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ABSTRACT
We present a new method for quantifying the abundance of satellites around field galaxies and in groups. The method is designed
to work with samples such as photometric redshift catalogues, that do not have full spectroscopic coverage, but for which some
redshift or distance information is available. It consists of identifying the galaxies most likely to be centrals, and using the
clustering signal around them as a template to iteratively decompose the full population into satellite and central populations.
Thus, it is similar to performing crowded-field photometry by using isolated stars to determine the point spread function of the
image. The method does not identify individual satellites or centrals conclusively, but assigns a probability to each galaxy of
being one or the other. Averaged over a large sample, it provides a statistical estimate of satellite abundance, even in crowded
fields with large redshift uncertainties. We test the method using data from the COSMOS field, which includes a large set of
local objects with accurate photometric redshifts. We measure satellite abundance as a function of central stellar or halo mass, as
well as the satellite luminosity function, and find results consistent with previous studies, but extending over a broader range of
central masses. We also consider a number of possible systematic uncertainties in the method, and show that they are generally
smaller than our random errors. Having presented the method in this paper, we will use it to study the properties of the satellite
populations in a forthcoming one.

Key words: galaxies: dwarf – galaxies: formation – galaxies: groups: general – Local Group – galaxies: luminosity function,
mass function – dark matter.

1 IN T RO D U C T I O N

In the current picture of hierarchical structure formation, cold dark
matter (CDM) haloes merge together to form progressively larger
systems as the Universe evolves. Smaller dark matter haloes often
survive accretion on to larger systems, leaving a population of distinct
‘subhaloes’ within CDM haloes. While the gas that cools and settles
into the centre of the main halo will contribute to the growth of a
central galaxy (CG), smaller galaxies that formed within subhaloes
before they merged can survive as distinct satellite galaxies, subject
to a broad range of environmental effects that may transform or
destroy them, including tidal heating or stripping, encounters, and
internal or external feedback. The observed abundance of satellites
in the local Universe provides a detailed test of this complex picture
and gives important insights into the overall effect of environment
on galaxy formation.

The dominant galaxies of the Local Group (LG), the Milky Way
(MW) and M31, have the best studied satellite populations in the
Universe. Recent surveys have discovered many new, faint members
of the LG (e.g. Bechtol et al. 2015; Drlica-Wagner et al. 2015;
Koposov et al. 2015), such that the total abundance of LG satellites
can be estimated with increasing confidence (Newton et al. 2018).
Over the past two decades, however, several points of tension have
arisen between the observed population of LG satellites and that
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expected from theory. The most famous is the ‘missing satellite
problem’, which contrasts the small number of observed satellites
with the large number of dark structures predicted by theory (Klypin
et al. 1999; Moore et al. 1999). A second, ‘too-big-to-fail’ problem
contrasts the low central densities estimated in the massive satellites
of the MW with the much higher densities expected from theory
(Boylan-Kolchin, Bullock & Kaplinghat 2011). There may be other
tensions as well, in the radial clustering (e.g. Kravtsov, Gnedin &
Klypin 2004; Taylor, Silk & Babul 2004) or 3D spatial distribution
(e.g. Pawlowski et al. 2015). We refer the reader to Bullock & Boylan-
Kolchin (2017) for a detailed review of these challenges.

Many solutions have been proposed to resolve the tensions be-
tween theory and observations of the LG satellites, including internal
feedback due to star formation (e.g. Dekel & Silk 1986; Mashchenko,
Wadsley & Couchman 2008; Governato et al. 2010; Wetzel et al.
2016), the effects of global (e.g. Bullock, Kravtsov & Weinberg 2000;
Gnedin & Kravtsov 2006) and/or inhomogeneous (e.g. Lunnan et al.
2012) reionization, tidal or other environmental effects (e.g. Taylor &
Babul 2001; Mayer et al. 2006; Łokas, Kazantzidis & Mayer 2012),
or modifications to the underlying dark matter model such as warm
dark matter (e.g. Macciò & Fontanot 2010; Anderhalden et al. 2013;
Kennedy et al. 2014; Lovell et al. 2014), self-interacting dark matter
(e.g. Spergel & Steinhardt 2000; Elbert et al. 2015; Fry et al. 2015),
or fuzzy dark matter (e.g. Nadler et al. 2019).

There remains, however, the important question of whether the
MW and/or LG satellites are representative of all satellite popula-
tions. Many observational studies have shown that the MW is not
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typical in having two Large/Small Magellanic Cloud (LMC/SMC)-
like satellites (Guo et al. 2011; Liu et al. 2011; Robotham et al.
2012; Strigari & Wechsler 2012; Speller & Taylor 2014), and
similar conclusions have been suggested by numerical simulations
(Boylan-Kolchin et al. 2010; Busha et al. 2011; Kang, Wang & Luo
2016; Zhang, Luo & Kang 2019). The ongoing Satellites Around
Galactic Analogs survey (SAGA – Geha et al. 2017) has also shown
that there is a large variation in satellite populations from system
to system. Theoretical models predict that the abundance of halo
substructure should vary more than expected from Poisson statistics
alone, and should be correlated with the formation redshift of the
system (e.g. Chua et al. 2017; Jiang & van den Bosch 2017).
These complications caution us from relying too heavily on the
properties of a single system to constrain models of galaxy formation.
To determine whether the LG is representative, and to understand
satellite properties across a broad range of environments, we should
seek out satellites around as large a sample as possible of CGs.

Identifying satellites and distinguishing them from foreground or
background systems require some form of distance information. The
main approaches in the literature include the following: (1) the use
of existing complete spectroscopy to identify satellites around the
nearest and brightest systems (e.g. Yang et al. 2007); (2) dedicated
spectroscopic campaigns to obtain spectroscopy for fainter targets
around a smaller number of selected systems (Geha et al. 2017);
(3) the use of photometric distance estimates from techniques such
as the tip of the red giant branch (e.g. Carlin et al. 2016; Danieli
et al. 2017; Cohen et al. 2018; Danieli et al. 2019), or surface
brightness fluctuations (e.g. van Dokkum et al. 2018; Carlsten et al.
2019); (4) statistical abundance measurements based on clustering
(e.g. Guo et al. 2011, 2012a; Liu et al. 2011; Strigari & Wechsler
2012; Wang & White 2012; Sales et al. 2013; Speller & Taylor 2014;
Wang et al. 2014; Xi et al. 2018). The four approaches have different
strengths and weaknesses. Method (1) requires only existing data, but
is restricted to the brightest satellites in the nearest systems, and may
also suffer from incompleteness due to fibre positioning limitations
in dense fields (e.g. Guo, Zehavi & Zheng 2012b; Smith et al. 2019).
Method (2) is extremely expensive in terms of observing time, and
thus limited to small numbers of systems. Method (3) is restricted
to very nearby systems (<20 Mpc), whose virial radii subtend large
angles on the sky, making complete coverage difficult. Method (4)
cannot confirm individual galaxies as satellites or centrals; it has been
very successful, however, in making measurements of the average
satellite abundance, and is the least resource-intensive method of the
four a priori.

Clustering-based methods have generally been applied to samples
at redshifts of ∼0.05–0.2, selected from the Sloan Digital Sky Survey
(SDSS – York et al. 2000; e.g. Guo et al. 2011, 2012a; Liu et al. 2011;
Strigari & Wechsler 2012; Wang & White 2012; Sales et al. 2013;
Wang et al. 2014). A different strategy was adopted by Speller &
Taylor (2014), who focused on very nearby systems (<42 Mpc).
This allowed them to estimate the abundance of intrinsically faint
satellites, at the expense of significant background contamination.
They used a selection technique based on galaxy structural properties
(mainly apparent size) to reduce the background contamination and
boost the signal-to-noise ratio (SNR) of the clustering measurement.
The technique was further developed and tested in Xi et al. (2018),
using a broader range of morphological cuts. An optimized version
was shown to be effective up to z ∼ 0.15, far beyond the range
considered in Speller & Taylor (2014).

These previous clustering-based studies have generally considered
samples of primaries that are clearly isolated, in the sense that
they have no brighter companion within fixed projected and line-

of-sight separations. This approach works well for bright, mas-
sive primaries, but becomes inefficient for less luminous ones.
By dropping isolation cuts, Xi et al. (2018) were able to detect
a clear clustering signal and constrain satellite abundance using
only observations from the fairly small Cosmic Evolution Survey
(COSMOS) field, but this resulted in a broad selection of pri-
maries, including many systems with overlapping virial regions.
As a result, the interpretation of their results remains slightly
unclear, relative to previous studies, as not all of their primaries are
true CGs.

In this work, we introduce a new method to deal with the
complications of overlapping systems and crowded fields. We start
by identifying the subset of galaxies in a sample most likely to be true
CGs, using a hierarchical search in which galaxies are checked for
isolation in order of decreasing stellar mass, with isolation criteria
that scale with the estimated virial radius of the system. The cross-
correlation function of the sample with respect to this set of most
likely primaries provides an initial template for the clustering signal.
This template is used to estimate the probability that any member
of the sample is a primary or a secondary. Finally, we can iterate
through the last two steps, recalculating a probability-weighted cross-
correlation function and the modified primary/secondary probabil-
ities until convergence. The final primary/secondary probabilities
for the whole sample then allow us to estimate satellite abundance,
luminosity functions, and other distributions of secondary properties.
We note that we have developed and optimized our method for low
redshift samples; some of our assumptions may need modification,
in order to apply the method at higher redshifts.

In this paper, we present the method and give some simple
estimates of satellite abundance; in a forthcoming paper, we will
study the properties of the detected satellite populations in more
detail. The paper is structured as follows. In Section 2, we describe
our data selection, including the basic cuts that define our initial
sample. In Section 3, we measure the clustering signal and use it
to define a ‘region of interest’ (ROI) around each primary likely
to contain most genuine satellites. In Section 4, we describe our
iterative method for estimating primary and secondary probabilities
for each galaxy. In Section 5, we present our main results on satellite
abundance. In Section 6, we test the method for possible systematic
uncertainties. Finally, in Section 7 we summarize our results and
discuss future prospects for this new method.

2 DATA – C O SMO S

The satellite galaxies we can hope to detect around a low-redshift
primary (at most a few tens per system, based on abundances in
the LG) will be seen in projection with a much larger number of
foreground and background galaxies (of the order of thousands)
that are not physically associated with the primary. Precise distance
information is essential for separating true satellites from this
foreground/background population. Spectroscopic redshifts are ideal
for this purpose, but impractical for large samples. For instance, if we
want to search for satellites brighter than −18 in absolute magnitude
out to a redshift of 0.2, this requires distance information for galaxies
down to an apparent magnitude of roughly 22. However, with a
few exceptions (e.g. Geha et al. 2017), wide-field spectroscopic
catalogues are usually only complete down to an apparent magnitude
of 17 to 18, far from the depth required. Thus, using photometric
redshifts (‘photo-zs’) is the only realistic solution. The COSMOS
field features high-quality photo-zs generated from 30+ deep bands
(Scoville et al. 2007; Ilbert et al. 2013; Laigle et al. 2016), making it
an ideal place to test our method.
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2.1 The COSMOS photometric redshift catalogue

COSMOS is a deep (AB ∼ 25–26), multiwavelength (0.25–24 μm)
survey covering a 2 deg2 equatorial field (Scoville et al. 2007). The
multiwavelength imaging includes Hubble Space Telescope imaging
with the Advanced Camera for Survey and follow-up observations
from many other facilities across a wide range of wavelengths –
X-ray, UV, optical/IR, FIR/submillimetre, and radio (Scoville et al.
2007). In this paper, we will use a recently updated photometric
redshift catalogue (Laigle et al. 2016, ‘COSMOS 2015’ hereafter)
for our analysis. The main improvement of this catalogue compared
to the previous releases is the addition of new, deeper NIR and IR data
from the second data release (DR2) of the UltraVISTA and SPLASH
(Spitzer Large Area Survey with Hyper-Suprime-Cam; Miyazaki
et al. 2012) projects. Compared to the first data release (DR1) of
UltraVISTA, the exposure time of DR2 was significantly longer
(McCracken et al. 2012), providing the deeper IR and NIR data as
well as better SNRs (Laigle et al. 2016). On the other hand, the
DR2 data only covers a part (namely the ‘ultra-deep stripes’, roughly
0.6 deg2) of the COSMOS field. This causes a slight inconsistency
in depth and SNR across the field, which we will address below by
applying a magnitude cut.

The COSMOS photo-zs were derived using χ2 template fitting,
as described in Mobasher et al. (2007) and Ilbert et al. (2009). The
spectral energy distribution (SED) templates used in the COSMOS
2015 catalogue include a set of 31 spiral and elliptical galaxies from
Polletta et al. (2007) and a set of templates for young blue star-
forming galaxies generated using Bruzual & Charlot (2003) models.
Given the updated NIR and IR data and two additional star-forming
galaxy templates, Laigle et al. (2016) further improved on photo-z
quality relative to previous COSMOS catalogues (Capak et al. 2007;
Ilbert et al. 2009, 2013). The accuracy of the photo-zs has been
verified by comparing them to a large number of highly reliable
(97 per cent confidence) spectroscopic redshifts (Lilly et al. 2007)
that are available in the COSMOS field. For the objects of magnitude
i+
AB < 22.5 and redshift (z) range of 0–1.2, the photo-zs have an

r.m.s scatter of σ = 0.7 per cent with respect to the spectroscopic
redshifts, while the occurrence of ‘catastrophic failures’ with relative
errors |zp − zs|/(1 + zs) > 0.15 is only 0.51 per cent. For this work,
we choose the median of photo-z likelihood distribution from the
template fitting (‘ZPDF’ in the catalogue) as the base redshift. From
this redshift, we calculate angular-diameter and luminosity distances,
and corresponding luminosities and projected separations, assuming
all galaxies follow the Hubble flow. In the process of template fitting
and photo-z estimation, Laigle et al. (2016) also calculated stellar
masses and star formation rates for the galaxy samples, which will
be used in our analysis below. Specifically, we use ‘MASS MED’
and ‘SFR MED’, the medians of the stellar mass and star formation
rate probability distribution functions (PDFs).

2.2 Additional spectroscopic redshifts

We can further improve on our distance estimates by supplementing
the COSMOS photo-zs with spectroscopic redshifts, where these are
available. While there is no single public spectroscopic redshift cat-
alogue for the whole COSMOS field, most of the measured redshifts
in the region are now accessible through the NASA Extragalactic
Database.1 In addition to these redshifts, we also obtained a few
other unpublished redshifts from the COSMOS collaboration (M.

1https://ned.ipac.caltech.edu

Figure 1. The redshift versus i+-band absolute magnitude distribution of our
base catalogue, coloured by the i+-band apparent magnitude, as indicated in
the right-hand colour scale.

Salvato, private communication). The redshifts used in this work
will be mainly photo-zs from the COSMOS 2015 catalogue, but
replaced with spectroscopic redshifts where possible. Given the
numerous literature sources and slightly different qualities of the
spectroscopic redshifts, a universal redshift uncertainty of 0.0001 is
assigned to each galaxy whose photometric redshift is replaced with
a spectroscopic value. Absolute magnitudes and stellar masses for
those objects are also corrected, based on the resulting change in the
distance modulus.

2.3 The base sample

As mentioned above, the depth of the COSMOS 2015 catalogue
varies across the field, depending on whether the new ‘ultra-deep’
(UltraVISTA DR2) imaging is available or not. In general, the
catalogue appears to be relatively complete down to a magnitude of
i+ < 25.5 (MAG AUTO), but becomes incomplete beyond this. [The
3σ depths in the i+ band are 26.2 and 26.9 for 3 and 2 arcsec apertures,
respectively (Laigle et al. 2016).] To ensure reasonable completeness
over the redshift range of interest, we apply the following initial cuts
on the catalogue, which are the same cuts used in Xi et al. (2018):

(i) i+ < 25.5
(ii) 0 < zpdf < 6.9
(iii) z − 2σ z < 0.3
(iv) σ z < 0.5

where zpdf refers to the median of photo-z likelihood distribution
measured using galaxy template fitting, and σ z refers to the photo-
z error, estimated by using the 68 per cent confidence level upper
and lower limits of the photo-z likelihood distribution provided in
the catalogue [i.e. σz = (zU68

pdf − zL68
pdf )/2]. Note that we include the

broad redshift cut 0 < zpdf < 6.9 to exclude stars and X-ray sources
in the catalogue, as well as objects in the masked regions, as these
objects do not have robust zpdf estimates; we include the upper limit
cut of redshift z − 2σ z < 0.3 to focus on the local volume while
keeping a reasonable completeness over a target redshift range of
0–0.25; finally, we use a redshift error cut σ z < 0.5 to exclude those
galaxies with poor-quality redshifts (mainly faint galaxies) from the
further analysis. These cuts produce a base catalogue of 41 559
galaxies (37 578 after excluding galaxies with large redshift errors).
Fig. 1 shows the redshift versus i+ absolute magnitude distribution
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for our base catalogue after applying the cuts above. Given our cut
in apparent magnitude, the sample galaxies generally have absolute
magnitudes between −24 and −10 for the redshift range (z = 0–0.25)
we will consider below.

2.4 Stellar mass completeness

Laigle et al. (2016) estimated the stellar mass completeness of their
catalogue; for redshift range of 0 < z < 0.35, they suggested a
90 per cent completeness limit of M∗ = 108.6 M�. We are considering
systems at a slightly lower redshift range (z < 0.25). Examining the
stellar mass function and stellar mass errors for this redshift range,
we conclude that we are complete down to at least M∗ < 108.2 M�,
where the differential mass function peaks, and cut the main sample
at this value. For very low redshifts (z < 0.07), we appear to be
complete down as low as M∗ < 107.2–107.5 M�; we will discuss
local satellite abundance at these lower stellar masses below and in
subsequent work.

3 D ETER M ININ G THE C LUSTERING SCALE

We assume a model in which the galaxy with the largest stellar mass
is the dominant galaxy within each halo, and resides at or close to its
geometric and dynamical centre. To tell whether a given galaxy is the
dominant CG (or ‘primary’ hereafter) within its own halo, or a poten-
tial satellite of another primary, we need to search its surroundings
to see if there is another more massive galaxy close by. If there are
more massive neighbours nearby, this suggests that the galaxy may
be satellite, whereas if all nearby galaxies are less massive, it suggests
that the galaxy is a primary. To quantify the characteristic scale on
which satellites are associated with their primaries, we measured the
clustering pattern of all the galaxy pairs in our base sample. Based
on these clustering results, we will quantify ‘spatially nearby’ and
specify the ROI for the primary–secondary classification.

3.1 Halo mass assignment

We expect the characteristic extent of the satellite distribution in a
halo to scale with its virial radius. We calculate a fiducial halo mass
and virial radius for each galaxy, assuming that it is the CG of its
host halo. These masses and virial radii will be used to characterize
the clustering throughout this work.

To estimate halo masses, we could in principle use abundance
matching, assuming a monotonic relation between stellar mass and
halo mass that we derived empirically by comparing the observed
stellar mass function and the predicted halo mass function within the
observation volume. However, the effective area of the COSMOS
field (after correcting for masking as discussed below) is only
1.46 deg2, giving an effective comoving volume of 1.67 × 105 Mpc3

up to z = 0.25. The cosmic variance in the mean density for a volume
this size is a factor of approximately 0.4 (Somerville et al. 2004); if we
consider 10 independent, equal-volume redshift slices, the relative
cosmic variance of each slice increases to 0.7. Thus, there is a large
systematic uncertainty in the normalization of the halo mass function
within this volume. Instead, we use the stellar-to-halo mass relation
(SHMR) derived by Behroozi, Wechsler & Conroy (2013) (B13 here-
after). They provide a formula (equation A1) for the inverse halo-to-
stellar mass ratio (HSMR), with parameters as listed in Appendix A.

We note, however, that a combination of observational errors
in the stellar mass estimates, intrinsic scatter in the SHMR, and
the non-linearity of the halo mass function will bias halo masses
estimated directly from the B13 formula. As there are many more

low-mass haloes than high-mass ones, errors in stellar mass will
more frequently scatter objects into a given mass range from below
than from above. Thus, directly applying the HSMR to estimate
the halo mass corresponding to an observed stellar mass will
lead to systematic overestimates, especially at the high-mass end.
To quantify and correct this bias, we have performed a Monte
Carlo simulation of the effect of errors to obtain a bias-corrected
HSMR based on B13. We explain this correction in more detail in
Appendix A.

Given an estimate of the halo mass for each galaxy, we also assign
a corresponding virial radius and virial velocity. The virial radius

is taken to be
(

3Mh
4πρc�c

)1/3
, where ρc is the critical density of the

universe and �c is the mean overdensity of the halo within the virial
radius, with respect to the critical density. We use the fitting formula
from Bryan & Norman (1998) for �c. Once the virial radius has been
calculated, the virial velocity is given by

√
GMh/Rvir.

The stellar mass completeness limit is estimated empirically, fol-
lowing the method described in Laigle et al. (2016). They calculated
the Ks-band magnitude limits for the COSMOS catalogue to be 24.0
and 24.7 for the deep and ultra-deep fields, respectively. In this work,
we choose a limit of 24.0 in order to have uniform depth across the
whole field. Given this magnitude limit, the limiting mass a galaxy
would need to have to be observed at a given redshift is calculated as

log Mlim = log M − 0.4 (Kslim − Ks) . (1)

Next, a stellar mass limit is estimated for each redshift bin, within
which 90 per cent of the galaxies lie, given the stellar mass errors.
We also calculate a corresponding halo mass limit in each redshift
bin using the bias-corrected HSMR (although in this case we ignore
the effect of scatter on the completeness threshold).

3.2 Defining an ROI

Around each CG, we define an ROI in which we will search
for potential satellites. The size of ROI is determined by two
considerations: First, the clustering signal should be consistent across
systems with different CG masses, and secondly, the ROI should
include most of the ‘one-halo’ clustering signal associated with
the main halo around the CG, while excluding the regions that are
dominated by the ‘two-halo’ or background terms. We have explored
different possible choices of ROI boundaries by measuring the two-
dimensional (line-of-sight and projected) clustering signal of all pairs
in our base catalogue.

For each pair in the catalogue, the galaxy with the larger stellar
mass is assumed to be the primary. We then count pairs as a function
of separation in projected distance and line-of-sight velocity offset,
scaled by the halo virial radius and the velocity error, respectively.
These scaling choices are found to give us relatively consistent
clustering signals for primaries of different masses (as shown in
Fig. 2 below). Note that some fraction of an annulus around a given
primary may be missing from the catalogue, as it overlaps with field
boundaries and masked regions. We carefully measure the shape
of the survey boundaries and masked regions to produce a single
template for the whole field. Monte Carlo sampling of this template is
then used to determine the area completeness η around each primary
as a function of radius, as explained in Appendix B, and the counts
are corrected by this factor.

Fig. 2 shows the density of pair counts in 2D phase space for
all galaxies (top panel), and binned by primary halo mass (bottom
panels), where the primary is defined to be the member of the pair
with the larger stellar mass. A clear overdensity of pairs can be
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Figure 2. Primary–secondary clustering signal in the base catalogue. The
colour scale shows the density of galaxy pairs 	 = N/�R�v as a function
of projected separation and velocity offset, where these have been scaled
by the estimated virial radius and velocity error, respectively. Top panel: all
primaries; bottom panels: same quantity normalized and binned by primary
mass.

seen both in the projected separation and in the velocity separation
directions. Overall, primaries with larger masses show a stronger
clustering signal. At the same time, the clustering patterns in the
different mass ranges have a similar dependence on separation scale:
They all have the strongest clustering within 0.5Rvir. The signals all
extend to fairly large radii, but start to drop significantly after 1.5–
2Rvir. Along the velocity axis, which is scaled by redshift error, the
signals in all three mass bins drop off at a similar rate, reaching the
background level at �v ∼ 1–1.5 σ�v . It is worth noting the slight
asymmetry of the clustering signal along the velocity separation axis,
with slightly more negative velocity separations than positive ones.
This is due to the incompleteness at the faint, high-redshift end of the
survey volume (as shown in Fig. 1). We calculate the velocity offset
with respect to the more massive (and thus more luminous) member
of the pair, which as a result of Eddington bias due to incompleteness
tends to be further away on average. Thus, it produces a negative
velocity offset more often than a positive one.

Based on these clustering patterns, around each primary galaxy we
will define an ROI for potential satellites using the following cuts:

(i) A cut in projected separation (assuming both galaxies are at
the line-of-sight distance of the primary), scaled by the virial radius
of the primary: RP/Rvir < A.

(ii) A cut in velocity difference, scaled by the circular velocity of
the primary: �v/vvir < B.

(iii) A cut in velocity difference relative to the uncertainty in
velocity difference between the primary and secondary: �v/σ�v <

C.

Note the final cut depends on the secondary properties as well
as those of the primary, so this is determined for each galaxy pair
individually. Any secondary galaxy in a pair that meets conditions (i)
and (ii or iii) is considered a potential satellite of the more massive
member. We will choose the values (A, B, C) = (3.0, 2.0, 1.5) as our
default, but test the effect of changing these definitions of the ROI in
Section 6 below.

4 TH E I T E R AT I V E C L U S T E R I N G ME T H O D

Our goal is to quantify satellite abundance using the strength of
the clustering signal. An obvious complication is that any given
galaxy may be a central or a satellite; without further selection, the
‘raw’ clustering signal measured in the previous section consists of
a complicated sum of central-satellite and offset-satellite terms (e.g.
Leauthaud et al. 2012). Depending on the stellar mass and range of
separations considered, the latter can significantly bias estimates of
the true satellite abundance.

To avoid this complication, our strategy will be to identify the
galaxies most likely to be centrals, and use the clustering signal
around these objects as a template to separate out central and
satellite contributions. In this section, we will first describe the initial,
‘first-run’ primary selection; then, we will model the clustering of
secondaries around these first-run primaries to determine primary
and secondary probabilities for all galaxies in the sample, and finally
we will test the results of iterating over this process, by adding new
potential primaries to our initial sample, weighted by their primary
probability, and remeasuring a weighted clustering signal around the
enlarged primary sample.

4.1 Initial primary selection

We want to select primaries that dominate an ROI that scales with
their halo mass, as described in the previous section. Since the
ROI is larger for the more massive systems, a smaller system that
has no more massive companions within its own ROI can still lie
within the ROI of a larger system. This asymmetry naturally leads
us to a hierarchical search algorithm, where we start searching
around the most massive systems first. The detailed steps are as
follows:

(i) All galaxies in the catalogue are assigned a halo mass and virial
velocity dispersion based on their stellar mass, as if they were the
CG in their own host halo.

(ii) We then go through the catalogue in ranked order of stellar
mass, selecting the most massive galaxy in the catalogue as the first
primary.

(iii) All galaxies that lie in the ROI around the first primary (as
defined in the previous section) are classified as its secondaries and
removed from the list of potential primaries.

(iv) The next most massive unclassified galaxy is then selected as
the next primary candidate.

(v) We check the stellar masses of all galaxies within the ROI
around this next candidate. If the candidate is the most massive
galaxy in its ROI, then it is classified as a primary and the other
galaxies in the ROI are classified as its secondaries.

(vi) We iterate over the last two steps until all the galaxies in the
catalogue are classified as primaries or secondaries.
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This produces our first-run primary sample. To guarantee reason-
able completeness, we make two additional cuts on this initial sample
as follows:

(i) Primaries with ROIs that are heavily affected by survey
boundaries or masking are removed from the initial primary list.

(ii) Primaries with redshifts higher than 0.25 are removed from
the initial primary list.

These cuts are necessary to remove primaries close to the sample
boundaries, either on the sky or in redshift. These galaxies may have
more massive companions that lie just outside the field or beyond
our redshift cut. Thus, there is a higher probability that they are not
actual CGs, but are in fact satellites of another, more massive galaxy.

Overall, this process is very conservative in selecting primaries,
producing a sample of 1490 galaxies that is incomplete (in the sense
of missing many genuine CGs), but relatively uncontaminated by
satellites. Cutting out systems with redshifts exceeding 0.25 reduces
the number of first-run primaries to 873, while excluding those with
area completeness less than 0.65 (i.e. those with ROIs that are masked
or cut off by field boundaries by more than 35 per cent) reduces the
number to 815.

4.2 Clustering of the first-run primary and secondary samples

To study satellite abundance and its dependence on primary prop-
erties, we first need to model and separate the contributions to the
clustering signal from the satellite population and the background
galaxy population. Having classified potential primaries and secon-
daries, we measure the surface number density of secondaries within
the ROI and in an extended region around it (with the same velocity
offset limits, but extended out to 3.2Rvir in order to have a better
estimate of the background surface density).

Around each primary, we count secondaries in annuli spaced
evenly in log (RP/Rvir). The annuli range from 0.1 to 3.2Rvir, in steps
of 0.25 dex. We exclude secondaries with projected separations of
less than 0.1Rvir (∼25 kpc, for the MW) to avoid outlying H II regions
or other components of the CG. We calculate the surface density of
secondary galaxies around each primary in physical units (Mpc−2),
assuming all secondaries lie at the same distance as the primary.
Given counts Ni, j in radial bin i of projected area Ai around primary
j, the surface density is

	i,j = Ni,j

ηiAi

= Ni,j

ηi2πRi�R
, (2)

where ηi is the mean area completeness in radial bin i (estimated as
described in Appendix B), Ri is the mean radius of the bin, and �R
is the width of the bin. As we want to scale the surface density of
secondary galaxies in units of Rvir, it is useful to define a separation
variable Xi ≡ R

i,j

P /Rj
vir. Thus, equation (2) can be written as

	i,j = Ni,j

ηi2π (Xi · R
j
vir)�X · R

j
vir

= Ni,j

ηi2πXi�X
(
R

j
vir

)2 . (3)

In what follows, we will fit the surface density in bins of primary
redshift and mass. Where the primary sample contains more than five
objects, we use the bootstrap method to estimate the uncertainties in
the surface densities, by re-sampling the primary sample 120 times.
As the bootstrap method does not work well when the sample size is
smaller than five, we have also calculated Poisson uncertainties for
each bin. The final uncertainties for the bin are taken to be the larger
of the two values.

Figure 3. The redshift–halo mass distribution of the first-run primary sample.
The coloured boxes show the boundaries for the 20 subsets used to fit the
mass and redshift dependence of the clustering signal.

The secondary surface density consists of two main parts: the
contribution from clustered satellites and the contribution from
background or foreground galaxies.

	(X|Mhalo, z) = 	sat(X|Mhalo) + 	bg (4)

The first component 	sat should correlate with the halo mass of
the primary, but should be roughly independent of redshift over the
narrow redshift range considered here, while the second component
should be roughly independent of halo mass, but should depend on
redshift. There should also be a more extended clustered component
due to large-scale structure (the ‘two-halo’ term; see e.g. Cooray &
Sheth 2002, for a detailed review), but the characteristic scale of this
component (cf. 4–8 Mpc) is much larger than the scales considered
here. Thus, we treat it as a constant with respect to radius, and include
it in the foreground/background term. To fit the two terms, we split
the primaries into 5 fixed redshift slices and 2–5 halo mass bins per
slice, with adaptive boundaries as shown in Fig. 3.

We assume that the satellite distribution roughly matches the
subhalo distribution, which in turn approximately follows a Navarro–
Frenk–White (NFW; Navarro, Frenk & White 1996) density profile.
Over the range of radii we are most sensitive to, a projected NFW
profile scales as r−2 in the outer parts of the halo, and is somewhat
shallower in the inner parts. We could fit the density profile of the
satellite component with the exact form of a projected NFW profile,
assuming some mean concentration–mass relation. Given the low
SNR of the satellite component, however, we choose to fit it with the
simplified form

	sat(X) = ShaloF (X) = Shalo

X2 + αX + β
, (5)

where Shalo is an overall normalization (in units of Mpc−2) that is
independent of X but depends on the primary halo mass, while α

and β are parameters describing the radial dependence. We have
compared this simplified form to a projected NFW profile over the
range X = 0.05–3, for concentration parameters c = 5–15, and
found that using fixed values α = 0.2 and β = 0 gives a good
fit in all cases. For this choice of parameters,

∫ 1
0 2πF (X)XdX =

log[1 + α] − log[α] = 11.18, so the total number of satellites within
the virial radius is Nsat = 11.18 ShaloR

2
vir.

The resulting fits for the secondary surface density (fitting Shalo

and 	bg jointly for each individual primary bin, with α and β set to
fixed values 0.2 and 0, respectively) are shown in Fig. 4. Summing
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4982 C. Xi and J. E. Taylor

Figure 4. The surface density of secondaries around each of the primary subsamples shown in Fig. 3 (separate panels, with redshift increasing from bottom to
top and halo mass increasing from right to left). Red points with error bars show the measured surface number density in radial bins, while the orange shading
shows the 1σ region around the best fit from equation (5). The horizontal grey lines indicate the background level in the best-fitting model.

over all primary bins, a clustered excess in 	 is detected at an SNR
of approximately 11. We can see that the overall background surface
density (as measured in physical units) decreases with primary
redshift, while the clustered satellite component increases with
primary mass. In the next section, we will explore these correlations
in more detail.

4.2.1 Satellite/halo component

We fit the halo mass dependence of Shalo over the 20 primary bins
using a linear relation in log–log space:

log10

(
Shalo

1 Mpc−2

)
= a × log10

(
Mhalo

1012 M�

)
+ b, (6)

where a and b are free parameters. We choose 1012 M� as the
pivot mass in our fit, as this is roughly the median halo mass of
our 20 primary bins. The projected area of a halo will scale as
the virial radius squared, that is as M2/3. If we assume systems
have a fixed number of satellites per unit halo mass (as expected

from subhalo abundance; e.g. Gao et al. 2004), then the projected
surface density should go as M1/3, so we expect a ∼ 0.33. The value
of b (the normalization at Mhalo = 1012 M�) will depend on the
depth of the catalogue, as discussed below. From our fits, we find
a = 0.30+0.11

−0.10 and b = 0.26+0.08
−0.11, so the scaling with halo mass seems

fairly consistent with the expected value.
Fig. 5 shows our fit for Shalo as a function of mean halo mass,

over all 20 bins in primary mass and redshift. Given its sensitivity to
smaller radial bins with larger errors, the fitted value of the parameter
has an SNR ∼ 8, significantly lower than the SNR for the whole
clustering signal. To illustrate the dependence on halo mass more
clearly, we also show in Fig. 6 a version combining bins with similar
mean halo masses. We note that at the low-mass end [log (Mh/M�)
< 11], the fitted value is actually negative (although consistent with
zero, given the uncertainties). This may be partly due to completeness
problems at low mass, which affect the high redshift bins in particular.
Repeating the fitting process for low-redshift primaries (z < 0.15)
only, we obtain a less negative value, which is once again consistent
with zero (as shown in the subpanel of Fig. 6).
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Figure 5. Average Shalo versus halo mass [log10(Mh/M�)], with colour
indicating the mean redshift of the primary subsample. The blue curve
and grey shaded area show the best-fitting model of the mass dependence
(equation 6), together with the 1σ uncertainty range.

Figure 6. As Fig. 5, but with subsamples of similar mean halo mass combined
into single bins for clarity. The top-left subplot shows the results for primaries
with redshift z < 0.15.

4.2.2 Background component

Our surface densities are calculated in physical units (Mpc−2) at
the distance of the primary. Thus, if the foreground/background
component consisted of a fixed field population with a broad redshift
distribution and thus a fixed number per square degree, we would
expect its inferred physical surface density to scale as dA

−2, where
dA is the angular diameter distance of the primary. (It is worth noting
that this assumption will not necessarily hold if extending the method
to higher redshift.) Fig. 7 shows the fitted value of the background
surface density 	bg in each bin versus the average value of dA

−2 for
that bin. We fit the trend with a simple linear model:

	bg = c + d ×
[(

dA

103 Mpc

)−2

− 2.0

]
, (7)

where c and d are free parameters.
Fitting the 20 bins gives tight constraints on the parameters: c =

79.5+0.6
−0.6 and d = 21.6+0.5

−0.5. Note that if the background scaled exactly
as the inverse of the angular diameter distance, we would expect the
constant term c − 2d ∼ 0 to be small; in practice, various minor
effects, notably the varying width of the redshift range �z over which
we measure the background, will cause the background density to

Figure 7. The background surface density 	bg versus dA
−2. The grey area

shows the 1σ uncertainty range around the best-fitting model (equation 7).

deviate from the simple scaling. As it is, for our fitted values of the
parameters we find c − 2d = 36.3, which is small relative to the
typical values of 	bg.

4.2.3 Single-step fit

While the two-step fitting procedure outlined above is useful to
illustrate the features the model, it is more robust to fit the entire
four-parameter model for both terms in the surface density in a single
step, given the potential covariance between the model parameters.
We use the function Minimizer.emcee2 from the PYTHON module
LMFIT (least-squares minimization fitting) to do MCMC sampling
of the likelihood (Foreman-Mackey et al. 2013). The marginalized
results of this fit are shown in Fig. 8 and are also included in Table 1.
We note that the parameters a and b are strongly (anti)correlated;
indeed, with higher SNR data we could imagine a more detailed, halo
occupation distribution (HOD)-based fit to the halo-mass dependence
of the satellite abundance. There is also some correlation between
parameters c and b (or to a lesser degree c and a), indicating that
satellite abundance estimates do require careful accounting for the
background term.

4.2.4 Assigning probability

Given our model fit to the clustering measurements, we can estimate
the amplitude and radial distribution of the satellite component
and background components around each primary. We define the
probability of a secondary galaxy in the ROI being an actual satellite
as

P sat
i,j (X, Mh, z

p) = 	sat

	tot
= 	sat(X, Mh)

	sat(X, Mh) + 	bg(zp)
, (8)

where Mh and zp are the halo mass and redshift of the primary,
respectively.

This equation can result in very small probabilities at large radii.
Since real satellites (objects that have crossed the virial radius at least
once) almost all lie within 3Rvir (e.g. Wetzel et al. 2014), we truncate
the probability around X = 3 as follows:

P ′(X) = P (X) · 1

1 + 1000X−3
. (9)

2See https://lmfit.github.io/lmfit-py/fitting.html for a detailed description of
LMFIT and Minimizer.emcee.
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4984 C. Xi and J. E. Taylor

Figure 8. Likelihood distributions for the clustering model parameter values,
derived by fitting the full model to all 20 primary subsamples simultaneously.
Panels show the distribution marginalized over the two (or, on the diagonal,
all three) other model parameters.

Table 1. The model fitting results from the first run and first iteration.

a b c d

F0 0.33+0.09
−0.07 0.29+0.08

−0.10 79.5+0.6
−0.6 21.6+0.4

−0.5

F1 0.26+0.07
−0.07 0.38+0.05

−0.06 79.3+0.5
−0.5 20.8+0.4

−0.4

4.3 Iterating over the fit

Our initial primary selection ignores many galaxies that may well
be primaries, but appear close to more massive systems when seen
in projection. To attempt to correct for this, we iterate over our
clustering measurement, including a weighted contribution from all
galaxies, proportional to their probability of being a primary.

For each iteration, we run the top-down selection again. During
the new selection process, every galaxy starts with a 100 per cent
probability of being a primary. Starting with the most massive galaxy
as the first primary, we assign probabilities of nearby galaxies being
its satellites, using the method described in the last section. The
probability of each of these galaxies being an independent primary is
reduced accordingly. We then proceed through the catalogue in order
of decreasing stellar mass. If a galaxy has a probability of being
a primary between zero and 1, we estimate that nearby galaxies
have a probability of being its satellites that is the product of its
probability of being a primary and the satellite probability given in
Section 4.2.4. Proceeding through the entire catalogue in decreasing
order of stellar mass ensures that the calculation is well defined and
that every galaxy is assigned a final probability of being a primary,
equal to 100 per cent minus the sum of all probabilities that it is a
satellite of nearby systems.

Running through this process once, we find 8920 primaries with
probabilities greater than 0.99, of which 3567 lie at redshifts of 0.25
or less. If we further remove systems with areal completeness of
0.65 or less, the number of high-confidence primaries is 3246, versus

815 in our original sample; repeating this exercise for systems with
primary probabilities of 0.999 or more reduces the number to 1478.

If we include primaries with probabilities greater than 0.99 (and
weight all satellites by their CG primary probability), the effect
of iteration on the fit to the clustering signal is shown in Table 1.
Overall, the parameter values after iteration show good consistency
with our initial estimates, shifting by less than 2σ in all cases. The
uncertainties in the fitted parameter values drop, but only slightly.
This suggests that in a data set like the COSMOS catalogue that has
extremely precise photometric redshifts, even the first-run sample of
isolated primaries can provide a good estimate of satellite abundance.
Since the use of lower probability primaries may dilute the clustering
signal and introduce some bias, in what follows we will use our
initial, first-run estimates of the fitted parameters to derive satellite
abundance. We anticipate that in data sets with less accurate redshifts,
iteration will become more important in deriving accurate estimates
of the clustering signal.

5 ESTI MATI NG SATELLI TE ABUNDANCE

In this section, we will make some basic estimates of the overall
abundance of satellites, as well as their abundance as a function
of properties such as stellar mass or luminosity. In each case, our
estimate is based on the clustering signal, which is typically small
compared to the background. The simplest way to estimate satellite
abundance is to count every galaxy in the ROI, weighted by the
satellite probability calculated in Section 4.2.4, so we will use this
approach first in Section 5.1, referring to it as ‘method A’.

As explained below, method A assumes that the clustering ampli-
tude is uncorrelated with stellar mass, luminosity, or any of the other
secondary properties considered. More generally, we expect the frac-
tion of galaxies in the ROI that are true satellites to depend on these
other properties. In Section 5.2, we develop a more sophisticated
approach, ‘method B’, similar to the one introduced in Speller &
Taylor (2014), that attempts to correct for possible correlations in
the limit of a weak clustering signal. Future surveys with stronger
detections of clustering should be able to bypass these complications
by dividing the galaxy sample directly into bins of secondary property
value before they measure the clustering amplitude, simplifying the
analysis considerably; we call this ‘method C’.

5.1 Abundance estimates using method A

In method A, to estimate satellite abundance Ni
sat around primary

galaxy i we simply add up the probabilities P i
j of each galaxy j in its

ROI being a true satellite:

Ni
sat =

∑
j

P i
j . (10)

Note that although P i
j can remain non-zero at large distances from the

primary, to compare to previous results from literature we set a radial
limit of 1.5Rvir by default, and only count towards the total satellite
abundance secondaries that lie within this projected separation of the
primary.

We can study the dependence of satellite abundance on primary
mass by stacking systems with similar stellar or halo masses, as
shown in Fig. 9 (black points with error bars). As expected, there
is a strong trend in satellite abundance with halo mass. As a
consistency check, we also split our primary sample in two by
redshift, and calculate satellite abundance separately for each of
the two subsamples (red and blue points). The results for both
subsamples show good consistency with those for the whole sample.
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Figure 9. Satellite abundance as a function of primary stellar mass, estimated
using method A. Red and blue points show the results for independent primary
samples at higher redshifts (z = 0.17–0.25) and lower redshifts (z = 0.07–
0.17), respectively.

We note that Nsat increases faster with primary stellar mass at the
high-mass end of the range (Mh > 1010.5 M�). This is consistent
with the pattern seen in HOD modelling (e.g. Peacock & Smith 2000;
Seljak 2000; Berlind & Weinberg 2002) and is a result of the changing
slope of the SHMR; halo mass increases faster with stellar mass at
large stellar masses, resulting in a faster increase in satellite numbers.

5.2 Abundance estimates using method B

Method A provides the simplest estimate of satellite abundance,
and is guaranteed to be correct when averaging over all galaxies
in the secondary sample used to calculate the satellite probability
(equations 8 and 9). It is not necessarily correct, however, for sub-
samples of secondaries selected by luminosity, stellar mass, colour, or
other properties, if these properties are correlated with the clustering
amplitude. As a simple example, one can imagine a galaxy population
that consisted of two distinct types, labelled ‘red’ and ‘blue’. If the
red galaxies were completely clustered, but the blue galaxies were
completely unclustered, then we would measure some intermediate
average clustering strength for the combined population, and give
every galaxy a satellite probability based on this average value. If we
weighted all galaxies by this average satellite probability, but then
split them back into subsamples by colour, we would conclude that
the satellite and background populations both had the same net colour
distribution. In effect, the true colour distribution of the satellite
population (100 per cent red, in this example) would be contaminated
by the colour distribution of the field population. More generally,
whenever the background population is significantly different from
the satellite population, the satellite properties inferred using method
A will be biased towards those of the background population.

With sufficient SNR in the clustering signal, we could avoid
this problem by selecting subsamples with a limited range of the
desired satellite property (stellar mass, luminosity, colour, etc.) before
measuring the clustering amplitude and calculating the satellite
probability (we refer to this as ‘method C’). In the limit of low SNR,
however, splitting the galaxies into narrow bins in a given property
will increase the shot noise in the background estimate until it is unac-
ceptably large. Instead, we have developed an intermediate solution,
‘method B’, based on the approach in Speller & Taylor (2014).

In method B, first the number of the background galaxies within
a given radius is estimated for each primary, by summing up the
non-satellite probabilities of each pair:

Ni
bg =

∑
j

(1 − P i
j ). (11)

We then measure the fraction of all background galaxies (i.e. sum-
ming over the ROIs of all primaries or over the whole field) with
a property of interest (e.g. stellar mass, luminosity, and colour) in
a given range, and scale the total number of background galaxies
in the ROI by this fraction. This gives the expected background
contribution to a particular subsample, which we then subtract to
calculate satellite abundance. For instance, if we want to measure
the luminosity function of satellites, �sat, we first need to measure
the total luminosity function within the ROI, �TTL, and the total
luminosity function for all background galaxies, �bg. Then, we
remove the background contribution from the total abundance in
each bin k in luminosity, such that

�sat,k = �TTL,k − Nbg

NTTL
�bg,k . (12)

Here, Nbg and NTTL refer to the number of background galaxies
and the total number of galaxies within the radial cut around each
primary, respectively (before any cut in luminosity). Note that this
approach can be used for individual primaries, except for the lowest
mass systems, where the galaxy counts are so small that Poisson
fluctuations dominate. To correct for this, if the number of objects
within the ROI is less than three times the number of luminosity bins,
then we stack results for multiple primaries at similar redshifts, and
use the average signal.

We used this method to calculate satellite abundance for different
luminosity ranges (below), as well as full satellite luminosity func-
tions (see Section 5.4). Fig. 10 shows abundance for various cuts in
Mi+ . Overall, the dependence of abundance on primary stellar (top
panel) or halo (bottom panel) mass has a similar form for different
luminosity cuts, although there may be a truncation at lower stellar
masses that depends on the luminosity cut. Here too, this pattern is
very similar to those seen for brighter galaxies in HOD modelling.
Plotted as a function of stellar mass, satellite abundance shows a
change in slope around 10.5 M� at all luminosities. Plotting as a
function of halo mass, this feature disappears, confirming that it
is a result of the non-linear SHMR. We also indicate on the plot
the abundance of MW satellites brighter than V = −14.5 with
a galactocentric distance greater than 20 kpc (brown diamond –
three satellites meet these criteria), assuming an MW halo mass of
12.1 M�, as discussed below.

5.3 Comparison to previous work

For massive galaxies, a number of other estimates of satellite abun-
dance exist in the literature. In Fig. 11, we compare our abundance
estimates to the results of Conroy, Wechsler & Kravtsov (2006, C06).
These are based on HOD modelling (e.g. Peacock & Smith 2000;
Seljak 2000; Zehavi et al. 2002) of the luminosity functions and
correlation functions of samples from the SDSS (York et al. 2000)
and DEEP2 (Newman et al. 2013) surveys. HOD modelling provides
an estimate of the average number 〈Ngal〉 of galaxies within a halo
of a given mass, so in the limit where 〈Ngal〉 � 1, 〈Ngal〉 − 1 should
match our measured satellite abundance. As 〈Ngal〉 decreases, some
haloes will contain no galaxies over a given magnitude limit, so
we can only compare results in the large 〈Ngal〉 regime, i.e. for
large halo masses. In addition, the results in C06 are given in bins
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Figure 10. Satellite abundance as a function of primary stellar/halo mass
(top/bottom panels, respectively), estimated using method B. The individual
shaded regions show results for different cuts in satellite luminosity, as
indicated in the legend. The brown diamond shows the number of MW
satellites brighter than V = −14.5 with a galactocentric distance greater than
20 kpc (three satellites meet these criteria).

Figure 11. Comparison to the HOD-based results of Conroy et al. (2006,
fig. 5). Their luminosity bins have been converted to i+-band magnitudes,
assuming a mean colour of 〈Mr − Mi+〉 = 0.25, and have had 1 subtracted
from them to account for the CG.

of Mr − 5log (h); we convert to our i+ band assuming a fixed
mean colour 〈Mr − Mi+〉 ∼ 0.25 (roughly the value measured for
our sample in the COSMOS catalogue), which produces a shift of
(Mr − Mi+ ) − 5 log(h) ∼ 1 mag exactly in the C06 bin boundaries.

Given these conversions, examining Fig. 11, we see that there
is excellent agreement between our results and those of C06. Our
estimated satellite abundance matches that measured by C06 to
within half a standard deviation, for all four of the magnitude cuts

Figure 12. Comparison to the observed and mock results of Besla et al.
(2018; see their figs 11 and 12). (Note that the points are shifted to left or
right by up to 0.02 dex for clarity.)

in that study (two lie between our luminosity cuts, but are clearly
consistent with our results). The slope of the Nsat–Mh relation is
harder to judge given the limited baseline in C06, but generally it
appears to be consistent with our inferred slope at halo masses of
log (M/M�) > 13 or more. The agreement between these two sets of
results is particularly striking, given that they employ completely
different samples and methods, and that there is no parametric
freedom in adjusting our results. Overall, SDSS provides a more
robust estimate of satellite abundance for massive haloes, but as a
deeper survey with more accurate redshift estimates, COSMOS is
better able to probe the low-halo-mass regime.

We have also compared our results to more recent work by Besla
et al. (2018, B18), which is one of the few studies to estimate satellite
abundance at lower halo mass. Fig. 12 compares our results to theirs,
for the primary stellar mass range 108–109 M�. The B18 results
are based on an SDSS spectroscopic sample at a redshift of 0.013–
0.0252, with r-band magnitudes between 14 and 17.77, and primary
stellar masses in the range of (0.2–5) × 109 M�. (The apparent
magnitude limit of 17.77 corresponds to absolute magnitude limits
of −16.03 or −17.5 at z = 0.013 or 0.0252 respectively, equivalent to
−16.3 and −17.8 in the i+ band.) They also compare these to a mock
catalogue generated using the Illustris hydrodynamical simulations
(Vogelsberger et al. 2014; Nelson et al. 2015). Four sets of results are
shown. The ‘uncorrected SDSS’ results are from raw counts of nearby
companions; the ‘completeness corrected’ version is after correcting
for observational selection effects, using the mock catalogues. The
‘physical’ simulation results show the abundance of real satellites,
while the ‘projected’ counts show the result including a background
contribution introduced by projection effects. Completeness and
projection corrections move the measured abundance up and down,
respectively; overall, the best estimate of satellite abundance from
B18 is the completeness corrected (orange) curve, decreased by a
factor of ∼50 per cent to account for projection effects.

Over the mass range of (0.2–5) × 109 M� covered by B18, our
estimates for magnitude cuts Mi+ < −16 or Mi+ < −18 are consis-
tent with their measured values. Given their effective magnitude
limits range from −16.3 and −17.8 in the i+ band, there once
again seems to be excellent consistency in the overall abundance
estimated by the two methods. In contrast, B18 measure almost no
trend in satellite abundance with primary stellar mass. It is worth
pointing out, however, that the mean redshift of the sample in B18 is
lower at smaller primary masses (see their fig. 3). Thus, the satellite
luminosity function may be measured to greater depth for these
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Figure 13. Satellite luminosity functions, for three ranges of primary halo
mass, estimated using method B (see Appendix C for the same results derived
using method A). The mean halo mass for each range is given in parentheses.
The observed luminosity functions of the MW and M31 are shown for
comparison (black and purple points and lines). These magnitudes have been
converted from the V band, assuming a fixed average colour of V − i+ = 0.3.

systems, explaining the flatter slope. B18 also point out that they
may be biased towards preferentially identifying multiple systems
at low stellar mass, due to their bluer colours. We conclude that our
results are consistent with B18, once again despite very different
methods and samples.

5.4 The satellite luminosity function

Finally, we can use method B to estimate satellite luminosity
functions directly (for comparison, results using method A are shown
in Appendix C). In Fig. 13, we present the luminosity function of
satellites for three subsets of primaries. The subsets were chosen
such that the mean halo mass of the middle bin, 〈Mh〉 = 12.1 M�, is
close to the estimated mass of the MW or M31 (Bland-Hawthorn &
Gerhard 2016; Posti & Helmi 2019), such that we can compare to
the observed luminosity functions for these systems. For method B,
we are able to measure the satellite luminosity functions reliably
down to absolute magnitudes of −14. Within this magnitude range,
the observed abundance of satellites around the MW and M31 is
close to the average value. One exception is at the bright end of the
MW satellite luminosity function, where the presence of the LMC
and SMC represents a slight (1σ–2σ ) departure from the average.
This unusual feature of the MW’s satellite population has been noted
and discussed extensively elsewhere (e.g. Robotham et al. 2012 –
see Speller & Taylor 2014, for further references). We will consider
satellite luminosity and stellar mass functions in more detail in a
subsequent paper.

6 TESTING FOR SYSTEMATIC
U N C E RTA I N T I E S I N T H E ME T H O D

While we have shown that our method produces estimates of satellite
abundance consistent with previous studies using larger samples,
there remain a number of choices, assumptions, or free parameters
in the method that could take on different values. In this section, we
will perform a set of tests to understand the effects of the various
assumptions and free parameters in the clustering method.

Figure 14. Results of a null test where the halo component of the clustering
signal is measured using galaxies outside the velocity limits of the ROI. A
black dashed line corresponding to no clustering is included for comparison.

6.1 Null test

First, as a null test, we calculated the clustering signals around our
initial sample of primaries, using only secondaries that lie within the
radial cuts, but outside the redshift cuts we defined in Section 3.2.
Following the procedure in Section 4, we measured the surface
number density of the secondaries for the 20 bins in primary mass and
redshift, and refit our surface density model. The satellite component
from the fit is shown in Fig. 14.

Most of secondaries in this test should not be physically associated
with the primaries, except for a small number of real satellites that
are scattered into the foreground or background by the redshift
errors. Thus, we expect the clustering signal to be close to zero,
and to show little dependence on the primary halo mass. This is
confirmed in Fig. 14.

6.2 Parameter and systematic tests

We have tested for systematic effects and uncertainties in our method
by varying the parameters that define the initial primary selection and
the calculation of the satellite probability. The tests include

(i) Using radial cuts of 2Rvir or 3.5Rvir to define the radial extent
of the ROI.

(ii) Using velocity cuts of 1σ�v or 3σ�v to define the velocity
extent of the ROI.

(iii) Increasing/decreasing the stellar mass by 0.16 dex, which is
comparable to or larger than the typical stellar mass uncertainties in
our data.

(iv) Increasing/decreasing the halo mass derived from our fiducial
SHMR by 50 per cent.

(v) Varying the slope of bias-corrected SHMR (see Appendix A)
at the high-mass end to 1.5 and to 2.5, with respect to the original
value of ∼2.1 from B13.

(vi) Varying the definition of the virial radius, increasing or
decreasing it by 20 per cent.

(vii) Adding 1σ scatter to the initial stellar masses before ranking
them. (We perform this test three times to check the consistency of
the potential effects.)

(viii) Keeping the primary–secondary selection fixed, but adding
0.2Rvir scatter to the coordinates of the primaries, to test the effects
on potential miscentring. (We repeat this test three times to check for
the consistency of the effects.)

In each case, all other parameters and steps in the method are kept
fixed. The results of these tests are summarized in Table 2.

MNRAS 503, 4976–4991 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/4/4976/6153868 by guest on 20 April 2024



4988 C. Xi and J. E. Taylor

Table 2. The fitting results of all tests.

a b c d

F0 0.33+0.09
−0.08 0.29+0.08

−0.10 79.5+0.6
−0.6 21.6+0.5

−0.5

LMh 0.29+0.08
−0.07 0.24+0.09

−0.10 79.0+0.5
−0.5 21.7+0.5

−0.5

SMh 0.28+0.08
−0.07 0.37+0.06

−0.08 79.0+0.5
−0.6 21.6+0.5

−0.5

LMs 0.30+0.09
−0.08 0.12+0.09

−0.12 78.8+0.5
−0.5 21.7+0.5

−0.5

SMs 0.45+0.12
−0.10 0.33+0.08

−0.09 80.2+0.6
−0.6 22.0+0.5

−0.5

σ�v 1 0.32+0.08
−0.07 0.22+0.07

−0.09 78.2+0.5
−0.5 21.2+0.4

−0.4

σ�v 3 0.21+0.10
−0.09 0.29+0.08

−0.10 79.9+0.7
−0.7 21.1+0.6

−0.5

R2 0.30+0.06
−0.06 0.32+0.06

−0.06 78.7+0.5
−0.5 21.4+0.4

−0.4

R3.5 0.23+0.09
−0.08 0.28+0.06

−0.08 82.2+0.5
−0.5 21.0+0.4

−0.4

LR 0.28+0.09
−0.08 0.14+0.08

−0.10 78.1+0.5
−0.5 21.2+0.4

−0.4

SR 0.26+0.10
−0.09 0.28+0.09

−0.12 80.7+0.7
−0.7 22.1+0.5

−0.5

H SHMR 0.20+0.06
−0.06 0.31+0.05

−0.07 80.2+0.5
−0.5 21.3+0.3

−0.4

L SHMR 0.34+0.10
−0.09 0.28+0.07

−0.09 79.4+0.6
−0.6 21.6+0.5

−0.5

RS 1 0.26+0.08
−0.07 0.28+0.07

−0.09 78.6+0.6
−0.5 21.6+0.5

−0.5

RS 2 0.25+0.08
−0.07 0.29+0.07

−0.08 78.7+0.6
−0.5 21.6+0.5

−0.5

RS 3 0.25+0.08
−0.07 0.28+0.07

−0.09 78.6+0.5
−0.5 21.6+0.5

−0.6

CS 1 0.34+0.12
−0.10 0.05+0.11

−0.15 79.4+0.5
−0.5 21.8+0.5

−0.5

CS 2 0.25+0.10
−0.08 0.11+0.9

−0.12 79.3+0.5
−0.5 21.8+0.5

−0.5

CS 3 0.26+0.08
−0.08 0.21+0.08

−0.10 79.6+0.6
−0.6 21.6+0.5

−0.5

Notes. [Key to the tests:
F0 = original fit result;
LMh = larger halo mass;
SMh = smaller halo mass;
LMs = larger stellar mass;
SMs = smaller stellar mass;
σ�v 1 = using 1σ�v velocity cut to define ROI;
σ�v 2 = using 3σ�v velocity cut for ROI;
R2 = using 2Rvir projected separation cut for ROI;
R3.5 = using 3.5Rvir projected separation cut for ROI;
LR = larger Rvir (increasing the primary virial radius by 20 per cent);
SR = smaller Rvir (decreasing the primary virial radius by 20 per cent);
H SHMR = using a higher slope of HSMR at high-mass end;
L SHMR = using a lower slope of HSMR at high-mass end;
RS = ranking shuffle (adding 1σ scatter to the primary stellar masses before
ranking them);
CS = centring shift (adding 0.2Rvir scatter to the coordinates of the primaries
before measuring clustering).]

6.3 Discussion

Considering the results of the individual tests in detail, changing the
halo mass mainly just shifts the points horizontally on the Shalo–Mh

plot, so the fitted parameters a and b remain relatively constant.
Changing the stellar mass has quite a different effect, however. As
the HSMR is shallow at the low-mass end but steep at the high-
mass end, increasing or decreasing the stellar mass does not change
the inferred halo mass much at the low-mass end, but can produce
significant change at the high-mass end. As a result, the slope (a) of
the Shalo–Mh relation is more strongly affected.

Similarly, changing the slope of the HSMR at the high-mass end
will mainly affect the halo mass estimates in this range. As a result,
the slope a is shifted systematically to higher or lower values. As for
the mass ranking test, in addition to the random scatter in individual
mass estimates and resulting variations in detailed primary selection,
there is a net change in the mass function. Since there are more low-
mass galaxies than high-mass ones, adding the random scatter tends
to increase the number of massive galaxies relative to the fiducial

catalogue. This leads to slight shifts in the fitted satellite abundance,
although they are less important than in the case of the mass tests.

The parameter values obtained in each test are given in Table 2.
Tests that produce a variation of more than 2σ in the fitted parameters
are highlighted in bold. We note that only one test (our first re-
centring test) produces a significant change in the parameters of
the satellite component. Three of the 38 tests produce significant
deviations in the background fit, but this is only slightly higher than
the expected rate of 2σ deviations given the random errors (8 per cent
versus 5 per cent). Thus overall, the systematic uncertainties associ-
ated with our tests do not appear to significantly increase the random
errors quoted in the fiducial model fit.

7 C O N C L U S I O N S

In this work, we have developed and tested a method for quantifying
satellite abundance, using galaxy clustering. The method establishes
a basic template for the radial dependence and amplitude of the
satellite component of the clustering signal by using a subsample of
isolated (or at least locally dominant) systems, but then applies this
template iteratively to estimate the probability that any given galaxy
in the field is a satellite of a nearby system. (Note that the form of
the template assumes that the surface number density of background
galaxies is inversely proportional to the square of angular-diameter
distance; this assumption works well at low redshift, but may need
modification if applying the method at higher redshift.) In that sense
it is similar to crowded-field photometry, where an initial sample
of isolated stars is used to determine the point spread function of
the image, and that point spread function is then applied iteratively
to the entire field. Using our method, we have estimated satellite
abundance as a function of primary stellar and halo mass, and also
measured the satellite luminosity function, over a very broad range of
primary halo mass (1010–1013.5 M�). We have also tested the method
for systematic uncertainties by varying the model parameters, and
found variations in the final results that are generally smaller than
our random error estimates.

We have compared the results of this new technique to several
previous estimates of satellite abundance from the literature, which
were derived using larger catalogues. Our results are fully consistent
with those of Conroy et al. (2006) at the high-mass end, and of
Besla et al. (2018) at the low-mass end, while covering a much larger
range in primary mass overall. We have also compared our measured
luminosity functions to those of the dominant LG galaxies, assuming
an average halo mass of 12.1 M� for these systems. The LG satellite
populations seem fairly typical, with the exception of the bright
satellites of the MW (the LMC and the SMC), as noted previously
in the literature. The main purpose of this paper was to describe
and validate our method; in subsequent work, we will consider
in more detail the properties of the detected satellite populations,
including their spatial distribution, colours, star formation rates, and
dependence on primary properties.

The COSMOS catalogue was chosen for this work for its deep
photometry and extremely accurate photo-zs. Other deep surveys
with accurate distance information will also be good candidates to
apply our method. One potentially important survey is planned with
SPHEREx,3 an all-sky survey satellite with a wide-field spectral
imager. SPHEREx is currently scheduled to launch in 2024, and
will produce, during its 2-yr mission, four all-sky maps, with
hundreds of millions of near-infrared stellar and galactic spectra

3See this https://spherex.caltech.edu/ for more details.
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(0.75–5.0 micron) (Spangelo et al. 2015; Bock & SPHEREx Science
Team 2018). The redshifts in the SPHEREx surveys are estimated
by fitting template SEDs to observations, similarly to COSMOS.
While COSMOS used photometry in 30 bands to derive its photo-
zs, SPHEREx will produce low-resolution (R ∼ 20–100) spectra,
with a similar final redshift accuracy, as discussed in Stickley et al.
(2016). While the main survey will be shallower than COSMOS, two
regions at the polar caps will be visited multiple times, providing
∼100 square deg of coverage to a depth similar to COSMOS. Thus,
SPHEREx should provide a redshift catalogue of similar accuracy
to the COSMOS catalogue used here, but covering an area 50 times
larger. The resulting increase in the SNR of the clustering signal
would allow much finer binning in primary or secondary properties,
giving a much more detailed view of the relationship between
satellites and their CGs.
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APPENDIX A : BIAS IN H ALO MASSES
D E R I V E D FRO M TH E S H M R

Throughout this work, we assume the SHMR proposed by Behroozi
et al. (2013):

log10(M∗(Mh)) = log10(εM1) + f

(
log10

(
Mh

M1

))
− f (0) , (A1)

where the function f(x) is defined as

f (x) = − log10(10αx + 1) + δ
(log10(1 + exp(x)))γ

1 + exp(10−x)
. (A2)

The free parameters vary with redshift as follows:

log10(M1) = M1,0 + (M1,a(a − 1) + M1,zz) exp(−4a2)

log10(ε) = ε0 + (εa(a − 1) + εzz) exp(−4a2) + εa,2(a − 1)

α = α0 + (αa(a − 1)) exp(−4a2)

δ = δ0 + (δa(a − 1) + δzz) exp(−4a2)

γ = γ0 + (γa(a − 1) + γzz) exp(−4a2), (A3)

where a = 1/(1 + z) is the scale factor. [The 1σ uncertainty range in
these parameter values is listed on p. 9 of Behroozi et al. (2013).] In
our case, since our primary sample covers the fairly narrow redshift
(z) range of 0–0.25, little variation is predicted in the SHMR. Thus,

Figure A1. Stellar mass errors versus stellar mass in the mock sample (for
clarity, only a third of the data points are shown), together with the mean
relation in bins of stellar mass (red points and error bars).

Figure A2. Halo-to-stellar mass relation of the Monte Carlo samples. The
dark blue dots are our Monte Carlo halo mass sample with stellar masses
assigned using B13. The light blue points show the ‘observed’ stellar masses
of the sample after adding intrinsic scatter and observational errors. (Note
that only 15 per cent of the mock sample is shown for clarity.) The red dots
with error bars are the average halo mass in each bin of ‘observed’ stellar
mass. The solid black line is a linear fit to the red dots [in log (M∗/M·)], over
the range of 10.7–11.8.

we simply use an intermediate redshift of z = 0.15 for the analysis
below.

The Behroozi et al. (2013) relations are theoretical, unbiased mean
values of M∗, given a specific halo mass Mh. In any real survey,
this relationship will be biased by intrinsic scatter and observational
errors (B13; Leauthaud et al. 2012). To quantify this bias for the
COSMOS catalogue, we generated a Monte Carlo sample of 12 000
haloes selected at random from the halo mass function given in
Tinker et al. (2008). ‘True’ stellar masses were calculated for these
objects using the SHMR given above. We then added intrinsic scatter
and random errors to each stellar mass 50 times independently, to
simulate an ‘observed’ stellar mass sample. The intrinsic scatter in
the SHMR is about 0.14–0.2 dex at a redshift of z = 0 (More et al.
2009; Yang, Mo & van den Bosch 2009; Reddick et al. 2013), and
there is no evidence of any trend with mass, at least down to halo
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masses of 1012 M� (Behroozi et al. 2013; Reddick et al. 2013). Thus,
we added an intrinsic scatter of 0.15 to all stellar masses derived for
our ‘observed’ sample. Average observational errors, as a function
of stellar mass, were estimated directly from the COSMOS 2015
catalogue, as shown in Fig. A1. We added these in quadrature to
determine the final stellar masses of the mock sample.

The light blue points in Fig. A2 show the ‘observed’ stellar
masses of the mock sample, after adding the intrinsic scatter and
observational errors. The dark blue points show the underlying ‘true’
stellar masses, while the black dashed line shows the theoretical
SHMR from B13. The red points show the mean halo mass in each
‘observed’ stellar mass bin. We can see that the ‘observed’ SHMR
follows the theoretical SHMR reasonably well at low masses, but
departs from it at the high masses. Given this pattern, we will use
a two-part SHMR to assign halo masses in our work. For stellar
masses of 1010.7 M� or less, we use an unmodified B13 SHMR,
while for masses greater than 1010.7, we use the linear fit to the
average ‘observed’ values listed and shown as a black solid line on
the plot.

APP ENDIX B: MEASURING THE MASKING
A N D F I E L D B O U N DA R I E S

Regions of the COSMOS field have poor photometry in one or more
bands, due to contamination from bright stars, internal reflections, or
other artefacts. Data from these regions are tagged with a ‘masking’
flag (‘FLAG PETER’ in the COSMOS 2015 catalogue), which can
be used to exclude those data from further analysis. The shape of
these masked regions, together with the field boundaries, needs to
be measured to determine the area completeness η around any given
primary. Although detailed mask files are available for the COSMOS
field, we found it less computationally demanding for our work to use
a single, approximate mask image with coarser spatial sampling. We
use the method described in Xi et al. (2018) to generate this global
mask. First, a coarse map consisting of 390 × 390 cells is constructed,
covering the whole COSMOS field. We search for objects in each cell
of this map, to determine whether it should be included or masked out.
In the first round, any cell with one or fewer objects counts is selected
as a potential masked region. In the second round, these candidates
are confirmed as masked if they have one or more neighbouring
cells with no counts. This two-step selection process reduces to
0.0026 per cent the probability of artificially eliminating cells due to
Poisson fluctuations in their object counts. The map resolution and
count threshold were determined empirically after testing various
resolutions from 200 × 200 to 600 × 600, with different thresholds
in each case. We found that the effect on the clustering signal of
variations in the masking parameters is small, producing variations
in Shalo of roughly 5 per cent or less. The final resolution was selected
to provide the most accurate overall mask, relative to the full images.

Given a single global mask for the COSMOS field, we then
generated a large, random sample of points, and used the distribution
of the points around each primary to estimate its area completeness
as a function of projected separation. For each galaxy, we counted the
number of random samples in projected radial bins with and without
applying the masks and boundaries. Each bin had a size of 0.2Rvir of
the galaxy, up to 3.6Rvir. The area completeness is then

η(RP) ≡ AM(RP)

AT(RP)
= NM(RP)

NT(RP)
, (B1)

where AM and AT are the masked and total areas, and NM and NT are
the random counts with and without masking, respectively.

Besides the area completeness in individual radial bins, we also
measured the total area completeness of each primary within 3.0Rvir.
Galaxies with poor completeness were excluded from the primary
sample, as described in the main text.

A P P E N D I X C : C O M PA R I N G BAC K G RO U N D
E S T I M AT I O N ME T H O D S A A N D B

While method A is simple to implement, it may introduce systematic
biases in the inferred satellite properties, as described in Section 5.1.
Method B removes the contribution from the background statistically,
and should produce less biased, albeit noisier, results.

Fig. C1 shows the (cumulative) satellite luminosity function for
three sets of primaries with different halo mass ranges, using methods
A (dashed lines) and B (solid lines). Overall, method A produces a
luminosity function with a steeper slope, which continues to rise at
faint magnitudes, whereas for method B, the cumulative luminosity
function flattens. As shown in Fig. 13, the method B results are in
better agreement with LG data.

Figure C1. Cumulative satellite luminosity functions estimated using meth-
ods A (dashed) and B (solid), for primaries in three halo mass bins (as in
Fig. 13).
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