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ABSTRACT
The time-series component of Wide-field Infrared Survey Explorer (WISE) is a valuable resource for the study of variable
objects. We present an analysis of an all-sky sample of ∼450 000 AllWISE+NEOWISE infrared light curves of likely variables
identified in AllWISE. By computing periodograms of all these sources, we identify ∼56 000 periodic variables. Of these,
∼42 000 are short-period (P < 1 d), near-contact, or contact eclipsing binaries, many of which are on the main sequence. We
use the periodic and aperiodic variables to test computationally inexpensive methods of periodic variable classification and
identification, utilizing various measures of the probability distribution function of fluxes and of time-scales of variability. The
combination of variability measures from our periodogram and non-parametric analyses with infrared colours from WISE and
absolute magnitudes, colours, and variability amplitude from Gaia is useful for the identification and classification of periodic
variables. Furthermore, we show that the effectiveness of non-parametric methods for the identification of periodic variables
is comparable to that of the periodogram but at a much lower computational cost. Future surveys can utilize these methods to
accelerate more traditional time-series analyses and to identify evolving sources missed by periodogram-based selections.
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1 IN T RO D U C T I O N

The study of the variable sky can yield a wealth of information on
a wide range of astronomical objects such as asteroids, exoplanets,
stars, and active galactic nuclei. As a result of this broad importance,
over the last 20 yr, there has been significant investment in high-
cadence variability surveys both on the ground (OGLE – Udalski
2003; ASAS – Rucinski 2006; Catalina – Drake et al. 2009; ASAS-
SN – Shappee et al. 2014; Kochanek et al. 2017; Jayasinghe et al.
2018; ZTF – Bellm et al. 2019; LSST – Ivezić et al. 2019) and in
space (Kepler – Borucki et al. 2010; Koch et al. 2010; TESS – Ricker
et al. 2015; Gaia – Gaia Collaboration 2016, 2018a).

Considerable effort goes into the sorting of data from these surveys
to first differentiate between variable and non-variable objects and
then to classify different types of variability. Traditionally, variable
objects are classified based on the similarity of their light curves and
colours to known variable prototypes (Gaia Collaboration 2019).
Often, a time-series analysis tool such as a periodogram is run
on objects displaying variability to differentiate between periodic
and aperiodic variables. This step requires a clear understanding
of the effects of the observing cadence on period recovery and a
careful weighing of the pros and cons of different period-search
algorithms. The results of the periodogram-based analysis are often
taken, together with measures of light curve morphology and other
characteristics of the source (e.g. colour) and used as inputs into a
classifier (e.g. Debosscher et al. 2007, 2009; Sarro et al. 2009; Dubath
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et al. 2011; Richards et al. 2011, 2012; Masci et al. 2014; Kim &
Bailer-Jones 2016; Eyer et al. 2019; Jayasinghe et al. 2019a, b)

Periodograms, light-curve fitting, and machine learning classifi-
cation are potent tools and will continue to be important to the astro-
nomical community. Nevertheless, one downside of these methods is
that they are often survey-dependent, difficult to physically interpret,
and involve a lengthy learning curve and a lot of computational
power in order to implement. To help mitigate this problem, some
previous works have used non-parametric variability measures (e.g.
Kinemuchi et al. 2006; Drake et al. 2013, 2014a, 2017; Palaversa
et al. 2013; Rimoldini 2014; Findeisen, Cody & Hillenbrand 2015;
Hillenbrand & Findeisen 2015; Torrealba et al. 2015)

In this work, we are particularly interested in eclipsing stellar
binaries. Binary stars undergo interesting evolution (Stepien 1995;
Fabrycky & Tremaine 2007; Duchêne & Kraus 2013; Ivanova et al.
2013; Borkovits et al. 2016; Moe & Di Stefano 2017; Hwang et al.
2020) and are relevant for a wide array of astronomical phenomena.
They have been used in cosmology as distance indicators (Riess
et al. 2011), in stellar astrophysics as testing grounds for precision
stellar evolutionary models (Pietrinferni et al. 2004), and can even
host planets (Doyle et al. 2011). Binary systems have been linked
to transients such as Luminous Red Novae (Tylenda et al. 2011;
Kasliwal 2012) and are thought to serve as progenitors for some of
the most fascinating objects in the Universe – ultra-compact binaries
of white dwarfs, neutron stars and black holes, the tantalizing source
population for type Ia supernovae, kilonovae, and gravitational waves
(Weisberg, Nice & Taylor 2010; Knigge, Baraffe & Patterson 2011;
Maoz, Mannucci & Nelemans 2014; Postnov & Yungelson 2014;
Belczynski et al. 2016; Brown et al. 2016; Abbott et al. 2017;
Cowperthwaite et al. 2017; Smartt et al. 2017; Temmink et al. 2020).
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Many surveys have associated eclipsing binary (EB) catalogues (e.g.
ASAS – Paczyński et al. 2006; Kepler – Kirk et al. 2016; Catalina
– Drake et al. 2014a; OGLE – Soszyński et al. 2016; ASAS-SN –
Jayasinghe et al. 2019a). Future Gaia data releases will include an all-
sky EB catalogue and the current release identifies a variety of other
types of variability (Eyer et al. 2018; Holl et al. 2018; Roelens et al.
2018; Molnár et al. 2018; Mowlavi et al. 2018; Gaia Collaboration
2019; Rimoldini et al. 2019; Clementini et al. 2019; Siopis et al.
2020).

In this work, we use non-parametric light-curve analysis tech-
niques in conjunction with more traditional time-series analysis
methods to study variability and identify a sample of eclipsing
binaries in data from the Wide-field Infrared Survey Explorer (WISE;
Wright et al. 2010; Mainzer et al. 2011). The all-sky and long-
term coverage, decreased effects of extinction compared to optical
wavelengths, and non-uniform cadence probing a wide range of
variability time-scales (Hoffman et al. 2012) make WISE a unique
probe of Galactic variability. Previously, Chen et al. (2018) used
WISE to identify ∼50 000 periodic variable candidates of which
∼42 000 were binaries. Here, we expand on this work and present
an analysis of ∼450 000 light curves of variables selected using
AllWISE variability metrics based on r.m.s. flux variations. Our
larger period search grid allows us to detect short-period objects
that were missed by Chen et al. (2018). We also employ a different
period-search algorithm, use data from a more recent release, and
cross-match our results with Gaia DR2. In the end, we identify an
all-sky sample of ∼56 000 periodic variable candidates, of which
∼51 000 are binaries. We also present the calculation of various non-
parametric variability measures for the remaining 394 000 aperiodic
variables.

In Section 2, we discuss the WISE data and our time-series
analysis. In Section 3, we explore the contents of our periodic
variable selection and display the results of various cross-matches. In
Section 4, we introduce our non-parametric measures and use them
to classify periodic variables. In Section 5, we discuss main-sequence
(MS) binaries, short-period objects, extra-galactic and young-stellar-
object variability, and the application of non-parametric methods to
the identification of periodic variables. We conclude in Section 6.
Throughout this paper, WISE magnitudes are quoted on the Vega
system, and the following conversions apply: WiAB = WiVega +
�mi, with �mi = (2.699, 3.339, 5.174, 6.620).1

2 WISE DATA A N D M E T H O D

2.1 WISE mission

The WISE was launched in December 2009 and conducted observa-
tions of the entire sky in bands centred on 3.4, 4.6, 12, and 22 μm
(W1, W2, W3, and W4, respectively) until the end of September 2010
when it ran out of coolant (Wright et al. 2010; Mainzer et al. 2011).
From October 2010 to February 2011 it conducted observations in
the 3.4 and 4.6 μm bands as a part of the NEOWISE post-cryogenic
mission (Mainzer et al. 2011). The spacecraft was in hibernation
from the end of the post-cryogenic mission until December 2013
when it was reawakened as a part of the NEOWISE Reactivation
(NEOWISE-R) mission (Mainzer et al. 2014). The AllWISE data
release includes data from both the original mission and the post-
cryogenic mission as of 2013,2 whereas the NEOWISE Reactivation

1https://wise2.ipac.caltech.edu/docs/release/allsky/expsup/sec4 4h.html
2http://wise2.ipac.caltech.edu/docs/release/allwise/

2019 Data Release includes all of the data from the time that the
spacecraft was awakened from hibernation until 2019.

The WISE spacecraft orbits the Earth with a period of ∼5700 s
(∼0.066 d = 1.6 h)3 on a polar orbit – near the dividing line between
night and day – and always looks away from the Earth. Every six
months, it images the same portion of the sky and obtains at least
eight passes on each point of sky due to the partial overlap of the
field of view on consecutive orbits. The sources outside the ecliptic
are more frequently observed. The cadence of the data is such that
every six months there is a collection of ∼10 data points that are
each spaced one orbit apart.

The data pre-processing and extraction of the light curves are
different for the AllWISE and NEOWISE releases. AllWISE stacks
all the scans, identifies the objects, and then measures the per-scan
magnitude of each object at a fixed position. In contrast, NEOWISE
identifies objects and measures their photometry in individual scans
without stacking. Mainzer et al. (2014) find systematic changes in
W1 between AllWISE and NEOWISE-R to be 0.01 magnitude for
sources with 8 mag < W1 < 14 mag and on the order of 0.1 magnitude
for sources with 14 mag < W1 < 15 mag. Outside this range there
are magnitude dependent systematic offsets between AllWISE and
NEOWISE data. We limit our study to 8 mag < W1 < 15 mag to
ensure concordant AllWISE and NEOWISE measurements and to
exclude saturated sources (Mainzer et al. 2014; Nikutta et al. 2014).
We also explicitly apply a cut to ensure that the difference between
the mean magnitude of AllWISE and NEOWISE be less than 0.15
mag because the time-series analysis is not reliable in the case of a
large magnitude offset. A typical individual exposure for sources in
the range 8 mag < W1 < 15 mag has an uncertainty of ∼0.03 mag.
A plot of the r.m.s. of single exposure flux measurements versus W1
magnitude is shown in fig. 8 of Mainzer et al. (2014). In the range
8 mag < W1 < 15 mag, individual data point uncertainties tend to
increase as a function of W1 magnitude. We incorporate these error
measurements into our analysis.

2.2 WISE light curves

WISE reports a measure of the flux variation in each band based
on AllWISE single-epoch photometry. Each source is assigned a
single-digit var flg ranging from 0 to 9 in each band, such that
the probability that the object’s flux does not vary in said band is
∝10−var flag (Hoffman et al. 2012).

We select WISE variable sources having W1 var flg ≥ 6. We
find that that proportion of variable objects found to be periodic via
periodogram analysis drops steadily as var flg decreases from
∼23 per cent for sources with var flg == 9 to ∼5 per cent for
sources with var flg == 6. We elect not to extend the analysis
to sources with var flg == 5 because doing so would increase
our storage and computational overhead by ∼60 per cent and we
expect that a low proportion (<5 per cent) would be periodic. We
only consider sources having cc flags == 0 to ensure that there
are no imaging artefacts and ext flg ≤ 1 to ensure that it is not
an extended source. After applying this selection, we download ≈
500 000 light curves from the AllWISE multi-epoch photometry table
and the NEOWISE-R single exposure source table using a 1 arcsec
matching distance.

Due to the ∼3 yr gap between AllWISE and NEOWISE-R, it
is possible that some high-proper motion AllWISE sources are not
matched to their NEOWISE-R counterpart and are omitted from our

3http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/sec1 1.html
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Variability, periodicity, and contact binaries in WISE 3977

Figure 1. Left: An example periodogram made with WISE data. The vertical axis shows the value of the statistic, θ , for a given frequency. The higher the value
of θ , the lower the false alarm probability. The periodogram peak occurs at a frequency of fmax = 4.44 d−1 (Pmhaov = 0.225 d). Right: Phase-folded light curve
of the same object. This object is an eclipsing binary with approximately symmetric eclipses. This means that the MHAOV period, Pmhaov i.e. the period picked
out by the MHAOV periodogram, is half the actual orbital period. We fold this light curve with a frequency of 0.5 × fmax = 2.22 d−1 which corresponds to an
orbital period of 2 × Pmhaov = 0.45 d.

analysis. This could cause us to miss some interesting objects such as
nearby, high-proper motion brown dwarfs. To estimate the magnitude
of this effect, we utilize the AllWISE/Gaia DR2 cross-match of
Marrese et al. (2019). Out of the ∼200 000 cross-matched objects
with var flg 6 through 9 that satisfy the above selection, only
∼200 have a proper motion of above 100 mas yr−1 so we estimate
that ∼0.1 per cent of our variables suffer from a missed cross-match
due to high proper motion. For an analysis of high-proper motion
sources in WISE see Luhman & Sheppard (2014).

To eliminate redundancies and possible extraneous matches in the
table, the allwise cntr listed in the NEOWISE-R single expo-
sure table is mapped to the source id mf in the AllWISE multi-
epoch photometry table.4 We exclude sources whose NEOWISE-R
data is mapped to more than one AllWISE source. We also exclude
AllWISE sources with no corresponding NEOWISE-R data because
the number of AllWISE-only observations is not sufficient for our
time-series analysis.

For the AllWISE multi-epoch photometry, the following selection
is applied: saa sep > 5.0 deg (image outside of the South
Atlantic anomaly), moon masked == 0000 (frame unaffected
by light scattered off the moon), and qi fact > 0.9 (only the
highest quality frames).5 In addition, points with null photometric
measurement uncertainty or null for the reduced χ2 of the W1
profile-fit are excluded. For NEOWISE analogous cuts are applied6

and we also exclude points with null W1 profile fit signal-to-noise
ratio. The number of data points reported in our tables is the total
remaining after these quality cuts are applied. Example PYTHON

code for light curve download with quality flags is available through
Github.7

2.3 Time-series analysis

The periodogram is a time-series analysis tool that allows for
the identification and characterization of periodic signals. For this
paper, we use the multi-harmonic analysis of variance (MHAOV)

4http://wise2.ipac.caltech.edu/docs/release/neowise/expsup/sec2 1a.html
5http://wise2.ipac.caltech.edu/docs/release/allwise/expsup/sec3 1a.html
6http://wise2.ipac.caltech.edu/docs/release/neowise/expsup/sec2 3.html
7https://github.com/HC-Hwang/wise light curves

periodogram (Schwarzenberg-Czerny 1996), which has been shown
to be high-performing in comparison to other algorithms (Graham
et al. 2013). We fit the data with periodic, orthogonal functions
and use a statistic, θ , which is the ratio of the squared norm of
the model over the squared norm of the residuals (Schwarzenberg-
Czerny 2003), to quantify the quality of the fit (Schwarzenberg-
Czerny 1998). The fitting procedure is carried out for a grid of
test frequencies and a periodogram shows the dependence of the
statistic value on the test frequencies. Fig. 1 shows an example peri-
odogram in frequency space with a corresponding phase-folded light
curve.

For three model parameters, the MHAOV periodogram is statisti-
cally equivalent to the classic Lomb–Scargle periodogram (Lomb
1976; Ferraz-Mello 1981; Scargle 1982; Schwarzenberg-Czerny
1999). We use five model parameters to allow for better sensitivity
to anharmonic oscillations. This corresponds to fitting the data in
real space with a Fourier series of two harmonics (fundamental
plus one additional harmonic – Schwarzenberg-Czerny 1999, 2003;
Lachowicz et al. 2006; Graham et al. 2013).

We adopt a frequency grid spacing of 0.0001 d−1 (Graham et al.
2013). We search the frequency range 0.1–20 d−1. This lower bound
is selected because, due to the WISE observing cadence and our
requirement that sources have good phase coverage, we expect low
sensitivity to long-period variables. With regards to the upper bound,
this extension beyond the traditional Nyquist limit of ∼7.6 d−1 that
corresponds to uniform sampling at the WISE orbital cadence is
justified when the data is not uniformly spaced (see Section 2.6 for
further discussion).

2.4 Periodogram peak significance

All the light curves in our sample have been determined by Hoffman
et al. (2012) to exhibit variations in brightness. We seek to determine
whether these variations are periodic in nature. When we run a
periodogram on a source and observe a peak, we seek to reject the null
hypothesis that the variation displayed by the light curve in question
is pure noise and that the highest peak in the periodogram results from
the chance alignment of random errors. Although some inroads have
been made toward an analytical understanding of peak significance
(e.g. Horne & Baliunas 1986; Koen 1990; Schwarzenberg-Czerny
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Figure 2. Left: Distribution of maximum statistic values versus the number of observations in the light curve (NLC) for periodograms calculated on 20 000
white-noise light curves. The data are binned based on NLC. The smallest bin contains about 1300 light curves and most bins have about 2 000. Cyan crosses
show an estimate of the 99.9th percentile of the corresponding statistic values in each bin. The black dashed line shows the best-fitting power-law model using
LMFIT (Newville et al. 2014). Right: Maximum statistic value from the periodogram versus NLC for all WISE light curves with more than 17 data points and no
peak at the WISE observing cadence. The black dashed line represents the power law fit from the left panel. For sources above this black line, we reject the null
hypothesis that the observed light curve is consistent with white noise.

1999), the results depend in complex ways on the nature of the data
and the chosen test frequencies.

We adapt the Monte Carlo method of Frescura, Engelbrecht &
Frank (2007, 2008) to quantify peak significance. We generate
20 000 white-noise light curves that have means, flux deviations from
mean, observing cadences, and individual data point photometric
uncertainties that are representative of our actual sample. These light
curves are variable at a level similar to that in the observed data, but
contain no periodic signal by construction. To generate these light
curves, we start with 20 000 randomly selected WISE light curves.
For each light curve, there is an array of time measurements, ti, an
array of magnitude measurements, mi, and an array of photometric
uncertainties on each data point, σ (mi) where i ranges from 1 to
the number of data points in the light curve, NLC. For each light
curve, we calculate the mean of the magnitude distribution, 〈m〉,
and define a measure of its width, w, as the difference between the
84.2th and 15.8th percentile (the percentiles marking, respectively,
one standard deviation above and below the mean for a Gaussian
distribution). Next, we create a Gaussian distribution with mean 〈m〉
and standard deviation 0.5 w and randomly draw NLC values from
this distribution to create a new array of Gaussian (white) noise data,
noisei. By substituting noisei for mi for each light curve, we create
20 000 white-noise light curves.

We run an MHAOV periodogram on each of the white-noise
light curves using the same frequency grid and number of model
parameters that were used on the actual data. The left-hand panel of
Fig. 2 shows the resultant distribution of maximum statistic values
from the periodogram (θ ), as a function of the number of observations
in the light curve (NLC). When NLC is low, the light curve contains
less information, it is harder to distinguish periodic and aperiodic
signals, and it is expected that a higher statistic value is required to
credibly reject the null hypothesis. To make the left-hand panel of
Fig. 2 we bin the data based on NLC. Every bin has ∼2 000 simulated
light curves save the last one on the right which has ∼1300. In
each bin, we study the resultant empirical cumulative distribution
function of the calculated maximum statistic values and estimate the
99.9th percentile. Then, using LMFIT (Newville et al. 2014), we fit a
power law model of the form θ cutoff(NLC) = A(NLC − N0)k to estimate
the appropriate cut-off value as a function of NLC to reject the null
hypothesis. The best-fit values are A = 79 ± 8, N0 = 20.7 ± 0.2, and k

= −0.18 ± 0.03. For sources that lie above this best-fit line we reject
the null hypothesis that the peak results from the chance-alignment
of random errors for a white-noise light curve (see Fig. 2, right). For
NLC ≤ 20 the above fit diverges. Due to other cuts detailed below
in Section 2.7, the minimum number of points that are required for
periodic variable detection is 18. For sources with between 18 and 20
data points, we require a safe cut of 125 on maximum statistic. This
only ends up adding one additional periodic source to the catalogue.

2.5 Completeness

The above cut on the maximum statistic seeks to limit the false alarm
probability; however, it does not say much about the probability of
periodicity itself nor the incidence of periodic signals that are passed
over (VanderPlas 2018). The completeness, that is, the proportion of
truly periodic signals we expect to detect, is a complex function of the
nature of periodicity (Schwarzenberg-Czerny 1999), the observing
cadence, and the data quality and quantity. It depends on the
magnitude (worse for very faint and very bright objects), amplitude
(worse for small amplitude), signal shape and phase (worse for
short-duration pulses, especially if they occur in between observing
epochs), period (worse for extremely short and long periods), and
number of observations (worse for fewer observations).

Completeness is not the main focus of this project, and we do not
attempt to characterize completeness across all of these parameters.
Instead, we briefly consider just the special case of contact and near-
contact binaries with sinusoidal and near-sinusoidal light curves. We
explore how our ability to detect such sources varies as a function
of signal amplitude and period. We randomly select 100 variable
WISE light curves that have 8 mag < W1 < 15 mag. We then
simulate a sinusoidal signal centred at the W1 magnitude of the light
curve and sample it at the original cadence, preserving the individual
data point uncertainty associated with each timestamp. In the first
simulation, we fix the phase and choose an amplitude characteristic
of our recovered periodic variables (0.4 mag). We pick a starting
period of 0.051 d and calculate the MHAOV periodogram, phase-
fold the result, and see if the source would have been classified as
periodic (using the criteria detailed below in Section 2.7). We iterate
over all light curves for a given period and then increase the period
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Figure 3. Per cent of signals correctly identified as periodic after running
our method on a random sample of WISE light curves with a simulated
sinusoidal signal. For the period simulation, the amplitude was fixed at a
value representative of our close binaries. For the amplitude simulation, the
period was fixed at a value representative of our close binaries.

and repeat until the period exceeds a value of 1 d. We choose periods
between 0.05 and 1 d because the majority of our periodic sources are
contained in this range. Next, we repeat the same procedure but this
time fixing the period at a value of 0.22 d (a value typical of our close
binaries) and varying the amplitude between value of 0.025 and 0.75
mag. Fig. 3 shows the results of these simulations. In summary, given
our data and our method, we estimate that we can detect ∼75 per cent
of near-sinusoidal signals with periods between 0.05 and 1 d and
peak-to-peak amplitudes above 0.25 mag. As mentioned above,
completeness is a function of signal shape, so these conclusions will
not necessarily hold for strongly non-sinusoidal signals. We elect to
focus solely on sinusoidal signals in this subsection because contact
and near-contact EBs dominate our sample and many of their light
curves are well-approximated by a sinusoid.

2.6 Period uncertainty

After determining that a periodogram has one or more significant
peaks and represents a periodic variable candidate, we next determine
whether it is indeed a truly periodic signal. If multiple periodogram
peaks are present, it is important to determine which among them,
if any, corresponds to the correct period. The observed light curve is
a product of the continuous underlying signal and the discrete and
unevenly spaced window function (i.e. observational cadence). Alias-
ing, or the correlation between frequencies equidistant from one-half
of the inverse sampling rate (Nyquist frequency) is familiar in the
case of evenly spaced sampling. Uniform observations at the WISE
satellite period (∼95 minutes) would correspond to a Nyquist fre-
quency of ∼7.6 d−1. Deviations from uniformity dampen the effects
of aliasing and allow for the detection of periodic components above
the traditional Nyquist limit (Eyer & Bartholdi 1999; Koen 2006).

Despite the orthogonality of the multiharmonic periodogram fit
at each individual frequency, the fits on any set of frequencies
are generally not independent in the case of irregular sampling
(Schwarzenberg-Czerny 1998). This means that the statistic values at
different frequencies can be correlated. Sometimes these correlations
manifest as separate peaks. Compared to other algorithms, we find
the MHAOV periodogram to be effective at damping secondary
peaks across the range of probed frequencies. For the purposes of
this analysis, we use the MHAOV period (Pmhaov) as given by the

Figure 4. Frequency error derived via MCMC simulations, σMC, versus the
error derived from periodogram methods, σ freq, for a set of randomly selected
periodic light curves. The dashed line is a plot of σMC = σ freq. The two error
estimates are highly correlated and the periodogram-based error estimate is
systematically smaller than the MC-based error estimate.

periodogram. In the case of light curves with two identical or near-
identical minima per cycle, such as an eclipsing binary composed of
similar stars, Pmhaov corresponds to half of the orbital period.

Correlations also cause the periodogram peak to have finite width
and limit the precision with which the frequency can be determined
from the peak. Generally, the uncertainty is a function of signal
characteristics, the model used, the temporal baseline, and the
quantity and quality of data (see Hartman et al. 2008; Lachowicz
et al. 2009; Harding et al. 2013 for examples of different error
estimation strategies).

To refine our frequency measurements and to estimate their error,
we repeat the periodogram procedure with a refined frequency
grid in the vicinity of the main periodogram peak. Our frequency
measurement is the position of the likelihood peak on the refined
frequency grid. We use the width of the peak on the fine grid and the
surrounding background noise level to estimate the frequency error
σ freq (Schwarzenberg-Czerny 1991, 1995, 1996).

To check this frequency error estimation scheme, we compare
with errors derived using EMCEE (Foreman-Mackey et al. 2013). To
have realistic errors for realistic (non-sinusoidal) light curves, we
take a random sample of 100 light curves, phase-fold them, and fit
them with a Fourier series using LMFIT (Newville et al. 2014). Then,
holding the Fourier coefficients fixed, we fit the light curve in the time
domain with EMCEE using the phase, frequency, and constant offset
from zero as parameters. The fitting is done in this way because the
WISE cadence made simultaneously fitting the Fourier coefficients,
phase, frequency, and constant offset intractable. To get the frequency
distribution, we marginalize over the constant and the phase. As
seen in Fig. 4, the MC-derived errors, σ MC, are correlated with the
periodogram-derived errors, σ freq, but are systematically higher by
∼25 per cent. In what follows we use a conservative error estimate
by multiplying the periodogram-derived error by a factor of 1.25.
The period errors are on the order of ∼10−6–10−7 d, but they do not
capture the error of picking the wrong periodogram peak entirely and
thus should be used with caution (VanderPlas 2018).

2.7 Selection of periodic variables

To select periodic sources, we first require that the maximum statistic
of the MHAOV periodogram, θmax, exceeds the cutoff value given by

MNRAS 503, 3975–3991 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/3/3975/6207953 by guest on 25 April 2024



3980 E. Petrosky et al.

Figure 5. Left: Distribution of MHAOV (i.e. as calculated by the MHAOV periodogram) periods (Pmhaov) for 50 493 periodic variables with MHAOV periods
in the range 0.05–1 d. Right: Distribution of Pmhaov

σPmhaov
for the 56 177 identified periodic variables.

the power-law fit of Fig. 2 for the appropriate number of observations.
Our cuts on false alarm probability are less strict than those of some
other surveys that identify periodicity. This offers us the possibility
of capturing sources undergoing interesting orbital evolution. For a
higher confidence sample, a more restrictive cut on the maximum
statistic value should be used. In addition to the cut on the maximum
statistic value, we require phase coverage of at least 90 per cent.
We estimate phase coverage by dividing the phase-folded light curve
into 20 equally sized bins and then calculating the percentage of
bins that contain at least 1 data point. The requirement that phase
coverage is at least 90 per cent implicitly requires that the sources
have at least 18 data points. Next, we exclude sources whose highest
periodogram peak is at 1 or 0.5 times the orbital frequency of the
WISE satellite (fpeak 
∈[7.52, 7.68] d−1 and fpeak 
∈[14.65, 15.70] d−1).
Finally, we include a cut to limit phase offset due to period errors
over the course of the time series. We calculate phase offset via

Phase Offset = σPmhaov × Baseline

(Pmhaov)2

where the baseline is the time-series duration, σPmhaov is the period
error, and Pmhaov is the period as given by the periodogram. The
phase offset can be thought of as the ratio of the period uncertainty
to the period multiplied by the complete number of cycles that the
signal undergoes over the time-series duration. We require that the
phase offset be less than 0.2. With the above cuts, we identify
56 177 periodic variable candidates. Fig. 5 shows the distribution
of MHAOV periods and MHAOV periods over the period errors for
these sources.

3 C ATA L O G U E C O N T E N T S

3.1 Catalogue contents and Gaia cross-match

We cross-match our periodic variable candidates with Gaia DR2
(Gaia Collaboration 2016, 2018a; Evans et al. 2018; Arenou et al.
2018) using the pre-computed, best-neighbour WISE/Gaia cross-
match catalogue of Marrese et al. (2019). We find 188 043 matches
out of a total of 454 103 variable objects (∼41.4 per cent) which is
similar to the total percentage of AllWISE sources that have a best-
neighbour cross-match (39.83 per cent – see Marrese et al. 2019).
Of our 56 177 periodic variable candidates, 49 384 or ∼87.9 per cent
have a best-neighbour Gaia cross-match. The higher match rate for

periodic variables is due to the fact that the aperiodic variables –
many of them stochastically varying young stellar objects – tend to
be redder, with a median 〈W1–W3〉 = 0.909 mag as compared to
the periodic variables with 〈W1–W3〉 = 0.311 mag. As a further
check, we cross-match our sample with the WISE young stellar
object catalogues of Marton et al. (2016) and find 44 196 matches of
which only 237 are flagged as periodic.

We use the Gaia cross-match and considerations of the limitations
of WISE to get a sense of the catalogue contents and make the
case that the sample is dominated by eclipsing binaries. We search
for periods between 0.05 and 10 d, but due to the WISE observing
cadence and our requirement of good phase coverage, the sensitivity
drops for periods above 2 d. As a result, we do not expect many long-
period variables in the more luminous part of the colour–magnitude
diagram. The period sensitivity limit combined with the crowding
in the Galactic disk cause us to detect few classical Cepheids. We
expect to detect few δ Scuti variables because many have variability
amplitudes that are too low to be reliably detected (Murphy et al.
2019) and many high-amplitude δ Scuti are faint and blue. The
photometric sensitivity of WISE also limits our ability to detect
variability on the white dwarf sequence.

For periodic objects with a Gaia cross-match, in order to have
robust absolute magnitudes and colours, we require:

(i) parallax over error > 10
(ii) phot g mean flux over error > 50
(iii) phot bp mean flux over error > 10
(iv) visibility periods used > 8
(v) phot rp mean flux over error > 10

In addition, we restrict phot bp rp excess factor in accor-
dance with Gaia Collaboration (2018b). After applying these cuts we
retain 34 857 sources.

Fig. 6 shows the Gaia colour-absolute magnitude diagram for all
the WISE periodic variables with a Gaia cross-match that satisfy the
above quality cuts. The Pleiades MS fit of Hamer & Schlaufman
(2019) is shown in black. Most of the WISE periodic variables are
MS stars. On the MS, the most common form of periodic stellar
variability is eclipsing binaries. These sources are located above the
MS fit because there is extra flux from the presence of the second
star. A few periodic sources are located below the MS. They may be
white dwarf-brown dwarf binaries or cataclysmic variables. The grey
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Variability, periodicity, and contact binaries in WISE 3981

Figure 6. Our periodic variables cross-matched with Gaia and shown on
the colour-absolute magnitude diagram. The black line is the Pleiades cluster
spline fit from Hamer & Schlaufman (2019). The grey background sources
are a sample of 500 000 Gaia sources chosen in accordance with Gaia
Collaboration (2018b) that are shown for reference.

Figure 7. Colour-absolute magnitude diagram of our WISE periodic vari-
ables colour-coded by the median MHAOV period in each colour-absolute
magnitude bin. The main-sequence fit of Hamer & Schlaufman (2019) is
shown in black for reference.

scale background is a sample of 500 000 Gaia sources that meet the
selection of Gaia Collaboration (2018b) that is shown for reference.

Fig. 7 again shows the Gaia colour-absolute magnitude for the
same sources colour-coded by the median MHAOV period in each
colour-absolute magnitude bin. For our sample, on average, more
massive sources tend to have longer periods. For close binaries, this
makes sense because larger stars have a longer limiting period before
reaching contact. A group of pulsating RR Lyrae stars can be seen
at MG ∼ 1 and BP-RP∼0.7 with periods between ∼0.2 and 1 d
(Preston 1964; Kolenberg 2012; Das et al. 2018). These sources are
in purple and are distinguished from the green band that represents
the surrounding EBs in the colour–magnitude diagram.

Fig. 8 shows another view of the Gaia colour-absolute magnitude
diagram colour-coded by the ratio of fractional variability in the
optical to fractional variability in the infrared (IR). To calculate the
optical fractional flux variability from Gaia, σ optical, we follow the
methods of Hwang et al. (2020). We compute the fractional flux
variability from the Gaia photometric errors and then account for
instrumental errors. We compute the IR fractional flux variability,
σ IR, by σ IR = 0.4ln (10)∗StdW1, where StdW1 is the standard

Figure 8. Gaia colour–absolute magnitude diagram colour-coded by the
median ratio of optical fractional variability from Gaia G band to infrared
(IR) fractional variability from WISE W1 in each colour-absolute magnitude
bin. Gaia fractional variability is calculated in accordance with Hwang et al.
(2020). We plot only those sources that have a Gaia fractional variability of
at least 1 per cent and have a fractional variability ratio of at least 0.05. A
group of RR Lyrae can be seen in tan/brown that vary more in the optical
than in the infrared. The majority of the sources are eclipsing binaries and
have equivalent optical and infrared variability amplitudes (i.e. optical-to-IR
ratio of ∼1). The black line is the Pleiades main-sequence fit of Hamer &
Schlaufman (2019).

deviation of W1 in magnitudes, and the factor 0.4ln (10) comes
from the unit conversion between fluxes and magnitudes. We plot
only those sources here for which the ratio of optical-to-IR fractional
variability is greater than 0.05 and which have a fractional variability
of at least 1 per cent in Gaia. Most of the sources have approximately
equal optical and IR fractional variability, consistent with what is
expected for eclipsing binaries. These sources are also offset to the
bright side of the MS fit indicating that there is excess flux due to
the presence of a second star. A group of RR Lyrae can be seen that
vary more in the optical than in the infrared due to the nature of their
pulsation (Das et al. 2018).

3.2 Comparison with Chen et al. (2018) catalogue

Chen et al. (2018) present a catalogue of 50 282 periodic variables
from WISE identified with the Lomb–Scargle (Lomb 1976; Scargle
1982) periodogram and classified via light-curve fitting. Our work
differs from that of Chen et al. (2018) in that we extend the period
search grid to shorter period objects, use a different periodogram,
involve a Gaia DR2 cross-match, use data from a more recent
NEOWISE release, and apply a different selection. Chen et al.
(2018) also discarded sources with varying periods from AllWISE
to NEOWISE and we make no such restriction.

We cross-match our periodic variables with those of Chen et al.
(2018) using a matching distance of 1 arcsec. Increasing the matching
distance to 5 arcsec does not significantly alter the results. A cross-
match was necessary because Chen et al. (2018) used a truncated form
of the WISE designation that made it difficult to use this for matching
purposes. Of all the sources with 6 ≤ var flg≤ 9 that we analysed,
41 532 have a cross-match with the 50 282 periodic variables of Chen
et al. (2018). Their remaining 8750 variables were excluded by our
initial selection and were never a part of our periodogram analysis.
8703 of the variables were excluded by our cuts on cc flags
to avoid contamination and confusion and the remaining 47 were
excluded by our cuts onext flg to remove extended objects. Of the
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41 532 variables in common, we mark 36,991 as periodic. We miss
some of the sources because our more stringent cuts on the quality of
individual exposures reduces the number of points in the light curve
and prevents us from detecting them as periodic. We explore several
methods for comparing the periods from our two catalogues. First,
we consider the raw period difference. For 33 870 (∼92 per cent)
of the cross-matched periodic sources there is a period difference
�Phalf = |0.5Pchen18 − Pmhaov| < 0.001 d (relevant for binaries with
2 similar minima per cycle) or �P = |Pchen18 − Pmhaov| < 0.001 d.
Second, we incorporate uncertainties to see if the period differences
mentioned above are significantly different than zero. We find that
for more than 96 per cent of the sources, either �Phalf or �P are
within three standard deviations from zero. Third, we explore a more
stringent selection for compatible periods by requiring:

∣∣∣∣Pmhaov − Pchen18

Pmhaov

∣∣∣∣ × Num Cycles < 0.20

or

∣∣∣∣Pmhaov − 0.5Pchen18

Pmhaov

∣∣∣∣ × Num Cycles < 0.20.

Here, Num Cycles is the total number of periodic cycles completed
over the duration of the time series, Num Cycles = Baseline/Pmhaov.
We find that 27 568 (∼75 per cent) of the cross-matched sources
satisfy this third criterion. For all three compatibility criteria, the
incompatible periods generally correspond to cases in which either
(a) our more stringent cuts reduce the number of data points and
leads to a different period estimate, (b) the detected period is greater
than 5 d, i.e. in a range poorly probed by WISE, or (c) we measure a
period outside the range probed by Chen et al. (2018) indicating that
one of the measurements is a harmonic. Of these effects, we expect
(a) to be the most common. For example, for objects with �Phalf

or �P more than three standard deviations from zero, on average,
our periodogram is computed on ∼39 fewer data points (despite the
fact that we include more years of NEOWISE data) due to our more
stringent cuts on the quality of the individual exposures. For objects
with incompatible periods as determined by the comparison method
that takes into account the number of cycles, our post-quality-cut light
curves had, on average, 22 fewer data points than the light curves of
Chen et al. (2018). Due to the long observing baseline (∼3100 d),
even a slight change in the single-exposure selection criteria can lead
to a period shift large enough to cause the source to be classified as
incompatible under this third comparison method.

For ∼89 per cent of the matches, our MHAOV periods, Pmhaov,
are one-half the period cited by Chen et al. (2018), Pchen18, which is
expected for a sample dominated by close eclipsing binaries where
the primary and secondary eclipses are difficult to distinguish. Over
98 per cent of the sources for which we recover half periods have
�Phalf < 0.0001 d. Chen et al. (2018) classify 32 151 of the cross-
matched sources as binaries, 710 as some type of Cepheid, and
2319 as RR Lyrae. The remainder were assigned an ambiguous
classification (Cepheid/Binary, Binary/RR Lyrae, or miscellaneous)
due to a lack of characteristic features in their infrared light curves.

Finally, 19 186 of our periodic variables were not in the periodic
variable catalogue of Chen et al. (2018) because of our different
period search method and our expanded period search grid on the
short-period end.

4 N O N - PA R A M E T R I C M E T H O D S FO R
L I G H T- C U RV E A NA LY S I S

We present a catalogue of 454 103 WISE variables with a variety
of non-parametric measures and periodogram measurements. We
explicitly flag periodic variables and eclipsing binaries. The data
model is shown in Table 1. The non-parametric measures and the
identification of eclipsing binaries are the subjects of this section.

4.1 Non-parametric measures of variability

In this section, we explore non-parametric and computationally
inexpensive methods for light-curve analysis. The distribution of
observed fluxes, without reference to their time dependence, carries
a wealth of information. If the cadence is suitable, the distribution
of the observed fluxes can be assumed to be randomly drawn from
(and therefore to be representative of) the underlying flux probability
density function (PDF). The various moments of the observed flux
distribution, assumed to be representative of the moments of the un-
derlying PDF, are easy to measure and computationally fast. Various
measures of these moments with different weighting schemes have
been successfully utilized for variable star classification in a variety
of other works (e.g. Kinemuchi et al. 2006; Dubath et al. 2011;
Rimoldini et al. 2012; Drake et al. 2013; Rimoldini 2014, 2019; Bass
& Borne 2016).

The first and the second moment – related to the mean magnitude
and the r.m.s. variations around the mean – are already directly or
indirectly incorporated into our analysis. In particular the second
moment of the PDF is related to the var flg we use as the primary
step in our selection. We also compute a non-parametric amplitude
(henceforth amplitude), which is the range between the 5th and 95th
percentile of the magnitude values.

The third moment (skewness) of the PDF can help distinguish
between eclipsing and eruptive types of variability. For an object
which stays at constant magnitude and occasionally undergoes
dimmings due to occultations or eclipses, the PDF is expected to
have a tail to fainter magnitudes (which correspond to the fluxes
during occultations). For an object that instead undergoes occasional
eruptions, we expect a tail to brighter magnitudes. In addition to
the standard Fisher-Pearson skewness, an assortment of other non-
parametric measures of the third moment have been introduced. One
such measure is the magnitude ratio or M test of Kinemuchi et al.
(2006). This is calculated as

M = max − median

max − min

where max, median, and min refer to the maximum, median,
and minimum of the magnitude distribution respectively. Another
such measure is the relative asymmetry (RelAsym), introduced by
Zakamska & Greene (2014) in the context of velocity profiles but
also relevant to the analysis of time-series data. This is calculated by

RelAsym = (P95 − P50) − (P50 − P5)

(P95 − P5)

where P95, P50, and P5 refer to the 95th, 50th, and 5th percentiles of
the magnitude distribution respectively.

In this paper, we introduce a new non-parametric measure, fainter
fraction (FF), which is related to the third moment. Specifically, for
each light curve, we calculate the halfway point between the 5th and
95th percentile of magnitude and then calculate the fraction of points
with magnitudes greater (fainter) than this halfway point by at least
their measurement uncertainty. If FF is greater than 0.5, this means
that the object spends most of its time in the faint state, becoming
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Variability, periodicity, and contact binaries in WISE 3983

Table 1. Column descriptions for our catalogue of WISE variables. After careful consideration, we elect to report the MHAOV
period (Pmhaov) i.e. the period as given by the periodogram. Based on our cross-match with Chen et al. (2018), we estimate
that for more than ∼90% of the EBs, Pmhaov corresponds to one-half of the orbital period. However, without more detailed
light-curve fitting or analysis with a different periodogram (e.g. the string-length methods of Lafler & Kinman 1965; Burke
et al. 1970; Renson 1978; Dworetsky 1983) which is outside the scope of this work, there is no clear way to identify those
binaries for which we detect the actual orbital period and not a harmonic. It depends on the data quality/cadence and the
particular signal shape in question. When no measurement could be made for a given source and column, the value is missing.
Not all non-parametric measures are calculated if the source had fewer than five data points. Each band has its own variability
flag. If the variability flag for a band is ‘n’, then no flag was assigned in that band. The complete catalogue is available online.

Column Data Type Units Description

wise id str19 – WISE designation
ra float64 deg Right ascension
dec float64 deg Declination
sigra float64 arcsec Right ascension error
sigdec float64 arcsec Declination error
w1mpro float64 mag W1 magnitude
w1sigmpro float64 mag W1 magnitude error
w1snr float64 mag W1 signal-to-noise ratio
w2mpro float64 mag W2 magnitude
w2sigmpro float64 mag W2 magnitude error
w3mpro float64 mag W3 magnitude
w3sigmpro float64 mag W3 magnitude error
w4mpro float64 mag W4 magnitude
w4sigmpro float64 mag W4 magnitude error
var flg bytes4 – Variability flags for all four bands
num pts float64 – Number of observations in light curve after quality cuts
median err float64 mag Median individual data point uncertainty for light curve
mean mag float64 mag Mean magnitude
std mag float64 mag Standard deviation of magnitude
median mag float64 mag Median magnitude
amp float64 mag Amplitude
FF float64 – Fainter Fraction
rel asym float64 – Relative Asymmetry (Zakamska & Greene 2014)
M float64 – Magnitude Ratio/M-test value (Kinemuchi et al. 2006)
skew float64 – Skewness
kur float64 – Kurtosis
phase cov float64 – Phase coverage
min mag float64 mag Minimum magnitude
max mag float64 mag Maximum magnitude
baseline float64 d Time-series duration
R float64 – Ratio of variability amplitude on short time-scales to that on long time-scales
max stat float64 – Maximum statistic value
cutoff stat float64 – Cut-off maximum statistic value to reject null hypothesis
periodic bool – Periodic sources receive a value of True
P mhaov float64 d MHAOV period
sigP mhaov float64 d MHAOV period error
EB bool – Eclipsing Binaries receive a value of True

brighter less than half of the time, and it is likely to be of an eruptive
type. The use of this measure is demonstrated in Fig. 9.

Each of the aforementioned measures has its own advantages and
we report all of them (i.e. skewness, magnitude ratio, RelAsym,
and FF) in our catalogue for all of the WISE variables so that
users can choose which to employ. Due to the fact that we aim to
apply these measures to all of the variables, periodic and not, we do
not employ the moment weighting scheme proposed by Rimoldini
(2014) because this would require a linear interpolation in phase
(interpolation in time is not possible for the WISE cadence) which
is not possible if the source is aperiodic. The correlations between
each of these measures are shown in Table 2. All these measures are
dimensionless, but the standard skewness is not bounded like M, FF,
and RelAsym making it less desirable for use with a classifier.

For this work, we utilize our new measure, FF because we find that
it performs well in comparison with the these other measure for our

particular use case. The magnitude ratio, M, is susceptible to effects
from outliers and erroneous measurements due to its use reliance
the maximum and minimum magnitude. Similar to RelAsym, FF is
not as strongly affected by these outliers. Another advantage of FF
is that, unlike both M and RelAsym, it is not normalized by some
measure of the signal amplitude. Using FF allows us to disentangle
the signal amplitude from the estimate of the third moment. This is
useful, for example, in the case of eclipsing binaries with narrow
eclipses as these signals should be more localized in FF space than
in the space of RelAsym or M. Furthermore, in Section 4.2, we
find that the separation between RR Lyrae and EBs is cleaner in the
FF–amplitude space than if FF is substituted for one of these other
measures.

Finally, we introduce another non-parametric measure to describe
the time-scale of variability. Due to the peculiar cadence of WISE
observations – every ∼six months there is an bundle of ∼10
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Figure 9. Left: The light curve of a an Algol-type eclipsing binary (WISEJ234343.55+812751.6) phase-folded with the MHAOV period (Pmhaov) as given by
the periodogram, thus showing only one eclipse instead of two. Projecting the light curve on the brightness axis gives us the flux probability density function
(PDF), which can be used for non-parametric measures of the light curve. The top and bottom black, dashed lines show the 5th and 95th percentiles of the
PDF. The difference between these two lines is an estimate of the signal amplitude. The middle line represents the halfway point between these two. The points
in purple are the fainter fraction of the light curve. Stars with eclipses and stars with eruptions show different PDFs and can be distinguished based on these
metrics. Right: Similar idea but for an eruptive variable (WISEJ005714.34-703745.5). Eruptive variables are typically aperiodic so we display the actual light
curve instead of the phase-folded one.

Table 2. Correlation Matrix of non-parametric measures of the third
moment of the flux PDF.

FF RelAsym. M Skewness

FF 1.000000 − 0.860607 − 0.721460 − 0.571853
RelAsym. − 0.860607 1.000000 0.845581 0.593586
M − 0.721460 0.845581 1.000000 0.783283
Skewness − 0.571853 0.593586 0.783283 1.000000

observations taken ∼95 min apart – WISE has sensitivity to variability
on a 1 d time-scale, as well as to long-term variations. We use R, the
ratio of the average r.m.s. variability on day/hour-long time-scales
to the r.m.s. variability of the entire light curve. To calculate the
variability on short time-scales, we remove long-term variations from
the light curve. We subtract off the mean from each observing bundle
so that each bundle is centred at zero magnitude. Then, we find the
standard deviation of the light curve composed of the zeroed bundles.
Given that WISE has only a limited number of ∼day-long visits to the
same position on the sky, this method is computationally inexpensive.
For sources with equal signal-to-noise (S/N) of variability, the ratio
R is expected to decline from 1 to 0 as we go from objects that
vary on day-long time-scales to those with only month- or year-long
variability. Sources with low S/N of variability have both their short-
term and long-term variability in line with the photometric σ . The
idea behind this non-parametric measure is similar to that behind
the MEDIAN RANGE HALFDAY TO ALL measure used by Gaia
(section 7.3.3 of Eyer et al. 2018), but instead of a sliding window,
the 1-d intervals for computation of short-time-scale variability are
naturally provided by the WISE observing cadence.

4.2 Identification of eclipsing binaries

We identify a few physically motivated cuts on period and a few
of our non-parametric measures that can reliably isolate eclipsing
binaries from other types of variability. In Fig. 10, we show the
kernel density estimate of our periodic variable candidates in the
space of fainter fraction and amplitude. The sources cluster in this
space and different clusters are characterized by light curves with

different morphology. Nearly all of the periodic variables have FF
< 0.5 indicating that they are occulting. There is an upper sequence
at FF of ∼0.35 and amplitude between 0.2 and 0.7 that, based on
visual inspection, seems to be dominated by near-contact and contact
binaries. A lower sequence at FF of ∼0.15 and of similar amplitudes
has detached binaries with more narrow eclipses. The offshoot from
the upper sequence at amplitude ∼ 0.3 mag and FF ∼ 0.25 seems to
contain RR Lyrae.

We cross-match our sample with the Gaia RR Lyrae catalogue of
Clementini et al. (2019) and find 2027 matches. Fig. 11 shows the
kernel density estimate of the cross-matched RR Lyrae in the fainter
fraction–amplitude space and the period distribution of the RR Lyrae.
To identify candidate RR Lyrae among WISE periodic variables,
we apply the cut shown by the grey, dotted lines. Specifically, we
require that 0.19 < fainter fraction < 0.34 and 0.22 < amplitude <

0.38. These cuts select the entirety of the aforementioned offshoot
from the upper sequence and also a portion of the upper sequence
itself. To ensure that we are not excluding too many close EBs, we
restrict the MHAOV periods to between 0.25 and 1 d. After applying
this cut, both the upper and lower sequences disappear and the RR
Lyrae offshoot becomes the dominant feature in the fainter fraction–
amplitude space. We choose a lower period bound of 0.25 d because
we do not expect many RR Lyrae with periods below 0.25 d and we
do not want to exclude a high number of close eclipsing binaries.
This figure shows that these three variables – period, amplitude, and
fainter fraction – provide a means of separating RR Lyrae from EBs
without resorting to the colour–magnitude diagram.

All told, this selection labels 6100 of the periodic variables as
candidate RR Lyrae. Included in this are 1752 out of the 2027
(∼86 per cent) Gaia RR Lyrae from the cross-matched catalogue of
Clementini et al. (2019). We exclude the remaining Gaia RR Lyrae
from the EB sample as well. In addition, we also cross-match our
periodic variables with the Gaia DR2 single-object-study Cepheid
catalogue (Clementini et al. 2019). As mentioned above, we expect
few Cepheids in the sample. The cross-match reveals only 347 Gaia
Cepheids and we remove these from the EB sample.

The above cuts remove 1801 out of 2319 (∼78 per cent) of
the RR Lyrae identified by Chen et al. (2018) while retaining
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Figure 10. Kernel density estimate for all periodic variables in the space of two of our non-parametric measures, fainter fraction (FF) and amplitude, with
example phase-folded light curves characteristic of three regions. Clockwise from top right: a contact EB found in the upper sequence phase-folded with period
P = 2 × Pmhaov, a detached EB found in the lower horizontal sequence phase-folded with period P = 2 × Pmhaov, a candidate RR Lyrae found in the offshoot
from the upper sequence. The primary mechanism driving changes in luminosity for RR Lyrae is different in the optical, where it is temperature variations,
as opposed to the infrared, where it is radial pulsations (Madore et al. 2013; Braga et al. 2019). Optical and infrared light curves of RR Lyrae have different
morphology and can have different skewness/FF.

Figure 11. Left: Two-dimensional kernel density estimate for Gaia RR Lyrae (shown in red) in the space of two of our non-parametric measures, fainter
fraction (FF) and amplitude. The distribution of all the periodic variables in this space is shown in grey scale. This plot shows that the RR Lyrae do indeed
cluster in the area of the FF versus amplitude plot that was suggested by Fig. 10. The grey, dotted lines show our initial selection of RR Lyrae. Right: Our period
measurements for these sources. As expected for RR Lyrae, the periods are nearly all between 0.2 d and 1 d.

29 483 out of the 32 151 sources (∼92 per cent) classified by
Chen et al. (2018) as EBs. We add these excluded sources back
in to our EB sample. We remove the remaining RR Lyrae and
also the 710 Cepheids classified by Chen et al. (2018). We are
left with a low contamination sample of 50 722 eclipsing binary
candidates.

5 D ISCUSSION

5.1 MS binaries

We next turn to the colour–magnitude diagram to isolate MS EBs. Of
our initial sample of 50 722 EB candidates, 44 550 have a Gaia best-
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Figure 12. Gaussian kernel density estimate in the space of MHAOV
periods (which we take to be 0.5Porbital) and Gaia BP-RP colour for MS
binaries. The black line overlaid with the red-yellow points represent the
theoretical minimum apparent period (0.5Porbital) for a contact, equal-mass,
main-sequence binary.

neighbour cross-match (Marrese et al. 2019). Applying the quality
cuts of Section 3 leaves us with 32 929 sources. To select MS binaries,
we start with the Hamer & Schlaufman (2019) Pleiades spline fit
shown in Fig. 6. Binaries are expected to be found above the MS
for a wide range of mass ratios (Hurley & Tout 1998). We saw in
Section 3 that our periodic variables, and especially those on the MS,
were dominated by EBs, and the high density of sources above the MS
fit can be seen in Fig. 6. We require that the source have an absolute
G-band magnitude above the Pleiades spline fit and within 1.5 mag of
the spline fit value for a given colour. This cut is motivated by the fact
that doubling the flux corresponds to a magnitude increase of ∼0.75.
We double this value to incorporate different stellar metallicities and
measurement uncertainties. This cut leaves 21 746 sources.

Fig. 12 shows the distribution of MHAOV period versus Gaia BP-
RP colour for our MS EBs detected with WISE. The distribution is
smooth across the entire period range and includes periods not probed
by Chen et al. (2018). To make this plot, we make the approximation
that Pmhaov = 0.5Porbital, that is, the periodogram identifies half the
orbital period. In our cross-match with the results of Chen et al.
(2018), this is valid for ∼90 per cent of the binaries in our sample.
However, many of our periodic variables that were not detected by
Chen et al. (2018) have shorter periods (i.e. Pmhaov < 0.15 d) and
we expect these shorter period binaries to be more likely to have
two similar minima per cycle. This could increase the percentage of
sources for which we identify half the orbital period to >90 per cent.
The remaining sources for which we identify the actual orbital period
can be found further from the black line in the upper part of Fig. 12.
For binaries with two identical minima per cycle, we call half the
orbital period the apparent period (Papp = 0.5Porbital). In blue is a
kernel density estimate and the black line represents the theoretical

minimum possible apparent period for an equal-mass, contact, MS
eclipsing binary of a fixed age (1 Gyr) and solar metallicity as a
function of mass and colour. The calculation of this line follows
Hwang et al. (2020). Briefly, from the PARSEC isochrone (Bressan
et al. 2012) for an age of 1 Gyr and solar metallicity we get the stellar
radius of an undistorted star (i.e. the Roche lobe volume radius, RL).
Following Eggleton (1983), we use the relationship between RL and
the semimajor binary axis, a, to solve for a (RL = 0.38a). Finally, we
set the masses of the two constituent stars, M1 and M2, equal to each
other and solve for the minimum possible apparent period using

Papp = 0.5Porbital = π

(
a3

G(M1 + M2)

)1/2

where G is the gravitational constant.
Many of our EBs are near this theoretical lower bound indicating

that the majority of these systems are contact or near-contact binaries.
Interestingly, some of the points are below the black, minimum-
period line. These are systems for which the input assumptions
break down. They can be systems in which the component stars
are not of equal mass, not of identical colour, younger than 1 Gyr,
or of lower-than-solar metallicity. Some RR Lyrae are located close
to the MS and may be present on the blue side of the plot (GBP

− GRP < 0.6) accounting for some of the spillover in the bottom
left. The dearth of sources hugging the line in the upper-left of the
plot does not appear be due to decreased sensitivity to those periods
(see Section 2.5). It is possible that there are physical reasons for
the paucity of contact binaries in the corresponding mass range
– for example, if the magnetic braking mechanism is responsible
for creating contact binaries (Hwang & Zakamska 2019), then it is
expected to be inefficient at these masses due to lack of convection
at M > 1.3M (Matt et al. 2011).

The peak in the period distribution of our MS EBs is located
about at 2Pmhaov ≈ 0.34 d. This is higher than the maximum of
the period distribution of ∼0.27 d found by Rucinski (2007), but
our sample is not volume-limited. Also, as mentioned above, for
�10 per cent of these binaries, we have detected the actual orbital
period so multiplying Pmhaov by two creates a tail to higher periods.

5.2 Shortest-period objects

There are 126 sources in our eclipsing binary candidates that have
MHAOV periods less than or equal to 0.1 d. We expect higher
contamination and lower period accuracy in this period range due to
the limitations of the WISE cadence. We visually inspect the phase-
folded light curves and find four are the result of bad data or an
erroneous period measurement and that the remaining 122 represent
real periodic signals. Fig. 13 shows some example phase-folded
light curves for these objects. These sources are prime candidates for
comparison with other short-period binary catalogues (e.g. Norton
et al. 2011; Drake et al. 2014b) and subsequent analysis with the
tools of Conroy et al. (2020). We cross-match these sources with
SIMBAD with a matching distance of 1 arcsec. After removing
the bad data, we find 37 matches of which 31 were classified in
SIMBAD as a specific type of variability. Of these 31, we find that
4 are pulsating and the remaining 27 are all classified as some
sort of binary. Three of these sources are cataclysmic variables
(V∗ BL Hyi; SDSS J121209.30+013627.7; RX J2218.5+1925).
We find compatible periods for all of these cataclysmic variables
indicating that our period measurements are accurate even in this
short-period regime (Schmidt et al. 2005; Thorstensen & Halpern
2009; Avvakumova, Malkov & Kniazev 2013). In addition, five
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Figure 13. Phase-folded light curves for a couple of the shortest-period binaries found by our search. The period, P, listed is the total period of oscillation used
to fold the light curves.

sources are ellipsoidal variables indicating that the periodicity is
due to the gravitational distortion of the stars (Morris 1985).

5.3 Young stellar objects and extra-galactic variables

We compare R values and amplitudes for blazars and young stellar
objects (YSOs). We cross-match all variable sources in our sample
with the blazar catalogues of D’Abrusco et al. (2019) and the YSO
catalogues of Marton et al. (2016) as mentioned in subsection 3.1.
We find 44,196 YSOs of which 237 were classified as periodic and
981 blazars of which 2 were classified as periodic. Seven sources
classified both as blazars and YSOs are removed from subsequent
analysis.

In Fig. 14 we show the results of this comparison. The distributions
for R are largely similar with peaks around ∼0.2–0.3 indicating
that both YSOs and blazars tend to vary on longer time-scales.
For amplitude, the YSOs are peaked below 2 mag while the blazar
distribution is more uniform.

5.4 Separation of periodic and aperiodic variables with
non-parametric features

Thus far, we have used our non-parametric measures for the clas-
sification of periodic variables identified with a periodogram. In
this section, we discuss further applications of these measures. In
particular, we show that the non-parametric features contain the
requisite information to identify periodic sources.

Fig. 15 shows the distribution of periodic and aperiodic sources
for a variety of the non-parametric measures. We additionally show
the distribution of W1 S/N ratio, since the quality of the data
can influence the determination of periodicity. For many of these
measures (especially the ratio of short-term to long-term variability),
there is a marked difference between the distributions of periodic and
aperiodic variables.

We investigate the potential of discriminating periodic variables
from aperiodic variables using non-parametric features alone. Using
empirical testing, we select the five most informative features – the
W1 magnitude, W1 signal-to-noise ratio, estimated variability am-
plitude, fainter fraction, and the ratio between long-term and short-
term variability. The variability amplitude and standard deviation
have similar distributions (Fig. 15), but we find that the amplitude
is a marginally better discriminator. We apply the quality cuts of

Section 2.7 on the W1 magnitude to exclude saturated and very faint
sources and to ensure that we are not classifying trivially based on
this data quality metric.

We define a two-class classification problem where the ‘positive’
class is defined as periodic variability, and the ‘negative’ class
corresponds to aperiodic variability. We consider two classification
models – the logistic regression and the random forest. In both cases,
the general framework is the same – the model coefficients are solved
for by ‘training’ on stars with known classes. The models can then
perform predictions on new data, returning a probability p̂ that a
given star exhibits periodic variability. The logistic regression model
assumes a linear relation between the features and the log-odds
of a star exhibiting periodic variability (Yu, Huang & Lin 2011).
The random forest assumes no parametric model, instead relying on
logical decision trees to map the feature space to the true and false
classes (Breiman 2001).

To evaluate our methods, we randomly select 75 per cent of
the stars in our sample for training, and make predictions on the
remaining validation stars (25 per cent) that were left out of training.
In both the train and test samples, we randomly downsample the
number of aperiodic stars to make it balanced with the number
of periodic stars. Repeating our experiment for different random
selections (or different ratios of train/test sample size) does not
significantly affect our results. We find that, on average, the classifier
correctly classifies stars as aperiodic or periodic 90 per cent of
the time with the logistic regression, and 94 per cent with the
random forest. The random forest model outperforms the logistic
regression, likely because a linear model is insufficient to describe
the relationships between our features. A key metric for our particular
use-case is precision – the probability that a star classified as
periodic is genuinely periodic. A higher precision means a lower
false positive rate, preventing wasted follow-up resources. We find
that the random forest model trained on the five non-parametric
features achieves an average precision of 97 per cent on our test
data, an improvement over the logistic regression’s 91 per cent. The
confusion matrix of the predictions on the test data set is as follows,
with true aperiodic and true periodic as the columns from left to
right, and classified aperiodic and classified periodic as rows from top
to bottom:

[
11859 617
856 12098

]
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Figure 14. Left: Ratio of variation amplitudes in the short to long terms, R, for cross-matched young stellar objects and blazars. EBs are shown for comparison.
Right: Amplitude for cross-matched young stellar objects and blazars.

Figure 15. Distribution of periodic and aperiodic variables for a variety of non-parametric measures. The peak at 8th magnitude in the W1 magnitude plot is
caused by saturation, rather than by physical variability, which is why there is not a corresponding peak in the distribution of periodic variables (Nikutta et al.
2014). We remove these sources as well as very faint sources with the quality cut of Section 2.7. The fainter fraction plot shows that our sample is dominated
by periodic variables of the occulting type. The histograms are normalized to have unit area, to account for the fact that our sample contains more aperiodic
variables than periodic variables.

As is desirable, most objects fall on the diagonal of the confusion
matrix, and the number of false positives and false negatives is
similar.

An interesting application of these tools is to use the probabilities
returned by the classifier to rank interesting candidates. The proba-
bilities themselves can be incorporated into a hierarchical search that
uses other prior information to inform the selection. In future large-
scale surveys, such a pre-selection will be essential to efficiently
allocate computational resources by running the full periodogram
analysis on high-confidence periodic candidates first.

The brief demonstration of this section is intended mainly as a
proof-of-concept of the information content of these features and
has some important caveats. The first caveat is that one of the

features (S/N ratio) measures data quality while others deal with
real information about the source from the flux PDF and time-
scales of variability. The discrimination based on data quality is
trivial; without good data it is difficult to flag a source as periodic.
Therefore, it is important to ensure that the classifier is not biased
to predict periodicity when the data quality is high. First, we
quantify the relative importance of the input features. The random
forest classifier has a built-in metric that ranks the importance of
the input features, based on how much that feature contributes to
the prediction quality (Breiman 2001). The features ordered from
most to least important are the short-to-long term variability ratio,
W1 signal-to-noise ratio, fainter fraction, estimated amplitude, and
W1 magnitude.
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Including the S/N ratio as a feature improves the classification
accuracy by ∼ 5 per cent compared to if solely the W1 magnitude
is used. We interpret this as the S/N ratio breaking a degeneracy in
the variability measures between noisy sources and truly variable
sources – objects with low S/N will automatically display variability
due to noise, so including the S/N ratio as an explicit feature enables
the classifier to incorporate this information. As another check, we
run the classification on only high S/N sources, and yield nearly
identical performance. Therefore, the classification appears to rely
on meaningful information about the source, and does not seem to
be biased by data quality.

A second caveat is that this demonstration is limited by the nature
of the training sample. For example, due to the WISE cadence, long-
period variables are almost completely absent from our training
sample and so we do not expect the classifier to be adept at
identifying them. Also, the use of periodogram-based classification
as the ‘ground-truth’ for training biases the classifier to be more likely
to detect similar types of periodicity as the periodogram, albeit at a
much lower computational cost.

That said, the non-parametric approach has some important
advantages over the periodogram and can even yield valuable
information without reference to a periodogram-based analysis (e.g.
Rimoldini et al. 2019). PDF measures like this are more robust to
photometric errors than the periodogram, and are meaningful even in
systems with changing periods. These systems are of great interest,
but would not normally be detected by the periodogram because
implicit in the periodogram approach is the assumption of a constant
period.

6 C O N C L U S I O N S

In this paper, we present an analysis of ∼450 000 WISE variables.
The variables are identified based on their r.m.s. variability in the
AllWISE survey (Hoffman et al. 2012). We combine their AllWISE
and NEOWISE light curves and apply quality cuts to filter out low-
quality individual exposures.

Using these combined light curves, we conduct periodogram
analysis to identify ∼56 000 periodic variables, ∼19 000 of which
were not included in the previous WISE periodic variable catalogue
of Chen et al. (2018). We search for periodicity over a finely spaced
grid in frequency between 0.1 and 20 d−1 and use the MHAOV
periodogram with five model parameters. This periodogram models
the light curve as a series of periodic, orthogonal functions and uses
a variance statistic to quantify the quality of the fit at each test
frequency. To classify an object as periodic, we require a significant
value of the statistic at a frequency non-coincident with that of the
WISE observing cadence, a sufficiently small period uncertainty
to prevent a large phase offset over the time-series duration, and
good phase coverage. We cross-match with Gaia DR2 and use the
distribution of our periodic variables in the space of colour-absolute
magnitude to get a sense of our catalogue contents. We find that the
sample is dominated by eclipsing binaries.

Next, we compute a variety of non-parametric variability measures
for all of the ∼450 000 WISE variables and show that these measures
are useful both for (a) separating periodic and aperiodic variables
and (b) classifying the type of periodicity. These non-parametric
measures include a variety of measures of the flux distribution range
and moments. We introduce a new measure of the third moment and
compare it to previously existing measures. These non-parametric
measures also include an estimate of the time-scale of variability
(R, the ratio of variability amplitude on day time-scales to that on
month/year time-scales).

In terms of classification (b), we show that these interpretable and
easily implemented measures provide an effective means of isolating
eclipsing binaries from other types of periodic variability. We identify
an all-sky sample of ∼51 000 eclipsing binaries in the infrared. The
majority of these binaries are contact or near-contact making them
prime targets for future study.

In terms of the identification of periodic variables (a), we
demonstrate the high information content of the non-parametric
features by using them to identify periodic variables at a much
lower computational cost than the traditional, periodogram-based
analysis. This type of analysis can be used to speed future studies
of periodic variability and, in some cases, bypass the periodogram-
based analysis entirely (e.g. Rimoldini et al. 2019). Furthermore,
the non-parametric method overcomes some of the short-comings of
periodograms. Importantly, because it does not implicitly assume
a constant signal period as the periodogram does, it offers the
possibility of identifying binaries exhibiting orbital evolution on
human time-scales.
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Marton G., Tóth L. V., Paladini R., Kun M., Zahorecz S., McGehee P., Kiss

C., 2016, MNRAS, 458, 3479
Masci F. J., Hoffman D. I., Grillmair C. J., Cutri R. M., 2014, AJ, 148, 21
Matt S. P., Do Cao O., Brown B. P., Brun A. S., 2011, Astron. Nachr., 332,

897
Moe M., Di Stefano R., 2017, ApJS, 230, 15
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Soszyński I. et al., 2016, Acta Astron., 66, 405
Stepien K., 1995, MNRAS, 274, 1019
Temmink K. D., Toonen S., Zapartas E., Justham S., Gänsicke B. T., 2020,
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