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ABSTRACT

We use TNG and EAGLE hydrodynamic simulations to investigate the central galaxy—dark matter halo relations that are needed
for a halo-based empirical model of star formation in galaxies. Using a linear dimension reduction algorithm and a model
ensemble method, we find that for both star-forming and quenched galaxies, the star formation history (SFH) is tightly related
to the halo mass assembly history (MAH). The quenching of a low-mass galaxy is mainly due to the infall-ejection process
related to a nearby massive halo, while the quenching of a high-mass galaxy is closely related to the formation of a massive
progenitor in its host halo. The classification of star-forming and quenched populations based solely on halo properties contains
contamination produced by sample imbalance and overlapping distributions of the two populations. Guided by the results from
hydrodynamic simulations, we build an empirical model to predict the SFH of central galaxies based on the MAH of their host
haloes, and we model the star-forming and quenched populations separately. Our model is based on the idea of adopting star
formation templates from hydrodynamic simulations to reduce model complexity. We use various tests to demonstrate that the
model can recover SFHs of individual galaxies, and can statistically reproduce the galaxy bimodal distribution, stellar mass—halo
mass and star formation rate—halo mass relations from low to high redshift, and assembly bias. Our study provides a framework
of using hydrodynamic simulations to discover, and to motivate the use of, key ingredients to model galaxy formation using halo

properties.
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1 INTRODUCTION

In the ACDM cosmology, galaxies are luminous objects that form
and evolve in the gravitational potential wells of their dark matter
haloes in the cosmic density field. A key step to understand how
galaxies form and evolve is therefore to understand how galaxies are
related to dark matter haloes (see Mo, van den Bosch & White 2010;
Wechsler & Tinker 2018, and references therein). Because the dark
matter is invisible, direct observation is inaccessible. Meanwhile,
numerical simulations based on first principles have also limitations
because of the use of subgrid physical processes that are not resolved.
Because of these difficulties, a variety of other methods, generally
referred to as empirical models, have been developed to link galaxies
with dark matter haloes. The details of these models, such as the
model architectures and model parameters, can be constrained by
observations, such as the galaxy stellar mass functions, two-point
correlation functions, and so on. Examples of such models include
(sub)halo abundance matching (Mo, Mao & White 1999; Vale &
Ostriker 2004; Guo et al. 2010), clustering matching (Guo et al.
2016), age matching (Hearin & Watson 2013; Hearin et al. 2014;
Meng et al. 2020), halo occupation distribution (Jing, Mo & Borner
1998; Berlind & Weinberg 2002), conditional luminosity function
(Yang, Mo & van den Bosch 2003), conditional colour—magnitude
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diagrams (Xu et al. 2018), and those based on star formation histories
(SFHs; Lu et al. 2011, 2014a,b, 2015; Moster, Naab & White 2018;
Behroozi et al. 2019; Moster et al. 2020). Although these empirical
models are able to reproduce a large set of observations, some basic
questions remain unresolved.

First, when modelling the galaxy—halo connection, it is not totally
clear which halo quantities are the best to use as features to make
the link to galaxies, and which set of galaxy quantities is the best
in constraining the link. To reproduce the primary galaxy properties,
such as stellar mass and luminosity, it is likely that the basic properties
of haloes, such as halo mass and peak circular velocity, are the
main features to use (see e.g. Reddick et al. 2013, for an extensive
study). However, when higher order galaxy properties are concerned,
a systematic approach is yet to be found to identify the best set of halo
features for the purpose. Moster et al. (2020) showed an example of
using random forest regressor to find the important halo properties
related to galaxy stellar mass and star formation rate (SFR). This
motivates, but has not been used in, the construction of a deep and
dense model.

Secondly, the total sets of galaxy and halo properties, which are
high dimensional, are too complex to be useful because it is both
difficult to incorporate them into models and to interpret their roles in
model predictions. For example, the details of the formation histories
of individual haloes are complex, so are the star formation and merger
histories of individual galaxies. Yet, it is necessary to include them
in the modelling, as they carry important information connected
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to the current state of an object, such as halo concentration (e.g.
Navarro, Frenk & White 1997; Jing 2000; Wechsler et al. 2002;
Zhao et al. 2003a,b, 2009; MacCio, Dutton & Van Den Bosch 2008;
Jeeson-Daniel et al. 2011), halo bias (e.g. Mo & White 1996; Sheth,
Mo & Tormen 2001; Gao, Springel & White 2005; Wechsler et al.
2006; Bett et al. 2007; Gao & White 2007; Hahn et al. 2007; Jing,
Suto & Mo 2007; Li, Mo & Gao 2008; Faltenbacher & White 2010;
Wang et al. 2011), galaxy colour or SFR (e.g. Hearin & Watson
2013; Hearin et al. 2014; Lim et al. 2016; Wang et al. 2018; Meng
et al. 2020; Shi et al. 2020), and galaxy structure (e.g. Kauffmann
et al. 2003; Shen et al. 2003; Bernardi et al. 2007; Gao & Fan
2020; Yoon & Park 2020). Attempts have been made to use various
formation redshifts to describe halo assembly histories (AHs; see
e.g. Navarro et al. 1997; van den Bosch 2002; Li et al. 2008; Zhao
et al. 2009; Jeeson-Daniel et al. 2011; Wang et al. 2011; Shi et al.
2018). However, as shown in Chen et al. (2020), the information
provided by these formation times is incomplete, and there is strong
degeneracy among them.

Thirdly, because of the complexity in the galaxy—halo connection,
it is important to know how we construct a model that is general
but can still felicitate clear physical interpretations of the results it
produces. The ‘performance-interpretation’ trade-off is a common
problem in model construction. For example, the empirical model
of Lu et al. (2014a) used a physically motivated relation between
SFR and halo mass and redshift, while Behroozi et al. (2019)
used the growth of peak circular velocity to rank the SFR. In
both models, the physical meaning of the galaxy-halo connection
is clear, but both may have missed other potentially important
factors as well as nuanced processes that can cause uncertainties
in the relations. In contrast, an empirical model based on densely
connected neural networks, such as the one developed by Moster
et al. (2018), usually uses multiple hidden layers to get a good
representation of the halo properties and regresses them on stellar
mass and SFR. The model is accurate, as long as there are sufficient
constraints from observations, but the representation of haloes is
in a ‘black box’, making it difficult to interpret the results. Some
other empirical models invoke multiple ingredients, for example,
by separating central galaxies from satellites and/or star forming
from quenched galaxies, and use observations to constrain the joint
distribution of model parameters (e.g. Lu et al. 2014a, 2015; Moster
et al. 2018; Behroozi et al. 2019). Even in such models, it is still
challenging to show which ingredients dominate the prediction
error, and whether the discrepancy with observations owes to the
incapability of the model or to the incompleteness of the observation
constraints.

In this paper, we carry our a systematic investigation of the
ingredients that are needed to construct a powerful empirical model
of galaxy formation based on dark matter haloes. We use inferences
from hydrodynamic simulations to motivate a potentially useful
architecture to build such an empirical model. To address the first
problem described above, we adopt a model ensemble algorithm, the
gradient boosted decision trees (GBDT; see Appendix B), which can
be used not only to capture complicated patterns between variables
and to keep a good balance between bias and variance, but also to
identify the most important variables that explain model predictions.
We address the second problem by using a linear dimension reduction
algorithm, the principal component analysis (PCA; see Appendix A),
which can effectively reduce the dimension of the halo AH and
the galaxy SFH and yet retain large amounts of information of the
histories for the empirical modelling. Finally, we address the third
problem by building a deep model that incorporates components
of both dimension reduction and ensemble regressor and classifier.
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Each component in the model is motivated physically and can be
optimized separately. This approach makes the model capable of
dealing with complex patterns in parameter space, and yet transparent
to interpret. The ensemble regressor and linear dimension reduction
method has already been used to study the relationship among halo
properties in Chen et al. (2020). Here, we extend it to studying the
galaxy—halo connection. As the first in a series, this paper focuses
on central galaxies in dark matter haloes. We identify important
ingredients that should be included in an empirical model, and
demonstrate the limit such a model can reach in describing the
stellar masses and SFHs of individual galaxies. Our model is built
on the inferences from two hydrodynamic simulations, the Illustris-
TNG (e.g. Nelson et al. 2019) and EAGLE (e.g. The EAGLE team
2017).

This paper is organized as follows. In Section 2, we describe the
simulation data we use, and define the halo properties and samples
used in our analysis. In Section 3, we use both the GBDT and PCA
to study the relations of galaxy stellar mass and SFR with halo
properties for both star-forming galaxies and quenched galaxies.
We also identify halo properties that cause a galaxy to quench. In
Section 4, we build an empirical model that predicts the SFH of
galaxies in dark matter haloes, testing its performance in several
steps. We summarize and discuss our results in Section 5.

2 THE DATA

2.1 The Illustris-TNG and EAGLE simulations

The Illustris-TNG simulation (Marinacci et al. 2018; Naiman et al.
2018; Nelson et al. 2018, 2019; Springel et al. 2018; Pillepich
et al. 2018b) is a suite of cosmological, hydrodynamical simula-
tions implemented with the moving-mesh code Arepo (Springel
2010). The cosmological parameters are taken from the Planck
2015 results (Planck Collaboration XIII 2015): Hubble constant
Hy = 1007 kms~! Mpc~! with h = 0.6774, cosmological constant
Qa0 =0.6911, matter density 2y o = 0.3089, baryon density Qg o =
0.0486, and initial power spectrum with normalization og = 0.8159
and index ngy = 0.9667. The simulated physical processes for galaxy
formation include gas cooling, star formation, stellar feedback, metal
enrichment, black hole feedback, and so on. The details can be found
in the two method papers, Weinberger et al. (2017) and Pillepich
et al. (2018a). A total of 100 snapshots are saved for each of the
simulation runs. Haloes are identified with the friends-of-friends
(FoF) algorithm (Davis et al. 1985) and subhaloes are identified with
the SUBFIND algorithm (Springel et al. 2001; Dolag et al. 2009).
Subhalo merger trees are constructed by the SUBLINK algorithm
(Rodriguez-Gomez et al. 2015). To achieve a balance between sample
size and resolution, we choose to use the TNG100-1 run (thereafter
TNG), which has a box size with co-moving volume (106.5 Mpc)?,
2 x 18207 resolution units, a target baryon mass resolution of
1.4 x 10° Mg, and dark matter particle mass of 7.5 x 10° M.

The EAGLE project (Schaye et al. 2014; Crain et al. 2015;
McAlpine et al. 2016; The EAGLE team 2017) consists of a
suite of cosmological hydrodynamic simulations performed with the
GADGET-3 tree-SPH code, which is an extension of the GADGET-2
code (Springel 2005). The cosmological parameters are taken from
the Planck 2013 results (Planck Collaboration I 2014): h = 0.6777,
Qa0 =0.693, Qppo =0.307, Qg = 0.04825, 03 = 0.8288, and n, =
0.9611. The subgrid processes simulated include gas cooling and
heating, star formation, stellar evolution, metal enrichment, stellar
feedback, and black hole feedback. A total of 29 snapshots are saved
for each of the runs. Haloes and subhaloes are also identified with
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FoF and SUBFIND algorithms. Subhalo merger trees are constructed
using the D-TREES algorithm (Jiang et al. 2014). To achieve a balance
between sample size and resolution, we choose to use EAGLE Ref-
LOI0OON1504 (thereafter EAGLE), which has a box size with a
co-moving volume of (100 Mpc)?, a total number of particles of
2 x 15043, initial baryonic particle mass of 1.81 x 10°M, and dark
matter particle mass of 9.70 x 10® M.

The output galaxy and halo catalogues in TNG and EAGLE present
a variety of quantities, such as halo mass, galaxy stellar mass, and
SFR. Using the method described by Rodriguez-Gomez et al. (2015),
we construct merger trees for FoF haloes from the subhalo merger
trees, Whenever a needed galaxy or halo property is not included in
the public catalogue, we calculate it using the particle/cell data. The
FoF halo and subhalo properties used in our analysis are listed below.

(1) Mpao: ‘top-hat’ mass of the FoF halo within a radius where the
overdensity is that given by the spherical collapse model (Bryan &
Norman 1998).

(i1) My,s: for a central subhalo (defined as the most massive
subhalo in TNG, and the most bound subhalo in EAGLE), it is
the total mass bounded to all subhaloes in an FoF halo; for a satellite
subhalo, it is the mass bounded to the subhalo itself.

(iii) vmax: peak circular velocity of a subhalo, /GM(< r)/r,
where M(< r) is the total mass within a radius r.

(V) Zimm: the redshift of last major merger of an FoF halo, where
a major merger is defined as a merger event with the mass ratio
between the small and large progenitors larger than one-third.

(V) Zinfan: last in-fall redshift of an FoF halo, defined as the lowest
redshift at which a progenitor of the central subhalo of the subhalo
merger tree is not the most massive subhalo in the hosting FOF halo.

(Vi) Zmb, 1/2: the highest redshift at which the main-branch progen-
itor of an FoF halo in the FoF halo merger tree assembled half of its
final mass M,0-

(Vii) Zmp, core: the highest redshift at which the main-branch pro-
genitor of an FoF halo in the FoF halo merger tree reached a fixed
mass My, core = 10"° A7 "M,

(viii) c: the concentration parameter of the Navarro—Frenk—White
(NFW) profile (Navarro et al. 1997) of an FoF halo.

(iX) Gais: the shape parameter, (a; + a3)/(2a;), of an FoF halo,
where a; > a, > a3 are the lengths of the three axes of the
inertia ellipsoid. Only particles within 2.5r; are used, where r is
the characteristic radius of the NFW profile.

(x) As: the dimensionless spin parameter of an FoF halo, defined
as

B il
\/EMhalo Rvir Vvir
where j, Ryi;, and V,; are the total angular momentum, virial radius,

and virial velocity, respectively. Only particles within 2.5 are used.
(xi) (Mhpaio): FoF halo accretion rate, defined as

y dMsubs 2 deir
(Mhalo) = T — 4 Rvirp(Rvir) s (2)
1 dyn dr dyn

(1

S

where (dx/df) qyn = [x(f) — X(t — t4yn)]/tayn is the average growth rate
of a quantity x. This rate is defined using the main branch of the
subhalo merger tree rooted in the central subhalo, and the dynamical
time is for the FoF halo, tayn = v/ R3;,./(G Mus).

(xii) dygy: distance of a halo to its nearest FOF halo whose Mgy, is
larger than that of the halo in consideration.

Both My, and v,y are provided by the TNG and EAGLE halo
catalogues. We refer the reader to Chen et al. (2020) for detailed
definitions and physical meanings Of Zinm, Zmb, 1725 Zmb, cores C» Gaxis
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and A,. The details of (Mp,,) can be found in Moster et al. (2018).
We use the following quantity as our time (redshift) variable: 6.(z) =
8¢.0/D(z), where §. o = 1.686 is the critical overdensity for spherical
collapse, and D(z) is the linear growth factor at z. We use the transfer
function given by Eisenstein & Hu (1998), and the linear growth
factor given by Carroll, Press & Turner (1992).

The galaxy properties used for our analysis are the following:

(i) M,: the stellar mass of a galaxy, which is the sum of the masses
of stellar particles within a radius that is two times the stellar half
mass radius for TNG, or within 30 physical kpc for EAGLE.

(ii) SFR: the SFR of a galaxy, defined as the sum of the SFR of
gas cells/particles within the same radius as that used for M,.

(ii1) M, in: the stellar mass that has ever formed in the history, i.e.
> .SFR, At,, where SFR, and Ay, are the SFR at the nth snapshot
and the time interval spanned by this snapshot, respectively. So
defined, M, i, is different from M, in that the mass-loss due to
stellar evolution and mass change due to merger are not taken into
account. However, if a merger event triggers a change in the in situ
SFR, its effect is indirectly contained in M, iy.

(iv) sSFR: the specific SFR, defined as SFR/M,.

Due to the limited resolution of the simulations, the SFRs have
large fluctuations among different snapshots. To make the results
more stable, whenever necessary we smooth the data by averaging
the SFRs in adjacent snapshots. We use five adjacent snapshots for
the smoothing for TNG and two for EAGLE. The resulting SFR and
sSFR are referred to as the smoothed SFR and sSFR, respectively.

The galaxy-halo connection is expected to depend not only on
the current status of galaxies and haloes, but also on their histories.
We therefore define a number of ‘history’ quantities to describe the
formation histories of galaxies and haloes. The halo AH (or mass
assembly history, MAH) of a subhalo is defined as the set of vy
values (a vector) in the main branch of the subhalo merger tree
rooted in the subhalo in question. Such a set is denoted as Yy,
and has a dimension the same as the number of snapshots spanned
by the merger tree. The galaxy SFH describes the amount of star
formation in its history. As we are interested in both the SFR and
the cumulative quantities, M, and M, ., the SFH of a galaxy (or of
a hosting subhalo) may refer to the set of values for SFR, or M,, or
M, in, along the main branch of the subhalo merger tree, depending
on the context. We denote the SFH described by these three quantities
as SFR, M, and M, i, respectively, which are vectors with the same
dimension as . To avoid ambiguity, we refer vyp.., SFR, M,,, and
M. in as the vy, history, the SFR history, the M, history, and the
M, i history, respectively.

All of the four history vectors are in the space of a too high
dimension to be useful. Here, we apply the same dimension re-
duction technique as used in Chen et al. (2020) to reduce the
dimension of the history quantities. We provide a brief descrip-
tion of this method and its performance in Appendix A. Af-
ter such dimension reduction, each of these histories becomes a
set of principal components (PCs), which we denote as PC =
(PCy, PC,, ...), with a subscript to distinguish different physical
quantities. The same technique was used in Chaves-Montero &
Hearin (2020) to find the principal direction of galaxy distribution in

ITo avoid confusion, we use ‘log’ to denote 10-based logarithm, bold-roman
characters to denote vectors. We use 1o, 20, and 30 regions to denote those
covering 68 per cent, 95 per cent, and 99.7 per cent data points, respectively,
in the space of any dimension.
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Figure 1. Halo mass assembly histories (MAHs) of central galaxies, char-
acterized by vmax (top), M, (middle), and SFR (bottom) as functions of
log (1 + z). In each panel, results are shown for four different ranges of final
(z = 0) halo masses, and separately for TNG and EAGLE in the solid and
dashed lines, respectively. The 1o scatter is shown for the TNG simulation
only.

the colour space and to relate the principal colour component to the
SFH.

Fig. 1 shows the v,y history, the SFR history, and the M, history
for central subhaloes of different masses obtained from TNG and
EAGLE. Despite the difference between the two simulations, some
common patterns do exist. First, the histories of M, are very similar
to those of vy, both increasing with cosmic time, but the increase
being slower at lower redshift. Secondly, the galaxy with a higher
Umax also has a higher M, on average. Thirdly, the SFR increases
with time at high redshift but decreases at low redshift. This can also
be seen from the fast-to-slow increase of M, with time and indicates
that many of the galaxies become quenched at low redshift. All these
suggest that the galaxy SFH is tightly correlated with halo AH, as
we will quantify in the following sections.

2.2 The galaxy samples

In this paper, we focus on the formation of central galaxies at z =
0. We thus select all central galaxies (the ones hosted by central
subhaloes) in TNG and EAGLE. The grey shade in Fig. 2 show the
galaxy distribution in the (log M., log sSFR) plane, where sSFR
is the smoothed sSFR (see Section 2.1). It is clear that there are
two distinct populations: a star-forming main sequence in which the
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log sSFR [h Gyr 1]

Figure 2. Distribution of central galaxies at z = 0 in the plane of log sSFR
versus log M,, for TNG (left) and EAGLE (right). The grey shade shows
the normalized distribution of the full sample. Galaxies above 103 7~ Mg
are divided into the star-forming sample, Sg (the blue contours), and the
quenched sample, Sq (the red contours). The solid, dashed, and dotted
contours enclose 1o, 20 and 30 regions, respectively. Galaxies with sSFR
below 1073 A Gyr~! are stacked at the bottom of the panel. See Section 2.2
and Table 1 for the definitions of different samples.

sSFR is high and almost independent of M,; a quenched population
with low sSFR for which the star formation activity may not even
be resolved by the simulations. Since the quenching of galaxies in
star formation is expected to be regulated by feedback processes, the
presence of the two distinct populations indicates that the physical
processes operating in them are different. Motivated by this, we
separate galaxies into two samples as specified below.

(i) The star-forming sample Sggp. This sample includes galax-
ies at z = 0 with M, > 10%32~'My, and the smoothed sSFR >
10~2 1 Gyr™!, but with all galaxies that lie outside the 90 per cent
contour of the distribution in the (log M,, log sSFR) plane
eliminated.

(i1) The quenched sample Sq. This includes all galaxies at z = 0
with M, > 10%3h~' h~'Mg, and sSFR < 1072/ Gyr™".

In some of the following analysis, where a complete sample is
needed, we use a sample S, which includes all z = 0 central galaxies
with M, > 10%° h~'"Mg and sSFR > 102 2 Gyr~'. We also have
analysis for which the properties of galaxies at a higher redshift z,
are needed. In such cases, we apply the same separation criteria to
the galaxies at the desired redshift, and construct samples Ss, ,—,
and Sq, ,—,, accordingly. In Sections 3.2 and 3.3, we have to further
divide these samples according to stellar mass. We will describe the
subsamplings when they are used. We summarize the samples used
in this paper in Table 1. The two z = 0 samples defined above are
shown by the blue and red contours in Fig. 2.

We checked our results by using a higher M, limit and a different
sSFR threshold for the separation for the two populations, and by
excluding post-merger systems. We found that our conclusions are
not sensitive to the criteria adopted.

3 RELATION BETWEEN GALAXY AND HALO
PROPERTIES IN SIMULATIONS

Because of the bimodal distribution of galaxies as seen in Section 2.2,
we discuss the galaxy—halo relations separately for the star-forming
and quenched populations. In this section, we first discuss the relation
for the star-forming main sequence. We then examine how galaxies
get quenched by looking at their halo properties. Finally, we present
the galaxy—halo relation for the quenched population.
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Table 1. Galaxy samples used in this paper. Detailed definitions can be found in Section 2.2. All of the samples are central galaxies selected by stellar mass

and smoothed sSFR from TNG and EAGLE.

Sample Description

Ssk Star-forming sample consisting of all central galaxies at z = 0 with M, > 1033 h~!Mg, and sSFR > 1072 2 Gyr~!, and with 10 per cent
outliers eliminated.

S’SF The same as Sgr but without eliminating the outliers.

SSF, 2=2 The same as Sgf but selected at z = z.

Sq Quenched sample consisting of all central galaxies at z = 0 with M, > 103> h~'Mg, and sSFR < 1072 4 Gyr™!.

SQ. 2=z The same as Sq but selected at z = zo.

3.1 Galaxy-halo relation for the main-sequence sample

To quantify the correlation strength between halo and galaxy quanti-
ties, we use the model ensemble method GBDT to build a regressor,
y = f(x), which maps the set of halo quantities x to a galaxy quantity
y. Using many predictor variables available, we can build a series of
regressors with an increasing number of predictors. As the number
of predictors increases, the overall performance, R2, also increases.
Ateach step, the amount of increase in R? caused by including a new
variable x € x can be used to judge whether this variable has any
contribution to the target. When all of the predictors are included,
the importance value, Z, output from the final regressor, can be used
to judge the relative contributions from individual predictors. The
details of GBDT, R?, and Z can be found in Appendix B.

Fig. 3 shows the galaxy-halo relations for the star-forming
samples, Sgr and Sgp,—», in both TNG and EAGLE. Here, the
smoothed SFR and the first three PCs of the v, history are used
(see Section 2.1 and Appendix A). The results can be summarized as
follows: (i) For both low-z and high-z (the left and middle panels),
both M, and the SFR are tightly correlated with vy,. As shown in
the right-hand panel, even only v,y is used as the sole predictor, the
value of R? is still quite large (>=0.9 for M,, >0.7 for SFR at 7z =
0 and >0.9 for SFR at z = 2). (ii) At z = 0, the relation between
SFR and vy has larger scatter than that between M, and vy,ax. The
smaller R? for SFR shown in the right-hand panel also confirms this.
This indicates that the factors regulating the star formation activity
becomes more diverse as galaxies evolve from high z to low z.
(iii) For both M, and SFR, and for both redshifts, adding more halo
quantities into the predictor set does not significantly improve the
regression performance R?. In all cases, R? is significantly larger than
50 per cent when only v,y is used. This indicates that the evolution
of both M, and SFR is dominated by vy,,x. The large contribution
(Z) from vy also validates this argument.

The tight M,—v.,x and SFR—v,,,, relations indicate that the star-
forming main sequence is a well-defined population that is largely
determined by the halo potential well represented by vy.c. Other
halo properties, such as the MAH, are only secondary factors that
produce relatively small variance in the sequence. To see which halo
quantities are most responsible for the variance, we first define the
residual value A log sSFR for the smoothed sSFR as follows:

(i) We build a GBDT regressor that maps log M, tolog sSFR. The
predicted value of such a regressor is denoted as log sSFR(log M.),
which can be viewed as the mean value of log sSFR at a given stellar
mass.

(i) We subtract the log sSFR of each galaxy by the mean value
at the corresponding stellar mass to get the residual, A log sSFR =
log sSFR — log sSFR(log M.).

We relate the residual defined this way to halo quantities, as
described below.

To see the effect of any halo property, x, on the main-sequence
residual, we form two subsamples for galaxies of a given stellar
mass. The first one consists of the 16 percent with the highest x,
while the second consists of the 16 percent with the lowest x. If
x does have an effect on the variance of the main sequence, these
two subsamples should have different mean A log sSFR. We do
this for both the Sgr and Sgg,—» samples using x = PCypax1, the
first PC of the v,y history and x = (M), the halo accretion rate.
The mean A log sSFR for the two subsamples at given stellar mass
are shown in Fig. 4 in comparison with the standard deviation of
log sSFR at the same stellar mass. Clearly, the means of A log sSFR
in the two subsamples are different, and the effect of PCypax1
is significant in both TNG and EAGLE. Compared to the total
main-sequence scatter, the effect appears relatively small at z =
0 and becomes larger at higher z. Thus, using PCyy,y alone can
only explain a small portion of the residual at z = 0, and a
larger portion at z = 2. The R? values using only PCypm,; shown
in the right-hand panels are significantly less than 50 per cent,
confirming that the prediction power of PCypay is limited. The
results also show that the effect of (Mpa) is smaller than that of
PCymax1 at both z = 0 and z = 2 in both TNG and EAGLE. This
indicates that the halo accretion rate is not as relevant as PC, . in
affecting the SFR, and is not a powerful proxy to separate galaxies
according to the sSFR galaxies. This is consistent with O’Donnell,
Behroozi & More (2021) who used the SDSS and an empirical model
to demonstrate that the halo accretion rate does not significantly
correlate with the current SFR, although some simulation-based
investigations reached the opposite conclusion (e.g. Wetzel & Nagai
2015).

Again, because of the large number of halo quantities and
potentially complex patterns in the feature space, we use GB-
DTs to relate the main-sequence residual, A log sSFR, to halo
quantities. The cumulative R?> from each of the regressors, and
the contribution from each halo property in the final regressor
using all halo properties, are shown in the right-hand panel of
Fig. 4. At z = 0, the explained variance, i.e. R?, is only about
10 per cent in TNG and about 30 per cent in EAGLE, even when
a large set of halo properties are used. At z = 2, R> for both
TNG and EAGLE are still far less than 50 per cent. These poor
performances in terms of R’ indicate that there is no dominant
set of halo properties that can fully explain the variance in the
main sequence. Thus, once the main trend of SFR with respect
to the halo mass or to vy, is already taken into account, an
empirical model should avoid using these halo properties to assign
the SFR of a galaxy based on deterministic ranking or to direct
predict the main-sequence residual. Part of the main-sequence
residual has to be modelled as a random component with correct
statistical properties. We will discuss how to build such a model in
Section 4.1.
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Figure 3. The halo-galaxy relations of the star-forming galaxies at two redshifts (upper row, sample Ss; lower row, sample Ssk ;=2 ). In each row, the left-hand
and middle panel show the correlation of M, and the smoothed SFR with vpnax. The solid, dashed, and dotted contours enclose 1o, 20 and 30 regions,
respectively. The purple shade represents the normalized distribution for TNG. The GBDT regression results are shown in the right-hand panels, where four halo
properties are used to predict log M, (triangulars) and log SFR (circles). The solid lines are cumulative R?, and dashed lines are the importance Z of predictors
in the regressor that uses the halo properties labelled along the x-axis (see Appendix B for the definitions of R? and Z). The error bars are computed by bootstrap
resampling. Results from TNG and EAGLE are plotted in purple and green, respectively.
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Figure 4. The two columns on the left display the sSFR residual A log sSFR of star-forming galaxies as a function of log, M., for sample Ssr (upper row), and
sample Ssf ,—> (lower row). Results for TNG and EAGLE are plotted in purple and green, respectively. In the first column, the solid lines represent the mean
value of A log sSFR for subsamples of galaxies whose PCynnax,1 are among the highest 16 per cent and the lowest 16 per cent of the full sample, respectively.
The solid lines in the middle column show the results for subsamples selected by the halo accretion rate (Mp,lo) instead of PCypayx.1. In both columns, the
standard deviation of the full sample is plotted as the dashed lines. The right-hand panels show the results of the regression of A log sSFR on halo properties
(solid, cumulative R?; dashed, importance Z of predictors in the regressor using halo properties indicated along the x-axis). See Appendix B for the definitions
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MNRAS 504, 4865-4884 (2021)

20z udy 0z uo 1senb Aq 20012 19/598//70G/BI0IE/SEIUW /WO dNO"0IWaPEDE//:SARY WOl papeojumod



Empirically model star formation — 4871

[ 1 SF ] 1 10F 4 10F M. :[10%%,10%%]
0.5 Quenched - b FH ] [ ]
[ ] 1 5F 4 5F v
0.0' w ] . ot | et e, 1, 1 L : ]
0.10F T T 5 ' T T T T T T T T T AR B LA BN
] 1 ok A 3 4r M, :[10",10'%] o

z ] 1ok 4 2f .

2 . 1t ]

g ] s | ] C I 1 ]

A0 0.0==""% 2 2 900 o5 0~ %700 05 10

% c Pcvmax,l lOg 6c(zlmm) lOg Jc(zinfall)

-

A~ 111 L0 e A B T T ]
4r I 1 1.0F 4 2r g
2F 4 %°F 7 o5k 4 1F 3

P e PO s ) o IR SN TP I g o o W . 3 ot L]
0 L B N I o I B I I A I E T B A
ar 7 5.0F 4 1.0 T ]
2F + 2.5F 4 osf 1 'F B
I P P, el ' ] :|-|.I... ...|: . ]
%25 050 075 1.00 %%25 050 075 1.00 207 25 00 25 91 0 1

log . (Zmb, core)

log 0¢(Zmp, 1/2)

log dygp,

IOg <Mhalo> [M o] /yr]
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3.2 Halo quantities that drive quenching

Before moving to the quenched population, let us first examine why
a galaxy is quenched. To be specific, we want to see which halo
quantities can be used to predict whether a galaxy is quenched
or not, and whether the prediction is deterministic or stochastic.
This is crucial to empirical modelling. For example, in order for
a halo-based model to predict the correct bimodal distribution
for galaxies, we need a careful model design so that the halo
properties can really be used to distinguish between the star-forming
and quenched populations. Since low-mass galaxies and massive
ones may be quenched through different processes (for example,
supernova feedback may be more efficient in a low-mass galaxy,
while AGN feedback may be stronger in a massive galaxy that
can host a more powerful central supermassive block hole), it is
necessary to answer these questions separately for galaxies with
different masses. We therefore define four subsamples according to
both M, and the smoothed sSFR, among all of the z = 0 TNG
galaxies. First, we separate these galaxies into two subsamples with
10335 < M,/(h~'"Mg) < 10°° and 10'° < M, /(h~'"My) < 10108,
respectively. We then split each of the two subsamples into two sub-
sets according to sSSFR > 1072 1 Gyr~! and sSFR < 10721 Gyr ™!,
respectively. These four subsamples are referred as the low-mass
active sample, low-mass passive sample, high-mass active sample,
and high-mass passive sample, respectively. The choice of the stellar
mass intervals is a compromise between minimizing the effect of M,
and preventing each subsample from being too small.

For each of these four samples, we plot the the distributions of
different halo quantities in Fig. 5. Here, log 8 .(z)mm ) for a halo without
any major merger is set to be a small negative value, and the same
applies to zinan. The value of (M) is set to be 10_4MO yr‘1 when
the measured value is small or negative. Galaxies in the low-mass

subsamples do not have the zp, core measurement, and so they do not
appear in the panel of Zmp, core-

For low-mass galaxies, the active and passive populations have
totally different distributions in zj,gy. The active population has a
flat zjnpn distribution, while the passive one has a sharply peaked
distribution. This difference strongly suggests that passive low-mass
galaxies have undergone a very recent infall-ejection process, while
high-mass galaxies do not. The distributions of other halo properties
confirm this. For example, passive galaxies on average have smaller
dyngp, consistent with the fact that the distance of such a galaxy to
a massive halo must be small for the infall event to occur. Due to
interactions in the infall-ejection process, the MAH of the halo can
change significantly, which may change the distributions in PCypx 1,
Zmb, 172, and (Mya10). The halo density profile may also change in this
process, which explains why the distribution of ¢ for passive galaxies
is also distinct from that of the star-forming population.

Although the distributions of halo properties for the star-forming
and passive populations are significantly different, it is still challeng-
ing to design an ideal classifier to tell whether a low-mass galaxy
is quenched or not using halo properties alone. The problem lies in
the sample imbalance: the fraction of the passive population among
all low-mass galaxies is less than 3 per cent in TNG, and less than
7 per cent in EAGLE. No matter how the classification boundary
is drawn, there is always a large contamination in the population
classified as the quenched population by star-forming galaxies.

The situation for high-mass galaxies is more complicated. Among
all of the halo properties shown in Fig. 5, the only three which
show large differences between star-forming and passive populations
are Zmb, cores PCvmax.1, and c. Because haloes with mass larger than
My, core may likely contain bright AGNs to quench star formation
and be more dominated by hot model accretion, an earlier formation
of a large progenitor, i.e. a higher zmpcore, may be indicative of a
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Figure 6. Cumulative R? of regressions of different stellar properties on halo properties for the quenched galaxies (sample Sq). In each panel, one galaxy
property (as indicated at the upper left corner) is regressed on six halo properties for both TNG (purple) and EAGLE (green) and for both low-mass (circles)
and high-mass (triangles) galaxies. The stellar mass ranges (M) are indicated in the first panel. See Appendix B for the definitions of R? and Z. The error bars

and the shaded regions are the errors estimated from bootstrap resampling.

higher probability for the galaxy to quench. Indeed, we can see this
in the distribution of zyp, core, and, implicitly, in the distributions of
PCymax.1- Compared with the quenched galaxies, the host haloes of
star-forming galaxies are more concentrated because haloes with
smaller Zmp core are less massive (Li et al. 2008) and therefore
more concentrated. However, the distribution in Zmbcores PCymax.15
or ¢ has significant overlap between the star-forming and quenched
populations. Thus, even though the star-forming and passive samples
are more balanced for massive galaxies than for low-mass ones, it is
still difficult to distinguish the two populations for individual galaxies
on the basis of the properties of their host haloes. We also try to
distinguish the star-forming and quenched populations by building
GBDTs and using the combination of multiple halo quantities as
features, including Mup, core, PCymax 1, and ¢, with their effects shown
in Fig. 5, and My, and v, Because of the degeneracy between
halo properties, we find that including all these features makes no
obvious improvement over using only M core- These indicate again
that a halo-based empirical model may not be able to predict galaxy
quenching per individual halo. What we can do is to build a model
capable of correctly predicting the statistical properties of galaxies
for a large ensemble of haloes.

3.3 The relations in the quenched sample

Once a galaxy is quenched, its SFR is lower and may even become
too low to be resolved by the simulations. However, as we see from
Fig. 1, a quenched galaxy may have a high SFR in the past when
it was still in the main sequence. The tight main-sequence relation
seen in Section 3.1 therefore indicates that the SFH of a galaxy
may be related to the MAH of its host halo. Motivated by this, we
use the integrated stellar mass, M, iy, to represent the galaxy SFH.
Compared to the current stellar mass, M, i, at any given redshift can
be viewed as the stellar mass that has formed throughout the history
before the redshift (see Section 2.1 for definition). We have tested
that our conclusion does not depend on this choice because almost
all galaxies in samples Ssr and Sq have M, < M, iy < 2M,.

So defined, the M, iy history is a direct quantity that ‘remember’
the history of star formation of a galaxy. Therefore, the M, i, history
should be connected to the halo MAH. Using the same PCA as
used for the vy, history, we reduce the dimensions of the M, iy
histories by representing them with several PCs, denoted as PC, =
(PC,.1, PC, 2, ...; see Section 2.1 and Appendix A).

We relate M, i, and PC, of the quenched sample, Sq, to the
following set of halo properties: vy, the PCs of the vy, history,
Zinfan ANd Zmp, cores applying the GBDTs separately for low-mass
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(M, < 10°° h~'Mg) and high-mass (M, > 10°° h~'My) subsam-
ples. The inclusion of Ziyran and Zup, core» 1S motivated by the results
presented in Section 3.2, where it is shown that these two quantities
are responsible for the quenching of low-mass and high-mass
galaxies, respectively. The results are shown in Fig. 6. The prediction
of M, i has a R? larger than 50 per cent, even if we use only vpx
as the predictor. This indicates that M, i, can be well reproduced
with halo properties, and is dominated by vy.x. The SFH PCs are
harder to predict. By using all of the six halo quantities, the R?
for each of the three SFH PCs is still far less than 100 per cent,
indicating that a large portion of factors affecting the SFH are still
missing in the model and that the details of how a galaxy forms
may be influenced by many nuanced factors. For the PC, |, R? is
significant and PCyp,y ;1 1s the most important factor, as seen from
the big increase of the cumulative R? it produces. The second and
third PCs of the v,y history are also important for the PC, | of low-
mass galaxies. As shown in Section 3.2, the quenching of low-mass
galaxies is mainly due to the infall process in which their SFHs have
large variances and more halo PCs are needed to capture them. For the
PC, » and PC, 3 of high-mass galaxies, the TNG and EAGLE show
large differences. The R?> for EAGLE is much lower, and require
more halo PCs to capture the variances. For low-mass galaxies, both
TNG and EAGLE have low R? for the predictions of PC, , and PC, 3,
indicating that high-order variations in the SFH are typically more
difficult to model. In all the cases, Zinfan and Zmb, core d0 NOt provide
a significant contribution to R? when PCs of the vy history are
already used. This indicates that information carried by these two
characteristic redshifts are already contained in the PCs of the vyax
history. We will use these results to help build our empirical model,
as described in Section 4.1.

4 THE EMPIRICAL MODEL OF STAR
FORMATION IN DARK MATTER HALOES

The results presented in Sections 3.1 and 3.3 show that the properties
of the SFH of a central galaxy are well captured by the halo properties
when the galaxy is in the star-forming main sequence, and that
the M., in history can be well captured by halo properties even for
quenched galaxies. Based on this tight galaxy—halo connection, we
propose an empirical model to populate haloes with central galaxies.
Because of the differences between the star-forming and quenched
populations, we model them separately. In this section, we first
discuss the design of the model and present a detailed description of
all of the model ingredients. We then use five cases to test the model
step by step.
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Figure 7. The outline of the empirical model for the star formation of central galaxies in dark matter haloes. The MAH, hy,j,, and other properties of haloes,
Xhalo» are transformed into the galaxy star formation history, h,, through three procedures, Py, P>, and P3. A post-processing is performed in the end. See

Section 4.1 for the detailed description of the model.

4.1 The model

The structure of the model is designed on the basis of the following
considerations. (i) We favour a simple model with a small number
of parameters to a complicated black-box model. A simpler model is
easier to understand, and can provide more transparent insights into
the relation between galaxies and dark matter haloes. In addition, a
simpler model is less prone to overfitting problems. We thus choose
the use of PCA to reduce the size of the parameter space for both
haloes and galaxies. (ii) The model should be expressive and flexible
to absorb a variety of observation constraints and to provide a wide
range of outcomes to compare with future observations. Because of
this, we choose to build the model in a deeper way rather than directly
mapping halo properties to galaxy properties. The model should
include the full pipeline of the feature extraction, the regression, and
the post-processing, each of which is simple enough while the joint of
them is sufficient to capture the complicated patterns in the galaxy—
halo connection. (iii) To optimize such a model, no standard approach
is available. Here, we choose to break the model into several pieces
and optimize them stepwise. This optimization borrows the idea from
the ‘greedy algorithm’ described in many textbooks of algorithm-
design (e.g. Cormen et al. 2009; Sedgewick & Wayne 2011).

We outline the model in Fig. 7. The overall purpose of the model
is to predict the SFH, h,, and other properties, x,, of a given central
galaxy, from the MAH of its host halo, hy,,, and a set of other halo
properties, Xp,10. Here, Xp,1, and x, are defined at a given redshift z,
and hy,, and h, are histories defined over a redshift range between
zo and z; > zo. We will specify the definitions of these variables
later. To achieve our goal, we break the model construction into
three procedures, Py, P,, and P53, which are described one-by-one in
the following.

In the first procedure, P;, we reduce the dimension of the halo
MAH, hy,,. The purpose is to make the representation of a halo
simpler so that the mapping from it to galaxy properties is easier to
establish. P; consists of the following steps.

(i) We choose hy o = Vinax as the halo MAH variable and use only
Umax O Xhalos Xnalo = (Umax)- We have checked other halo properties,
such as halo virial mass and mass bound to subhaloes and found that
Umax 18 the best. This is consistent with the test results of subhalo
abundance matching in Reddick et al. (2013), but here we extend
it by including the MAH as a secondary halo property. We choose
only PCs of the vy, history as the history variable, because we have

already seen that the v,y history is tightly related both to the SFR
for galaxies in the main sequence, and to the history of M, i, even
for quenched galaxies.

(i) We normalize the halo MAH by Bhato = hpao /hhato, 2=2,» Where
Nhato, 7=z, 1 the component of hy,, that corresponds to z = zg. The
purpose is to prevent the dimension reduction from being too much
concentrated in low redshift.

(iii)) We apply the PCA to Rya10, Which gives a set of eigenvectors,
eno.i (( =1, 2,3, ...),and a mean offset, 0y,, (see Appendix A). Af-
ter a shift of oy,), and a projection with ep,;,, we get a new vector Ynaio,
which is the set of PCs we want to obtain. Our test shows that using the
first two PCs is sufficient for modelling the SFH, and that including
more PCs does not lead to much gain in the model performance.

After procedure Pj, a halo can be described by a small set of
variables (Ynao, Xnalo), Which is sufficiently simple. As shown in
Sections 3.1 and 3.3, this set also gives a good prediction for the SFH.
We denote the total transformation in procedure Py as Te,,, op0:

(yhalm Xhalo) = ‘ﬂ'ehalo‘ohalo(hhalm Xhalo)a (3)

where X},,10, Which is not involved in the transformation, is included
to simplify descriptions in the following. The halo properties
(Yhalo» Xnalo) are then fed into procedure P,.

Before entering P,, we must decide how to represent a galaxy.
One of the quantities of interest is M., iy, and we denote the set
of stellar properties as X, = (M, in) in this case. The SFH is a
large vector, too complicated to model. It is therefore necessary
to represent the SFH also by a set of PCs. For both star-forming and
quenched galaxies, the SFH is well correlated with halo properties
(see Sections 3.1 and 3.3), so we define the SFH as h,, = log M, .
The normalization is performed as h,=h, — Ny, 2=4,. Note that we
also tested using other galaxies properties to represent SFH, e.g. SFR
for star-forming galaxies, but found little difference in terms of the
model performance. Once h, is obtained, we use the same method
as we did for haloes to reduce the dimension of SFH into a set of
PCs, y,, given by the set of eigenvectors, e, ;(i =1,2,3,...), and
the mean offset, o,. The normalization and the projection into the
new frame are jointly referred as the transformation T, ,,, so that
¥+, X)) = T¢, o, (hy, x,). The real modelling process is actually the
inverse, namely we first predict the PCs of the SFH and x, according
to halo properties, and then do the reverse transformation to obtain
the SFH. This is what we do in procedures P, and P;.

MNRAS 504, 4865-4884 (2021)
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Table 2. Five test cases for the empirical model used in this paper. The exact definitions can be found in
Section 4.2. This table lists the target galaxies we want to model and compare with the simulation, the simulation

which the SFH template is taken from, and how to model the star-forming and quenched populations.

Test case TN TgAGLE+TNG-modes TEAGLE Tjoin TJ{ oin
Target galaxies TNG EAGLE EAGLE EAGLE EAGLE
SFH template TNG TNG EAGLE TNG EAGLE
Treatment of bimodal populations Separately Jointly

Procedure P, is simple: we build a regressor to predict stellar prop-
erties of a galaxy, (y., X,), according to halo properties. Denoting
the regressor as R, we have

(Y*s X;) = [R(yhalm Xhalo)- 4
Procedure Ps is just the reverse of T, o,:
(h*, X*) - T;o*(y*, X*)7 (5)

which includes the dimension recovering and denormalization. The
dimension recovering transforms y, back to h, by the inverse of the
PCA using e, and o, ;. The de-normalization transforms h, to h,
using x,. Note that X, is not changed in the transformation.

Putting all these procedures together, we have a mapping from

halo properties, (hp,j0, Xhalo), to galaxy properties, (h,., x,):
(h,, x,) = -ﬂ—e_*l 0x R -ﬂ—ehalo,ohalo(hhalm Xhalo)- (6)

Note that the model has some degrees of freedom to be fixed. The
dimension reduction templates for haloes, €p,j0; and 0,10, are always
known because we populate haloes in dark-matter simulations. On
the other hand, the regressor, R, in P, needs to be modelled for
real applications. The template for galaxies, e, and o,, also needs
to be modelled. The main advantage of our model is that, we may
borrow some unknown parts from hydrodynamic simulations, so that
the degrees of freedom of the model can be reduced dramatically.
For example, although galaxy SFHs in different simulations may
differ significantly, they may still be represented accurately by a
small number of PCs with eigen-functions obtained from one set
or a combination of multiple sets of simulations, thus reducing
the dimension of each individual SFH from infinity (to describe
a continuous history) to a small number. We will discuss the details
in Section 4.2 and show the results in Section 4.3.

Since we only take M, iy at z = zo as the normalization for galaxy
SFH, a small discrepancy in the prediction of M, i, may give rise to
a large difference in SFH at high redshift. To make the model more
precise at high redshift, we break the halo MAH and the SFH of
central galaxies at z = 0 into two pieces: the first is between zo = 0
and z; = 1.5, and the second is above zo = 1.5. We run the model
separately for these two redshift ranges, and join the modelled h,
with a proper smoothing at z ~ 1.5. This, of course, doubles the
model complexity but gives a more accurate prediction of the SFH,
which may be needed when high-z data are available to constrain the
model.

For any galaxy, once M, iy is known, we can differentiate it with
respect to cosmic time to obtain SFR.

As shown in Section 3.1, the SFR of a galaxy cannot be totally
determined by its halo properties even for galaxies in the main
sequence. The residual of the main sequence is hard to predict even
with the use of a large set of halo properties. So far our model has
not taken the scatter in the SFR into account. To make the model
for the star-forming galaxies more realistic, we add a Gaussian
random component with a zero mean and a covariance ¥ to the
modelled log sSFR. The covariance is obtained by fitting that of
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the residual between the modelled log sSFR and the simulated one.
The logarithm of each diagonal element of ¥ is fitted by a sigmoid
function o versus log (1 + z), and each off-diagonal element is
fitted by a linearly decayed correlation strength versus the number
of snapshots between any two elements, i — j:

log &; ; = o[log(1 + z;)]o[log(1 + z;)]Lin(i — j), @)

where the four free parameters in the sigmoid function and the two
free parameters in the linear function are all free parameters to be
determined by the fit. We found that the correlation length is always
quite small, with the correlation quickly decreasing to a negligible
value. We also found that the sigmoid behaviour of the variance does
not depend strongly on halo mass.

All the processes after P; are collectively referred to as the post-
processing.

4.2 Testing the model with simulations

We now apply our model to simulations and test its performance by
comparing the model prediction with the simulated SFH of galaxies.
We define five test cases, denoted as Trng, TgagrE+TNG-modes, TEAGLE»
Tjoin, and ijoin, respectively. This design allows us to test our model
both in ideal cases, where all of the model ingredients are known,
and in more realistic cases, where some of the model ingredients
need to be modelled. We summarize the test cases in Table 2.

The test cases defined here use dark matter haloes in full hydro-
dynamic runs. We checked our results by matching these subhaloes
with those in the corresponding dark-matter-only (DMO) runs, and
rerunning our model on the DMO subhaloes. We found no obvious
changes in our results, although the uncertainty in the modelled
stellar properties increases moderately. This may be expected, as the
halo structure on the scale relevant to our modelling (e.g. where v,y
is defined) may not be affected significantly by the baryonic effects.
We should also emphasize that we use hydro simulations to guide
our model design, rather than to establish the exact mapping between
haloes and galaxies.

The first test case Tyng relies only on the TNG data. It is
conducted separately for both the star-forming sample, S = Sgf, and
the quenched sample, S = S, (see Section 2.2 and Table 1 for sample
definitions). To test the performance of the model, we randomly split
each of the TNG samples, S, into a training set and a test set, with a
ratio of 3: 1 in the number of galaxies between them. The steps are
the following:

(1) Following procedure P;, we apply the PCA to the histories
By Of the hosting haloes of galaxies in sample S, which gives the
transformation, Te, . o,..> and the low-dimension representation of
the halo MAH, yhao.

(ii) We apply the PCA to the SFH, h,, of the galaxies in sample
S, which gives the transformation, T, ,,, and the low-dimension
representation of the SFH, y,.

(iii) Using the training set, we train the GBDT regressor, R, which
maps (yhalm Xhalo) into (y*, X*)
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(iv) We apply the transformations obtained above to map halo
properties to galaxy properties in the test set using (h,, x,) =
'[I'e_*" o, R Tey.0n00 Mhato Xhato), and perform the post-processing.

After these steps, we obtain the modelled SFR and M, j, histories
for the galaxies in the test set, and we compare them with the
TNG data. Because the separation of the star-forming and quenched
galaxies and all of the transformations are obtained directly from the
simulation data, the performance of this test case can be viewed as
the upper limit of our model. In this case, the deviation of the model
output from the simulation is due to the intrinsic incapability of the
model, which, in principle, can be improved by including more halo
properties into Xy, and using more PCs of hy,,, provided that the
training set is sufficiently large.

The second test case Tgagpp+™NG-modes Telies both on the TNG and
EAGLE and is designed to mimic the situation in real applications
where some of the model ingredients are unknown. The test is also
made for both the star-forming sample S = Sgr and the quenched
sample S = S in EAGLE (see Section 2.2 and Table 1). To test the
model performance, we randomly split each of the EAGLE sample,
S, into a training set and a test set, again with a 3:1 ratio in the number
of galaxies between the two sets. The test is conducted through the
following steps:

(i) In areal application, halo information is accessible. Therefore,
we directly apply the PCA to the histories, by, of EAGLE haloes in
sample S, which gives us the transformation, T and the PCs
describing the halo MAH.

€halo s Ohalo

(i1) SFH is not accessible because it is the target of the model. This
prevents us from getting a dimension reduction template (e, 0,).
Thus, some assumptions have to be made. We choose to use the
eigenvectors, e,, that are built from the TNG in Trng, and we
interpolate each of these eigenvectors to the redshifts of EAGLE’s
snapshots. In doing so, we in effect borrow the template from the
TNG for the analysis of EAGLE. As we will show later, using the
TNG template to reduce the dimension of EAGLE SFH is, in terms of
model performances, comparable to using the template from EAGLE
itself. Thus, only o, remains to be modelled in real applications, and
it can be modelled by using some parametric form to be constrained
by observations. As more observations are added, the estimate of o,
will be improved. Here, we want to test the upper performance limit
of our model by using the real o, obtained directly from sample S of
EAGLE, and we denote it by 8,. Finally we obtain the transformation,
Te,.5,-

(iii) In a real application, the mapping, R, also needs to be
modelled and constrained by observations. Again, because we want
to gauge the upper limit of the model performance, we train R
by halo properties, Te,,. opuo (Phatos Xnalo), and galaxy properties,
Te, 5, (hy, x,), both from the training set of EAGLE. The trained
regressor is denoted by R.

(iv) We apply the transformation T, 1 5 R Tepo.000 to the host
haloes of the test galaxies, and perform the post-processing to get
the final output.

In the end of all these steps, we obtain the model predictions for
galaxy properties and compare them with the results of EAGLE.

MNRAS 504, 4865-4884 (2021)
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Figure 9. The modelled SFR (the left three columns) and M, iy (the right three columns) in the histories of z = O star-forming galaxies (sample Ssf) in
comparison with the simulation results for three test cases, TTnG, TgagLE+T™NG-modes, and TeagLE, and for different redshifts as indicated in the left-hand panels.
The M,-weighted average of residual and standard deviation (A) are indicated in the upper left corner of each panel. The modelled SFR includes the randomly
added noise whose standard deviation is shown by the dashed grey curves in each of the SFR panels. Solid, dashed and dotted contours enclose 1o, 20, and 30

regions, respectively.

Since in Tgpgpg+NG-moces sSOome of the transformation ingredients
are borrowed from TNG, the model performance is inevitably worse
than that using the true transformation. To see the effect caused by
the imperfect transformation, we design a third test case, TgacLE,
which is identical to Trng, except that both Sgr and Sq are taken
from EAGLE.

Finally, we design a more realistic testing case, Tj,, in which
the separation of star-forming and quenched galaxies is also to be
modelled. This test is conducted for both the star-forming sample
S = S§r and the quenched sample S = S in EAGLE. We again use
a 3:1 split between the training and test sets. The testing steps are the
following:

(i) We apply the same modelling as in Tgagp p+TNG-modes t0 Sgp and
S, and obtain two models that map halo properties to the galaxy
SFH separately for star-forming and quenched galaxies.

(ii) Using the combination of the training set in S and Sq, we
train a GBDT classifier which classifies a z = 0 galaxy into the star-
forming or the quenched population according to its halo properties,
Umax at 2 = 0, Zinfall, Zmb, core» and the first three PCs of the v,
history. The inclusion of zjypn and Zmp, core 18 Motivated by the fact
that these two properties are important in affecting galaxy quenching
(see Section 3.2).

(iii) We apply the classifier to the combination of the test sets in
both Sgp and Sq. A galaxy is then classified either as star-forming

MNRAS 504, 48654884 (2021)

or quenched. We apply the two trained models to star-forming and
quenched populations, respectively.

As mentioned in Section 3.2, the separation of star-forming
and quenched galaxies is far from perfect, which can lead to
significant contamination in both the star-forming and quenched
samples classified. This limits the performance of models based
on halo properties. However, as we will show later, although the
reconstruction of the SFH for individual galaxies is contaminated
by imperfect classification, the statistical properties of the whole
population are unbiased. The final outputs of the two models in
this test case consist of properties of both star-forming and quenched
galaxies at z = 0, and are compared to the EAGLE data. As described
above, the separation of star-forming and quenched galaxies, as well
as the transformation, all mimic real applications in this case.

We again want to see if the use of the template from EAGLE itself
can make an improvement in the model performance. To this end,
we define a fifth test case, Tjoin, which is identical to Tjei,, except that
the dimension reduction template is from EAGLE itself in its first
step.

4.3 The results

‘We now show the results of the five test cases, Trng, TEAGLE+TNG-modes ,

TeacGLE> Tjoin ijoin. In the first three cases, the star-forming sample

Ssr and the quenched sample S are modelled separately. The
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Figure 10. The same as Fig. 8, but for the quenched galaxy sample Sgq.

modelled SFHs of star-forming galaxies, represented by SFR and
M, i at each snapshot, are shown in Fig. 8 in comparison with the
simulated one. The simulated SFR histories of individual galaxies
show small fluctuations on small time-scale, which are not captured
well by the PCs in the model, but can be modelled by adding a random
component in the post-processing. In all of the three test cases, the
model successfully reproduces the overall trend of the simulated SFR
histories for individual galaxies. The difference between the model
and the simulation is small at low z, and becomes slightly larger at
higher z where the SFR becomes too low to model accurately. The
modelled SFR histories in Tgagpp+NG-modes 1S as good as those in
TrnG and TeagLg at low redshift, and becomes slightly worse at high
z in some cases. The M, i, histories are more smooth, but the overall
conclusion for the SFR histories also holds for the M, i, histories.
All of these indicate that the model can reproduce both the SFR and
M., in histories for star-forming galaxies.

To quantify the goodness of the model in describing the data of
star-forming galaxies, we compare in Fig. 9 the simulated SFR and
M., in at several redshifts from O to 3. We also compute the mean and
standard deviation of the M,-weighted average of residual between
the simulation and the model. The results can be summarized as
follows: (i) The residual between modelled and simulated log SFR
and log M, iy has no obvious bias at all redshifts, (ii) The residual
between modelled and simulated SFR and M, ;y slightly increases
with redshift. The scatter is about 0.3 dex for the SFR and 0.1 dex for
the M, in at 7 =0 ~ 2 and increases at z > 2, (iii) The random noise,
which cannot be modelled by the halo MAH, is moderate at low z,
and becomes significant at z = 3. Because numerical simulations
usually have more limited output time resolution at higher redshift,
the SFHs of galaxies at higher redshift are expected to contain more
noise. These suggest that the full potential of the empirical model is

limited by the resolution and output frequency of the hydrodynamic
simulation used. Consistent with this, the results in Section 3.1 show
that the residual in the sSFR cannot be fully explained by halo
properties, and (iv) The bias and scatter for both SFR and M, iy
at all redshifts are only slightly larger in Tgagpg+m™G-modes than in
TeacLE, indicating that the borrow of template does not introduce
large error in the model. All these confirm that the model is powerful
in describing the SFH of star-forming galaxies.

The modelled SFHs obtained from the quenched sample Sq in
the first three test cases are shown in Fig. 10 in comparison with
the simulation results. Compared with the results for star-forming
population, the SFR and M, i, histories are as well reproduced
over a wide range of redshift. Case Tgagy g+1NG-motes, Which uses the
TNG template, also gives results comparable to cases where EAGLE
template itself is used. The only exception is at low redshift when
these galaxies are quenched and the SFRs decrease quickly to very
low values for the model to predict accurately. However, even in this
case, the predicted M, iy histories still closely follow the simulated
ones.

For the quenched sample Sg, we also show, in Fig. 11, the
comparisons between the model predictions and the simulated results
for both SFR and M, j, at several redshifts between 0 and 3. At
low redshift, the SFR of quenched galaxies cannot be predicted
accurately, so that both the bias and scatter are large. As we go
to higher redshift, the bias and scatter decrease. These indicate that,
even for a galaxy that is quenched at z = 0, it is still possible to infer
its SFH from its halo MAH. In all of the three test cases, the modelled
M, i is tightly correlated with the simulation results, with almost
no bias at low z and small bias at z = 3, and with small scatter at all
redshifts. Again, the use of TNG template to model EAGLE galaxies
in TpagLE+™G-medes 1S as good as using EAGLE’s own template in

MNRAS 504, 4865-4884 (2021)
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Figure 11. The same as Fig. 9, but for the quenched galaxy sample Sq.

TracLe, indicating that the model can reproduce the SFH even for
quenched galaxies.

Based on these test results from Trng, Tgagrp+T™G-modes, and
TracLe, We conclude that our model can describe accurately the SFH
of both star-forming and quenched galaxies except for the current
SFR of quenched galaxies. Thus, if we can find a way to separate the
star-forming and quenched populations, a model can be constructed
for both populations. In the following, we show that a statistically
correct model can be constructed even if a clean separation between
the two population is not feasible (because of the reason discussed
in Section 3.2).

In the remaining two test cases, we need to first classify a
galaxy as star forming or quenched, and then model it by the
trained model appropriate for its class. Fig. 12 shows the results
based on Tju,, where the distributions of model galaxies in the
(log M, in, log sSFR) plane at four different redshifts are compared
with the simulated results. At z = 0, model galaxies show a
bimodal distribution, consistent with the simulation results. At higher
redshifts, the simulation shows some weak sign of bimodality, which
is not well captured by the model. In the simulation, the mean value
of sSFR of the main sequence increases slowly with redshift, a
trend that is well reproduced by the model. Consistent with the
simulation, the scatter in the modelled main sequence decreases
with redshift. However, the predicted amount of scatter at z = 0 is
smaller than that in the simulation, which is due to the limited degrees
of freedom of the random component used in the post-processing.
Fig. 12 also shows the galaxy distribution using Tj,;, and EAGLE’s
own templates to model EAGLE galaxies. It is clear that the use of
TNG templates in Tj, is as good as using EAGLE’s own template
inT,

join*®

MNRAS 504, 48654884 (2021)

In Fig. 13, we show the SFR—M},;, and M, —My,, relations at four
redshifts from z = 0 to z = 3 for the test case Tjqi,, in comparison with
the simulation results. For comparison, we also show the results from
the test case Tj;, to test the effect of borrowing external template.
As one can see, the M, —My,, relations predicted by the model for
Tjoin match well the simulation results. Only at z > 2 is the modelled
M, —My,, relation slightly lower. Compared with the results for
T}y, Which match the simulation results almost perfectly, this small
difference is clearly produced by the use of the imperfect template
in Tjoin-

The modelled SFR —M},y, relation in Tjei, is also similar to that in
the simulation, with moderate discrepancy at My, > 102 h~'M.
Comparing this to the predictions of T}, which match the simulation
results better but not perfectly, we infer that this discrepancy is partly
due to the use of imperfect template in Tjy, and partly due to the
imperfect classification of star-forming and quenched galaxies in
both cases. As discussed in Section 3.3, the decision boundary is
ambiguous for high-mass galaxies, which are hosted by massive
haloes, and a slightly offset in the decision is likely to produce a
significantly different result.

Since we have already included PCs of v, as features in the
regressors, our model is expected to reproduce the dependency of
galaxy properties on halo MAH, a phenomenon usually referred
to as the ‘assembly bias’. To demonstrate this, we plot the relation
between the halo half-mass formation time, zyb, 1,2, and galaxy sSFR
for galaxies at z = 0 for case Tjq;,. The results for four different stellar
mass bins are shown in Fig. 14, where we also include the results
from the simulation and from T;;, for comparison. In all of the mass
bins, galaxies in haloes of earlier assembly on average have smaller
sSFR. Both Tju, and T, can reproduce this trend.

join
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Figure 14. The relation between halo half-mass formation time, zmb, 1/2 and
galaxy sSFR for z = 0 galaxies with different M, iy, as indicated in each
panel. In each panel, grey dots are from the EAGLE simulation, with the
solid black line and shade indicating the mean and standard deviation of the
mean, respectively. Test results using Tjoin are shown by the green line with
error bars, while those using ijoin are shown by the black-dashed line. Only

galaxies with sSFR > 1072 4 Gyr~! are used.

The results of Tj,;, have a small bias relative to the simulation.
Because the effects of halo PCs on galaxy SFH are much smaller than
the total scatter of the star-forming main sequence (see Section 3.1),
the regressor that maps halo PCs to galaxy properties tends to reduce
the model variance at the cost of increasing bias. When the SFH
template adopted in the model is imperfect, the bias is larger, as
is seen in the results of Tjen in comparison with those of Tj,.
Overall, our model reproduce correctly the assembly bias in the data,
especially when the PC template can account for the variance in the
SFH of galaxies.

To conclude, the tests using Tj, and ijoin demonstrate that our
empirical model can describe the galaxy—halo relation correctly in a
statistical way, even though the classification between star-forming
and quenched galaxies is not accurate for individual galaxies.

5 SUMMARY

In this paper, we use the TNG and EAGLE simulation data to infer the
galaxy—halo relations that are needed to build an empirical model for
central galaxies in dark matter haloes. Our analysis is based on PCA
for dimension reduction and GBDT for regression and classification.
Our main results and their implications are summarized as follows.

(1) The star-forming main sequence is a well-defined population
driven by v, of host haloes. The M,—v,x and SFR—v, relations
for this population at z = 0 are both tight, with R> > 0.9 and
0.7, respectively, and they are even tighter at higher z. Other halo
properties are secondary and provide only small improvements in
the predictions of M, and SFR.

(i1) The residual of the SFR—M, relation for the main sequence,
represented by A log sSFR, is not dominated by any halo property
tested in this paper. Using a combination of a large set of halo
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properties, the value of R? in the prediction of A log sSFR is still
<0.5 at both low and high z. These indicate that modelling the
SFR based on halo properties with the use of deterministic relation
between the two can lead to spurious and biased results. A random
component is needed in order to model SFR in a statistically unbiased
way.

(iii) The quenching of a low-mass central galaxy is tightly cor-
related with the infall-ejection process of the host halo. In contrast,
the quenching of a high-mass central galaxy is related closely to
the formation of a massive progenitor in its host halo at high z, as
indicated by the core formation redshift, zyp, core. For both low-mass
and high-mass galaxies, it is difficult to train classifiers that can
separate the star-forming from the quenched population because of
the sample imbalance and overlapped distribution between these two
populations.

(iv) For the quenched population, M, iy is tightly correlated with
halo vy The M, iy at z = O depends predominantly on v,
while PCs of the M, iy history are correlated with the PCs of the
Umax history. In general, the higher order PCs of M, i, are less well
recovered by the regressors.

Based on the inferred galaxy-halo relations, we propose an
empirical model for star formation in central galaxies of dark matter
haloes. The main procedures can be summarized as follows:

(i) The empirical model consists of three procedures, which reduce
the dimension of halo MAH by the PCA, map the halo properties
into stellar properties by the GBDTs, and recover the dimension of
the SFH by the inverse of the PCA.

(ii) For both star-forming and quenched galaxies, the empirical
model shows good performances in all of our test cases. The
reconstructed SFHs of individual galaxies follow the correct trends
in comparison with the simulated results. The SFR and M, i, at all
redshifts are reconstructed with small bias and small residuals. The
only exception occurs for some quenched galaxies where the SFRs
in the simulations decrease too rapidly to capture by the model.

(iii) Central galaxies can be classified into star-forming and
quenched populations on the basis of halo properties, and can
be modelled separately according to their classes. Although the
classification is imperfect and has contamination between the two
classes, the predicted statistical properties of the galaxies match well
with the simulation inputs. These include the bimodal distribution
of galaxies in the SFR—stellar mass diagram, the stellar mass—halo
mass, and SFR—halo mass relations of galaxies at different z, and the
assembly bias of galaxies.

The results presented here provide a framework of using hydro-
dynamic simulations to discover ingredients that can be included in
empirical models of galaxy formation and to build templates that can
be used to reduce the model complexity. In the future, we will extend
our analysis by including satellite galaxies. The results obtained
in this paper can be used as the initial conditions before a galaxy
becomes a satellite, and the subsequent evolution of the satellite
population is to be modelled again on the basis of halo properties,
such as halo masses and merging orbits. With these, we will build a
full empirical model based on the architecture provided by numerical
simulations.
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APPENDIX A: PCA OF GALAXY AND HALO
FORMATION HISTORIES

The PCA is an unsupervised, reduced linear Gaussian dimension-
reduction method (Pearson 1901; Hotelling 1933). As demonstrated
in Chen et al. (2020), the halo MAH, which is a vector in high-
dimensional space, can be effectively reduced to several PCs that
still capture most of the sample variance. Here, we briefly describe
how we apply the PCA to galaxy and halo formation histories. A
modern and detailed theoretical description of the PCA can be found
in Bishop (2006).

The various ‘history’ quantities considered in this paper are also
vectors in high dimension space, and we use the PCA to reduce their
dimensions so that each history can be described by a set of PCs.
For each of the histories, h (h = vy, SFR, or M, i), we apply the
PCA according to the following steps:

(i) Because of the resolution limit of the simulations, the history
of a galaxy cannot be traced back to an arbitrarily high redshift. For
a galaxy sample S, we trim h of each galaxy above a chosen redshift,
so that 90 per cent of the galaxies have history measurements for the
remaining redshifts. Galaxies that do not have history measurements
at some of the remaining redshifts are padded with a small value to
ensure numerical stability.

(i) We make a proper transformation of h according to the
description given in Section 4.1 to make it suitable for PCA. The
transformed history is denoted by h.

(iii) We apply the PCA to h of all galaxies in S. The PCA gives a
mean offset 0, and a set of new base vectors e;(i = 1, 2, 3, ...) whose
eigen-values, A;(i = 1, 2, 3, ...), are ranked in a descending order.
The history is then transformed into the new frame by

PC = (e, e, ...)T(h — o). (A1)

To reduce the dimension of h, we can keep a set of m important
PCs, PC,, = (PC,, PC,, ..., PC,,)T. We can reconstruct h from PC,,
using

flrecon,m = (el , €2, .0y em)PCm + o. (Az)

This inevitably causes some loss of information. The information
retained by PC,, is by described the cumulative proportional variance
ratio (cPVE), defined as

Var{Rrecon, ]
cPVE,, = ————"-,
Var[h]

(A3)
In Section 4.1, we consider a case mimicking real applications, in
which the dimension-reduction templates from the TNG simulation
are applied to reduce the dimension of the SFHs of the EAGLE
simulation. To this end, we first apply the PCA to both TNG and
EAGLE. We then keep only the EAGLE offset vector o, and replace
all EAGLE base vectors e; with the TNG base vectors interpolated
to the redshifts of the EAGLE snapshots. Using this new frame,
we can compute the PCs for each EAGLE SFH, and measure the
performance of the reconstruction by the corresponding cPVE.

The cPVE as a function of m is shown in Fig. Al. As one can
see, when using the templates obtained from a simulation itself, the
Umax and M, histories in both TNG and EAGLE converge quickly
to 1, indicating that the first several PCs take most of the variance.
This shows that the main structures of the halo MAH and the stellar
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cPVE

-
10

PC Rank PC Rank

Figure Al. cPVE curves for vmax, SFR, and M, iy histories of haloes and
galaxies in TNG (left) and EAGLE (right). In the right-hand panel, the open
circles joined by dashed lines are cPVE curves for EAGLE SFR (blue) and
M, inc (red) histories using PCA templates from TNG.

- O o im0,
02 04 06 08 10 02 04 06 08 1.0
log dc (Zmb, 1/2) log dc (Zmb, core)

Figure A2. Relation between the first PC of halo vy, history and for-
mation time zmyp, 12 (left-hand panel; using all z = 0 TNG haloes with
Mhato > 1033 A~ "Mg) and zmp, core (right-hand panel; using all z = 0 TNG
haloes with Mpgo > 10'° h’lMQ because small haloes do not have zmp, core
measurements).

MAH are fairly simple, and can be effectively described by a small
number of parameters. For the SFR history, the first several PCs
are still the most important ones, but cPVE increases slowly as m
increases, indicating that the SFR history is noisy on small time-
scales. This can be seen from the plots of SFR histories of individual
galaxies presented in Section 4.3. It is thus only sensible to link the
main structure of the SFR history to halo properties, but to treat the
small-scale fluctuation as a random (uncorrelated) component to be
included in the empirical model. The design of our empirical model
in Section 4.1 exploits this idea.

When using the TNG templates to describe EAGLE histories, the
reconstruction is poorer, as shown by the open circles connected by
dashed lines in Fig. A1. However, the first several PCs are still the
most important ones and each of the higher order PCs contributes
only a small fraction of the cPVE.

The parametrization using PCs for halo MAH has several advan-
tages over formation times. PCs of MAHs are linearly orthogonal
therefore reducing the degeneracy. The first PC of MAH has
better correlation with halo concentration than other formation
times do, as shown in Chen et al. (2020). PCs also have clear
physical meaning. The first PC of MAH is tightly related to the
formation time for haloes with mass exceeding a certain value.
Fig. A2 demonstrates its relation with two formation times, and
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Figure A3. Distributions of the log SFR (upper row) and log M in; (lower row) difference between model galaxies and TNG simulated galaxies. Here, we
show the test galaxies in the sample Ssr in the first test case Ttng. The purple histograms are from the model using the first two PCs for MAH and SFH. The

black histograms are from the model without any PC.

we see a tight relation between them. Higher order PCs natu-
rally reflect more subtle properties in the formation histories of
haloes, such as major mergers (see Chen et al. 2020, for detailed
discussions).

PCs of halo MAHs are also tightly correlated with the SFH of
galaxies (see Section 3). Although My, OF U,y is the dominant
factor in galaxy SFH, more information can be captured with the help
of PCs, so that the empirical model is more powerful in describing
the details of galaxy SFH. We show an example of this improvement
in the Fig. A3, where we use the test case Ttng (see Section 4.2) to
demonstrate the difference made by including the PCs of both MAH
and SFH.

APPENDIX B: GRADIENT BOOSTED DECISION
TREES

Boosting is a large set of model ensemble methods that combine
multiple weak learners (regressors or classifiers) to produce a strong
learner capable of capturing complex patterns in statistical learning
tasks. Compared with other ensemble methods, such as the random
forest (Breiman 2001) that starts with strong learners and uses
multiple-sourced randomness to suppress model variance, boosting
methods are faster in computation and still maintain comparable
performance.

A successful example of boosting methods is AdaBoost (Freund &
Schapire 1997), which can be viewed as a ‘greedy’ algorithm that op-
timizes an exponential objective function (see e.g. Bishop 2006). The
extensions of this method to arbitrary differentiable objective func-
tions can be made through gradient boosting or GBDT (Friedman
2001), and stochastic optimization strategies (Friedman 2002). The
idea behind boosting motivates the developments of some modern
deep neural networks, such as those with residual blocks (ResNet, see
He et al. 2015) and densely connected blocks (DenseNet, see Huang
et al. 2017). In this paper, we use GBDT for both regression and
classification.

The idea of boosting is to build a sequence of weak learners
f(x)(i=1,2,..., M), and combine them to form a regression function
or classification function,

M
Fu() =Y fix). (B1)
i=0

In regression problems, F; maps the feature variable x to the target
value. In classification problems, F); maps x to the class probability,
and the final prediction is chosen to be the class with the highest
probability. Once we have a training data set D = {(x;, y:)}~,, the
best Fy, is the one that minimizes the loss function I(Fy,|D).

Without any constraint, the optimization of / is infeasible because
the functional space of f; has infinity dimensions and the possible
combinations are also infinite. The GBDT provides a tree-based
‘greedy’ algorithm to solve this problem. Starting from an arbitrary
naive learner Fj (e.g. a constant function), the GBDT algorithm
recursively adds new learner f); into F; _ | to give Fyy = Fyy — 1 + fu,
such that I[(Fy|D) < I(Fy — 1|D). To find the best f, at each iteration,
we expand / as a series,

[(Fy|D) = l(Fy—1|D) + fu - VFI(FID)|Fr=Fy_, - (B2)

If fis is chosen such that fi = —aVpI(F|D)|p=p,_,, with o being
the learning rate, then the loss function is guaranteed to decrease,
and the iteration is an example of the gradient descent algorithm. In
general, fj; can be any function that is parallel with the gradient.

In our applications, we use only the loss function derived from
the exponential family (L2 loss in regression; cross-entropy loss in
classification; see Bishop 2006), so that the gradient

Vel(FID)p=ry_, = Fu-1(x) —yi (= 1,2,.., N), (B3)

which is the residual of F),_; relative to the real target values.
With this choice, we train a shallow decision tree regressor #(x) with
the training set {(x;, Fy—1(X;) — y,-)}fvzl, and finally obtain fj; using
fu = —at. In the iterative process modelled above, trees built earlier

mainly handle the large-scale structures in the feature space, while

MNRAS 504, 4865-4884 (2021)
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those built later focus on the local difficulties that have not been
captured.

The boosting algorithm defined above may have problems from
overfitting. To overcome them, we use the stochastic GBDT (Fried-
man 2002). At each iteration step, we only use a random subset
of the whole data set to train the tree #(x). Such a randomness in
the training set can effectively suppress the model variance, and is
proved equivalent to ordinary regularization in some cases (see e.g.
Bishop 1995).

For our analysis, we use the scikit-learn package to perform the
GBDT. We choose the maximal depth of each tree to be three, which
gives a sufficiently weak learner as required by boosting. A random
subset of 75 percent of the training data is used at each iteration
step, which is sufficient to suppress overfitting for most tasks. We
adopt a small learning rate, @ = 0.08, as recommended by Hastie,
Tibshirani & Friedman (2001) to avoid overshot. We use 25 per cent
of the training data as the validation set, and terminate the iteration if
the validation performance is not improved in 10 consecutive steps.

Once the ensemble of trees is built, the contribution of each
variable x € x in the prediction of target y can be described by
an importance value, Z(x). This value is defined as the fraction of
the decrease of the total loss caused by x in the construction of each
tree, satisfying the normalization condition

> T =1. (B4)
XEX

The definition of Z(x) is motivated by the fact that the goal of a
regressor or a classifier is to reduce the loss value. A variable x
is more important if including it reduces more loss. So defined,
a variable x with Z(x) = 0 does not contribute to determining the
target y, and can be neglected. In the other extreme where Z(x) = 1,
the variable x dominates the prediction for y, and other variables can
be neglected.

MNRAS 504, 48654884 (2021)

The final performance of the ensemble is then evaluated at some
test data, and is measured by R?, defined as the fraction of the variance
of the target values explained, in regression problems, and by the
correct-classification rate, r, in classification problems (see e.g. Chen
et al. 2020, for a detailed description).

The R? value satisfies the condition

0<R><1. (B3)

If aregressor has R? = 1, the relation between x and y is deterministic.
On the other hand, R*> = 0 indicates that there is no significant
correlation between x and y. Thus, R> measures the correlation
strength between the predictor and target variables.

As a simple demonstration, we consider an example where x and y
satisfy a linear relation y = kx + €, with € being a Gaussian random
noise of zero mean and a constant variance. In such a case, the Pearson
correlation coefficient p, ,, reflects the correlation strength between
the variable pair. If one builds a linear least-squares regression model
and calculates the R? defined above, one gets R* = p? . ie. R is
just the square of the correlation coefficient.

If the variable pair have a non-linear relation or they are in
high-dimensional space, the Pearson correlation coefficient is not
so meaningful. In such cases, R” is a natural extension that has an
interpretation similar to that in the linear case.

It is a common practice to adopt a threshold value to determine
whether a correlation is strong or not. For example, if R* < 0.5 we
may conclude that most of the driving factors are still missing in the
model. On the other hand, if R> > 0.5, we may conclude that the
main factors driving the target variable have already been included
in the predictor set.

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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