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ABSTRACT
Galaxy kinematics and gravitational lensing are two complementary ways to constrain the distribution of dark matter on galaxy
scales. The typical dark matter density profiles adopted in dynamical studies cannot easily be adopted in lensing studies. Ideally,
a mass model should be used that has the global characteristics of realistic dark matter distributions, and that allows for an
analytical calculation of the magnifications and deflection angles. A simple model with these properties, the broken power-law
(BPL) model, has very recently been introduced. We examine the dynamical structure of the family of BPL models. We derive
simple closed expressions for basic dynamical properties, and study the distribution function under the assumption of velocity
isotropy. We find that none of the BPL models with realistic parameters has an isotropic distribution function that is positive over
the entire phase space, implying that the BPL models cannot be supported by an isotropic velocity distribution, or models with
a more radially anisotropic orbital structure. This result limits the attractiveness of the BPL family as a tool for lensing studies
to some degree. More generally, we find that not all members of the general family of double power-law or Zhao models, often
used to model dark matter haloes, can be supported by an isotropic or radially anisotropic distribution function. In other words,
the distribution function may become negative even for spherically symmetric models with a well-behaved density profile.
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1 IN T RO D U C T I O N

Since the first observational indications almost a century ago (Oort
1932; Zwicky 1933), and especially since the first detailed analyses
of galaxy rotation curves (Freeman 1970; Rubin, Ford & Thonnard
1978), it has been realized that dark matter plays a central role in the
evolution of galaxies and the Universe as a whole. It is believed that
about 85 per cent of all the matter in the Universe consists of dark
matter (Planck Collaboration XIII 2016).

On galaxy scales, dark matter is traditionally traced through its
gravitational effect on the kinematics of a tracer population such as
the cold gas disc in spiral galaxies. The characteristics of dark matter
haloes can in principle be inferred from a detailed analysis of the
observed gas kinematics (e.g. de Blok et al. 2001, 2008; Swaters
et al. 2003; Gentile et al. 2004; Allaert, Gentile & Baes 2017). In
practice, one usually assumes a parametrized dark matter density
profile, and the parameters of this distribution are determined by
fitting the rotation curve. Most studies adopt either models in which
the density has a power-law behaviour at both small and large radii
(Navarro, Frenk & White 1997; Moore et al. 1999; Di Cintio et al.
2014; Hague & Wilkinson 2014, 2015), or models with a power-law
logarithmic density slope (Navarro et al. 2004, 2010; Merritt et al.
2005, 2006; Prada et al. 2006). Both classes of models have been
studied in detail, and their photometric and dynamical properties
are often simple enough to be expressed analytically (Zhao 1996;
Cardone, Piedipalumbo & Tortora 2005; Evans & An 2005; Van
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Hese, Baes & Dejonghe 2009; Retana-Montenegro et al. 2012a;
Freundlich et al. 2020b).

An alternative and powerful way to constrain the distribution of
dark matter on galaxy scales is gravitational lensing (for reviews, see
Kochanek 2006; Treu 2010). Despite a number of degeneracies that
cannot be avoided (Falco, Gorenstein & Shapiro 1985; Schneider &
Sluse 2014), the multiplicity, position, shape, and flux of the lensed
images offer interesting constraints to infer the characteristics of both
the foreground lens and the lensed background source (Koopmans
et al. 2006; Auger et al. 2010; Grillo 2012; Bellagamba, Tessore &
Metcalf 2017; Nightingale, Dye & Massey 2018). The mass models
used in gravitational lensing studies are often based on a simple
prescription of the mass surface density profile, with the most
popular ones the singular isothermal lens, the softened isothermal
sphere, and the power-law model. The advantage of these models
is that many of the most important lensing characteristics, such
as the shear, deflection angle, and magnification, can be calculated
analytically (Kassiola & Kovner 1993; Suyu 2012; Wertz & Surdej
2014; Tessore & Metcalf 2015; O’Riordan, Warren & Mortlock
2019). It has been argued, however, that simple models such as
a single power-law model lack the flexibility required for high-
precision galaxy lensing modelling, in particular for time-delay
studies aimed at a measurement of the Hubble constant (Xu et al.
2016; Sonnenfeld 2018; Kochanek 2020). Ideally, one would use
lens mass models similar to those used in dynamical studies. The
lensing properties of general double power-law models or Einasto
models are, however, complex and less ideal for practical applications
(Wright & Brainerd 2000; Li & Ostriker 2002; Retana-Montenegro
et al. 2012a; Retana-Montenegro, Frutos-Alfaro & Baes 2012b;
Freundlich et al. 2020b). Ideally, a lensing mass model should be
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used that has the characteristics of realistic dark matter distributions
in galaxies, and that allows for an analytical calculation of the
magnifications and deflection angles.

Very recently, a novel model with these characteristics was
proposed by Du et al. (2020). As the name suggests, their BPL
(broken power-law) model is characterized by a density profile that
is a combination of two pure power-law profiles that meet at a certain
break radius. Under the assumption of an elliptically symmetric
surface mass distribution, the deflection angle, and magnification
can be evaluated analytically. Du et al. (2020) conclude that this
new analytical mass model is an efficient and realistic lensing mass
model for galactic and cosmological applications. Interestingly, this
model has a density profile with the basic characteristics of the most
commonly used models used in dynamical analyses of dark matter
haloes. In fact, the BPL model belongs to the general class of double
power-law or Zhao models that is often used to model dark halo
models in dynamical studies (e.g. Hague & Wilkinson 2013, 2014,
2015; Di Cintio et al. 2014; Allaert et al. 2017; Dekel et al. 2017;
Hayashi, Chiba & Ishiyama 2020; Freundlich et al. 2020a, b).

These characteristics call for a more detailed study of the dynam-
ical properties of the family of BPL models. One important aspect
of the BPL models not covered in the analysis of Du et al. (2020) is
the phase space distribution function, the most fundamental quantity
in dynamical studies (Dejonghe 1986; Binney & Tremaine 2008).
If one assumes the most simple orbital structure, i.e. an isotropic
velocity distribution, every spherical density profile corresponds to
a unique distribution function. It is, however, not guaranteed that
this isotropic distribution function is positive over the entire phase
space. It remains to be seen whether the BPL models presented by
Du et al. (2020) are consistent with an isotropic distribution function.
Our recent work on the dynamical properties of the Sérsic and Nuker
models (Baes & Ciotti 2019; Baes 2020) has demonstrated that the
positivity of the distribution function is not always satisfied, even
for apparently well-behaved models where this might be expected
at first sight. These recent results inspire us for a more thorough
investigation of the dynamical structure of the BPL models, and of
the broader family of Zhao models in general.

The remainder of this paper is structured as follows. In Section 2,
we introduce the BPL models, and we discuss their basic properties
and dynamical structure. In Section 3, we expand the BPL to the
more general family of Zhao models and we investigate how the
dynamical structure of these model changes if we gradually decrease
the smoothness parameter α. Finally, in Section 4 we discuss the
implications of our findings and summarize our results.

2 TH E B P L MO D E L

2.1 Basic properties

The BPL model is characterized by the simple density profile

ρ(r) = ρb ×
{

(r/rb)−γ for r � rb,

(r/rb)−β for r � rb.
(1)

In this expression, r is the spherical radius, rb is the break radius that
marks the transition between the inner and outer regions, ρb is the
density at the break radius, and β and γ are the negative logarithmic
density slopes in the inner and outer regions, respectively. In their
study, Du et al. (2020) consider the range 0 ≤ γ < 3 for the inner
density slope, and 1 < β < 3 for the outer density slope. We consider
the same range in γ , but consider the range β > 2 for β. We do
not consider models with β ≤ 2 as the gravitational potential for
such models is ill-defined (see later). On the other hand, there is no

compelling reason to limit the range of β on the upper end. In fact,
the range β ≥ 3 is probably the most interesting parameter range,
as only models with β > 3 have a finite total mass (see later), and
the case β = 3 corresponds to the most commonly used negative
logarithmic density slope for dark matter haloes, such as the NFW
model and the Moore profile (Navarro et al. 1997; Moore et al. 1999).

In the remainder of this paper we will work in dimensionless units
with G = rb = ρb = 1. In these units, the density profile becomes

ρ(r) =
{

r−γ for r � 1,

r−β for r � 1.
(2)

The integrated mass profile M(r) is readily found by integrating the
density profile

M(r) = 4π

∫ r

0
ρ(u) u2 du. (3)

Inserting the expression (2) for the density, we find

M(r) =
{

Min(r) for r � 1,

Mout(r) for r � 1,
(4a)

with the inner mass profile given by

Min(r) = 4π r3−γ

3 − γ
, (4b)

and the outer profile by

Mout(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4π

β − 3

(
β − γ

3 − γ
− 1

rβ−3

)
if β �= 3,

4π

(
1

3 − γ
+ ln r

)
if β = 3.

(4c)

The total mass is finite if β > 3, and it that case, it is given by

M = 4π (β − γ )

(β − 3) (3 − γ )
. (5)

For a spherical mass distribution, the (positive) gravitational potential
�(r) can be found through

�(r) = M(r)

r
+ 4π

∫ ∞

r

ρ(u) u du. (6)

The latter integral diverges for all models with β ≤ 2, which is the
reason why we limit our discussion to models with β > 2. In analogy
with the mass profile we write

�(r) =
{

�in(r) for r � 1,

�out(r) for r � 1.
(7a)

with

�in(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4π

2 − γ

(
β − γ

β − 2
− r2−γ

3 − γ

)
if γ �= 2,

4π

(
β − 1

β − 2
− ln r

)
if γ = 2,

(7b)

and

�out(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4π

β − 3

1

r

(
β − γ

3 − γ
− r3−β

β − 2

)
if β �= 3,

4π

r

(
4 − γ

3 − γ
+ ln r

)
if β = 3.

(7c)

The inner and outer profile merge smoothly at the break radius r =
1, where the potential has the value

�b = 4π (β − γ + 1)

(β − 2) (3 − γ )
. (8)
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Broken power-law and double power-law models 2957

Figure 1. Density profile ρ(r), mass profile M(r), and potential �(r) for different BPL models. The top panels show models with γ = 1 fixed and different
values of β. The bottom row shows models with β = 4 fixed and different values of γ . In all panels, the black curve corresponds to the model with
(β, γ ) = (4, 1).

The potential well of the BPL models is infinitely deep for γ ≥ 2,
and finite for γ < 2, with

�0 ≡ �(0) = 4π (β − γ )

(β − 2) (2 − γ )
. (9)

All models with β > 3 show the expected Keplerian behaviour, �(r)
≈ M/r, at large radii. For the models with β ≤ 3, the total mass is
infinite, and the gravitational potential decreases less steeply than
Keplerian at large radii.

Fig. 1 shows the density profile, mass profile, and gravitational
potential for several BPL models with different inner and outer
slopes. In the top panels, we vary the parameter β while we keep
γ = 1 fixed, and in the bottom panels we keep β = 4 and we
vary γ . The black line in all panels corresponds to our fiducial
model with (β, γ ) = (4, 1), which is discussed in more detail in
Appendix A.

The dependence of the density, mass profile, and potential
immediately reflects the formulae (2), (4), and (7). Note that,
while the density profile shows a sharp break at r = 1, the
integrated mass profile and potential are smoother at the break
radius.

2.2 Velocity dispersions

The main goal of this paper is to investigate whether the BPL
model can be supported self-consistently by an isotropic velocity
distribution. A first dynamical quantity to look at is the velocity
dispersion profile. For isotropic dynamical models, the velocity
dispersion profile σ (r) can be found via the solution of the Jeans
equation

σ 2(r) = 1

ρ(r)

∫ ∞

r

ρ(u) M(u) du

u2
. (10)

Using the expressions (2) and (4), we find the usual split between an
inner and outer profile

σ 2(r) =
{

σ 2
in(r) for r � 1,

σ 2
out(r) for r � 1.

(11a)

with

σ 2
in(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2π rγ

(3 − γ ) (1 − γ )

×
[

(β − γ ) (β − γ + 2)

β2 − 1
− r2−γ

]
if γ �= 1,

2π r

(
β

β2 − 1
− ln r

)
if γ = 1.

(11b)

and

σ 2
out(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2π

(β − 3) r

×
[

2 (β − γ )

(β + 1) (3 − γ )
− r3−β

β − 1

]
if β �= 3,

π

r

[
7 − γ

4 (3 − γ )
+ ln r

]
if β = 3.

(11c)

In the left-hand panels of Fig. 2, we show the dispersion profiles for
the same models as discussed in Fig. 1. The dispersion profiles show
an interesting variety in behaviour at the central regions for different
values of γ . For γ = 0, the dispersion converges to a finite value.
For 0 < γ < 1, the dispersion profile tends to zero as σ 2 ∝ rγ , until
it reaches an almost linear slope σ 2 ∝ r ln 1

r
for γ = 1. For 1 < γ <

2, the dispersion profile drops to zero as σ 2 ∝ r2 − γ , and it assumes
a constant non-zero value again for γ = 2. For values of γ > 2, the
dispersion grows infinitely large according to σ 2 ∝ r−(γ − 2). In fact,
this behaviour is not surprising, as it is exactly the same as for the
γ -models (Dehnen 1993; Tremaine et al. 1994), and more generally,
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2958 M. Baes and P. Camps

Figure 2. Velocity dispersion profile σ 2(r), phase-space distribution function f (E), and differential energy distribution N (E) for same BPL models as shown
in Fig. 1. The colour coding is the same as in the previous figure.

the entire family of Zhao models (Zhao 1996). Another conspicuous
feature of the dispersion profiles is the very unnatural dip around
the break radius, which obviously is the consequence of the sharp
break in the density profile, and more specifically of the fact that the
density appears in the denominator in expression (10).

2.3 Distribution function

We now turn to the critical question whether the unique isotropic
distribution function f (E) is positive over the entire phase space. For
a given density ρ(r) and potential �(r), f (E) can be found through
Eddington’s formula

f (E) = 1

2
√

2 π2

∫ E

0

D2
�ρ(�) d�√
E − �

, (12)

with ρ(�) the augmented density, i.e. the density written as a function
of the potential. In principle, the potential (7) of the BPL model can
be inverted to a relation r(�) and combining this with the density
(2) yields the augmented density. However, the inversion cannot be
done analytically and the resulting formulae are cumbersome. A
more elegant method is to follow Binney (1982) and Baes & Ciotti
(2019), and recast expression (12) as

f (E) = 1

2
√

2 π2

∫ ∞

rE


(r) dr√
E − �(r)

, (13)

with


(r) = r2

M(r)

[
D2

r ρ(r) + Drρ(r)

(
2

r
− 4π ρ(r) r2

M(r)

)]
, (14)

and rE the maximum radius that can be reached by a particle with
binding energy E , which can be found through the implicit equation
�(rE ) = E . If we want to evaluate the distribution function, we first
need to evaluate the first- and second-order derivative of the density

profile. The derivative of the density profile (2) is

Drρ(r) =
{ −γ r−γ−1 for r < 1,

−β r−β−1 for r > 1.
(15)

Note that the derivative is now a discontinuous function and hence
not formally differentiable. However, we can write equation (15)
formally as

Drρ(r) = −γ r−γ−1 − (
β r−β−1 − γ r−γ−1

)
�(r − 1) (16)

with �(x) Heaviside’s step function. As a consequence, the second
derivative can be written as

D2
r ρ(r) = −(β − γ ) δ(r − 1)

+
{

γ (γ + 1) r−γ−2 for r < 1,

β (β + 1) r−β−2 for r > 1.
(17)

When we combine the expressions (13), (14), (2), (4), (16), and (17),
we find an expression for the distribution function. We write it as

f (E) =
{

fout(E) for E < �b,

fin(E) for �b < E < �0.
(18a)

where the outer profile now corresponds to binding energies below
�b, and the inner profile to binding energies between �b and the
maximum value �0. For the outer profile we find

fout(E) = β (β − 3) (3 − γ )

8
√

2 π3

×
∫ ∞

rE

(β − 1) (β − γ ) uβ − 2 (3 − γ ) u3 du

[(β − γ ) uβ − (3 − γ ) u3]2
√
E − �(u)

. (18b)
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Broken power-law and double power-law models 2959

The expression for the inner distribution function is slightly more
complicated

fin(E) = − (β − γ ) (3 − γ )

8
√

2 π3

1√
E − �b

+ (3 − γ ) γ

4
√

2 π3

∫ 1

rE

du

u3
√
E − �(u)

+β (β − 3) (3 − γ )

8
√

2 π3

×
∫ ∞

1

(β − 1) (β − γ ) uβ − 2 (3 − γ ) u3 du

[(β − γ ) uβ − (3 − γ ) u3]2
√
E − �(u)

. (18c)

The distribution functions for our standard set of BPL models are
shown in the panels on the central column of Fig. 2. For any
combination of the parameters β and γ with β > γ , the distribution
function is a discontinuous function, with a prominent discontinuity
at E = �b. Even more disturbing, however, is that f (E) is negative at
binding energies E � �b. The first term in the expression for E > �b

is the culprit, as it shows an inverse square-root divergence to −∞
as E approaches �b from the high binding energy side.

Only for the models with 2 < β ≤ γ < 3, the distribution function
is positive over the entire range of binding energies. Models with
β = γ are pure power-law models with polytropic potential-density
pairs. Their distribution function can be written as a pure power law
over the entire range of binding energy

f (E) ∝ E (6−γ )/(2γ−4). (19)

In the case β < γ , the distribution function is still discontinuous,
but it is now positive over the entire phase space. The first term
in expression (18c) now has a positive sign, implying that the
distribution function diverges to +∞ as E approaches �b from the
high binding energy side. We note, however, that the models with
2 < β ≤ γ < 3, while academically interesting, are not realistic
models for dark matter haloes. Not only do they necessarily have an
unrealistically steep inner slope and an infinite total mass, they are
also characterized by a steeper density slope in the central region
compared to the outer region, which is not observed in simulated
dark matter haloes. For the remainder of this paper, we assume that
γ < β.

2.4 Differential energy distribution

The right-hand panels of Fig. 2 show the differential energy distri-
bution N (E) for the same BPL models as in the other panels. The
differential energy distribution represents the distribution of mass
as a function of the binding energy E . For isotropic systems, the
differential energy distribution can be written as

N (E) = f (E) g(E), (20)

with g(E) the density-of-states function, defined as the phase-space
volume accessible for a particle with binding energy E (Binney &
Tremaine 2008). It can be calculated as

g(E) = 16
√

2 π2
∫ �0

E

∣∣r2 D�r
∣∣√� − E d�, (21)

or equivalently

g(E) = 16
√

2 π2
∫ rE

0
r2
√

�(r) − E dr. (22)

The behaviour of the differential energy distribution shows the same
disturbing feature as the distribution function: it is positive over
almost the entire range of binding energies, except for E � �b where

it is negative for any value of β or γ (assuming γ < β). This again
underlines the fact that the BPL model cannot be supported by an
isotropic distribution function.

The formal expression for the differential energy distribution is
useful as a check for the calculations we have performed: given that
N (E) represents the distribution of mass as a function of the binding
energy, it should satisfy the normalization∫ �0

0
N (E) dE = M. (23)

A numerical integration of the differential energy distribution shown
in the right-hand panels of Fig. 2 shows that this condition is indeed
satisfied for all BPL models with a finite mass.

3 TH E Z H AO M O D E L S

3.1 Properties of the Zhao models

The inconsistency of the isotropic BPL models raises the question
whether the Zhao models can be supported by an isotropic distribu-
tion function. The density profile of the Zhao model reads

ρ(r) = r−γ
(
1 + r1/α

)−(β−γ ) α
. (24)

where we have adopted the same dimensionless units defined by G =
rb =ρb = 1. The parameters β and γ are now the negative logarithmic
density slopes in the limits r � 1 and r � 1, respectively. The third
parameter, α corresponds to the smoothness of the transition between
the inner and the outer regime. For large values of α this transition
is very smooth and gradual, for decreasing values of α the transition
becomes increasingly sharp. In the limit α = 0, the transition between
the inner and outer profile becomes infinitely sharp and the density
profile (24) reduces to a broken power law, i.e. the density profile
(2) of the BPL model. The Zhao or (α, β, γ )-models are very
flexible and contain many different popular models as special cases,
including the Plummer model (Plummer 1911; Dejonghe 1987), the
perfect sphere (de Zeeuw 1985), the modified Hubble sphere (Rood
et al. 1972; Binney & Tremaine 2008), the Jaffe model (Jaffe 1983),
the Hernquist model (Hernquist 1990; Baes & Dejonghe 2002), the
NFW model (Navarro et al. 1997), and the Moore profile (Moore
et al. 1999). A number of families of models, including the γ -
models (Dehnen 1993; Tremaine et al. 1994), the Veltmann-models
(Veltmann 1979), and the Dekel-Zhao models (Dekel et al. 2017;
Freundlich et al. 2020b) are subfamilies of this broad family.

Zhao (1996) presented several properties of this general family
of models, focusing on the properties that can be calculated ana-
lytically. Explicit expressions for the isotropic distribution function
are provided for a few cases, but no general discussion is offered.
Interestingly, Section 3.1 of the paper mentions that ‘it can be easily
shown that all of the (α, β, γ )-models have a positive definite
distribution function f (E) � 0 based on Eddington’s formula.’ The
fact that the isotropic distribution function for all BPL models is
negative in some part of phase space casts doubt on that statement.

3.2 Evolution as a function of α

In Fig. 3, we show the most important dynamical properties for a set
of Zhao models with (β, γ ) = (4, 1) and with different values of α.
All of these models have a mild r−1 cusp and a r−4 slope at large
radii. As the Hernquist model is a special case of the general family
of Zhao models corresponding to (α, β, γ ) = (1, 4, 1), this subfamily
can be regarded as a generalization of the Hernquist model. In the
limit α = 0, we recover our fiducial BPL model with (β, γ ) = (4, 1).

MNRAS 503, 2955–2965 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/2/2955/6158406 by guest on 10 April 2024



2960 M. Baes and P. Camps

Figure 3. Density, mass profile, potential, velocity dispersion, distribution function, and differential energy distribution for different members of the subfamily
of Zhao models with (β, γ ) = (4, 1). The different models correspond to different values of the smoothness parameter α ranging between α = 1 and α = 0,
corresponding to the BPL model with the same values of β and γ .

To calculate the dynamical properties, we used a numerical
Gauss–Legendre integrator with 128 nodes, implemented in C++ .
We tested our integration rules against high-precision numerical
integration in Mathematica, and against analytical results available
for a number of quantities and selected models.

As α decreases, the density, mass profile, and potential of the Zhao
models shown nicely converge to the curves of the corresponding
BPL model. The same is true for the velocity dispersion profile,
which gradually develops the conspicuous dip at r = 1. Also for the
distribution function and the differential energy distribution there is
a clear convergence to the BPL curves. For large values of α, such
as for the Hernquist model with α = 1, the distribution function
is a monotonically increasing function of E . As α decreases, the
distribution function starts to develop a kink, corresponding to an
excess at E � �b and a depression at E � �b. If α decreases even
more, this kink becomes stronger and stronger, and at some point
the distribution function drops below zero for E � �b . In the limit
α = 0, we recover the result discussed in the previous section, with
a distribution function that is discontinuous at E = �b, and that
diverges to minus infinity when E approaches �b from the large
binding energy side.

This behaviour is more clearly illustrated in the top panel of Fig. 4,
which adopts a linear rather than a logarithmic scale to allow for
negative values to be shown. The models corresponding to the highest
values of α (among which the Hernquist itself, corresponding to
α = 1) have a distribution function that is a continuously increasing
function of E . This implies not only that the isotropic model is self-
consistent and physical, but also that it is stable against radial and
non-radial perturbations (Antonov 1962; Doremus, Feix & Baumann
1971; Binney & Tremaine 2008). The model with α = 1

10 has a
distribution function with a kink and negative derivative at E = �b,
but that still remains positive for all values of the binding energy.
This means that the model is still physical, but that is no longer

guaranteed to be stable against perturbations. On the other hand, the
models with smallest values of α drop below zero. In these cases,
the model cannot be supported by an isotropic distribution function.
Finally, in the limit α = 0, the Zhao model reduces to the BPL
model and the isotropic distribution function becomes discontinuous
at E = �b and negative for E � �b.

To investigate whether this behaviour is a generic feature of
the Zhao models and not connected to a particular choice of the
parameters β and γ , we have repeated this procedure for different
values of β and γ . The middle and the bottom panels of Fig. 4
are similar to the top panel, but correspond to models with (β,
γ ) = (3, 1) and (β, γ ) = (5, 0). These two subfamilies can be
regarded as generalizations of the NFW and the Plummer model,
respectively. Qualitatively speaking, the results are identical: for
large α the distribution is a smooth, positive, and monotonically
increasing function of binding energy. As α gradually decreases,
the distribution function starts to develop a kink. As soon as α drops
below a critical value αcrit, the exact value of which depends on β and
γ , the distribution function becomes negative for E � �b. Finally, it
turns into the discontinuous distribution function of the BPL model
that diverges to −∞ when E approaches �b from the high binding
energy side.

In Fig. 5, we plot the αcrit(β, γ ), the minimum value of α that still
allows a positive definite isotropic distribution function, as a function
of β and γ , and in Table 1 we list a number of values for integer
and half-integer values. For any value of β, αcrit(β, 0) = 1

2 , that is,
all models of the form

ρ(r) = (1 + r2)−β/2 (25)

are critical models in this respect. This includes the Plummer model
for β = 5, the perfect sphere for β = 4, and the modified Hubble
profile for β = 3. αcrit quickly decreases as a function of γ , and
already takes values around 0.1 for γ = 1

2 . For any value of γ ,
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Broken power-law and double power-law models 2961

Figure 4. Top panel: Isotropic distribution functions f (E) of generalized Hernquist models, corresponding to (β, γ ) = (4, 1), for values of E around E = �b.
The distribution is plotted in linear scale to explicitly show potential negative values. Central panel: Same for generalized NFW models, corresponding to (β,
γ ) = (3, 1). Bottom panel: Same for generalized Plummer models, corresponding to (β, γ ) = (5, 0).

αcrit is a weak and monotonically increasing function of β. All
of the commonly used special cases of the general Zhao family
with γ > 0, such as the γ -models, the Dekel-Zhao models, and
the Veltmann models have α > αcrit(β, γ ) and hence correspond to
positive distribution functions f (E).

However, our analysis clearly disproves the statement by Zhao
(1996) that all (α, β, γ ) models have a positive definite isotropic
distribution function. In a follow-up paper, Zhao (1997) presents
analytical fitting functions for the distribution function of his family
of models. Actually, he proposes a fitting function for the primitive
of the distribution function

G(E) ≡
∫ E

0
f (E ′) dE ′. (26)

Inspired by the observation that the distribution function of asymp-
totic power-law systems is often, but not always, a power law of
binding energy at asymptotic small or large radii, he proposes for

G(E) a similar double power-law function as for the density profile

G(E) ≈ f0 �b qβ2
(
1 + q1/α2

)(γ2−β2)α2
. (27)

In this expression, q is a rescaled and dimensionless version of the
binding energy

q =
⎧⎨
⎩

E/�b

1 − E/�0
if γ < 2,

E/�b if γ � 2,

(28)

and f0, α2, β2, and γ 2 are four fitting parameters. By construction,
this proposed fitting function for the distribution function is always
positive definite and monotonically increasing as a function of
binding energy. Zhao (1997) discusses a number of models where
the proposed density derived by integrating this model distribution
over velocity space describes the actual density profile very well
with small residuals. All of these models correspond to safe values
of α > αcrit where the actual distribution is indeed positive and
monotonically increasing. For smaller values of α, for which the
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Figure 5. αcrit(β, γ ), the minimum value of α that still corresponds to a
Zhao model with a positive distribution function f (E), as a function of γ for
two different values of β.

Table 1. Numerical values of αcrit(β, γ ), the minimum value of α that still
corresponds to a Zhao model with a positive distribution function f (E), for
different values of β and γ .

β αcrit(β, γ )
γ = 0 γ = 0.5 γ = 1 γ = 1.5 γ = 2 γ = 2.5

2.5 0.5000 0.0833 0.0348 0.0137 0.0031 0.0000
3 0.5000 0.0919 0.0429 0.0207 0.0087 0.0016
3.5 0.5000 0.0984 0.0490 0.0264 0.0136 0.0058
4 0.5000 0.1034 0.0540 0.0309 0.0178 0.0095
4.5 0.5000 0.1074 0.0579 0.0348 0.0213 0.0127
5 0.5000 0.1107 0.0612 0.0379 0.0244 0.0156

distribution function can show a kink or even assume negative values
(see Fig. 4), the proposed fitting function cannot adequately describe
the actual distribution function.

4 D ISCUSSION AND CONCLUSION

The main goal of this paper was to further explore the set of BPL
models introduced by Du et al. (2020). The prime specific question
we wanted to address in this paper was whether the BPL models
can be supported by an isotropic distribution function. Our analysis
clearly answers negatively to this question: none of the BPL models
with realistic parameters (i.e. with γ < β) has a distribution function
that is positive over the entire phase space. In all cases, the distribution
function of the BPL model is a discontinuous function, with a
discontinuity at E = �b, the binding energy corresponding to the
value of the potential at the break radius. The distribution function
is a well-behaved, smoothly increasing function of E for all E < �b,
but shows an inverse square-root divergence to −∞ as E approaches
�b from the high binding energy side. The BPL models can hence
not be supported by an isotropic distribution function.

More generally, we have found that not all Zhao models have
positive definite isotropic distribution functions, contrary to the claim
made by Zhao (1996). Specifically, for every value of β and γ

with γ < β, there is a minimum value αcrit(β, γ ) that still allows
positive distribution functions. Any model with α < αcrit, that is,
with a sharper transition between the inner and outer regions, has
a distribution function f (E) that is negative at binding energies
E � �b. For γ = 0, we find that αcrit(β, 0) = 1

2 for all values of β,
implying that a number of well-known models such as the Plummer

model, the perfect sphere, and the modified Hubble sphere are critical
models. For γ > 0, all of the commonly used special cases of the
general Zhao family are in the safe zone with α > αcrit. However, our
analysis demonstrates that the positivity of the distribution function is
a requirement that is not automatically satisfied, even for spherically
symmetric models with a well-behaved density profile.

This fact is not completely unsurprising: in our previous work
(Baes & Ciotti 2019; Baes 2020), we have investigated the dynamical
structure of the families of Sérsic (Sérsic 1968; Ciotti 1991) and
Nuker (Lauer et al. 2005) models. Very similar to the Zhao models,
both families are characterized by a different behaviour at small and
large radii, and contain a shape parameter that governs the transition
between these two asymptotic regimes (the Sérsic parameter m in
the case of the Sérsic models, and the smoothness parameter α in
the case of the Nuker models). For both families we found that
models with a smooth transition between the inner and outer regimes
can be supported by an isotropic distribution function, but models
with a sharp transition cannot. The family of Zhao models follows
that general behaviour. The BPL models, as limiting cases of Zhao
models with an infinitely sharp transition, automatically belong to
the region in parameter space that corresponds to models that cannot
be supported by an isotropic distribution function.

Why these models with a sharp transition in the density distribution
cannot be supported by an isotropic distribution function can be
understood by looking at a dynamical model as a superposition
of orbits, that is, as in Schwartzschild orbit superposition methods
(Schwarzschild 1979; Richstone & Tremaine 1984; Neureiter et al.
2021). The weighted sum of all the orbits that pass a spherical shell
at distance r gives the density ρ(r). In this thought experiment of
building up a spherical model as a superposition of orbits, we start
from the outer radius and gradually work towards the centre. Assume
that we already have combination of orbits that reproduces the density
and isotropic velocity structure at all radii r beyond a given rref.
Obviously these orbits also cross into regions at small radii, and
hence also contribute to the density at r ≤ rref. If we now want to
ensure that our model has the correct density at r = rref, we need
to add orbits with apocentre at this radius (orbits with a smaller
apocentre do not contribute to the density at rref, and orbits with a
larger apocentre would pollute the density at radii beyond rref). To
ensure velocity isotropy, we must add a mixture of such orbits to
the set of orbits already present, with some of them more radial and
some more circular-like.

Repeating this for all radii, we can gradually build up a model that
reproduces the density and the required isotropic velocity structure
at all radii. There is one condition, however: at any radius rref, the
available ‘room’ for orbits should not be filled yet previously. As long
at the density increases sufficiently strongly as we move from large
to small radii, there is always enough room to add orbits such that the
density and the isotropic velocity structure is respected at all radii.
Such models can be supported by an isotropic velocity distribution.
However, in case there is a relatively sharp break in the density, say
at r = rb, there is less room to populate the model with orbits with
apocentre at r ∼ rb. In case the break is very sharp, it is possible
that the set of orbits that was necessary to guarantee the density and
velocity isotropy at r > rb has already filled the entire space at r �
rb. The only way to ensure that the density and the velocity structure
at these radii is respected consists of adding orbits with a negative
weight to the mix. This results in a negative distribution function and
differential energy distribution, which is obviously non-physical.

Isotropy is only one possible orbital structure of dynamical
systems, and there are many alternative options and methods to
construct the corresponding distribution functions (e.g. Osipkov
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1979; Merritt 1985; Dejonghe 1986; Cuddeford 1991). It is possible
to self-consistently generate the BPL density distributions with
anisotropic distribution functions that favour tangential over radial
orbits. In fact, any spherical density model can in theory be supported
by a distribution function that consists of purely circular orbits
(Richstone & Tremaine 1984). Cosmological N-body simulations
generally yield dark matter haloes that are roughly isotropic in
the inner regions and mildly radially anisotropic at larger regions
(Taylor & Navarro 2001; Diemand, Moore & Stadel 2004; Ludlow
et al. 2011; Lemze et al. 2012; Wojtak, Gottlöber & Klypin 2013;
Butsky et al. 2016). If the BPL models cannot be supported by an
isotropic velocity distribution, they cannot be supported by a radially
anisotropic one either, as radial anisotropy puts tighter constraints
on the positivity of the distribution function. This can be understood
by looking at dynamical systems as a superposition of orbits, as
discussed above. In a model with radial anisotropy, a majority of
orbits are more elongated, and on average, each orbit with a given
apocentre contributes more to the density at smaller radii. When
gradually building up a model from outside inwards, at every radius
rref, a larger fraction of the available room for additional orbits will
already be filled by orbits with apocentre r > rref. A break in the
density profile will therefore even more easily lead to the need to add
orbits with negative weights.

The family of BPL models was introduced as an attractive model
for dark matter haloes in gravitational lensing studies. The attraction
lies in two factors. First of all, in spite of its larger flexibility compared
to more simple lens models, it still allows for most of the interesting
properties for lensing studies to be calculated fully analytically, as
demonstrated by Du et al. (2020). Secondly, contrary to most of the
other popular analytical mass models used in lensing, the BPL model
has the same global characteristics as the Zhao models, often used to
model dark matter haloes (Navarro et al. 1997; Hague & Wilkinson
2013, 2014, 2015; Di Cintio et al. 2014; Mollitor, Nezri & Teyssier
2015; Tollet et al. 2016; Allaert et al. 2017; Dekel et al. 2017; Katz
et al. 2017; Wang, Chen & Li 2017; Cautun et al. 2020; Hayashi et al.
2020; Freundlich et al. 2020b). The fact that the BPL models cannot
be supported by an isotropic (or radially anisotropic) distribution
function limits the attractiveness of this family of models to some
degree.
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APPENDIX A : A NA LY TICAL EXPRESSIONS FOR THE BPL MODEL W I TH (β, γ ) = ( 4 , 1 )

In the main body of this paper we have used the BPL model with (β, γ ) = (4, 1) as our fiducial model. The main reason why we chose this
particular model is that the subfamily of Zhao models with (β, γ ) = (4, 1) contains the Hernquist model as a special case, and can hence be
regarded as a generalization of this often used and well-studied model (e.g. Hernquist 1990; Baes & Dejonghe 2002; Baes & van Hese 2007).
An additional benefit is that, for this BPL model, most of the dynamical properties, including the the distribution function and the differential
energy distribution, can be calculated analytically.

For the basic properties we can immediately find the analytical expressions by setting β = 4 and γ = 1 in the expressions (2), (4), (7), and
(11)
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The model has a finite total mass and a finite potential well, with

M = 6π, (A9)

�b = 4π, (A10)

�0 = 6π. (A11)

For the distribution function and the density of states function, we need to substitute the potential in the expressions (18) and (22), and evaluate
the resulting integrals. For the inner part, corresponding to �b < E � �0 we find
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and

gin(E) = 512 π5/2

105
y7/2 (A13)
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with

y = 3 − E
2π

. (A14)

For the outer part, corresponding to binding energies E < �b, we have

fout(E) = 1

8π7/2

[
2 (8 − 24x + 27x2)

√
3x − 1

x (3x − 2)2
+ 9 ln

(
3x − 2

√
3x − 1

3x − 2

)]
(A15)

and

gout(E) = π5/2

105

[
512 (3x2 − 3x + 1)7/2

x7
+ 140 (27x4 − 6x3 − 70x2 + 48x − 8)

√
(x − 1) (2x − 1)

x (3x − 1)2

+ 64 (246x6 − 729x5 + 927x4 − 672x3 + 292x2 − 72x + 8)
√

1 − 3x + 2x2

x7

+630 (3x − 2)2 x3

(3x − 1)5/2

(
π

2
+ arctan

(
3x2 − 6x + 2

2
√

(x − 1) (2x − 1) (3x − 1)

))]
(A16)

with

x = 3π

E

(
1 +

√
1 − 2E

9π

)
. (A17)

At small binding energies (E → 0), the distribution function, the density-of-states function, and the differential energy distribution behave as

f (E) =
√

2

405 π6
E5/2 + · · · , (A18)

g(E) = 216
√

2 π6 E−5/2 + · · · , (A19)

N (E) = 15

16
+ 32

315 π
E + · · · , (A20)

whereas for E → �0 we have the expansions

f (E) = 3

4
√

2
(�0 − E)−5/2 + · · · , (A21)

g(E) = 32
√

2

105 π
(�0 − E)7/2 , (A22)

N (E) = 8

35 π
(�0 − E) + · · · . (A23)

The leading terms in these expansions have the same order as those of the Hernquist model, as expected. The explicit expression for the
distribution function also allows an investigation of the behaviour in the neighbourhood of �b. For E approaching �b from the low binding
energy side, we find

f (E) = 22
√

2 + 9 ln(3 − 2
√

2)

8 π7/2
− 4

√
2

π9/2
(�b − E) + · · · . (A24)

Approaching �b from the high binding energy side, we find the expansion

f (E) = − 3

4
√

2 π3

1√
E − �b

+ 22
√

2 + 9 ln(3 − 2
√

2)

8 π7/2
− 9

2
√

2 π4

√
E − �b + · · · . (A25)

This clearly demonstrates the discontinuity of the distribution function at E = �b, with a finite value at the low binding energy side and an
inverse square-root divergence to −∞ on the high binding energy side.
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