiting
value as the order increased, rather than finding a minimum at some
discrete point. Consequently, we note that the observed minimum
at N = 16 might not represent a true property of the data set but
instead represent a limitation caused by discretisation artifacts from
rotation of convolution kernels with small support, in this case k = 5,
see Table 4 (Weiler & Cesa 2019). These same discretisation errors
may also account in part for the small oscillation in validation error
as a function of group order seen in Fig. 3. Consequently, while no
additional hyper-parameter tuning has been performed for any of the
networks used in this work, we note that kernel size is potentially
one hyper-parameter that could be tuned as a function of group
order, N, and that such tuning might lead to further improvements in
performance for higher orders.

7 C O N C L U S I O N S

In this work, we have demonstrated that the use of even low-order
group-equivariant convolutions results in a performance improve-
ment over standard convolutions for the radio galaxy classification
problem considered here, without additional hyper-parameter tuning.
We have shown that both cyclic and dihedral equivariant models
converge to lower validation loss values during training and provide
improved validation errors. We attribute this improvement to the
increased capacity of the equivariant networks for learning hierar-
chical features specific to classification, when additional capacity for
encoding redundant feature information at multiple orientations is no
longer required, hence reducing intra-class variability.

We have shown that for the simple network architecture and
training set considered here, a D16 equivariant model results in the
best test performance using a reserved test set. We suggest that
the improvement of the dihedral over the cyclic models is due to
an insensitivity to – and therefore lack of preferred – chirality in
the data, and that further improvements in performance might be
gained from tuning the size of the kernels in the convolutional layers
according to the order of the equivalence group. We find that cyclic

models predominantly reduce the misclassification of FRI type radio
galaxies, whereas dihedral models reduce misclassifications for both
FRI and FRII type galaxies.

By using the MC Dropout Bayesian approximation method, we
have shown that the improved performance observed for the D16

model compared to the standard CNN is reflected in the model
confidence as a function of rotation. Using the reserved test set, we
have quantified this difference in confidence using the overlap be-
tween predictive probability distributions of different target classes,
as encapsulated in the distribution free overlap index parameter,
η. We find that not only is average model confidence improved
when using the equivariant model, but also that the consistency of
model confidence as a function of image orientation is improved. We
emphasise the importance of such consistency for applications of
CNN-based classification in order to avoid biases in samples being
extracted from future survey data.

Whilst the results presented here are encouraging, we note that this
work addresses a specific classification problem in radio astronomy
and the method used here may not result in equivalent improvements
when applied to other areas of astronomical image classification
using different data sets or network architectures. In particular, the
assumptions of global rotational and reflectional invariance are strong
assumptions, which may not apply to all data sets. As described in
Section 6.1, data sets extracted from localized regions of the sky
may be particularly vulnerable to biases when using this method
and the properties of the MiraBest∗ data set used in this work may
not generalise to all other data sets or classification problems. We
note that this is true for all CNNs benchmarked against finite data
sets and users should be aware that additional validation should
be performed before models are deployed on new test data, as
biases arising from data selection may be reflected in biases in
classifier performance (see e.g. Wu et al. 2018; Tang 2019; Walmsley
et al. 2020). However, in conclusion, we echo the expectation of
Weiler & Cesa (2019), that equivariant CNNs may soon become
a common choice for morphological classification in fields like
astronomy, where symmetries may be present in the data, and note
that the overhead in constructing such networks is now minimal
due to the emergence of standardized libraries such as e2cnn.
Future work will need to address the optimal architectures and
hyper-parameter choices for such models as specific applications
evolve.
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