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Dynamical evolution of voids with surrounding gravitational tidal field
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ABSTRACT
The void ellipticity distribution today can be well explained by the tidal field. Going a step further from the overall distribution,
we investigate individuality on the tidal response of void shape in non-linear dynamical evolution. We perform an N-body
simulation and trace individual voids using particle ID. The voids are defined based on Voronoi tessellation and watershed
algorithm, using public code VIDE. A positive correlation is found between the time variation of void ellipticity and tidal field
around a void if the void maintains its constituent particles. Such voids tend to have smaller mass densities. Conversely, not a few
voids significantly deform by particle exchange, rather than the tidal field. Those voids may prevent us from correctly probing a
quadrupole field of gravity out of a void shape.

Key words: methods: data analysis – methods: numerical – large-scale structure of Universe.

1 IN T RO D U C T I O N

Galaxy redshift surveys have revealed that galaxies and galaxy
clusters form a frothy structure called the cosmic web. One widely
accepted scenario for the formation of the cosmic web currently is
that the quantum fluctuations have produced the primordial density
fluctuations during the epoch of inflation and the initial density
fluctuations grow mainly by gravitational force at the later stages
of the Universe. According to this scenario, the cosmic web is the
promising probe of the early universe and theory of gravity.

A low-density region in the Universe is called a void. Galaxy
surveys have revealed that the typical size of the void is larger
than a few Mpc. In such a vast structure, gravitational force, which
is a long-ranged force, dominates comparing to others, such as
electromagnetic interaction. Therefore, voids are expected to be a
pure probe of gravitational theory and cosmological model. In fact,
there are a number of works; voids are a promising probe of dark
matter (e.g. Hellwing & Juszkiewicz 2009; Hamaus et al. 2016), dark
energy (e.g. Lee & Park 2009; Bos et al. 2012; Lavaux & Wandelt
2012), or gravitational theories (e.g. Li, Zhao & Koyama 2012; Cai,
Padilla & Li 2015; Lam et al. 2015; Zivick et al. 2015). One of
the leading difficulties of using voids for cosmology has been that
we can observe fewer voids compared to galaxies. However, it has
been resolved rapidly by the recent progress of the observations [e.g.
SDSS (Ahumada et al. 2020), HSC (Aihara et al. 2019), 2dFGRS
(Colless 1999), 6dFGS (Jones et al. 2004)] and there are still more
ongoing galaxy surveys that are being planned in the near future [e.g.
LSST (Tyson & the LSST Collaboration 2002); WFIRST (Green
et al. 2012); Euclid (Laureijs et al. 2011)]. The cosmological model
can be constrained more accurately using the increased number
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of voids. On the other hand, the systematic errors owing to the
lack of understanding of the void will become relatively critical
for the correct interpretation of the results. Therefore, it becomes
increasingly important to understand the factor that determines
individual void’s behaviour in detail.

To understand the structure formation, and build a methodology
to extract information from voids, many works have been trying to
model the evolution of a void. In a simple picture, the void is a uni-
form underdense region that expands with the background universe,
growing to be more spherical under natural initial conditions (Icke
1984). However, this model is too simple to reproduce the realistic
behaviour of voids in the cosmic web. In reality, we expect that the
tidal field around void mainly affects to modify the shape of the
void during cosmic history. As is discussed by van de Weygaert
& Platen (2011) and van de Weygaert (2014), a tidal force can
squeeze a void and make it collapse. Further, Park & Lee (2007)
has estimated the effect of tidal force on the voids’ shape distribution
function by using Zel’dovich approximation, and with their model,
the voids tend to be non-spherical. This result is also well supported
by N-body simulation in terms of the overall distribution function;
their ellipticity distribution function well fits N-body simulation.
However, statistical properties averaged over the whole sample can
also be affected by the void formation or void merger. The non-
linear velocities or local structures also can change the shape, and
we do not know precisely how these affect the void. Therefore, it
is worth exploring whether the tidal field is the leading cause of
all voids’ shape evolution. Although the correlation between void
shape and tidal field at redshift z = 0 has also been examined by
Platen, van de Weygaert & Jones (2008), the time evolution has not
been explored. On the other hand, Wojtak, Powell & Abel (2016)
has shown that the shape of a void in the cosmic web in the �CDM
universe rotates and becomes distorted with time, while it does not
examine the gravitational field in detail. We investigate the time
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evolution of individual voids and its relation to the gravitational force
surrounding the voids. It will help us to understand the mechanism
of void formation more accurately and to find appropriate statistical
methods or values to reconstruct the gravitational field behind the
void.

In this article, we use N-body simulation to trace the non-linear
time evolution of the voids. There are lots of ways to find a void in
the particle or galaxy distribution. For example, some count particles
within regular grids or spheres to find low-density points (Hoyle &
Vogeley 2002; Colberg et al. 2005; Padilla, Ceccarelli & Lambas
2005), while they do not specialize in tracing detailed shapes. The
publicly available void finder VIDE (Sutter et al. 2015), which we
use, is based on Voronoi tessellation density field estimation and
watershed algorithm (see Section 2.2 for details). Watershed void
finding algorithm is originated by Platen, van de Weygaert & Jones
2007, where they use the higher order Delaunay tessellation for
density field estimation (van de Weygaert & Schaap 2009; Schaap &
van de Weygaert 2000). With these methods, we can define the edge
of the void in detailed shape. The Voronoi tessellation field estimator
also has the advantage that the grid size is adaptive according to
particle separation, and we do not need to specify grid size by hand.

This article is organized as follows. First, we introduce the details
of our simulation and our definition of a void in Section 2. Then,
in Section 3, we explain how we evaluate the void ellipticity
and tidal field. In Section 4, we present the results for overall
distribution functions in our void catalogue, the time evolution of
individual shapes of voids and tidal fields around individual voids,
and the correlation between tidal field and the void shape evolution.
Additionally, we discuss the observational proxy for effectively
identifying the isolate voids. The summary is given in Section 5.

2 SI M U LATION

2.1 Specifications

An N-body simulation is performed using the publicly available
code GADGET-2 (Springel 2005) with Planck �CDM cosmology with
cosmological parameters �m = 0.31, �� = 0.69, σ 8 = 0.8, h = 0.7
(Planck Collaboration et al. 2020). The initial condition is generated
by using the second Lagrange perturbation theory (Crocce, Pueblas
& Scoccimarro 2006), and we start the simulation from z = 20. The
simulation box is 500 Mpc h−1 on a side, and it contains 5123 dark
matter particles. Since the largest voids found with the current galaxy
survey are around 100 Mpc h−1, 500 Mpc h−1 box size is enough
to reproduce such the largest voids. If we focus on the voids larger
than 1 Mpc h−1, which is less affected by the non-linear evolution of
the structure, the number of particles given here suffices the required
resolution.

2.2 Void finding

To define the void in our simulation, we use the public code VIDE

(The Void IDentification and Examination Toolkit; Sutter et al.
2015). This code is based on ZOBOV (ZOnes Bordering On Voidness;
Neyrinck 2008), which uses the Voronoi tessellation algorithm, with
which we do not need to determine a smoothing scale by hand when
we estimate the density field to define the density peaks.

Here, we revisit the void finding algorithm of VIDE. We find voids
by following steps:

(i) First, we define the density field by using ZOBOV. It computes
the bisecting planes of each pair of particles and divides the entire

simulation box into Voronoi cells so that each cell contains one
particle. The local density associated with the particle is derived as
the reciprocal of the volume of each cell.

(ii) In the next step, we find the local minimum among the density
field. The Voronoi cells are grouped to form a region called a zone
that has one local minimum in it. To define the zone, the densities
of adjacent cells are compared and linked to the lower density cells.
If none of the neighbours has a smaller density that cell becomes a
core of the zone.

(iii) Every zone is potential void as it has a concave density profile;
however, it often has such low-density wall that it turns out to be
merely a part of a void from a visual inspection. Such low-density
walls can be strongly affected by discreteness noise. Therefore, we
join zones to form a void if the zones are separated by a wall that has,
at least at one point, lower density than the threshold which we define
afterwards. The zones with higher ridge density than the threshold
are regarded as voids by themselves. Although we do not need to do,
because of step (v) below, we can lower the threshold value, finding
the smaller voids inside the original voids. The larger voids are called
parents and the smaller voids inside are called children.

(iv) An effective void radius Rv ≡ (3V/4π)1/3, where V denotes
the total volume of Voronoi cells belonging to the void, is calculated
and small voids with effective radii smaller than the resolution of the
simulation (here Rv ∼ 1 Mpc h−1) are excluded. Also, we exclude
voids with central density higher than another density threshold to
be determined to rule out Poisson noise or haloes mimicking a void.
Usually, VIDE makes cut-off using central density which is defined
by particle number within Rv/4, but with this quantity, small voids
which may come from Poisson noise as shown in Neyrinck (2008)
is apt to be included. Therefore, we use a core density ρcore, which
is the reciprocal of the largest Voronoi cell in the void, as a cut-off
criterion instead.

(v) Finally, we can optionally select void-hierarchy. We remove
the voids that are contained by any parent void to avoid the double-
counting of the ancestor voids when we trace the void in different
snapshots for later analysis (see Section 2.3).

We summarize the fundamental quantities of voids as follows:

(i) Rv: effective radius of the void (see (iv) above)
(ii) ρcore: core density, the reciprocal of the largest Voronoi cell in

the void
(iii) ρv: void mass density, the total mass of void member particle

divided by the void volume
(iv) e: the ellipticity of the void (see the following text and

Section 3.1)

We find that the ellipticity defined using an inertia tensor does not
necessarily represent the shape of the void in the case where the
dense clumps are embedded in the wall. Therefore, in this article, we
use an alternative definition of ellipticity introduced in Section 3.1.

Here, we have three parameters to be determined by hand. First is
the zone-joint parameter in ZOBOV which appears in (iii) above. We
set this parameter 0.2ρ̄ where ρ̄ is the mean matter density of the
Universe. This means that our void sample does not include zones
with a minimum density larger than 0.2ρ̄. The second parameter is
the central density cutoff in (iv). According to Neyrinck (2008), the
voids whose core density is higher than 0.2ρ̄ are potentially affected
by the Poisson noise at z = 0. Therefore, here we use core density for
the cutoff criterion and take this parameter as 0.2ρ̄. The last one is
void-hierarchy selection. The void-hierarchy quantifies the level of
nesting of the voids; when a void is not contained by any larger void,
void-hierarchy is 0. The higher hierarchy is recursively defined. If
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a void is contained by the void of the level of i, void-hierarchy is i
+ 1. As also mentioned in (v), we take only void-hierarchy 0 voids,
which means that the voids are spatially not overlapped with each
other.

We have already discarded the voids potentially arise from Poisson
noise in terms of core density, but we place further selection with
the density contrast of voids to remove void-like objects from noise
thoroughly. ZOBOV calculates the probability that a void arises from
Poisson noise by using a fit to the probability distribution of density
contrast of the voids in Poisson particle distribution (see equation 1
of Neyrinck 2008). We remove the voids of which noise probability
exceeds 5 per cent.

2.3 Merger tree of void and void tracing

To study the time evolution of voids, we prepare two snapshots of the
simulation at a given redshift that has slightly different cosmic time.
For each of the snapshots, we employ the same method described in
Section 2.2. Voids can go through merger or division, and it is one
of the major issues in studying voids that how to trace voids in the
hierarchical structure (Aragón-Calvo & Szalay 2012; Aragón-Calvo,
van de Weygaert & Jones 2010; Sheth & van de Weygaert 2004). In
this paper, we simply have tracing criteria using particle ID to trace
voids as introduced by Sutter et al. (2014). We consider all pairs of
a low-redshift void A (denotes ‘after’ evolution) and a high-redshift
void B (denotes ‘before’ evolution) and estimate the following two
quantities for all pairs: unification parameter

UP = NA∩B/NA, (1)

and division parameter

DP = NA∩B/NB, (2)

where NA and NB are the numbers of constituent particles for void
A and B, respectively, and NA∩B denotes the number of particles
shared by both void A and B. Both the two parameters are indicators
of particle retention but independent of each other. UP takes the
maximum value of 1 if all member particles of descendant void A
come from ancestor void B. On the other hand, if void A inherits all
the member particles of void B, then DP takes the value of 1. We
then consider that voids A and B are identical only when both UP
and DP are sufficiently high, where significant mergers or divisions
do not occur during their time evolution.

We first calculate UP and DP for all pairs of voids. Then for given
descendant void Ai, we define the candidate ancestor void B that
maximizes the UP. Conversely, we also find the best candidate for
the given void Bj by looking at DP. We connect void A and B only
when the best candidates coincide with each other.

To quantify how many particles remain in the void during evolu-
tion, we define particle retention:

PR =
√

UP DP. (3)

When PR is high, it means that the void retains member particles.
Therefore, we can focus only on the voids which are less affected by
merger or division by looking at the voids with high PR.

Also, by looking at the flow parameter

FP = NA − NB

NA + NB − NA∩B
, (4)

we can further distinguish whether particles immigrate from other
voids or emigrate to others. As is shown in Fig. 1, high PR
corresponds to FP ∼ 0, as no particle exchange occurs.

Figure 1. The number distribution of voids as a function of FP and PR.
The definition of parameters forbids the grey regions. The voids with high
PR (marked ‘isolated’ in the figure) exchanges very few particles compared
to the number of its member particles. If FP is high (‘gain particles’ in the
figure), a void gain particles from outside of its progenitor, and if it is low
(‘lose particles’ in the figure), the majority of the member particles flow out
of the descendant void.

In this article, we calculate time derivatives of fundamental
quantities of voids at z ∼ 0. For this purpose, we take a time
interval sufficiently shorter than the typical time-scale of the void
evolution, which can be roughly estimated as follows. In our
catalogue, the median of void mass density/core density is ρv ∼ 1.5ρ̄

or ρcore ∼ 0.1ρ̄, where ρ̄ is an average mass density of the Universe.
Then the dynamical time-scale of a void is roughly t ∼ (Gρv)−1/2

∼ 60 Gyr. Therefore, the time-step of 1 Gyr should be reasonable
to trace the dynamical evolution of the voids. In practical N-body
simulation, 1 Gyr at z = 0 takes about 100 time-steps that also seems
reasonable for smooth particle motions. For later convenience, we
introduce the notation for the time evolution of physical quantity X
as

�X ≡ X(t = t1) − X(t = t0), (5)

where t0 is the time taken at z = 0 and t1 is the time 1 Gyr after t0.
Finally, the probability density functions of void sizes are shown in

Fig. 2. There are 58 457 voids (indicated by ‘all’ in the legend) found
by following (i)–(v) in Section 2.2, while 11915 of them are traceable
(indicated by ‘all traceable’ in the legend). The size distributions of
these two are almost the same except small difference at large Rv . We
additionally show the distribution of the 2504 ‘well isolated’ voids,
whose PR is higher than 0.75 (exchange fewer particles during the
evolution). Again, the distribution does not change significantly, but
voids tend to be slightly smaller in this case. The size distribution
function has a peak at 5 Mpc h−1 in our simulation but for the higher
resolution simulation, the number of voids smaller than 5 Mpc h−1

increases. However, we see that the number of voids larger than
5 Mpc h−1 does not change significantly and thus we use the voids
Rv ≥ 5 Mpc h−1 hereafter to avoid the resolution effect.

3 ME T H O D

3.1 Void ellipticity

Although it is still an open question to characterize the shape of
voids and various definitions have been proposed in the literature
(e.g. Neyrinck 2008; Lavaux & Wandelt 2012), we describe the void
with a triaxial ellipsoid shell with axis lengths, a3 ≤ a2 ≤ a1. Then
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Figure 2. The probability density functions of void sizes at z = 0 in each
criterion. ‘all traceable’ means that the voids do not die within 1 Gyr and
‘well isolated’ denotes the voids with PR > 0.75, which means that the voids
exchange fewer particles in the process of evolution. We do not use the voids
smaller than 5 Mpc h−1 in size in the following analysis to avoid the resolution
effect.

the ellipticity is defined as

e = 1 −
√

a2a3

a1
. (6)

The axis lengths are given by fitting the ellipsoid to voids. The
distance from the centre to the surface to the triaxial ellipsoid can be
described by three axial lengths and three Y–Z–Y Euler angles, α,
β, and γ :

r(ψ, φ)

=
[(

γc(βsψsφs + βc(ψcαcφs − φcαs)) − γs(αcφc + ψcαsφs)

a1

)2

+
(

βcψsφs + βs(φcαs − ψcαcφs)

a2

)2

+
(

γc(αcφc+ψcαsφs)+γs(βsψsφs + βc(ψcαcφs−φcαs))

a3

)2
]−1/2

,

(7)

where subscript s and c stand for the sine and cosine functions, i.e.
φc ≡ cos (φ). The axis directions are described by the unit vectors
Ai whose subscript i = (1, 2, 3) corresponds to the axis length index.
They are given by

(A1, A2, A3) = Ry(α)Rz(β)Ry(γ )(ex, ey, ez). (8)

Here, ei (i = {x, y, z}) are bases of global coordinates of the
simulation box, and R is the rotation matrix. To fit an ellipsoid
to voids, we take a standard chi-square minimization for all the
constituent particles for each void at the position (ψ , φ),

χ2 =
∑
i∈void

[r(φi, ψi) − ARi]
2, (9)

where Ri is the measured distance from the void centre to each
constituent particle, and A is introduced to absorb a similarity
transformation. Here, the void centre is defined as the average of
member particle positions weighted by the Voronoi cell volumes.

3.2 Tidal field and void-tide alignment

In this section, we describe how we measure the gravitational tidal
field around voids. We take an arbitrary direction n̂ and expand
the radial component of gravitational force on the spherical shell of
radius r, centred at the centre of gravity of a void, in Legendre series:

F
(l)
n̂ (r) = −2l + 1

2

∫ 1

−1

∂�(r, θ̂ )

∂r
Pl(μ) dμ, (10)

where μ = θ̂ · n̂ and � is the gravitational potential. We use GADGET-
2 to estimate the gravitational potential. By embedding dummy
massless particles, we have GADGET-2 calculate potential � at
3072 Healpix (Hierarchical Equal Area isoLatitude Pixelization)
(Gorski et al. 2005) grid points on two concentric spherical shells
around each void, whose interval is 1 Mpc h−1. These pixels have
equal solid angle 
13.5 [deg]2. Then we calculate the radial gradient
in equation (10) numerically. The integration in equation (10) is
approximated by the summation on Healpix grid points. We locate the
direction of n̂, where F(l) is maximized or minimized; the direction
that maximizes or minimizes the lth multipole mode is written as

n̂(l)
max(r) = arg max

n̂

[
F

(l)
n̂ (r)

]
, n̂(l)

min(r) = arg min
n̂

[
F

(l)
n̂ (r)

]
, (11)

and the F(l) expanded in those coordinates can be denoted as

F (l)
max(r) = max

n̂

[
F

(l)
n̂ (r)

]
, F (l)

min(r) = min
n̂

[
F

(l)
n̂ (r)

]
. (12)

The maximum and minimum directions n̂max and n̂min are defined as
the central position of the pixel. This article focuses on the quadratic
component since ellipticity is also a quadratic approximation of void
shape. Hereafter, we simply refer to the quadrupole moment of radial
gravitational force F(2) as a tidal field.

In Section 3.1, we determine void axes direction by fitting an
ellipsoid to each void. Using the best-fitting parameters for two
different snapshots, we define time variation of void major axis
direction

ϑ�void = cos−1(A1(t0) · A1(t1)). (13)

along with time variation of tidal direction

ϑ�tidal = cos−1
(
n̂(2)

max(Rv, t0) · n̂(2)
max(Rv, t1)

)
, (14)

and void-tidal alignment

θ (t) = cos−1
[

A1(t) · n̂(2)
max(Rv, t0)

]
. (15)

Again, t0 is the time taken at z = 0 and t1 is the time 1 Gyr after t0

and we define the time variation of θ as �θ = θ (t1) − θ (t0). Finally,
we define maximal tidal strength as

T = F (2)
max(Rv) (16)

and its vector component of the major axis direction of void:

Tθ = T cos θ. (17)

4 R ESULTS AND D I SCUSSI ONS

4.1 Time dependence of averaged properties

In this section, we summarize the overall properties of our void
catalogue on a cosmological time-scale, from z = 1 to z = 0. Our
void catalogue has 58 458 voids at z = 0 and 151 718 voids at z = 1.
The discussions in this section are based on the comparison between
averaged statistics at different epochs, without tracing the evolution
of individual void.
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Figure 3. Comparison of two methods for approximating void shape with
ellipsoid. The dots represent the constituent dark matter particles of the void.
The grey grid represents the ellipsoid characterized by the eigenvalues of
inertia tensor, while the black grid represents the ellipsoid by shell fitting (see
the text for more detail).

4.1.1 Size

At both redshifts, their sizes range from a few Mpc h−1 to 20 Mpc h−1

in a comoving scale. In our analysis, we exclude the parent voids,
which include smaller children voids inside. It will help avoid the
spatial overlapping of voids and enable us to define a unique void
tree. After removing all parent voids, we see that the average void size
is almost identical from z = 1 to 0: 5.6 and 5.2 Mpc h−1, respectively.

4.1.2 Shape

VIDE computes the ellipticity based on the inertia tensor of the
member particles of each void. Assuming that the density is uniform
inside the void, we can uniquely define an ellipsoid that represents
the void shape, as shown in Fig. 3 labelled ‘eigen’. However, we
find the inertia tensor is strongly affected by local structures and
does not necessarily represent the shape of the void. Therefore, the
void shape is determined by ellipsoidal shell fitting described in
Section 3.1. Fig. 3 demonstrates the dark matter distribution and
the three-dimensional ellipsoids defined by two different methods,
which clearly shows that our approach better represents the apparent
shape of the void. The ellipsoid defined with the inertia tensor can
reproduce the underlying dark matter distribution when dark matter
is distributed almost uniformly on the ellipsoidal shell. However,
as shown in Fig. 3, the dark matter is significantly localized, and
ellipsoid defined in this way is different from the actual distribution
of dark matter. Conversely, our method, fitting the shape of dark
matter distribution with ellipsoid, can better reproduce the dark
matter distribution around the void (see Section 3.1).

With this fitted ellipsoid, we compute the ellipticity defined by
equation (6), and averaged overall voids, the mean ellipticity is ē =
0.37 at z = 1 and ē = 0.41 at z = 0, respectively.

It is in general difficult to compare the statistics of voids in
the literature mainly because the different authors use a different
definition of void and ellipticity. Here, we compare our results of
the mean ellipticity change at two different redshifts to the previous
work by isolating the differences one by one.

The reference work to be compared is Bos et al. (2012) which
has reported that the mean ellipticities at z = 1 and 0 are 0.45 and
0.46, respectively. First, the N-body simulation data is generated
with the same cosmological parameters and simulation specification
parameters, such as box size or the number of particles. Bos et al.
(2012) use the WVF (Watershed Void Finder) (Platen, van de
Weygaert & Jones 2007) to find the voids while we use the VIDE; both
methods are based on the tessellation of the particles. It is known that
those two different finders show a similar shape of a void (Colberg
et al. 2008). Since the smoothing is not implemented in VIDE, we

reproduce the smoothing method implemented as in Bos et al. (2012).
The density field is smoothed on the regular grid and interpolated
to every particle positions. When we compute the ellipticity, we
first use the shape from shell fitting while Bos et al. (2012) use the
different definition based on the inertia tensor of the voxels (regular
grid cells) inside the void. Then the mean ellipticities are 0.39 and
0.43, respectively. Once we use the same definition of ellipticity, we
find 0.45 and 0.46, the same values as the reference work. These
facts show that as long as we apply the density field smoothing, the
watershed-based void finders seem to generate similar results. At the
same time, we also see that the difference in the definition of void
shape largely affects the ellipticity in this case. However, we note
that the ellipticity difference does not exceed a possible systematic
error from simulation resolution ∼1 Mpc h−1, which can be read
as 20 per cent for ellipticity ∼0.5, with the typical void size �10
Mpc h−1.

4.1.3 Void-tidal alignment

Finally, we estimate the alignment angle θ between the void major
axis and tidal axis. If these two axes are randomly rotating, θ

approximately becomes 60 deg on average. With our void catalogue,
the mean alignment angle is 29 deg at z = 1 and 26 deg at z = 0,
which decreases 0.4 deg Gyr−1 on average. If we define the void axis
directions by eigenvectors of the inertia tensor, we obtain a slightly
higher value of the angle, 29 deg at z = 0.

4.2 Time evolution of individual voids at z = 0

Hereafter, we focus on the individual void evolution. We only
consider traceable voids, which mean that we can define the identical
void in both snapshots before and after the time evolution based on
the conditions defined in Section 2.3.

4.2.1 Rotation of void major axis and tidal field

In the Newtonian gravity, the gravitational potential � and the density
fluctuation δ in the Fourier space are related as � ∝ k−2δ. Therefore,
we can naively expect that a smaller scale structure with stronger non-
linearity in the potential field is relatively smoothed out compared
to the density field. Conversely, the geometrical structures in the
potential field, such as the peaks or saddle points, are expected to be
more stable than those of the density field because of their relatively
stronger linearity.

Therefore, we suppose that the void rotates towards the direction of
the quadrupole component of the almost fixed tidal field. To evaluate
this assumption, we examine the rotation angles at 1 Gyr concerning
the major axes of the void and tidal field directions. The result is
shown in Fig. 4; the solid-line histogram represents the rotation angle
of the major axis of the void, and the dashed-line histogram represents
the rotation angle of the tidal field. In this figure, the fraction of ϑ�tidal

less than our angular grid resolution, ∼5 deg, account for 78 per cent
of all traceable case, while about a half of the voids rotate more than
5 deg. This result roughly supports our assumption.

4.2.2 Void-tidal alignment

If the void is distorted by the tidal field, the major axis of the void
will become aligned with the direction of the tide field as it grows,
and therefore �θ < 0 is expected.
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Figure 4. The angular variation of the void major axis directions (solid lines)
or tidal quadrupole (dashed lines) in 1 Gyr for all traceable voids. The bin
width on the x-axis is 5 deg. About 80 per cent of the tide field rotates only
5 deg or less, while about a half of voids rotate more than 5 deg.

Figure 5. The histogram shows probability density function P(θ ) for the
alignment angle θ of all traceable voids at z = 0. The black and solid line is
Pa(θ ): the probability density function normalized by solid angle. The vertical
dashed line indicates the mean value θ ∼ 26, while 60 is expected for random
rotation.

First, we show the probability density distribution function of
alignment θ at z = 0 in Fig. 5. The histogram in the figure is the
probability density function of alignment P(θ ), and the vertical dotted
line is the average. The black line is the angular probability density
function Pa(θ ), which is obtained by dividing P(θ ) by the solid angle
of each bin:

P (θi) �θi = Pa(θi) 2π sin θi�θi, (18)

where θ i is the middle point of the ith θ bin, and �θ i is the bin width.
Both P(θ ) and Pa(θ ) are normalized with respect to the total number
of voids in Fig. 5. Pa(θ ) is the probability where the volume effect
is removed, and it takes the maximum value at θ = 0 as shown in
the figure. The average value of the alignment of all traceable voids
is 26 deg, which is consistent with what we obtained for the overall
average in Section 4.1.

On the other hand, Fig. 6 shows the time evolution tendency of
θ . The vertical axis in the figure is the amount of change of θ per
Gyr, and the horizontal axis is θ (0, 0), the alignment at z = 0. The
dashed line in each violin plot represents the median, and the dotted

Figure 6. The distributions of alignment increase per Gyr at z = 0. The
dashed line in each violin plot represents the median, and the dotted lines
represent 25 and 75 percentiles.

lines represent 25 and 75 percentiles. Though the median of �θ at
high-θ (0, 0) seems to be slightly underside, a significant trend is not
found because of the large dispersion.

Although 1 Gyr is sufficiently smaller than the typical evolutionary
time-scale of voids as mentioned in Section 2.3, the dispersion of
�θ is about 10 per cent, which is not so small. If voids deform
by tidal field, �θ < 0 is expected because tidal field and void
should be aligned with time. However, a considerable number of
voids have a positive �θ . Moreover, this result hardly depends on
PR. Even the voids that retain most of the particles do not show the
correlation between tidal field and void orientation. This fact implies
that not a few voids exist whose shape is strongly affected by various
factors other than the tidal field. They are possibly the effect of finite
resolution of simulation or other gravitational force components
such as higher multipole components or angular components of
gravitational force, for example. Keep it in mind, though, that this
result does not mean that all the voids are independent of the tidal
field, as there are plenty voids with �θ < 0.

4.2.3 Time evolution of void ellipticity

According to the results of the N-body simulation by Wojtak et al.
(2016), the distorted void tends to become more spherical, and the
spherical void tends to distort as it grows, although the shape of each
void evolves variously. However, this tendency is not statistically
recognized in our catalogue. Fig. 7 shows the distribution of the
increase of ellipticity in 1 Gyr at z = 0. The vertical axis of this
figure is the increment per 1 Gyr of the ellipticity, and the horizontal
axis is the ellipticity at z = 0. As in Fig. 6, the dashed lines in each
violin plot represent the median, and the dotted lines represent 25 and
75 percentiles. While the voids with small ellipticity seem to have
a relatively large median of �e, it is still not statistically significant
because of the large dispersion as is the case for alignment.

One possible reason for the difference between Wojtak et al. (2016)
and our result may lie in the difference in the time-scale. We focus on
the short-term variation (differential quantity) at z = 0 in 1 Gyr, while
they focus on the variance from the early (z = 100) void to the present
(z = 0) void. The larger the time interval, the larger |�e| is allowed
and those with large |�e| can be strongly affected by the parameter
space boundary; �e = 1 is only possible at e = 0 and �e = −1 is
only possible at e = 1. This boundary can cause a negative correlation
between e and �e even if e is randomly changing. Another possibility
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Figure 7. The distributions of ellipticity increase per Gyr at z = 0. The
dashed line in each violin plot represents the median, and the dotted lines
represent 25 and 75 percentiles.

is the different definition of a void, but this would not be the main
cause. They connect the neighbouring zones at z = 0, which ensures
that the voids do not rapidly change their shape due to merger or
segmentation. In contrast, we do not make zone connections stable,
as they do but can select voids that hardly experience merger and
segregation by monitoring PR parameter. Nevertheless, our result
hardly depends on PR besides a slight change in the median of
�e. This fact implies that the difference in e−�e relation is hardly
affected by whether we consider particle exchange or not.

4.3 Correlation between tidal field and void evolution

If the tidal field is strong along the void major axis, the void will
become more elongated. In this case, there should be a positive
correlation between Tθ (the amplitude of the tidal field along void
major axis) and �e (the ellipticity increment). To quantify the
correlation between the Tθ and �e, we calculate the correlation
coefficient. The coefficient of Tθ and �e for the set of voids that
satisfy condition Z is given as

corrcoef(Tθ , �e|Z) = Cov(Tθ ,�e|Z)√
Cov(Tθ , Tθ |Z) Cov(�e, �e|Z)

, (19)

using components of covariance matrix:

Cov(X, Y |Z) = 1

NZ − 1

NZ∑
i∈Z

(Xi − 〈X〉Z) (Yi − 〈Y 〉Z) , (20)

〈X〉Z = 1

NZ

NZ∑
i∈Z

Xi, (21)

where the sum runs over voids that satisfy condition Z, and NZ is the
number of such voids. X, Y denote either Tθ or �e.

The correlation coefficient between the tidal force Tθ and the
ellipticity increase �e is shown in Fig. 8 as a function of the minimum
value of particle retention parameter PR. The shaded region in the
figure represents a 95 per cent confidence interval calculated by
equation (A8). The voids whose major axes rotate over 45 deg are
excluded here because they are almost spherical and major and minor
axes are easily interchanged in 1 Gyr. However, such voids comprise
only about 5 per cent of the total traceable voids, and the result
hardly changes so much even if we include them.

The correlation coefficient is zero-consistent within the 95 per cent
level when we include small PR voids, PR < 0.5, while it takes
significant positive value if we limit the sample with PR > 0.6.

Figure 8. Correlation coefficients of �e and Tθ that are calculated by using
the voids with particle retention rate PR greater than or equal to a lower limit
represented by PR

′
. The shaded region shows 95 per cent confidence interval.

Figure 9. Tidal force Tθ against �e. Black contours indicate void number
count. The colour denotes FP, which means that if it is high, the void gains
most of the particles owned by the void after evolution from outside of the
void, and if it is low, it means that the void parts with most of its particles the
void owned before evolution (see also Section 2.3).

This result indicates that the voids that retain particles before
and after evolution are distorted by the tidal field. It is worth
noting, however, that averaged overall PR, the correlation coefficient,
becomes consistent with zero with our definition of a void. We show
the relation between the tidal force Tθ and the ellipticity increase
�e in more detail in Fig. 9. Black contours in Fig. 9 represent
the number distribution of voids. The colours in Fig. 9 represent FP,
which reflects the amount of particle exchange. Quantity FP indicates
whether particles have entered or exited; if it is positive (negative), it
means that the void has lost (gained) dark matter particles in 1 Gyr.
Although PR is also an index indicating whether or not particles are
exchanged, we use FP here to discriminate whether a void has gained
or lost particles.

The variance in �e is large where Tθ is small, depicting that
the significant shape distortion occurs where the tidal field is
relatively weak. It is expected that the external tidal field cannot
be the main reason to distort the shape of the voids for voids
with Tθ < 105[M�Mpc Gyr−2]. On the other hand, the tendency is
especially prominent at the low-Tθ side in Fig. 9 that the smaller the
value on the horizontal axis, the smaller the value of FP. Conversely,
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Figure 10. Mean overdensity in void against particle retention PR (see the
text for definition). The shaded region represents the standard deviation at
each PR bin.

the larger the value on the horizontal axis, the larger the value of
FP. This fact means that a void tends to be distorted when it gets
particles from its surroundings, and if it loses particles, it tends to
become closer to a sphere. Deformation owing to this effect produces
a large variance in the increase in void ellipticity �e, leading to a
lower correlation between the shape evolution tendency of the void
and the tidal field. As shown in Fig. 1, voids with large |FP| generally
have small PR. Therefore, if we select only high-PR voids, most of
the voids with large shape variance and small Tθ are removed. We
repeat the analysis of Fig. 8 as the function of the minimum value of
|FP|, instead of PR. However, the correlation is very weak compared
with that shown in Fig. 8. Therefore, we conclude that the PR is more
suitable for isolating the void population that is affected by the tidal
force.

4.4 Proxy of PR

The particle retention parameter PR cannot be determined from
observation. However, we find that the average density in the void is
strongly correlated with PR. Fig. 10 shows the relation between the
average density of a void δ̄v and PR. δ̄v is defined as

δ̄v = ρv

ρ̄
− 1, (22)

where ρv is void mass density defined in Section 2.2 and ρ̄ is the
average mass density of the Universe. Hence, it can be effectively
determined by the mass of the wall surrounding a void. In Fig. 10,
the shaded region shows the standard deviation and the solid
line indicates the average of δ̄v in each PR bin. We find a clear
anticorrelation between δ̄v and PR.

Using this relation, δ̄v can be used as a proxy of PR. We revisit the
correlation coefficient analysis as a function of the maximum value
of δ̄v , instead of the minimum value of PR in Fig. 11. We find that
the significant positive correlation between Tθ and �e appears with
more than 95 per cent confidence when the upper limit of δv is less
than around 1.

This relation between PR and δ̄v implies that a void with higher
mass density exchanges a larger proportion of particles, which can
be explained below. For the voids with a larger δ̄v , the density of the
surrounding area is higher, and non-linearity becomes prominent.
Therefore, a tidal field around a void may mainly arise from the non-
linearly evolving small-scale fluctuations, and the large-scale modes
across the void hardly affect the tidal field around the void. If the

Figure 11. Correlation coefficient between Tθ and �e for the voids whose
average over density δ̄v is less than or equal to arbitrary given δ̄′

v . The shaded
region indicates the 95 per cent confidence interval.

Figure 12. The distribution of the angle between n̂(2)
max at Rv and r = 0.5Rv

(the left panel) or r = 2Rv (the right-hand panel). The open histogram is for
the voids with δ̄v < 0.5 and filled histogram is for the voids with δ̄v ≥ 0.5.

small-scale structures dominate, the tidal field in the radial direction
can fluctuate on smaller scales than the size of the void.

To confirm this, the inner (outer) tidal fields measured on a
sphere with a radius of half (twice) of Rv are compared with the
one measured on Rv . Fig. 12 shows the distributions of the angle
between the direction of the tidal field at Rv and 0.5Rv (left) and 2Rv

(right). Voids are classified into two groups; the voids with δ̄v < 0.5
(open-histogram) and δ̄v ≥ 0.5 (filled-histogram). It is noted that the
distributions in this figure are not corrected for the volume effect
[correspond to P(θ ) in equation (18)] and thus they follow sine
function if two random directions make the angle. In the left-hand
panel, the tidal field inside the void is aligned to the tidal field at r =
Rv in most cases. On the other hand, in the right-hand panel, the voids
with low δ̄v tend to have a smaller variation of tidal field direction
than the voids with high δ̄v . The high-density voids seem to have the
tidal field outside the void that faces almost independent direction to
that of r = Rv . This fact means that the quadrupole component of the
gravitational field fluctuates on a short scale near a void especially
in the case that the void has a high δ̄v . Such a small-scale fluctuation
in the gravitational field can cause particle exchanges, and the tidal
field surrounding the void is no more enough to explain the shape
evolution of the void. However, for low δ̄v voids, the tidal field is
relatively coherent up to the outside of the void, and the description
that a void evolves by background gravitational field seems to be
well supported.
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5 SU M M A RY

We have investigated the correlation between the shape evolution of
cosmic voids and the tidal field around them at around z = 0 by N-
body simulations. As is well known, the shape of a void in the cosmic
web is distorted (and becomes more and more distorted) on average,
which is confirmed in Section 4.1. However, it is not evident since
Icke (1984) has found that the low-density region itself approaches a
sphere. Although it is expected that the tidal field distorts the shape
of a void, it is still unclear whether all the voids are affected by the
tidal field in the same manner.

Tracing individual voids, we have found out that the voids are
full of individuality and change its shape by the amplitude of the
surrounding tidal field and particle exchange.

The results on the evolution of individual voids in 1 Gyr and the
tidal field on the void scale are summarized below:

(i) We do not find a significant tendency in the evolution trend of
ellipticities and alignments, owing to the very large intrinsic scatter.

(ii) A positive correlation between Tθ (vector component of tidal
force in the direction of the void principal axis) and an increase in
ellipticity is found only for voids with little particle exchange.

(iii) A negative correlation between particle retention and average
void density exists. A positive correlation appears again as with voids
with high particle retention on examining the correlation between Tθ

and ellipticity increment for low-density voids.
(iv) High-density structures around a void shorten the coherent

scale of the surrounding tidal field, which can be a cause of particle
exchanges.

The second point (ii) suggests that if PR is high, the shape of a void
evolves with reflecting the tidal field. An investigation of the voids
with low particle retention shows that voids tend to be distorted when
the particles are obtained and rounded when the particles are lost.
This causes a large variance in the time evolution of the ellipticity
and hides sign of the response to the quadrupole component of the
gravitational field at void scale, as discussed in Section 4.2.3. Such
voids tend to have a higher average density. When the average void
density (≈density of wall around the void) is large, the quadrupole
component of radial gravity turns significantly around the void, and
it can be one of the reasons why particle exchange often occurs in a
high-density void. Conversely, voids with a very low average density
have a positive correlation between the effective tidal field and the
increase in ellipticity, which is a sign of pure dynamical evolution by
the tidal force.
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A P P E N D I X : C O N F I D E N C E I N T E RVA L FO R
CORRELATI ON C OEFFI CI ENTS

We derive confidence interval of the correlation coefficient given
by equation (19) referencing Anderson (1958). Here, the sample
correlation coefficient is written as c and the population correlation
coefficient is written as cg. Using Fisher’s z-transformation (inverse
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hyperbolic tangent function)

z(x) = 1

2
loge

1 + x

1 − x
, (A1)

it is known that z(c) is normally distributed around z(cg) with variance
1/(n − 3) when the number of samples n is large enough (Fisher
1915). That is, znorm = (z(c) − z(cg))/(1/

√
n − 3) has a normal

distribution with mean 0 and variance 1.
With this fact, the p per cent confidence interval of a given

correlation coefficient can be calculated as below. First, the top ((100
− p) / 2) per cent percentile of the standard normal distribution is
given by

P (p) =
√

2 erfc−1(1 − p/100), (A2)

where

erfc(x) = 2√
π

∫ ∞

x

e−t2
dt (A3)

is the complementary error function, which satisfies the relation
erfc(x) = 1 − erf(x) with the error function

erf(x) = 2√
π

∫ x

0
e−t2

dt . (A4)

Therefore, assuming that znorm is between −P(p) and P(p), the section
where z(cg) exists with the probability of p per cent can be obtained;

postulating

− P (p) ≤ z(c) − z(cg)

1/
√

n − 3
≤ P (p), (A5)

we obtain the range of z(cg) as below:

z(c) − √
n − 3P (p) ≤ z(cg) ≤ z(c) + √

n − 3P (p). (A6)

Performing the inverse transformation of equation (A1), this inequal-
ity is transformed as

z−1(z(c) − √
n − 3P (p)) ≤ cg ≤ z−1((z(c) + √

n − 3P (p)).

(A7)

Since the transformation z is arctanh, we finally obtain

f− − 1

f− + 1
≤ cg ≤ f+ − 1

f+ + 1
,

f± = exp

[
2

(
1

2
loge

(
1 + c

1 − c

)
− P (p)√

n − 3

)]
(A8)

as the p per cent confidence interval of the correlation coefficient.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 503, 2804–2813 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/2/2804/6159468 by guest on 20 April 2024


