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ABSTRACT
Galactic foregrounds are the main obstacle to observations of the cosmic microwave background (CMB) B-mode polarization.
In addition to obscuring the inflationary B-mode signal by several orders of magnitude, Galactic foregrounds have non-trivial
spectral signatures that are partially unknown and distorted by averaging effects along the line of sight, within the pixel/beam
window, and by various analysis choices (e.g. spherical harmonic transforms and filters). Statistical moment expansion methods
provide a powerful tool for modelling the effective Galactic foreground emission resulting from these averaging effects in CMB
observations, while blind component separation treatments can handle unknown foregrounds. In this work, we combine these
two approaches to develop a new semiblind component separation method at the intersection of parametric and blind methods,
called constrained moment ILC (cMILC). This method adds several constraints to the standard ILC method to deproject the
main statistical moments of the Galactic foreground emission. Applications to maps are performed in needlet space and when
compared to the NILC method, this helps in significantly reducing residual foreground contamination (bias, variance, and
skewness) in the reconstructed CMB B-mode map, power spectrum, and tensor-to-scalar ratio. We consider sky simulations for
experimental settings similar to those of LiteBIRD and PICO, illustrating which trade-offs between residual foreground biases
and degradation of the constraint on r can be expected within the new cMILC framework. We also outline several directions that
require more work in preparation for the coming analysis challenges.

Key words: polarization – methods: analytical – methods: observational – cosmic background radiation – early Universe –
inflation.

1 IN T RO D U C T I O N

The search for the primordial B-mode polarization (curl-like pat-
tern) of the cosmic microwave background (CMB) radiation is
recognized as one of the ultimate challenges in CMB cosmology.
The primordial CMB B-mode signal would indeed be a clear
signature of the primordial gravitational waves of quantum origin
predicted by inflation (e.g. Starobinsky 1983), when the Universe
underwent ultra-rapid accelerated expansion just about 10−35 s after
the big bang. The amplitude of the primordial CMB B-mode power
spectrum, parametrized using the tensor-to-scalar ratio r, would
allow determining the energy scale of inflation: V1/4 � (r/0.01)1/4

× 1016 GeV (Knox & Song 2002), and thereby distinguish main
classes of early Universe models (e.g. Baumann et al. 2009; Martin,
Ringeval & Vennin 2014).

One of the main goals for next-generation CMB experiments is a
statistically significant detection of primordial CMB B modes down
to r � 10−3. From space, this effort is led by LiteBIRD (Hazumi
et al. 2019), whose launch is planned by JAXA for early 2028.
Another space concept is PICO (Hanany et al. 2019), which is
currently in NASA’s concept study phase. In addition, ambitious
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future missions with a broad range of capabilities including CMB
spectroscopy are being discussed for the ESA Vogage 2050 program
(Basu et al. 2019; Chluba et al. 2019; Delabrouille et al. 2019).
From the ground, the Simons Observatory (SO; Ade et al. 2019),
whose survey should start in 2021, and the CMB-S4 (Abazajian
et al. 2016) project are relentlessly moving forward. For all these
efforts, CMB foregrounds pose a real challenge because the B-mode
signal is extremely faint (≤50 nK r.m.s fluctuations), with intense
polarized Galactic emission (mostly synchrotron and thermal dust
emission) obscuring it by several orders of magnitude. In addition,
gravitational lensing effects on the CMB by the large-scale structure
and several instrumental systematics create spurious contamination
to CMB B modes. Component separation methods are thus critical,
since the residual foreground contamination in the recovered CMB
B-mode map will set the ultimate uncertainty limit with which r can
be determined (Remazeilles et al. 2018).

Several component separation methods have been developed in
the literature to disentangle the primary CMB signal from the
foregrounds: Commander (Eriksen et al. 2008), SMICA (De-
labrouille, Cardoso & Patanchon 2003; Cardoso et al. 2008), NILC
(Delabrouille et al. 2009), SEVEM (Fernández-Cobos et al. 2012),
and GNILC (Remazeilles, Delabrouille & Cardoso 2011b), to name
only those that have been used for the data product release of
the ESA’s Planck satellite (Planck Collaboration IV 2020a). These
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Constrained moment ILC for B modes 2479

methods (which have been successfully applied to Planck tempera-
ture and E-mode data for which the signal-to-foregrounds ratio was
relatively large) are now being recycled, along with most recent
algorithms like xForecast (Errard et al. 2016; Stompor, Errard
& Poletti 2016), BFoRe (Alonso et al. 2017), and tailored template
fitting (Delta-map; Ichiki et al. 2019), for new faint signal-to-
foregrounds regimes in B-mode forecasts (e.g. Remazeilles et al.
2018).

Some of these methods, such as the Bayesian fitting method Com-
mander and maximum-likelihood fitting method xForecast, are
parametric since they rely on astrophysical models of the foreground
emission, while other methods, such as the variance-minimization
method NILC, are blind in the sense that no explicit assumption
is made on foregrounds. Each of them have their advantages and
weaknesses, but consistency between blind and parametric methods
on CMB B-mode reconstruction is desired for claiming a robust
detection. In this respect, many lessons have been learned (Flauger,
Hill & Spergel 2014; BICEP2/Keck Collaboration 2015), and we
now understand the importance of further developing component
separation methods for B modes that allow us to eliminate biases
arising from residual foregrounds. In addition, the optimal method
depends on the observable that is targeted, and there may be no
one-rules-it-all approach.

Component separation methods rely on the distinct spectral sig-
natures of the various components of emission (CMB, foregrounds)
to disentangle them in multifrequency sky observations. However,
Galactic foregrounds have non-trivial spectral energy distributions
(SEDs), whose exact properties are still unknown at the sensitivity
levels of r � 10−3. In parametric approaches, a slight mismodelling of
the foregrounds may lead to large biases on r due to huge amplitude
disparity between foregrounds and primordial B modes (Remazeilles
et al. 2016; Hensley & Bull 2018). Similarly, the thermal dust
emission from the interstellar medium is expected to be partially
decorrelated across frequencies, i.e. the dust spectral parameters
(spectral index and temperature) may not only vary across the sky
but also across frequencies, because of the averaging of multiple
cloud contributions of different spectral indices and temperatures
along the line of sight (Tassis & Pavlidou 2015). Thus, while still
sufficient at Planck sensitivity, the common modelling of the dust
SED as a unique modified blackbody across frequencies may break
at the targeted B-mode sensitivity, and lead to significant biases on r
after component separation.

To minimize the effects of unknown foreground complexities,
blind analysis methods provide a powerful remedy, while averaging
effects of known SEDs can in principle be modelled parametrically
through moment expansion methods (Stolyarov et al. 2005; Chluba,
Hill & Abitbol 2017). Aside from line-of-sight averaging effects,
similar spectral averaging effects arise from the limited beam/pixel
resolution of the sky maps and various analysis choices, such as
spherical harmonic decomposition, downgrading the resolution, or
generally when applying filters (Chluba et al. 2017). The effec-
tive SED of the foreground emission in a given pixel/beam may
therefore differ from the expected SED shape in each line of
sight, since the former is the average over several line-of-sight
SEDs.

As an illustration (see Fig. 1), let us assume that, in each single
pixel of a high-resolution sky map, the synchrotron emission can be
accurately described by a single power law, fsync(ν) � ν β , across
frequencies ν, with a pixel-dependent spectral index β(p) varying
across the sky. While this SED model might be approximately valid
at the given map resolution and sensitivity, it can actually break for
maps of lower angular resolution, for which the effective SED is now

Figure 1. Mismodelling of the foregrounds across frequency due to beam
averaging in multiresolution sky maps: a synchrotron power-law spectrum
at high angular resolution becomes a curved power law at lower resolution,
with the curvature given by the second-order moment of the spectral index.

the average of multiple power laws within a larger beam:

〈fsync(ν)〉 = 〈ν β(p)〉

�
〈
e〈β〉 ln ν+(β − 〈β〉) deβ ln ν
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|β=〈β〉+1

2
(β−〈β〉)2 d2eβ ln ν

dβ2
|β=〈β〉

〉
� e〈β〉 ln ν

〈
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(
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2
〈β2 − 〈β〉2〉 (ln ν)2

)
� ν 〈β〉+C ln ν . (1)

Here, we defined the beam-average 〈Y (p, ν)〉 ≡ 〈Y (p, ν)〉p ∈ beam[ν].
As equation (1) shows, the average SED is no longer a power law
but a curved power law at lower angular resolution, with an effective
curvature C = 1

2 〈β(p)2 − 〈β〉2〉 given by the variance (second-order
moment) of the spectral index within the beam (Chluba et al. 2017).
In the last step, we resummed the series, which assumes that all
higher order moment are Gaussian, which in general may not be
valid. Therefore, while the spectral intensity of the synchrotron
might be accurately modelled by a power law at one resolution,
the power-law model is no longer valid at lower angular resolution.
This results in an effective decorrelation of the foreground emission
across frequencies. For similar reasons, omitting effective curvature
due to beam averaging in the SED modelling of thermal dust can
induce non-negligible biases on r � 10−3 (Remazeilles et al. 2018).
Modelling as many moments of the foreground emission as possible,
given the sensitivity limits of an experiment, thus provides a natural
way for capturing some of the additional complexity of the CMB
foreground contamination.

With this in mind, in this work we develop a semiblind component
separation method, called constrained moment ILC (cMILC), which
operates at the intersection of blind ILC methods and parametric
foreground modelling methods. We extend the NILC method by
adding several nulling constraints on the effective SEDs of the main
moments of the dust and synchrotron emissions in order to remove the
bulk of the residual foreground contamination in the recovered CMB
B-mode map. This is achieved by combining the moment expansion
technique (Chluba et al. 2017) with the constrained ILC (cILC)
method (Remazeilles, Delabrouille & Cardoso 2011a). While here
the focus is on B-mode signal, this type of semiblind approach has
broader applicability and was recently introduced for the extraction
of the relativistic Sunyaev–Zeldovich (SZ) effect (Remazeilles &
Chluba 2020) and CMB spectral distortions (Rotti & Chluba 2021).
In harmonic space, the power of moment methods was furthermore
recently explored on Planck data (Mangilli et al. 2021). Moment
expansion techniques have also been used in the modelling of SZ
signals (Chluba et al. 2013). First-order moments have also been
recently used to augment internal template fitting methods for B-
mode foreground cleaning (Ichiki et al. 2019).
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The paper is organized as follows. In Section 2, we review the
basics of the ILC and cILC methods. In Section 3, we present
our new semiblind component separation method cMILC, which
plugs the foreground moment expansion technique described in
Section 3.1 into the cILC method, as outlined in Section 3.2. We
discuss the statistical properties of residual foregrounds and noise in
Section 3.4. We then present the results of our B-mode analysis on
sky simulations for experimental settings similar to LiteBIRD and
PICO in Section 4. We discuss some directions for optimization of
the method in Section 5, and draw our conclusions in Section 6.

2 BASICS O F ILC METHODS

2.1 The standard ILC

The standard internal linear combination (ILC; Bennett et al. 2003;
Tegmark, de Oliveira-Costa & Hamilton 2003; Eriksen et al. 2004;
Delabrouille et al. 2009; Basak & Delabrouille 2012) is a blind
component separation method as there is no attempt at directly
modelling the foregrounds. Hence, the sky observations dν(p), at
each frequency ν and for each pixel p are written as

dν(p) = aν s(p) + nν(p), (2)

where aν is the known spectral response (SED)1 of the CMB
anisotropies s(p) at frequency ν, while nν(p) is the unmodelled overall
contamination from foregrounds and instrumental noise.

For convenience with the algebra, we recast equation (2) in a nf ×
1 vector form, where nf is the number of frequency channels:

d(p) = as(p) + n(p). (3)

Here, d(p) = {dν(p)}ν collects the set of available frequency maps,
a = {aν}ν is the known CMB SED vector, s(p) corresponds to
the unknown CMB anisotropies that we aim at extracting, and
n(p) = {nν(p)}ν collects the unmodelled foregrounds and noise that
we aim at mitigating in the reconstructed CMB map.

The standard ILC estimate, ŝ(p), of the CMB anisotropies is
obtained by forming a weighted linear combination of the frequency
maps

ŝ =
∑

ν

wν dν ≡ wTd (4)

that is of minimum variance, i.e.

∂

∂w
〈ŝ 2〉 = 0. (5)

Here, the ILC weights w = {wν}ν assigned to the frequency maps
are constrained to provide unit response to the CMB SED:

wTa = 1 (6)

in order to guarantee the full conservation of the CMB signal s(p) in
the variance minimization. This ensures that the ILC estimate

ŝ = wTd = wT (as + n) = s + wTn (7)

does not alter the CMB signal s (i.e. no multiplicative error due to the
constraint equation 6), while the variance of the residual foreground
and noise wTn is minimized by equation (5).

The variance of the ILC map, 〈ŝ 2〉, relates to the covariance of the
data d as

〈ŝ 2〉 = wT〈ddT〉w = wTC w, (8)

1Modelled by the first temperature derivative of the blackbody spectrum.

where C = 〈ddT〉 is the nf × nf covariance matrix of the data whose
elements are Cνν′ = 〈dνdν′ 〉 for any pair of frequencies (ν, ν

′
). An

empirical estimate of the data covariance matrix in each pixel p can
be obtained by ergodicity:

C(p) = 1

Np

∑
p′∈D(p)

d(p′)d(p′)T, (9)

where D(p) is a domain of pixels surrounding pixel p, and Np the
number of pixels in this domain.

The ILC weights w are thus the solution of the constrained
variance-minimization problem:{

∂
∂w

(wTC w) = 0,

wTa = 1,
(10)

which can be addressed with a Lagrange multiplier λ by solving

∂

∂w
[wTC w + λ(1 − wTa)] = 0. (11)

This yields wT = λaTC−1, while wTa = 1 leads to λ =
(aTC−1 a)−1, so that the standard ILC weights are given by

wT = (aTC−1 a)−1 aTC−1. (12)

2.2 The cILC

While the variance of the global contamination (i.e. foregrounds
plus noise) is minimized by the standard ILC estimate, this is not
necessarily the solution with minimal foreground variance. Instead
of minimizing the variance of the global contamination, the cILC
method (Remazeilles et al. 2011a) extends the standard ILC to fully
eliminate selected foreground residuals by using prior knowledge
on their SED and adding orthogonality constraints to the variance-
minimization problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂
∂w

(
wTC w

) = 0

wTa = 1
wTb1 = 0
...
wTbm = 0,

(13)

where b1, · · · , bm are the SED vectors of m modelled foreground
components, to which the cILC weights w are orthogonal. If we
write the sky observations as

d(p) = a s(p) +
m∑

i=1

bi gi(p) + n(p), (14)

where {gi(p)}1 ≤ i ≤ m are the m foreground components whose SEDs
{bi}1≤i≤m are modelled, while n(p) includes unmodelled foregrounds
and instrumental noise, then the orthogonality constraints wT bi = 0
of the cILC method in equation (13) guarantee the full cancellation
of the residual foreground contamination from the m modelled
components in the reconstructed CMB map:

ŝ(p) = (wTa) s(p) +
m∑

i=1

(
wTbi

)
gi(p) + wTn(p)

= s(p) + wTn(p). (15)

This significantly differs from the ILC method (equation 10) which
suffers from additional foreground residuals as

∑m

i=1(wTbi) gi(p) 
=
0 in this case. However, the penalty of adding nulling constraints on
some foregrounds in the cILC is an increase of the noise residuals
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Constrained moment ILC for B modes 2481

wTn(p) compared to the standard ILC. But there is a sweet spot
between noise cost and reduction of foreground biases, as we show in
this work. This optimization furthermore depends on the observable
that is targeted, which in our case is r (see Section 4.2).

If we introduce the nf × (m + 1) SED matrix A = [a b1 · · · bm],
whose columns collect the SED vectors of the modelled components,
and the 1 × (m + 1) transposed vector eT = [1 0 · · · 0], then the
system of equations (13) can be rewritten in the compact form:{

∂
∂w

(
wTC w

) = 0

wTA = eT.
(16)

Hence, the problem is equivalent to solving

∂

∂w
[wTC w + �T(e − ATw)] = 0, (17)

where �T = [λμ1 · · · μm] is a vector of (m + 1) Lagrange multipli-
ers. This yields to wT = �TATC−1, while the constraints wTA = eT

give �T = eT(ATC−1A)−1. The cILC weights are then given by

wT = eT(ATC−1A)−1ATC−1, (18)

which is a generalization of equation (12). Equation (18) has been
previously derived in the literature for the extraction of the relativistic
SZ effect (Remazeilles & Chluba 2020) and CMB spectral distortions
(Rotti & Chluba 2021). Similar multidimensional ILC filters have
been derived for other component separation methods like GNILC
(Remazeilles et al. 2011b) and MILCA (Hurier, Macı́as-Pérez &
Hildebrandt 2013), the main difference between them lying in the
form of the mixing matrix A.

It should be noted that for a single orthogonality constraint,
i.e. A = [a b] and eT = [1 0], the general expression equation (18)
reduces to

wT = (bTC−1b)aTC−1 − (aTC−1b)bTC−1

(aTC−1a)(bTC−1b) − (aTC−1b)2
, (19)

which was introduced by Remazeilles et al. (2011a) to null SZ
cluster residuals in primary CMB maps, when a and b are the SEDs
of CMB and thermal SZ, respectively. Finally, in the absence of
any orthogonality constraint, i.e. A ≡ a and e ≡ 1, the expression
equation (18) reduces to the standard ILC given in equation (12).

3 SEMIBLIND C OMPONENT SEPARATION
M E T H O D

We now work out our new semiblind component separation method
for B modes, the cMILC, which combines foreground moment
expansion (Chluba et al. 2017) and cILCmethod (Remazeilles et al.
2011a).

3.1 Moment expansion of the foreground emission

The spectral intensity2 of the Galactic foreground emission depends
on several spectral parameters β(p) ≡ {βi(p)}1≤i≤n (e.g. spectral in-
dices, temperatures) that vary across the sky (hence the p dependence
for ‘pixel’) and along the line of sight:

I (ν, p) = Aν0 (p) f (ν, β(p)) . (20)

Aν0 (p) is the amplitude of the foreground emission at some pivot
frequency ν0, and f (ν, β(p)) is the SED which varies both across

2By ‘intensity’, we mean either I, Q, U, E, or B, without loss of generality.

frequencies ν and across the sky, depending on the local spectral
parameters β(p) ≡ {βi(p)}1≤i≤n.

As stressed by Chluba et al. (2017), we can expand the foreground
SED, f (ν, β(p)), in terms of statistical moments around some fixed
pivot parameters β ≡ {βi}i :

f (ν, β(p)) =
∑

k

∑
α1+···+αn=k

× (β1(p) − β1)α1 · · · (βn(p) − βn)αn

α1! · · · αn!

∂ kf (ν,β)

∂β
α1
1 · · · ∂β

αn

n

· (21)

This is nothing but a multidimensional Taylor series in all the
spectral parameters, however, it gives the flexibility to describe
various physical and observational averaging processes. The moment
expansion highlights that the foreground emission can be captured
by a set of moment components in the sky:

mα1,··· ,αn
(p) = Aν0 (p)

(β1(p) − β1)α1 · · · (βn(p) − βn)αn

α1! · · · αn!
, (22)

each of them having a uniform SED across the sky given by

∂ α1+···+αnf

∂β
α1

1 · · · ∂β αn
n

(ν, β(p) = β). (23)

Next, we will consider thermal dust and synchrotron as the main
polarized Galactic foregrounds for B modes. The SED of the
synchrotron emission is known to be close to a power law

fsync(ν, βs(p)) =
(

ν

νs

)βs (p)

, (24)

for data in Rayleigh–Jeans brightness temperature units, with an
average spectral index of 〈βs(p)〉p � −3 over the sky (Kogut et al.
2007; Miville-Deschênes et al. 2008; Krachmalnicoff et al. 2018;
Planck Collaboration IV 2020a). Conversely, the SED of the thermal
dust emission is known to be close to a modified blackbody

fdust(ν, βd (p), Td (p)) =
(

ν

νd

)βd (p)+1 1

exp
(

hν
kTd (p)

)
− 1

, (25)

for data in Rayleigh–Jeans brightness temperature units, with an
average spectral index of 〈βd(p)〉p � 1.5 and an average temperature
of 〈Td(p)〉p � 20 K (Planck Collaboration XI 2014; Planck Collabo-
ration X 2016a; Planck Collaboration Int. XLVIII 2016c).

Hence, the moment expansion of the synchrotron emission up to
second order yields3

Isync(ν, p) = Aνs
(p)fsync(ν, βs)

+ Aνs
(p) 	βs(p) ∂βs

fsync(ν, βs)

+ 1

2
Aνs

(p) 	β2
s (p) ∂2

βs
fsync(ν, βs) + O

(
β3

s

)
, (26)

where 	βs(p) = βs(p) − βs and

fsync(ν, βs) =
(

ν

νs

)βs

, (27a)

∂βs
fsync(ν, βs) = ln

(
ν

νs

)
fsync

(
ν, βs

)
, (27b)

∂2
βs

fsync(ν, βs) =
[

ln

(
ν

νs

)]2

fsync(ν, βs) (27c)

3We will be using the notation ∂β̄f (β̄) ≡ ∂f (β)
∂β

∣∣
β=β̄

throughout the paper.
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Figure 2. SED of the zeroth- and first-order moments of the dust and
synchrotron (coloured solid lines), along with the SED of the CMB (black
dotted line), across frequencies. The overall normalization of the SEDs is
arbitrary.

are the SEDs of zeroth-order (equation 27a), first-order (equa-
tion 27b), and second-order (equation 27c) moment components of
the synchrotron.

Similarly, the moment expansion of the thermal dust emission up
to second order yields

Idust(ν, p) = Aνd
(p)fdust(ν, βd )

+ Aνd
(p) 	βd (p) ∂βd

fdust(ν, βd, T d )

+Aνd
(p) 	Td (p) ∂T d

fdust(ν, βd, T d )

+ 1

2
Aνd

(p) 	β2
d (p) ∂2

βd
fdust(ν, βd, T d )

+Aνd
(p) 	βd (p)	Td (p) ∂βd

∂T d
fdust(ν, βd, T d )

+ 1

2
Aνd

(p) 	T 2
d (p) ∂2

T d
fdust(ν, βd, T d )

+O
(
	β3

d , 	T 3
d

)
, (28)

where 	βd (p) = βd (p) − βd , 	Td (p) = Td (p) − T d and

fdust(ν, βd, T d ) =
(

ν

νd

)βd+1 1

exp(x̄) − 1
, (29a)

∂βd
fdust(ν, βd, T d ) = ln

(
ν

νd

)
fdust(ν, βd, T d ), (29b)

∂T d
fdust(ν, βd, T d ) = x̄

T d

exp(x̄)

exp(x̄) − 1
fdust(ν, βd, T d ), (29c)

∂2
βd

fdust(ν, βd, T d ) =
[

ln

(
ν

νd

)]2

fdust(ν, βd, T d ), (29d)

∂2
T d

fdust(ν, βd, T d ) =
[
x̄ coth

(
x̄

2

)
− 2

]
1

T d

∂T d
fdust(ν, βd, T d ),

(29e)

∂βd
∂T d

fdust(ν, βd, T d ) = ln

(
ν

νd

)
∂T d

fdust(ν, βd, T d ) (29f)

are the SEDs of zeroth-order (equation 29a), first-order (equa-
tions 29b and 29c), and second-order (equations 29d–29f) moment
components of the dust, and x̄ ≡ hν/kT d . The SED shapes of zeroth-
and first-order moments of the dust and synchrotron are plotted in
Fig. 2.

By choosing pivot parameters that are close to the expected
mean of the spectral parameters over the sky, βs = 〈βs(p)〉p � −3,
βd = 〈βd (p)〉p � 1.5, and T d = 〈Td (p)〉p � 20 K, we ensure that
the bulk of the Galactic foreground emission projects on to the zeroth-
, first-, and second-order moments. However, a detailed optimization
is more complicated as we briefly discuss in Section 5.1.

3.2 The cMILC

Our semiblind component separation method cMILC aims at recov-
ering the CMB B-mode polarization signal from sky observations
by adding nulling constraints on the main foreground moments in
the cILC framework in order to improve the removal of the Galactic
foreground contamination compared to standard ILC methods, which
rely only on simple variance minimization. We thus build the cMILC
method by enforcing the following constraints:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂w

(
wTC w

) = 0

wT · a = 1

wT · f sync

(
βs

) = 0

wT · ∂βs
f sync

(
βs

) = 0

wT · ∂2
βs

f sync

(
βs

) = 0

wT · f dust

(
βd, T d

) = 0

wT · ∂βd
f dust

(
βd, T d

) = 0

wT · ∂T d
f dust

(
βd, T d

) = 0

wT · ∂2
βd

f dust

(
βd, T d

) = 0

wT · ∂2
T d

f dust

(
βd, T d

) = 0

wT · ∂βd
∂T d

f dust

(
βd, T d

) = 0.

(30)

It is important to stress that cMILC does not attempt to fit the fore-
grounds, which are spatially correlated and uncertain components,
but instead aims at deprojecting the dominant foreground moments
in sky maps without altering the CMB component. Thus, bulk of the
Galactic foreground contamination that is spatially correlated with
the deprojected moments is eliminated from the recovered CMB
B-mode power spectrum. Any remaining unconstrained foreground
contribution is just variance-minimized, like in blind methods.4

The cMILC weights are thus again given by equation (18):

wT
cMILC = eT(ATC−1A)−1ATC−1, (31)

where, when limiting constraints to zeroth- and first-order moments
as an example, the SED matrix A is a nf × 6 matrix given by

A = (
a f sync f dust ∂βs

f sync ∂βd
f dust ∂T d

f dust

)
, (32)

and the vector e is given by

eT = (
1 0 0 0 0 0

)
. (33)

The SED matrix A and vector e can be augmented by including
higher order moments, depending on the sensitivity floor of the
experiment. We stress that by applying the Woodbury formula to
equation (41), the cILC/cMILC filter equation (31) reduces to
eT(ATN−1A)−1ATN−1, where, unlike maximum-likelihood paramet-
ric fitting methods (e.g. Stompor et al. 2016), the covariance matrix N
here does not only account for the noise but also for the unconstrained
foregrounds (e.g. unmodelled foregrounds or higher order moments)
that may be omitted in the mixing matrix A. The data covariance

4Hence, the exact pivots parameters do not need to be absolutely known
(Fig. A1), although pivots can help optimizing the method (see Section 5.1).
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Constrained moment ILC for B modes 2483

Table 1. Nomenclature of the NILC and cMILC methods for several combinations of constraints on various moments
of the foreground emission.

Case Moments (SED) Parameters

NILC aCMB 1
cMILC01 aCMB ; fsync 2
cMILC02 aCMB ; fdust 2
cMILC03 aCMB ; fsync ; fdust 3
cMILC04 aCMB ; fdust ; ∂β fdust 3
cMILC05 aCMB ; fsync ; fdust ; ∂β fsync 4
cMILC06 aCMB ; fsync ; fdust ; ∂β fdust 4
cMILC07 aCMB ; fsync ; fdust ; ∂β fsync ; ∂β fdust 5
cMILC08 aCMB ; fsync ; fdust ; ∂β fsync ; ∂β fdust ; ∂T fdust 6
cMILC09 aCMB ; fsync ; fdust ; ∂β fsync ; ∂β fdust ; ∂T fdust ; ∂2

T fdust 7
cMILC10 aCMB ; fsync ; fdust ; ∂β fsync ; ∂β fdust ; ∂T fdust ; ∂2

β fsync ; ∂2
T fdust 8

cMILC11 aCMB ; fsync ; fdust ; ∂β fsync ; ∂β fdust ; ∂T fdust ; ∂2
β fsync ; ∂2

T fdust ; ∂β∂T fdust 9

cMILC12 aCMB ; fsync ; fdust ; ∂β fsync ; ∂T fdust at low 
 (hybrid case; see Section 5) 5
aCMB ; fsync ; fdust ; ∂β fdust ; ∂T fdust at high 


matrix C in equation (31) thus allows for blind variance minimization
of any remaining unparametrized foregrounds but also of possible
residuals that would arise from suboptimal pivot choices (see Fig. A1
in Appendix A).

For our analysis, we will be applying several cMILC filters (see
Table 1) to the sky simulations by considering more and more
columns in the SED matrix A, starting from the standard ILC method
without nulling constraints (i.e. A ≡ a), and ending with the most
constrained version of cMILC with all the nulling constraints on
zeroth-, first-, and second-order foreground moments (i.e. with a
nf × 10 SED matrix A). This progressive approach will help to
highlight how increasing the number of moment constraints affects
the trade-offs between foreground and noise residuals (bias, variance,
and higher order statistics) in the recovered CMB B-mode map,
power spectrum, and tensor-to-scalar ratio. Below we will see that
the optimal number of moments is a function of the experimental
sensitivity and spectral coverage.

3.3 Needlet implementation

ILC filtering can be implemented directly in pixel space on the sky
maps dν(p) (e.g. Bennett et al. 2003; Eriksen et al. 2004) or in
harmonic space on spherical harmonic coefficients aν(
, m) of the
sky maps (e.g. Tegmark et al. 2003). Since pixel-space ILC methods
are fully local in pixel space, they are non-local in harmonic space
because of uncertainty principle, hence all multipoles are given the
same weights. Similarly, harmonic-space ILC methods being fully
local in multipole space are non-local in pixel space and thus provide
same weights to all pixels of a sky map. Non-local weights in either
pixel or multipole space are not optimal for component separation,
since the local conditions of contamination by foregrounds and noise
vary both across the sky and across multipoles.

Because of their localization properties both in pixel space and
harmonic space, spherical wavelets such as needlets (Narcowich,
Petrushev & Ward 2006; Guilloux, Faÿ & Cardoso 2009) provide a
powerful alternative to allow the ILC weights to adjust themselves
depending on local conditions of contamination both across the sky
and across angular scales (Delabrouille et al. 2009). Therefore, in
this work we implement both ILC and cMILC methods on the same
needlet frame, so that hereafter the standard ILC method will be
referred to as NILC for needlet ILC (Delabrouille et al. 2009), while
our needlet-based cMILC method is still referred to as cMILC.

Figure 3. Needlet windows in harmonic space that are used in the analysis.

Needlet decomposition is performed on B-mode sky maps at
each frequency as follows. We first define a set of seven bandpass
windows {h(j)(
)}1 ≤ j ≤ 7 of cosine shape in harmonic space (Fig. 3),
following the prescription of Basak & Delabrouille (2013). Each
needlet window isolates a subrange of multipoles or angular scales,
while the whole set satisfies the property

∑7
j=1(h(j )(
))2 = 1 in

order to not lose any power in the data processing. The number and
width of needlet windows were chosen to allow decent localization
in harmonic space while conserving sufficient localization in pixel
space for efficient foreground cleaning, by following a dyadic scheme
with wider windows at high multipoles to ensure more localization
in pixel space for the cleaning of small-scale fluctuations in sky
maps. The number, width, and shape of the needlet windows are
free parameters and different prescriptions have been used in the
literature depending on the observable of interest (e.g. Planck Col-
laboration XXII 2016b), thus leaving room for further optimization
(see Section 5). The spherical harmonic coefficients aν(
, m) of the
frequency maps are then bandpass filtered by the needlet windows as
ã(j )

ν (
, m) = h(j )(
) aν(
, m). The inverse spherical harmonic trans-
form of the bandpass-filtered harmonic coefficients ã(j )

ν (
, m) then
yields seven needlet maps d̃ (j )

ν (p) for each frequency. Each needlet
map thus contains typical anisotropies of specific angular scales
selected by the needlet window. The ILC weights at all frequencies
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are then computed for each needlet scale (j) independently, so that
we obtain seven ILC CMB maps ŝ (j )(p) = ∑

ν w(j )
ν (p)d̃ (j )

ν (p) for
each needlet frame. The spherical harmonic coefficients, ŝ (j )(
, m),
of the seven needlet ILC CMB maps are then bandpass-filtered again
as ẑ (j )(
, m) = h(j )(
) ŝ (j )(
, m), and inverse spherical-harmonic
transformed into maps ẑ (j )(p), which are finally co-added to form
the complete NILC or cMILC CMB map ŝ(p) = ∑7

j=1 ẑ (j )(p).

3.4 Statistics

In this section, we first compare the statistics of the constrained
ILC (cILC, cMILC) and standard ILC (NILC) approaches, by
generalizing the formulas of the ILC variance (e.g. Tegmark et al.
2003; Delabrouille et al. 2009) to our cMILC filter. We then illustrate
our findings on simulations in Section 4.2.2. We stress that, while
the standard ILC is the solution of minimum overall variance
(foregrounds plus noise), cMILC leads to the solution of minimum
foreground variance. In particular, cMILC beats the standard ILC
in terms of residual foreground contamination (bias, variance, and
skewness) due to nulling constraints, but at the cost of larger residual
noise contamination due to the increased volume of the parameter
space. However, there is an optimal trade-off point forcMILC, where
the noise penalty is largely compensated by the significant reduction
of the residual foreground bias. Aside from experimental parameters,
this sweet spot depends on the observable and here we consider r
as figure of merit (see Figs 8 and 9 in Section 4.2), illustrating the
gains for both the variance and the bias on r through the cumulative
systematic and statistical error δr =

√
(r − r true)2 + σ 2(r).

3.4.1 Overall variance

Using equations (8) and (12), we recover the standard expression
(e.g. Tegmark et al. 2003) for the variance of the ILC map5:

σ 2
ILC ≡ 〈ŝ2

ILC〉 = wT
ILCC wILC = 1

aTC−1 a
, (34)

where C = 〈ddT 〉 is the nf × nf covariance matrix of the data, and a is
the SED for CMB. Similarly, by using equation (31) we can derive the
expression for the variance of the cMILC map, σ 2

cMILC ≡ 〈ŝ2
cMILC〉:

σ 2
cMILC = wT

cMILCC wcMILC = eT (ATC−1A)−1e, (35)

where A = [a b1 · · · bm] is the nf × (m + 1) SED matrix for the
CMB and the constrained foreground moments (e.g. equation 32),
and eT = [1 0 · · · 0].

By defining the submatrix B = [b1 · · · bm] as the nf × m SED
matrix for the modelled foreground moments only, the full SED
matrix A can be written in the block matrix form:

A = (
a B

)
, (36)

so that the variance of the cMILC map equation (35) reads as

σ 2
cMILC = eT

(
aTC−1a aTC−1B
BTC−1a BTC−1B

)−1

e. (37)

Using block matrix inversion, the variance of thecMILCmap reduces
to

σ 2
cMILC = σ 2

ILC

1 − σ 2
ILC aTC−1B

(
BTC−1B

)−1
BTC−1a

. (38)

5Note that in the derivation of the standard formulas, equations (34) and (35),
for the variance we make the assumption that empirical correlations between
the weights w(p) and the data d(p) can be neglected to first order, and thus
the weights can be pulled out of 〈···〉 in equation (8).

Therefore, the overall variance of the cMILC map is larger than
the overall variance of the standard ILC map, with an amplification
factor of

σ 2
cMILC

σ 2
ILC

= 1

1 − σ 2
ILC aTC−1B

(
BTC−1B

)−1
BTC−1a

≥ 1. (39)

This increase of the overall variance is expected, since the volume of
the parameter space (number of modelled components) is larger for
the cMILC than for the standard ILC. However, while the standard
ILC is the solution of minimum overall variance, it is not the solution
of minimum foreground variance. As we show below, cMILC yields
lower foreground contamination than standard ILC.

3.4.2 Foregrounds residual variance

Let us model the data with independent contributions from the
various components:

d(p) = a s(p) +
m∑

i=1

bi gi(p) + n(p), (40)

where s(p) is the CMB signal and a its SED, {gi(p)}1 ≤ i ≤ m the
m foreground components whose SEDs {bi}1≤i≤m are constrained
in cMILC, while not in the ILC, and n(p) the contamination from
both instrumental noise and unmodelled foregrounds. The covariance
matrix of the data thus reads as

C = a σ 2
s aT +

m∑
i=1

bi σ 2
gi

bT
i + N, (41)

where σ 2
s = 〈s(p)2〉 is the variance of intrinsic CMB anisotropies,

σ 2
gi

= 〈gi(p)2〉 the variance of the modelled foregrounds, and
N = 〈n(p)n(p)T 〉 the covariance matrix of the noise and unmodelled
foregrounds.

By inserting equation (41) into equation (34), the contribution
from the different components to the overall variance of the standard
ILC map becomes explicit:

σ 2
ILC = wT

ILC

(
a σ 2

s aT +
m∑

i=1

bi σ 2
gi

bT
i + N

)
wILC

= σ 2
s +

m∑
i=1

(
wT

ILCbi

)2
σ 2

gi
+ wT

ILCN wILC, (42)

since wT
ILCa = 1, but wT

ILCbi 
= 0. In contrast to the ILC solution, the
variance of the cMILC map equation (35) reduces to

σ 2
cMILC = wT

cMILC

(
a σ 2

s aT +
m∑

i=1

bi σ 2
gi

bT
i + N

)
wcMILC

= σ 2
s + wT

cMILCN wcMILC, (43)

since wT
cMILCa = 1 and wT

cMILCbi = 0. Therefore, the variance of
the cMILC map is cleared of any contribution from the constrained
foregrounds (equation 43), while some residual variance from those
foregrounds still contributes to the variance of the standard ILC
map (equation 42). If we now consider that the unconstrained
foreground moments are those which are below the noise of the
instrument, then wT

ILCN wILC and wT
cMILCN wcMILC are just the noise

variance contributions to the standard ILC and cMILC maps, and
hence cMILC moves towards the solution with minimum residual
foreground contamination, unlike the standard ILC. Consequently,
the inequality equation (39) on overall variance implies that the
residual noise variance must be larger in the cMILC map than in the
standard ILC map, i.e. wT

cMILCN wcMILC ≥ wT
ILCN wILC.
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Constrained moment ILC for B modes 2485

To conclude, cMILC reduces the variance and bias from residual
foreground contamination, while it has larger noise variance than
the standard ILC. By including more and more foreground moments
in cMILC, the residual noise variance increases in the CMB map,
but in contrast the residual foreground variance decreases towards
the minimum foreground variance solution, thus largely beating the
standard ILC. These theoretical expectations are confirmed by our
analysis on sky simulations (see Fig. 6).

While foreground residuals and noise residuals both cause biases
on the CMB B-mode power spectrum, and hence on the inferred
tensor-to-scalar ratio r, the noise bias can be corrected for (i.e. by
Jackknife), such that any bias on a detection arises from foreground
residuals, not from instrumental noise residuals. In this respect, the
cMILC method focuses on nulling foreground biases at the expense
of increased noise variance.

3.4.3 Higher order statistics

By realizing that CMB and instrumental noise are mostly Gaussian
fields compared to Galactic foregrounds which are highly non-
Gaussian, it becomes clear that cMILC will get rid of most non-
Gaussian residuals in the CMB map through nulling constraints,
while the standard ILC will not. As an illustration, the skewness of
the reconstructed CMB map reads

〈ŝ3〉 = 〈s3〉 +
m∑

i,j ,k=1

(wTbi)(w
Tbj )(wTbk)〈gi gj gk〉 + 〈(wTn)3〉

�
m∑

i,j ,k=1

(wTbi)(w
Tbj )(wTbk)〈gi gj gk 〉, (44)

where in the last line we assumed that CMB and noise are mostly
Gaussian and have negligible skewness, i.e. 〈s3〉 � 0 and 〈n3〉 � 0.
By construction, thecMILCweights give wT

cMILCbi = 0, such that the
skewness due to foreground residuals in equation (44) should reduce
to zero for the cMILCmap, while this is not the case for the standard
ILC map. These expectations are also confirmed by our analysis on
sky simulations (see Fig. 6). While this work focuses on B modes,
we refer to Section 5 for a brief discussion of the potential benefits
of reducing non-Gaussian residuals for primordial non-Gaussianity
and CMB lensing analyses.

4 A NA LY SIS

4.1 Sky simulations

In our sky simulations, we consider different models of the fore-
ground emission, capitalizing on existing tools. For PICO, we use
the public PICO sky simulations,6 which have been delivered on
NERSC as an open data analysis challenge. These include both the
PySM d1s1 model (Thorne et al. 2017), which is consistent with
Planck observations, and a more complicated dust model derived
from MHD simulations (Kritsuk, Flauger & Ustyugov 2018) that
has non-trivial spectral dependence and accounts for line-of-sight
effects, as we discuss in Section 4.2.5. For LiteBIRD, since there is
no available public simulation, we replicated the PySM d1s1 model
of the public PICO simulation with specifications given in Table B1.

We first evaluate the performance of our semiblind component
separation method cMILC on the PySM sky simulations d1s1 for

6https://zzz.physics.umn.edu/ipsig/20180424 dc maps (models 91 and 96).

both LiteBIRD and PICO experiments, and compare the results of
cMILC with those obtained with the standard NILC method. The
simulated sky maps in polarization for the model d1s1 include
several components of emission: CMB anisotropies with a tensor-to-
scalar ratio of r = 0, an optical depth to reionization of τ = 0.054, and
full lensing contamination (AL = 1); Galactic thermal dust emission
as a modified blackbody component with varying spectral index and
temperature across the sky, based on the Planck Commander maps
(Planck Collaboration X 2016a); and Galactic synchrotron emission
as a power-law component with varying spectral index across the sky,
based on the template maps from Miville-Deschênes et al. (2008).
For more details regarding PySM and its implementation we refer to
Thorne et al. (2017).

The sky emission is integrated over either LiteBIRD (Table B1)
or PICO frequency bands (Table B2), for which current simulations
assume δ-function bandpasses. Each frequency map has a HEALPix
Nside = 512 pixelization scheme (Górski et al. 2005), and is smoothed
with a Gaussian beam of full width at half-maximum (FWHM) values
listed in Tables B1 and B2. Gaussian white noise map realizations
of typical r.m.s. values listed in the aforementioned tables were then
co-added to the sky maps. Therefore, we have 15 sky maps ranging
from 40 to 402 GHz for the LiteBIRD-like simulation, and 21 sky
maps ranging from 20 to 800 GHz for the PICO simulation.

We perform foreground removal by applying theNILC andcMILC
methods to these two sets of sky maps, and study the impact on
CMB B-mode reconstruction (map, power spectrum, and tensor-to-
scalar ratio) of deprojecting more and more foreground moments with
cMILC, with combinations as listed in Table 1. For our analysis, we
first transform the Stokes Q, U full-sky maps into full-sky B-mode
maps at each frequency, then apply theNILC andcMILCmethods on
the set of full-sky B-mode observations, thus avoiding E-to-B leakage
inherent to masking procedures. To obtain numerically stable results,
it was important to carefully consider the precision settings of the
linear algebra routines. The CMB B-mode map reconstruction is
performed at 40 arcmin angular resolution for both LiteBIRD and
PICO. As a main figure of merit we use r, but we expect other
observables such as

∑
mν and Neff to also benefit from cMILC (see

discussion in Section 5).

4.2 Results

4.2.1 Visual inspection of recovered maps in the BICEP2 region

While the reconstruction of the CMB B-mode map from the LiteBIRD
and PICO sky maps by the NILC and cMILC methods is performed
on the entire sky, for illustration we first inspect the quality of
the reconstructed maps and their residual foreground and noise
contamination in the BICEP2 region (BICEP2 Collaboration 2014).
This allows us to better appreciate the improvement in foreground
removal with cMILC in comparison to NILC. To evaluate residual
foreground and noise contamination in the reconstructed CMB
B-mode map after component separation, we applied the same
NILC/cMILC weights that were assigned in the reconstruction of
the CMB B-mode map to the input foreground and noise maps of the
simulations.

Fig. 4 summarizes the results for LiteBIRD in the BICEP2 region.
The first row shows the NILC results, while the following rows show
the cMILC results when including progressively more constraints
on foreground moments, starting in the second row with cMILC03
which deprojects zeroth-order moments (fsync, fdust), and ending in the
bottom row with cMILC08 which deprojects both zeroth- and first-
order moments (fsync, fdust, ∂βs

fsync, ∂βd
fdust, ∂Td

fdust). No further
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2486 M. Remazeilles, A. Rotti and J. Chluba

Figure 4. Top to bottom rows: cMILC results for LiteBIRD in the BICEP2 region when deprojecting more and more foreground moments. Left column: residual
foregrounds. Middle column: residual noise. Right column: reconstructed CMB B-mode map. Deprojecting moments with cMILC significantly reduces the
residual foreground contamination in the recovered CMB B-mode map, although this comes along with a noise penalty. Among these maps, CMILC06 is the
optimal choice in terms of trade-off between residual foreground bias and noise penalty on the tensor-to-scalar ratio r (see Section 4.2.4).
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Constrained moment ILC for B modes 2487

constraints on second-order moments were imposed in cMILC
because the noise degradation prevented us from probing higher
order moments of the foreground emission.

The residual foreground contamination left by each method is
shown in the first column: clearly, the level of residual foregrounds
is significantly reduced in the cMILC CMB B-mode maps when
including more and more moments in the component separation.
The second and third columns show, respectively, the residual noise
fluctuations and the recovered CMB B-mode fluctuations for each
method. We see that the improvement on foreground removal due
to moment constraints is at the expense of increasing noise in the
reconstructed CMB B-mode map, as expected. Hence, there is a clear
trade-off between mitigation of residual foreground contamination
and noise degradation, but also a sweet spot where the noise penalty
is more than compensated by the reduction of residual foreground
contamination, depending on the observable of interest. As we will
see in Section 4.2.4, for r the optimal solution is given by cMILC06
for LiteBIRD.

Fig. 5 summarizes the results for PICO in the BICEP2 region. As
expected, the level of residual foregrounds and noise in the CMB
B-mode map reconstruction for PICO is further reduced compared
to LiteBIRD due to higher sensitivity and broader spectral coverage
(20–800 GHz). PICO also has the capability to probe second-order
moments of the foreground emission. In particular, adding constraints
on first- and second-order dust temperature moments, wT · ∂Td

fdust =
0 (cMILC08; fourth row) and wT · ∂2

Td
fdust = 0 (cMILC09; bottom

row), significantly reduces the residual foreground contamination at
small scales. Again, the left column highlights the improvement in
terms of residual foreground contamination when including more and
more moments in cMILC, with best results obtained in the bottom
row (cMILC09), where several moments of dust and synchrotron
up to second order (fsync, fdust, ∂βs

fsync, ∂βd
fdust, ∂Td

fdust, ∂
2
Td

fdust)
were deprojected. As expected, additional moment constraints are at
the expense of an increase of residual noise contamination (middle
column), but remain at a reasonable level compared to the r.m.s of
CMB B-mode fluctuations (right column) due to the high sensitivity
of PICO. The best trade-off for r among those maps is actually given
by cMILC08 for PICO, as we show in Section 4.2.4.

4.2.2 Statistical properties of residual foregrounds and noise

Besides map visualization, it is instructive to look at the statistical
properties of the residual foreground and noise contaminations in
the recovered CMB B-mode maps, which we present in Fig. 6 for
LiteBIRD (upper panels) and PICO (lower panels).

In the left-hand panels of Fig. 6, we computed the one-point
statistics (probability distribution function – PDF) of the residual
foreground contamination on fsky = 50 per cent of the sky for the
NILC CMB B-mode map (red line) and for several cMILC CMB
B-mode maps, with more and more moments being deprojected.
Similarly, in right-hand panels of Fig. 6, we show the PDF of the
residual noise contamination for the same NILC and cMILC maps.
Overall, the residual foreground and noise contamination is lower for
PICO than LiteBIRD due to higher sensitivity and broader spectral
coverage. As we already stressed in Section 3.4, the variance of
the residual noise contamination (right-hand panels) increases when
adding constraints on moments in cMILC because of the increasing
volume of the parameter space with respect to NILC. In stark
contrast, the variance of the residual foreground contamination (left-
hand panels) significantly decreases by deprojecting moments with
cMILC.

Clearly, the PDF of foreground residuals (left-hand panels) shows
larger variance and skewness for NILC (red line), while adding
nulling constraints on zeroth- and first-order moments of dust
and synchrotron (fsync, fdust, ∂βs

fsync, ∂βd
fdust, ∂Td

fdust) with cMILC
significantly reducing the variance and skewness of the residual
foreground contamination (cMILC08; blue line), therefore leaving
only negligible Gaussian residuals in the recovered CMB B-mode
map. More quantitatively, for LiteBIRD the variance of residual
foregrounds is σ 2

FG = 0.05 σ 2
CMB for NILC and σ 2

FG = 0.003 σ 2
CMB

for cMILC08, hence a reduction of the foreground variance by
94 per cent with cMILC. For PICO, the variance of residual
foregrounds is σ 2

FG = 0.0025 σ 2
CMB forNILC and σ 2

FG = 0.0012 σ 2
CMB

for cMILC10, hence a reduction of the foreground variance by
52 per cent with cMILC. Similarly, the skewness of residual
foregrounds on fsky = 50 per cent of the sky is 〈s3

FG〉/σ 3
FG = −0.3

for NILC and 〈s3
FG〉/σ 3

FG = 0.18 for cMILC08, hence a reduction of
the residual skewness by 40 per cent with cMILC (with respect to
the CMB r.m.s., the residual skewness is 〈s3

FG〉/σ 3
CMB = −3 × 10−3

for NILC and 〈s3
FG〉/σ 3

CMB = 4 × 10−5 for cMILC08). For PICO, the
skewness of residual foregrounds is 〈s3

FG〉/σ 3
FG = −0.3 for NILC

and 〈s3
FG〉/σ 3

FG = −0.11 for cMILC10, hence a reduction of the
residual skewness by 60 per cent with cMILC (with respect to
the CMB r.m.s., the residual skewness is 〈s3

FG〉/σ 3
CMB = −4 × 10−5

for NILC and 〈s3
FG〉/σ 3

CMB = −5 × 10−6 for cMILC10). Therefore,
cMILC leads to a solution that minimizes foreground variance and
skewness, largely beating NILC on that front. The trends observed
in our numerical results are consistent with those predicted by the
analytical expressions in Section 3.4.

4.2.3 B-mode power spectrum

In Fig. 7, we compute the angular power spectrum of the residual
foreground contamination (Cfgds


 ; left-hand panels) in the recovered
CMB B-mode maps on fsky = 50 per cent of the sky, along with the
standard deviation of the residual noise and lensing power spectra
(
√

2/(2
 + 1)fskyC
noise/lensing

 ; right-hand panels). The results from

NILC and cMILC are shown for LiteBIRD in the upper panels and
for PICO in the lower panels. The power spectra are deconvolved
from the Galactic mask and the beam window function using
MASTER (Hivon et al. 2002), and binned across multipoles with
	
 = 16. The same Galactic mask was used for the NILC and
cMILC maps for fair comparison, but in principle the shape of the
Galactic mask can be optimized for each variant of cMILC, since
the morphology of the residual foreground contamination obviously
differs, as is also suggested by the studies presented in Sections 4.2.1
and 4.2.2.

It is clear from the left-hand panels of Fig. 7 that adding constraints
on dust and synchrotron moments incMILC significantly reduces the
residual foreground contamination across a broad range of multipoles
compared to NILC, and thus potentially prevents biases due to
residual foregrounds in the recovered primordial CMB B-mode
power spectrum. In contrast, while the residual noise bias on the
power spectrum can be corrected for using Jackknife, the noise error
(standard deviation of residual noise power spectrum) increases when
increasing the volume of the constrained parameter space in cMILC,
as it is shown in the right-hand panels of Fig. 7.

For LiteBIRD (upper left panel), while the power spectrum of
residual foreground contamination for NILC (red line) is reduced
well below the lensing B-mode signal, it is still at a level equivalent
to r � 3 × 10−3 across the full range of multipoles. Therefore,
after delensing, NILC would not guarantee proper recovery of the
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2488 M. Remazeilles, A. Rotti and J. Chluba

Figure 5. Top to bottom rows: cMILC results for PICO in the BICEP2 region when deprojecting more and more foreground moments. Left column: residual
foregrounds. Middle column: residual noise. Right column: reconstructed CMB B-mode map. Deprojecting moments with cMILC significantly reduces the
residual foreground contamination in the recovered CMB B-mode map, while the noise penalty is still reasonably low for PICO. CMILC08 is the optimal choice
in terms of trade-off between residual foreground bias and noise penalty on the tensor-to-scalar ratio r (see Section 4.2.4).
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Constrained moment ILC for B modes 2489

Figure 6. One-point statistics (probability distribution function – PDF) of foreground residuals (left-hand panels) and noise residuals (right-hand panels) on
fsky = 50 per cent of the sky for LiteBIRD (upper panels) and PICO (lower panels). Deprojecting more and more moments with cMILC significantly reduces
the variance and skewness of non-Gaussian foreground residuals in the recovered CMB B-mode map. Besides B modes, this would be of great benefit also for
the search for primordial non-Gaussianity and for CMB lensing reconstruction (see Section 5 for discussion).

primordial CMB B-mode power spectrum at r = 10−3. In contrast,
by adding constraints on more and more dust and synchrotron
moments, cMILC helps reducing the level of residual foreground
contamination in the recovered CMB B-mode power spectrum down
to r < 10−3 at recombination scales. In particular, deprojecting
all zeroth- and first-order moments of the dust and synchrotron
(cMILC08; blue line) enables significant reduction of the residual
foreground contamination to CMB B modes for LiteBIRD, down to
levels well below r = 10−3 at all multipoles.

Similarly, the lower left panel of Fig. 7 shows the power spectra
of the residual foreground contamination for PICO after component
separation with the NILC and cMILC methods. Due to its higher
sensitivity and broader spectral coverage, PICO allows reducing
foreground residuals well below the primordial CMB B-mode power
spectrum at r = 10−3 across the full range of multipoles covering
both reionization and recombination scales, even with a blind NILC
method. Still, cMILC enables further reduction of the residual
foreground contamination to the CMB B-mode power spectrum by
deprojecting more and more foreground moments. We find that first-
and second-order dust temperature moments (cMILC08, cMILC10,
and cMILC12) lead to the lowest biases due to residual foreground

contamination, reaching below the detection limit r = 5 × 10−4 of
PICO (Hanany et al. 2019).

While deprojecting successively more moments with cMILC
reduces the level of residual foreground contamination across a
wide range of multipoles, for PICO the overall decrease of residuals
actually breaks at the largest scales 
 � 15, suggesting that our
first-guess pivots, based on zeroth-order fits in the literature (e.g.
Planck Collaboration X 2016a), might not be appropriate for the
largest angular scales, where averaging processes, and thus high-
order moments, are the most significant. For sensitive experiments
like PICO, high-order moments should thus be included in parametric
SED fitting to revise zeroth-order pivots. In Section 5.1 and Fig. 10,
we update the dust pivot temperature T d to show that, with revised
pivots, cMILC is able to reduce the residual foreground contami-
nation consistently at all mutipoles. However, a clear computational
procedure for optimizing the pivots still requires more work, as we
also explain in Section 5.1.

To conclude, cMILC provides quite spectacular results on fore-
grounds removal across all multipoles, thus significantly reducing
biases on the CMB B-mode power spectrum. However, there is a
clear trade-off between residual foregrounds mitigation (left-hand
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2490 M. Remazeilles, A. Rotti and J. Chluba

Figure 7. Left-hand panels: Power spectrum of the residual foreground contamination, C
fgds

 , when deprojecting more and more foreground moments with

cMILC, for LiteBIRD (upper panel) and PICO (lower panel) for the PySM d1s1 simulation. Right-hand panels: Standard deviation of the residual noise and
lensing power spectra,

√
2/(2
 + 1)fskyC

noise/lensing

 . The residual foreground contamination across multipoles is significantly reduced by deprojecting more

and more moments with cMILC, as compared to NILC.

panels of Fig. 7) and noise degradation (right-hand panels of Fig. 7)
that needs to be appreciated to find the best combination of moments
in cMILC that will lead to less biased but still sensitive constraints
on the observable of interest, which here is r (see Section 4.2.4).

4.2.4 Likelihood estimation of the tensor-to-scalar ratio

In this section, we perform the likelihood estimation of the recovered
probability distribution of the tensor-to-scalar ratio r after foreground
removal with NILC and cMILC. We emphasize two important
aspects: the irreducible bias on r, or systematic error arising from
residual foreground contamination (noting that noise and lensing
biases on the power spectrum can usually be corrected for), and the
statistical uncertainty σ (r). The latter has contributions from cosmic
variance of the primordial signal, residual foregrounds, residual
lensing signals, and noise.

The power spectrum of the reconstructed CMB B-mode map from
either NILC or cMILC is

Ĉ BB

 = C lens


 + Ĉ
fgds

 + Ĉ noise


 , (45)

where C lens

b

is the power spectrum of the CMB lensing B-mode signal

(r = 0, AL = 1), Ĉ
fgds

 the power spectrum of residual foregrounds

(left-hand panels of Fig. 7), and Ĉ noise

 the noise power spectrum.

The reconstructed CMB B-mode map can be corrected for part of
the cosmic variance of the lensing signal, either through internal
delensing (Larsen et al. 2016; Carron, Lewis & Challinor 2017;
Millea, Anderes & Wandelt 2019) or through external lensing tracers
(Sherwin & Schmittfull 2015; Planck Collaboration VIII 2020b)
such as cosmic infrared background maps (Planck Collaboration Int.
XLVIII 2016).

For our likelihood analysis, we will assume three levels of
delensing: no delensing (AL = 1), 60 per cent delensing (AL = 0.4),
and full delensing (AL = 0), such that after component separation
and delensing the measured CMB B-mode power spectrum is

C̃ BB

 ≡ Ĉ BB


 − (1 − AL) C lens

 = AL C lens


 + Ĉ
fgds

 + Ĉ noise


 . (46)

The measured CMB B-mode power spectrum, C̃ BB

 , can in principle

be corrected for the noise bias Ĉ noise

 and for the residual lensing

bias AL C lens

 , so that after these corrections, any irreducible bias on

the measured CMB B-mode power spectrum arises from the residual
foreground contamination:

Ĉ
fgds

 = C̃ BB


 − AL C lens

 − Ĉ noise


 . (47)

MNRAS 503, 2478–2498 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/2/2478/6159495 by guest on 09 April 2024



Constrained moment ILC for B modes 2491

The binned likelihood (Hamimeche & Lewis 2008) on the tensor-to-
scalar ratio r is thus built as

− 2 lnL (r) =
∑

b, 
′

b

(
Ĉ

fgds

b

− r C
prim

b

)
M−1


b
′
b

(
Ĉ

fgds

′
b

− r C
prim

′
b

)
,

(48)

where Ĉ
fgds

 is the power spectrum of residual foregrounds, C

prim

b

is
the primordial CMB B-mode power spectrum model for a tensor-to-
scalar ratio r = 1, and M



′ is the covariance matrix for a fiducial
cosmological model with r = 0. Given that the input sky simulations
do not contain any primordial signal, i.e. r = 0, the likelihood
equation (48) thus computes the equivalent r bias due to residual fore-
ground contamination, and its significance with respect to the overall
uncertainty due to cosmic variance of residual lensing, noise, and
residual foregrounds, which are all included in the covariance matrix.

The binning, 
b ± 	
/2 with 	
 = 16, of the power spectra
mitigates correlations between different 
 modes, so that off-diagonal
terms of the covariance matrix can be neglected, thus leaving only
the diagonal elements:

M
b
b
= 2

(2
b + 1) fsky	


(
Ĉ BB


b
− (1 − AL) C lens


b

)2
, (49)

which, according to equation (46), accounts for the cosmic variance
of the residual lensing signal 2(ALC lens


 )2/(2
 + 1), the sample vari-
ance of the residual foreground power spectrum 2(Ĉ fgds


 )2/(2
 + 1),
the sample variance of the noise power spectrum 2(Ĉ noise


 )2/(2
 + 1),
and their cross-terms. The likelihood results on r are obtained by
summing modes between 
min = 2 and 
max = 450, thus accounting
for both the reionization and recombination bumps.

Fig. 8 summarizes our results on the recovered tensor-to-scalar
ratio r after component separation with NILC or cMILC for both
LiteBIRD and PICO, and for different levels of delensing. Biased
detections (SNR ≥ 2) due to significant foreground residuals are
shown in red with both 1σ (thick red) and 2σ (thin red) error bars,
while for unbiased (SNR < 2) measurements, the 95 per cent upper
bounds on r are depicted by the thick green lines. As already observed
on map reconstruction (Sections 4.2.1 and 4.2.2) and power-spectrum
analysis (Section 4.2.3), adding constraints on an increasing number
of moments with cMILC generally increases the uncertainty on r
due to noise degradation, but allows for eliminating biases on r due
to residual foreground contamination. This thus can help to robustly
turn high significance but false detections with NILC into unbiased
upper limits with the optimal choice of moment number in cMILC.
However, the details depend on the experimental configuration and
the overall level of delensing as we explain now.

The goal for full success of the LiteBIRD mission (Hazumi
et al. 2019) is to achieve δr � 10−3, including both statistical and
systematic uncertainties. For additional comparison, we thus define
the simple metric

δr ≡
√

r2 + σ 2(r = 0), (50)

which accounts for both the statistical error σ (r = 0) and the
systematic error, i.e. the residual bias r with respect to r = 0.
For LiteBIRD (upper panels of Fig. 8), NILC clearly leads to a
significant bias on r in our simulations, with r = (2.5 ± 1.0) ×
10−3 in the absence of any delensing and r = (3.2 ± 0.4) × 10−3

in case of full delensing, which corresponds to a 3σ to 8σ bias
on r = 0 and thus a cumulative systematic and statistical error of
δr � 3 × 10−3. Therefore, the systematic foreground residuals of
NILC would not allow LiteBIRD to robustly reach its goals, even
if the statistical uncertainties are sufficient. In contrast, for cMILC

the bias on r progressively decreases by deprojecting more and more
foreground moments, with cMILC06, cMILC07, and cMILC08 all
leading to unbiased measurements of r = 0, i.e. 2σ upper limits.
Among these three unbiased versions, we see that for LiteBIRD
cMILC06 (fsync, fdust, ∂β fdust) provides the best trade-off between
bias mitigation and noise degradation on r, with r = (0.7 ± 1.1)
× 10−3 consistent with unbiased measurement of r = 0, while
accumulating a systematic and statistical errors as low as δr � σ (r =
0) � 10−3. This would allow a constraint on r that is in line with the
goals for LiteBIRD. Deprojecting dust temperature moments ∂Tfdust

(cMILC08) would further reduce residual foreground biases down
to r � 0.3 × 10−3, but the limited spectral coverage of LiteBIRD
at high frequency does not seem to provide enough sensitivity
to constrain dust temperature moments and the noise degradation
for cMILC08 starts blowing up. Finally, increasing the level of
delensing helps reducing statistical uncertainties on r for NILC and
low-order cMILC. In contrast, the gain is less significant for the
most-constrained versions of cMILC like cMILC06, because noise
dominates over the lensing error for LiteBIRD (see upper right panel
of Fig. 7).

For PICO (lower panels of Fig. 8), we can generally say that
the overall degradation of the statistical error is not as large when
including progressively more moments until about cMILC10. This
is due to the broad frequency coverage and high channel sensitivity
of PICO, which allows us to extract a lot of extra information
even beyond r. However, the overall performance of the method
for recovery of r depends significantly on the level of delensing.
Assuming full delensing (left-hand panel), NILC would yield r =
(2.2 ± 0.4) × 10−4, which corresponds to a 5σ bias on r = 0
due to residual foreground contamination, while cMILC allows to
reduce the bias on r by progressively deprojecting more moments
of the foregrounds. For now omitting the optimized hybrid case
cMILC12 (which we will return to in Section 5.2), for PICO,
cMILC08 (fsync, fdust, ∂β fsync, ∂β fdust, ∂T fdust) provides the best
results, giving r = (0.7 ± 0.9) × 10−4 consistent with r = 0, and hence
a cumulative systematic and statistical error as low as δr � 10−4.
Due to high-frequency coverage above 500 GHz, PICO allows to
constrain dust temperature moments ∂Tfdust (cMILC08) with enough
sensitivity to control residual foreground biases, while still mitigating
the noise degradation. Nevertheless, for Alens = 0, we can see that all
considered methods, including NILC, provide tight constraints on r,
with biases typically smaller than r = 5 × 10−4, which is the target
detection of PICO (Hanany et al. 2019). For partial delensing, all the
considered methods provide quite consistent results on r, compatible
with r = 0, since the residual lensing error dominates over the noise
for PICO (see lower right panel of Fig. 7). However, as we will show
below, pivot optimization can affect this behaviour.

Overall, our results indicate NILC alone does not lead to unbiased
estimates of r in the case of LiteBIRD, but has a good performance for
PICO. By applying cMILC, these limitations can be overcome and
even PICO’s constraints on r could be further improved. It also seems
that with the d1s1 simulations inclusion of first-order moments
suffices for constraints on r, even if PICO does show sensitivity to
the second-order moment of Td.

4.2.5 More complex foreground models: MHD simulation with
line-of-sight contributions

As stressed by Tassis & Pavlidou (2015), the effective SED of the
Galactic thermal dust foreground emission must be less trivial than a
simple modified blackbody because of the average of multiple cloud
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2492 M. Remazeilles, A. Rotti and J. Chluba

Figure 8. Left-hand panels: Bias and uncertainty on the recovered tensor-to-scalar ratio r for LiteBIRD (upper panels) and PICO (lower panels) after component
separation on the PySM d1s1 simulation with the NILC and cMILC methods, for different levels of residual lensing contamination. Biased detections at more
than 2σ due to residual foregrounds are shown in red with 1σ (bold) and 2σ (thin) error bars, while unbiased detections consistent with r = 0 are shown in
green with 2σ upper limits. The dashed vertical line marks r = 3 × 10−3 and the dash–dotted line r = 5 × 10−4. CMILC06 provides the best result on r for
LiteBIRD (upper panel), by showing minimal bias due to foreground residuals, while not paying much noise penalty with respect to NILC in terms of 2σ upper
limit. For PICO (lower panel), cMILC08 and cMILC12 provide the lowest biases on r, without paying much noise penalty with respect to NILC.

contributions of various emissivities, temperatures, and magnetic
fields orientations along the line of sight, thus leading to some
decorrelation of the polarized dust emission across frequencies. The
moments of the effective foreground emission resulting from line-of-
sight averaging effects can in principle be deprojected with cMILC.
In this section, we thus investigate the performance of cMILC on
sky simulations having non-trivial foreground complexity, by using
publicly available MHD-model simulations7 that were produced for
the PICO data challenge.

In this sky simulation, the dust and synchrotron emissions are
consistently derived from MHD simulations of the magnetic field
turbulence in the interstellar medium (Kritsuk et al. 2018; Kim, Choi
& Flauger 2019), with the dust model described in Hensley (2015).
The MHD-model simulation is particularly interesting because of in-
tegrating multiple modified blackbodies of varying temperatures and
spectral indices along the line of sight, so that the resulting dust SED
in each pixel will not be a perfect modified blackbody, which makes
this foreground model both more realistic and more challenging for
parametric fitting methods aiming at B-mode component separation.
The CMB and noise realizations in the MHD simulation are the same
as those in the d1s1 simulation.

7https://zzz.physics.umn.edu/ipsig/20180424 dc maps (model 96).

Fig. 9 summarizes the cMILC results on the residual foregrounds
and noise contamination to the CMB B-mode power spectrum for
the MHD simulation (upper panels), together with the results on
the recovered tensor-to-scalar ratio (lower panels). By deprojecting
foregrounds moments with the semiblind methodcMILC, we are able
to tackle the foreground complexity arising from line-of-sight effects
in the MHD simulation, and again reduce the residual foreground
foreground contamination further than NILC. The best results on r
for the MHD simulation are obtained with cMILC03 and cMILC06.
For 60 per cent delensing, cMILC06 provides r = (0.3 ± 0.8) × 10−4

consistent with r = 0, and a cumulation of systematic and statistical
errors of δr =

√
r2 + σ 2(r) � 2.1 × 10−4, which reduces down to

δr � 8.5 × 10−5 in the case of full delensing.
Interestingly, deprojecting the first- and second-order moments of

synchrotron in cMILC08, cMILC09, cMILC10, and cMILC11 tends
to degrade the results for the MHD simulation. We interpret this
behaviour as being caused by the way the MHD simulation has been
built: while the dust emission has spectral variations along the line
of sight and across the sky, the synchrotron index is uniform in the
MHD simulation (Brandon S. Hensley, private communication). This
implies that higher order moments of the synchrotron spectral index
do not contribute in this simulation, and any constraints that nulls
synchrotron components in cMILC will only increase the variance
of the unconstrained foregrounds and noise. This also highlights
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Constrained moment ILC for B modes 2493

Figure 9. Idem Figs 7 and 8, but for the MHD foreground simulation with line-of-sight effects. By deprojecting moments arising from line-of-sight contributions,
cMILC helps reducing biases on r without paying much noise penalty with respect to NILC in terms of 2σ upper limit. cMILC03, cMILC04, and cMILC06
provide the best results on r in terms of trade-off between residual bias and noise penalty.

that cMILC can provide a solid diagnosis of the level of spectral
complexity of each foreground.

Overall, our analysis shows that cMILC is a quite robust compo-
nent separation method, which without any extra modifications also
allows to handle foregrounds complexity arising from line of sight
and other averaging effects. In addition, the effect of unmodelled
spectral complexity is successfully reduced by means of the blind
variance minimization within cMILC.

5 D ISCUSSION

While the previous sections demonstrated some general aspects of
cMILC, reaching the full potential of the method and comparison
to other methods requires more work. Here, we first discuss some
possible optimizations of cMILC (Sections 5.1 and 5.2), and then
briefly mention the relevance to ground-based CMB experiments
(Section 5.3), and other observables and figures of merit (Sec-
tion 5.4).

5.1 On the importance of optimal pivot parameters

Throughout our analysis, we have been using first-guess pivots
{βs, βd, T d} in cMILC (equation 30), based on the mean spectral
index and temperature of dust and synchrotron issued from the cur-
rent knowledge on intensity foregrounds (e.g. Planck Collaboration

X 2016a). In the language of moment expansion, these first-guess
pivots from the literature typically result from fitting a zeroth-order
model to the effective SED of the foreground emission:

I (ν) = A1 fsync(ν, βs) + A2 fdust(ν, βd, Td ) , (51)

where the pivots, i.e. βs, βd, and Td, are fit in each pixel and then
averaged. As such, the zeroth-order model equation (51) might not
provide the best fit at the largest angular scales, where averaging
effects and higher order moment corrections become relevant to the
SED. As pointed out above, in Fig. 7 for PICO d1s1 one can see that
the performance of cMILC in reducing foreground contamination is
spectacular on a large range of multipoles but non-optimal at the
lowest multipoles 
 � 15, which are most relevant for constraining r.
This suggests that first-guess pivots derived from traditional zeroth-
order moment fits (equation 51) might not be optimal for cleaning
foregrounds at the largest angular scales, where averaging effects, and
thus higher order moments, become relevant. Another complication
is that the optimal pivots will generally depend on the type of
method that is employed, given that analysis choices vary but directly
introduce averaging effects.

To investigate this point further, we thus modified the pivot values
in the first needlet band to evaluate the impact on the performance of
cMILC at low 
. In particular, we found that lowering the pivot value
for the dust temperature down to T d = 16 K actually improves the
performance ofcMILC in cleaning foregrounds at low 
, and shows a

MNRAS 503, 2478–2498 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/2/2478/6159495 by guest on 09 April 2024



2494 M. Remazeilles, A. Rotti and J. Chluba

Figure 10. Update of Figs 7 and 8 for PICO d1s1 by adopting a different pivot temperature, T d = 16 K, for cMILC at low 
. By updating the pivot at
low 
, cMILC allows to reduce the residual foreground contamination across the whole range of multipoles, and thus progressively reduces the bias on r by
deprojecting more and more moments, without paying much noise penalty.

more consistent picture of monotonic reduction of the bias on r when
deprojecting more and more moments with cMILC. The results for
PICOd1s1 simulation with the updated pivot temperature are shown
in Fig. 10. A progressive reduction of the bias on r, without much
noise penalty, is clear from cMILC01 to cMILC08, while it actually
breaks for higher order constraints (cMILC09, cMILC10, cMILC11),
suggesting that a proper optimization of all the pivots would probably
be required instead of this simple ad hoc variation of the pivot
temperature. Still, these results highlight how the performance of
cMILC is sensitive to the choice of pivots at low 
, and the importance
of choosing the most appropriate pivot parameters for the moment
expansion. While a full optimization of the pivots using sophisticated
parametric pivot fitting algorithms deserves an in-depth work that is
beyond the scope of this paper, hereafter we highlight a few important
aspects.

We attempted optimizing the pivots by extracting mean polar-
ization SEDs from our simulation. However, for polarization the
definition of an average SED is not as straightforward, given that
no polarization ‘monopole’ exists. This makes it hard to define
a concrete metric for the pivot optimization. This metric is also
expected to directly depend on other analysis choices such as real-
space versus harmonic-space analysis.

Besides, further optimization of cMILC would probably be pos-
sible by using local pivots across different regions of the sky. While
here we have been using uniform pivot parameters across the sky
throughout our analysis, the all-sky average temperature and spectral

index of the dust and synchrotron differ from the local mean index
and temperature in a certain region of the sky, e.g. in the BICEP2
region. Therefore, a possible improvement of the cMILC method
would be to adopt different pivot parameters in different sky regions
and perform a local moment expansion. One open question is then
how to optimally combine the results from the various regions to
constraint on r.

Finally, further optimization of cMILC could potentially be
achieved for the localization of filtering in both pixel space and
harmonic space, through the investigation of different needlet win-
dows in terms of number, shape, and width in order to determine
whether the performance of the foreground cleaning would benefit
from more localization of the filter in pixel space or more localization
in harmonic space. All this outlines a high-dimensional optimization
problem that will be carried out in the future.

5.2 Hybrid moments across multipole ranges

The relative contribution of the different moments of dust and
synchrotron, e.g. Aνs

(βs − βs)∂βs
fsync versus Aνd

(βd − βd )∂βd
fdust,

to the overall foreground power spectrum is likely to vary across mul-
tipoles. In particular, we experienced that the first-order synchrotron
index moment had more constraining power at low multipoles 
 ≤
50, while the first-order dust index moment was helping more at 
 >

50. Given that cMILC is performed on a needlet frame (see Fig. 3),
it allows us to set different combinations of moment constraints
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for different multipole windows in order to optimize the trade-off
between residual foreground biases and noise degradation across
multipoles.

To explore this idea further, we thus implemented a hybrid
version cMILC12 (see Table 1), which deprojects the moments
fsync, fdust, ∂β fsync, ∂T fdust in the first two needlet bands and the
moments fsync, fdust, ∂β fdust, ∂T fdust at higher multipoles 
 > 50.
As shown in Figs 8 and 10, the hybrid version cMILC12 provides
the best trade-off and result of the analysis, with both the lowest
bias on r due to residual foregrounds and the smallest statistical
uncertainty due to low noise degradation: r = (0.4 ± 0.5) × 10−4

consistent with an unbiased recovery of r = 0, and a cumulative
systematic and statistical errors of δr =

√
r2 + σ (r)2 < 6 × 10−5.

cMILC is thus quite flexible by allowing for different combinations
of moments across multipoles.

With future foreground observations, it will be possible to use
cMILC for diagnostics of the most relevant moments of the
foreground emission for each ranges of multipoles. Furthermore,
given that the various moments of the non-Gaussian foreground
contamination are spatially correlated with each other, it would in
principle be possible to compress the number of moments into a
small set of independent components ranked by their relevance to
optimize foreground cleaning with cMILC. These ideas also have to
be worked out more cleanly in the future.

5.3 Ground-based surveys

For future ground-based CMB surveys, such as SO (Ade et al. 2019)
and CMB-S4 (Abazajian et al. 2016), it is more difficult to directly
probe the reionization peak of the primordial CMB B-mode at the
lowest multipoles 
 � 15 because only a fraction of the sky from the
ground is accessible. Hence, future ground-based CMB experiments
will have to rely mainly on information from the recombination
peak (i.e. 30 ≤ 
 ≤ 200) to constrain r. In addition, the number of
available frequency bands for ground-based experiments is limited
by atmospheric windows, which will limit the number of foreground
moments that can be deprojected by cMILC.

However, as evident from the left-hand panels of Fig. 7, the
deprojection of only two or three foreground moments with cMILC
is already very successful around the recombination peak, with the
reduction of the residual foreground contamination of cMILC in
comparison to NILC being most significant at intermediate multi-
poles 30 ≤ 
 ≤ 200. Therefore, cMILCwould be particularly helpful
also for future ground-based CMB surveys in removing residual
foreground biases on r. With upcoming ground-based experiments
like CCAT-prime (Aravena et al. 2019), which will provide wider
frequency coverage owing to improved atmospheric transparency,
we may anticipate significant benefits of using cMILC. However,
dedicated forecasts are required taking differences in the frequency
coverage and angular resolution into account.

5.4 Other observables and figures of merit

While in this work we focused on component separation for B
modes, with r defining the figure of merit, cMILC is also directly
applicable to CMB temperature and E-mode analyses relevant to
other observables. As shown in Fig. 7, the potential of cMILC
in removing foregrounds through moments significantly improves
towards small angular scales. The details may change with further
optimizations of cMILC, but generally we expect that cMILC
could also help improve constraints on cosmological parameters
such as Neff and

∑
mν , which depend on damping tail physics

(e.g. Abazajian et al. 2015). Additional benefits may become ap-
parent for studies of the Sunyaev–Zeldovich (SZ) power spectrum
(e.g. Komatsu & Seljak 2002; Hill & Pajer 2013; Bolliet et al.
2020), which again rely on information gleaned from small-scale
fluctuations.

Our method could also provide gains in future searches for
primordial non-Gaussinity and CMB lensing/delensing analyses. As
shown for the one-point statistics of foreground residuals in Fig. 6,
cMILC allows significantly reducing non-Gaussian foreground con-
tamination in the CMB map by deprojecting moments. Since CMB
lensing (e.g. Hu & Okamoto 2002) and bispectrum estimators (e.g.
Bucher, van Tent & Carvalho 2010) rely on the extraction of non-
Gaussian features (no matter if primordial or generated by lensing),
they are prone to non-Gaussian foreground residuals in the CMB
map (e.g. van Engelen et al. 2014; Hill 2018), and thus to be
potentially biased depending on the sensitivity of future experiments.
This aspect deserves further investigation but is beyond the present
scope.

6 C O N C L U S I O N S

For robust measurements of the tensor-to-scalar ratio r as a signature
of primordial gravitational waves from inflation, it is essential to
minimize both statistical and systematic errors due to residual fore-
grounds in component separation analyses. Statistical uncertainties
σ (r) arise from the cosmic/sample variance of the residual lensing,
foreground, and noise contaminations after component separation
and delensing, while systematic errors, leading to biases on r, arise
from the residual foreground contamination to the CMB B-mode
power spectrum after component separation. Hence, reliable fore-
ground cleaning is achieved by minimizing cumulative systematic
and statistical errors δr =

√
(r − r true)2 + σ 2(r).

In this work, we developed the new semiblind component
separation method cMILC, which deprojects the main statistical
moments of the foregrounds without altering the CMB B-mode
signal, thus allowing to reduce systematic errors (or biases) on
r due to residual foreground contamination, while still mitigating
statistical uncertainties (see Figs 8–10). By applying cMILC to sky
simulations with varying foreground complexity for experimental
settings similar to those of LiteBIRD and PICO, we have identified
specific combinations of foreground moments that optimize the
trade-off between residual foreground biases and noise degradation
for constraints on r. In particular, the cMILC method allows us to
reach the sensitivity goals on r of both LiteBIRD and PICO mission
concepts, by removing biases on r without excessive noise penalties,
thus overcoming limitations of NILC.

We show that for LiteBIRD a deprojection of the first-order
moment of the dust spectral index (Table 1: cMILC06) is needed
for unbiased detection of r = 0 (see Fig. 8). In this case, the
cumulative systematic and statistical errors (i.e. bias + variance)
is δr =

√
r2 + σ 2(r) � 10−3, where the blind NILC method would

exceed δr � 3 × 10−3 due to more than 3σ residual foreground bias
on r = 0. For PICO, deprojecting the first-order moments of the dust
spectral index and dust temperature (Table 1: cMILC08) provides
the best unbiased results on r without much noise penalty (see Figs 8
and 10). This yields r = (0.7 ± 0.9) × 10−4, and hence a cumulative
systematic and statistical error as low as δr � 10−4.

While our analysis shows that for constraints on r in principle only
first moments are needed, PICO is further sensitive to the second
moment of the dust temperature. This conclusion is expected to be
a strong function of the complexity of the foreground simulation,
and thus may not hold for more complicated skies. In the presence
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of multiple dust modified blackbodies along the line of sight (Fig. 9
in Section 4.2.5), cMILC still performs well and helps reducing
residual foreground contaminations and the bias on r without paying
much noise penalty. Our analysis further shows that the optimization
of pivots plays an important role (Section 5.1), requiring more
investigation. These findings highlight the potential of cMILC as a
robust foreground cleaning method but also diagnostic tool, enabling
to test the sky complexity in future analysis.

The ability of cMILC to peel off foregrounds through the depro-
jection of their spectral moments is not limited to the search for pri-
mordial B modes and constraints on r, but could as well be exploited
for CMB temperature and E-mode analyses to improve constraints
on other cosmological parameters like

∑
mν and Neff. By getting rid

of non-Gaussian residuals (Fig. 6 and Section 4.2.2), cMILC is also
of great interest to searches for primordial non-Gaussianity and in
the CMB lensing reconstruction. cMILC would also be helpful for
the extraction of other faint cosmological signals such as SZ effects
and anisotropic primordial spectral distortions. Forecasts for ground-
based experiments should consider these additional observables in
the analysis.

We also stress that moments of the foreground emission result
not only from integrating multiple contributions along the line of
sight, but also arise from several averaging processes across the sky
like beam convolutions, spherical harmonic transforms, Q, U to E,
B transforms, and other filtering processes (e.g. needlets). In fact,
future CMB surveys will deliver sky maps of varying native beam
resolutions at different frequencies. At low frequencies, the beams
are typically larger than at high frequencies, and hence averaging
processes are intrinsically larger at the map level. If not properly
taken into account when combining maps, this will lead to inevitable
decorrelation across frequencies. In addition, while most of the
averaging effects can be propagated analytically, line-of-sight av-
eraging is unavoidable, thus requiring a more general SED treatment
even at the pixel level. All the above aspects pose a challenge for
foreground modelling and the search for primordial B modes that
cannot be ignored. Robustly deprojecting the moments of dust and
synchrotron emissions that arise from averaging/decorrelation effects
is thus crucial to avoid systematic errors from residual foreground
contamination that will bias the faint primordial B-mode signal,
hence the tensor-to-scalar ratio. The cMILC method provides an
avenue forward this direction.

While here we specifically focused on a comparison to NILC, not
only will it be important to extend this comparison to other methods
but one should also think about augmenting other methods using mo-
ments. For instance, we anticipate that moment expansion approaches
can help parametric component separation methods in the search for
primordial B modes, providing a systematic way of extending the list
of expected foreground parameters. The optimal method will also
strongly depend on the observable under consideration, which further
motivates more extensive comparisons of various cleaning methods
in the future, ultimately preparing us for the analysis challenges in
the years to come.
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APPENDIX A : FLEXIBILITY OF CMILC
C O N C E R N I N G P I VOT PA R A M E T E R VA L U E S

By construction, cMILC allows for some flexibility in the assumed
pivot values of the foreground parameters. For a set of assumed pivot
values, the nulling constraints of cMILC (equation 30) enable to null
any part of the foreground emission that projects on to the moments
centred on these pivots, without altering the CMB signal due to the
conservation constraint. Should there be any small departures in the
data from the assumed pivot values then a part of the foreground
contamination cannot be fully deprojected, but such unconstrained
foreground contamination is anyway handled by blind variance
minimization, like NILC would proceed. To illustrate the margin
on the choice of pivot values, in Fig. A1 we show the performance of
cMILC in terms of residual foreground contamination for different
pivot values, as compared to NILC.

Figure A1. Performance of cMILC versus NILC in terms of residual
foreground contamination when assuming different pivot values for βs , βd ,
and T d .

APPENDI X B: EXPERI MENTA L
C O N F I G U R AT I O N S

Summary of experimental parameters for LiteBIRD (Table B1) and
PICO (Table B2).
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Table B1. Instrumental specifications of LiteBIRD (Hazumi et al. 2019) for
the updated design (Sugai et al. 2020) with sensitivities taken from Ghigna
et al. (2020).

Frequency Beam FWHM Sensitivity
[GHz] [arcmin] [μK.arcmin]

40 69 39.76
50 56 25.76
60 48 20.69
68 43 12.72
78 39 10.39
89 35 8.95
100 29 6.43
119 25 4.30
140 23 4.43
166 21 4.86
195 20 5.44
235 19 9.72
280 24 12.91
337 20 19.07
402 17 43.53

Table B2. Instrumental specifications of PICO (Hanany et al. 2019) for the
baseline design.

Frequency Beam FWHM Sensitivity
[GHz] [arcmin] [μK.arcmin]

21 38.4 23.9
25 32.0 18.4
30 28.3 12.4
36 23.6 7.9
43 22.2 7.9
52 18.4 5.7
62 12.8 5.4
75 10.7 4.2
90 9.5 2.8
108 7.9 2.3
129 7.4 2.1
155 6.2 1.8
186 4.3 4.0
223 3.6 4.5
268 3.2 3.1
321 2.6 4.2
385 2.5 4.5
462 2.1 9.1
555 1.5 45.8
666 1.3 177
799 1.1 1050
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