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ABSTRACT
Small-scale density fluctuations can significantly affect reionization, but are typically modelled quite crudely. Unresolved
fluctuations in numerical simulations and analytical calculations are included using a gas clumping factor, typically assumed to
be independent of the local environment. In Paper I, we presented an improved, local density-dependent model for the sub-grid
gas clumping. Here, we extend this using an empirical stochastic model based on the results from high-resolution numerical
simulations which fully resolve all relevant fluctuations. Our model reproduces well both the mean density-clumping relation
and its scatter. We applied our stochastic model, along with the mean clumping one and the Paper I deterministic model, to
create large-volume realizations of the clumping field, and used these in radiative transfer simulations of cosmic reionization.
Our results show that the simplistic mean clumping model delays reionization compared to local density-dependent models,
despite producing fewer recombinations overall. This is due to the very different spatial distribution of clumping, resulting in
much higher photoionization rates in the latter cases. The mean clumping model produces smaller H II regions throughout most
of reionization, but those percolate faster at late times. It also causes a significant delay in the 21-cm fluctuations peak and yields
lower non-Gaussianity and many fewer bright pixels in the PDF distribution. The stochastic density-dependent model shows
relatively minor differences from the deterministic one, mostly concentrated around overlap, where it significantly suppresses
the 21-cm fluctuations, and at the bright tail of the 21-cm PDFs, where it produces noticeably more bright pixels.
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1 IN T RO D U C T I O N

The Epoch of Reionization (EoR) is an important period in the history
of the Universe, which encompasses the creation of the first stars and
galaxies that subsequently influenced the formation and evolution of
latter-day structures. These luminous objects have produced enough
UV-radiation to both alter their host galaxy composition and to
propagate into the intergalactic medium (IGM), ultimately ionizing
it for a second time (Furlanetto, Peng Oh & Briggs 2006; Zaroubi
2012; Ferrara & Pandolfi 2014).

The key goal of reionization simulations is to provide the nu-
merical framework for constraining EoR observables, for example
the detection of the 21-cm hyperfine transition of neutral hydrogen
fluctuations (Bowman & Rogers 2010; Paciga et al. 2013; Yatawatta
et al. 2013; Jelić et al. 2014; Parsons et al. 2014; Ali et al. 2015;
Dillon et al. 2015; Jacobs et al. 2015; Pober et al. 2015; Robertson

� E-mail: m.bianco@sussex.ac.uk

et al. 2015; Patil et al. 2017; Ghara et al. 2020; Mertens et al.
2020) and Lyman-α damping wings (Davies et al. 2018; Greig,
Mesinger & Bañados 2019). Such simulations require large volumes,
of several hundreds cMpc size in order to correctly derive the cosmic
reionization history, to account for abundance and clustering of
expected sources and to sample vast regions of the universe for
detection of the redshifted 21-cm hyperfine transition of neutral
hydrogen (Mellema et al. 2006b; Iliev et al. 2014), as relevant
for current and upcoming experiments (e.g. LOFAR,1 SKA2). At
the same time, EoR simulations need to include fluctuations in the
density distribution down to the Jeans mass of the cold gas, which
is in sub-kpc scale, so as to correctly model recombination effects
and thus properly track the expansion of ionizing fronts throughout
reionization (Park et al. 2016). Unfortunately, because of the limited
dynamic range, satisfying both of these requirements in a single

1http://lofar.org
2https://skatelescope.org
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Table 1. N-body simulation parameters. Minimum halo mass is 105, 109, and 109, corresponding to 20, 40, and 25 particles, respectively in SB, LB-1, and
LB-2. In all cases, the force smoothing length is fixed at 1/20 of the mean inter-particle spacing.

Label Box size Nparticle Fine mesh Spatial resolution mparticle RT coarse-grained mesha RT coarse-grained cell sizeb

SB 9 cMpc 17283 34563 260 pc 5.12 × 103 M� 83 (53%), 133 (50%) 2.381, 1.394 cMpc
LB-1 714 cMpc 69123 13 8243 5.17 kpc 4.05 × 107 M� 3003 2.381 cMpc
LB-2 349 cMpc 40003 80003 4.36 kpc 2.43 × 107 M� 2503 1.394 cMpc

aSB density grid is coarsened to the to the required resolution for the LBs. In the column for SB, the coarsened mesh size and respective percentage of the
overlapping volume for windows mesh function, calculated with equation (3).
bSpatial resolution of the RT coarse-grained mesh for SB, for the calculation of equations (5) and (6).

fully numerical simulation is currently unachievable, and will remain
challenging in the future. Hence, in large-scale simulations, the
sources and sinks of ionizing radiation often act on scales much
smaller than the resolution level and need to be treated using sub-
grid prescriptions. Consequently, simulations may adopt incorrect
values for various relevant quantities (e.g. density, temperature, gas
pressure, etc.) smoothed on the (relatively coarse) grid scales and
this could influence the predicted observational signatures.

In this work, our focus is on how sub-grid density inhomogeneities
are considered within the volume elements of large-scale simulations.
Depending on how gas density fluctuations vary in space and over
time (local degree of ‘clumpiness’), the recombinations in the IGM
can significantly affect the progress and nature of the reionization
process. For every ionized atom that recombines with a free electron,
an additional ionizing photon should be produced in order to ionize
it again and keep the IGM highly ionized. In this way potentially a
substantial portion of the sources photon budget could be depleted.
In simulations, the recombination rate R is discrete, averaged on a
mesh giving 〈R〉 = 〈

αB(T)x2
i n2

〉
, where αB(T) is the (temperature-

dependent) Case B recombination coefficient, xi is the ionized
fraction, n is the number density, and for simplicity we assumed
pure hydrogen gas. This indicates the number of electron–proton
recombination per second in a volume, for a given gas chemistry,
within each grid cell. Early semi-analytical models have adopted a
common methodology named the Clumping Factor Approach, that
defines the averaged recombination rate in terms of a clumping
factor C = 〈

n2
〉
/ 〈n〉2, which corrects for the difference between

the cell-averaged 〈n〉2 and the actual value, thereby accounting for
unresolved small-scale (sub-grid) structure in simulations (Gnedin
& Ostriker (Tegmark et al. 1996; Ciardi & Ferrara 1997; Gnedin
& Ostriker 1997; Madau, Haardt & Rees 1999; Valageas & Silk
2004). If not correctly treated, this approach can underestimate the
impact of sub-grid inhomogeneities on absorption of radiation. In
some cases, this term is just completely ignored, i.e. C = 1 (Onken
& Miralda-Escudé 2004; Kohler, Gnedin & Hamilton 2007), but
the more common and simplistic approaches consist in either a
constant global term (Cen 2003; Zhang, Hui & Haiman 2007) or
a time-evolving global term (Iliev, Scannapieco & Shapiro 2005;
Mellema et al. 2006b; Iliev et al. 2007; Pawlik, Schaye & van
Scherpenzeel 2009), averaged on the entire box volume, also referred
as the biased homogeneous or globally averaged clumping model.
Recently, we presented our first work (see Mao et al. 2020, for
reference), hereafter Paper I, where we investigated the impact of a
spatially varying, local density-dependent sub-grid clumping factor
on reionization observables. In the present paper, we extend the
discussion and propose a more realistic and accurate treatment of
the Clumping Factor Approach, that takes into account also the
scatter around the mean clumping-density relation observed in high-
resolution simulations.

We use a high-resolution N-body simulation of a small volume of
side length 9 cMpc, with spatial and mass resolution of approximately
200 pc and 5000 M�, to statistically describe IGM density fluctua-
tions down to the Jeans mass in the cold, pre-reionization gas and
then to implement these sub-grid density fluctuations into two large
volume (714 and 349 cMpc os side length) reionization simulations.
By adapting the small-scale sub-grid to the resolution of larger boxes
we then model the correlation between density and clumping factor,
comparing three different models (details in Section 2.3), in order to
infer the clumping factor from the coarse density grid of the large
volume, see Section 2.4. Finally, we perform a radiative transfer
(RT) simulation to study the effect of this sub-grid inhomogeneity
approach on observables of reionization.

This paper is organized as follows. In Section 2, we present the N-
body and RT simulation used, the numerical methods, Section 2.2 and
our models in Section 2.3. In Section 2.4, we discuss the realization of
the clumping factor for large volumes from sub-grid inhomogeneity
correlation. In Section 3, we analyse our RT simulation results and
look into how our models influence the basic features of EoR: the
reionization history in Section 3.1, the volume-averaged ionization
fraction evolution, the integrated Thompson optical depth, and
then the bubble size distribution (BSD) in Section 3.3. To better
understand the change in ionization morphology, we describe a side-
by-side comparison of box slice shot with zoom Section 3.2. In
Section 3.4, we analyse the 21-cm signal power spectra and the
brightness temperature distribution. Our conclusions are summarized
in Section 4.

2 ME T H O D O L O G Y

2.1 Numerical simulations

We use N-body simulations to follow the evolution of cosmic
structures, performed with the CUBEP3M code (Harnois-Déraps et al.
2013). The code uses particle–particle on short-range and particle-
mesh on long-range to calculate gravitational forces. We use set
of three N-body simulations, whose parameters are summarized in
Table 1.

Our clumping factor modelling is based on small, high-resolution
volume box (6.3 h−1 Mpc = 9 Mpc, 17283 particles, labelled SB in
Table 1). This has sufficient spatial and mass resolution to resolve
the smallest haloes that can hold cold, neutral gas. Our main larger-
volume N-body simulation is referred to as LB-1 (500 h−1Mpc =
714 Mpc, 69123 ≈ 330 billion particles). A smaller simulation, LB-
2, (244 h−1Mpc = 349 Mpc, 40003 = 64 billion particles) will be
used as a comparison to analyse the possible influence of box size
and resolution in the realization of sub-grid clumping factor and
prove the stability of our method. For both of the large-volume
simulations the minimum haloes mass resolved is 109, while haloes
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with 108 < Mhalo < 109 M� are implemented using a sub-grid model
(Ahn et al. 2014), thereby all atomically cooling haloes (ACHs)
with minimum mass Mhalo � 5 × 108 M� are included. We are using
updated N-body simulations compared to Paper I, we illustrate this
further in Appendix A.

An on-the-fly spherical overdensity halo finder (Harnois-Déraps
et al. 2013; Watson et al. 2013), with overdensity parameter � =
130, creates halo catalogues at given redshift, that is later used as
inputs for the RT simulation. The remaining particles are categorized
as part of the IGM. In this work, we do not include any effects from
minihaloes Mhalo < 108 M�. Even though these sources could have
driven ionization in the early phase of EoR, their effect on the later
stage is expected to be minor because of molecular dissociation
by UV background radiation from primordial luminous sources, up
to a point that their contribution is negligible compared to heavier
ACHs (Ahn et al. 2009). Initial conditions are generated using the
Zel’dovich approximation and the power spectrum of the linear
fluctuations is given by the CAMB code (Lewis, Challinor & Lasenby
2000). The SB N-body simulation starts at redshift z = 300, while
LB-1 and LB-2 at z = 150, which gives enough time to significantly
reduced non-linear decaying modes (Crocce, Pueblas & Scoccimarro
2006), while at the same time fluctuations are small enough to
ensure linearity of density field at the respective resolutions. The
cosmological parameter is based on WMAP 5-yr data observation
and consistent with final Planck results, for a flat, Lambda cold
dark matter cosmology with the following parameters, �� = 0.73,
�m = 0.27, �b = 0.044, H0 = 70 km s−1 cMpc−1, σ8 = 0.8, and
ns = 0.96 and the cosmic helium abundance ηHe = 0.074 (Komatsu
et al. 2011). Our method is general and can be applied in any
cosmological background, but the specific fitting parameters we
provide are based on the above values.

We simulate the EoR using the C2-Ray code (Mellema et al.
2006b), a photon-conserving RT code based on short characteristic
ray-tracing. The LB-1 and LB-2 N-body simulations provide the
IGM density fields and halo catalogues with masses, velocities,
position and other variables, for a total of 76 snapshots, equally
spaced in time (�t = 11.54 Myr) in the redshift interval z ∈ [6; 50].
For computational feasibility, the density grid is coarsened for the RT
simulation to 3003 (LB-1), and 2503 (LB-2). The high-resolution N-
body simulation (SB) data input is initially interpolated on to a 12003

(SB) grid, which can then be coarsened to the required resolution as
discussed in the next section. These grids correspond respectively
to cell sizes of length 2.381 cMpc, 1.394 cMpc, and 7.5 kpc. For
brevity, we will refer to these grids as the sub-grid volumes for SB,
and coarse volumes in LB-1 and LB-2, noted 〈.〉 crs. Just as in Paper
I, the interpolation of the particles on to a grid is performed with
a smoothed particle hydrodynamic-like method (SPH-like), which
then yields coarse-grid density, velocity and clumping fields (see
section 2.2 in Paper I for details).

Ionization sources for the RT simulations are characterized by the
ionizing photon production rate per unit time Ṅγ , given by

Ṅγ = fγ

Mhalo �b

�tsmp�0
, (1)

where mp is the proton mass, Mhalo is the total halo mass within
coarse-grid cell, �ts = 11.53 Myr, the lifetime of stars set equal
to the time between N-body snapshots. fγ is the efficiency factor,
defined as

fγ = f� fesc Ni, (2)

where f� is the star formation efficiency, fesc is the photons escape
fraction, and Ni is the stars ionizing photon production efficiency

per stellar atom, it depends on the initial mass function (IMF) of
the stellar population, e.g. for Pop II (Salpeter IMF) Ṅγ ∼ 4000, the
value for f� and fesc are still uncertain, therefore these parameters can
be tuned in order to match the observational constrain that we will
discuss in Section 3. Here, we adopt the partial suppression model
of (Dixon et al. 2016), whereby for low-mass galaxies (LMACHs)
located in a neutral cell the efficiency factor is set to fγ = 8.2, while
in an ionized cell (above 10 per cent) we set fγ = 5 to account for
feedback. For HMACHs, the efficiency factor has a constant value
of fγ = 5, equivalent to e.g. Ni = 5000, f� = 0.05, and fesc = 0.02.

2.2 Coarse-grid method

Our clumping factor calculations are based on N-body data and ne-
glect any hydrodynamical effects on the clumping factor. Accounting
for the gas pressure provides additional smoothing at small scales and
therefore our clumping factor values should be considered as upper
limits. Moreover, we are interested in the reionization of the IGM and
therefore exclude the haloes from our calculations. The contribution
of recombinations inside haloes is already taken into account in
equation (1) through the photon escape fraction and should not be
counted again.

In order to represent the N-body particles into a regular grid, we
adopt the SPH-like smoothing technique described in section 2.2
of Paper I, we refer the readers to e.g. Shapiro et al. (1996) for
more general details on SPH smoothing methods. In LB-1 and LB-2
simulations, we use regular meshes directly produced by the SPH
code at the required resolution (the specific values used here are
listed in Table 1). In the SB simulation, we adopt a more flexible
approach, whereby we first produce all quantities on a very fine
mesh (here 12003), which is later coarsened as required in order to
approximately match the cell sizes used in the LB simulations.

A window mesh function smooths the SB mesh-grid on a coarser-
grained mesh, with size defined by equation (3). The method allows
the windows function to overlap. The percentage of overlap N per cent

is chosen in order to achieve the required resolution size of the LBs
and at the same time obtain a large enough set of coarsened SB data,
since Mesh3

crs−gr gives the total number of data point then interpolated
by the clumping models (see Fig. 1).

Meshcrs−gr = BoxSizeSB

(1 − N per cent) × ResLB
, (3)

where ResLB is the coarse-grained resolution of the large box and
BoxSizeSB the box size of the small box. We employ the SB cell-
wise quantities expressed with equations (4) and (7) to compute the
parametrization of the correlation models. Hereafter, we will refer to
them as the sub-coarse-grid or SB data, whereas in the case of LBs
we name them RT-mesh grid. In our case, we have Meshcrs−gr = 8
with percentage overlap N per cent = 53 per cent for 714 cMpc (LB-
1) and Meshcrs−gr = 13 with N per cent = 50 per cent for 349 cMpc
(LB-2).

We define the gas clumping factor based on the cell-wise averaged
quantities (e.g. Iliev et al. 2007; Jeeson-Daniel, Ciardi & Graziani
2014; Mao et al. 2020)

CIGM, cell = 〈n2
N, IGM〉cell

〈nN, IGM〉2
cell

, (4)

where

〈nN, IGM〉cell ≡ 1

Vcell

∫
cell

nN, IGM(r) d3r, (5)
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Figure 1. Sample correlation between local coarse IGM overdensity and coarse clumping factor at redshift z = 7.305 for LB-1 resolution (1.394 Mpc cells, left-
hand panels) and LB-2 resolution (2.391 Mpc, right). Shown are the coarsened SB N-body data at these resolutions (black crosses), the IC model (deterministic)
fit (red line) and the globally-averaged clumping factor (horizontal dashed line). The (blue) points with error bars represent the expected value and standard
deviation of the lognormal distribution (see text) in each overdensity bin. Vertical lines (solid grey) indicate the bin limits, whose sizes are adjusted so that each
bin contains the same number of data points [∼400 (left-hand panel) and 100 (right-hand panel)]. For each figure, the right-hand panel shows the lognormal
distribution (solid line) of the clumping within each density bin versus the actual data (shadow area), where we include in the legend below each panel shows a
short description of the relevant parameters.

and

〈n2
N, IGM〉cell ≡ 1

Vcell

∫
cell

n2
N, IGM(r) d3r. (6)

The mean cell overdensity is defined

1 + 〈δ〉cell = 〈nN, IGM〉cell

nN, IGM
, (7)

where nIGM is the global average of the IGM number density over
the entire box volume (in this paper, we always refer to quantities in
comoving units).

2.3 Modelling the overdensity–clumping correlation

In this work, we consider several models for the parametrization of
the correlation between the local coarse overdensity 1 + 〈δ〉cell and
the coarse clumping factor CIGM, cell.

2.3.1 Biased homogeneous subgrid clumping (BHC)

The simplest approach is to set a constant (redshift-dependent)
clumping factor C(z), for the entire simulation volume (e.g. Madau
et al. 1999; Mellema et al. 2006b; Iliev et al. 2007; Kohler et al.
2007; Raičević & Theuns 2011). In our case, we evaluate this
globally averaged clumping for every SB simulation snapshot at
the appropriate coarse resolution and then fit it with an exponential
function of the form

CBHC(z) ≡ CIGM, cell = C0 ec1 z+c2 z2 + 1, (8)

where C0, c1, and c2 are the fitting parameters. We refer to this
model as biased homogeneous clumping (Paper I) since that volume-
averaged value is then multiplied by the local cell density to obtain

the recombination rate, effectively biasing recombinations towards
high-density regions.

2.3.2 Inhomogeneous subgrid clumping (IC) model

This model, where the local gas clumping is set based on one-to-one,
deterministic relation with the cell density, was first presented in
Paper I. We include it here for comparison purposes. The relation of
the clumping with the overdensity in equation (4) is fit by a quadratic
function:

log10(CIC(x | zi)) ≡ y = ai x2 + bi x + ci, (9)

where x = log10(1 + 〈δ〉cell) and y = log10(CIGM, cell), the cellwise
quantity from SB simulation. For each snapshot zi, we evaluate the
fitting parameters ai, bi, and ci using the coarse-grid field we derived
in Section 2.2.

2.3.3 Stochastic subgrid clumping (SC) model

This model, first presented here, aims to account for the natural
stochasticity of the relation between local clumping and overdensity,
as observed in full numerical simulations. This stochasticity is due
to various environmental effects beyond the dependence of the
clumping on the local density, and results in a significant scatter
around the mean relation used in the IC model (Fig. 1).

We model this scatter from the simple one-to-one relation by
binning the SB coarse-grained clumping in several (here five) wide
bins of overdensity �δj. In each bin, we fit the scatter using a
lognormal distribution

P(x | zi , �δj) ≡ 1

x σij

√
2π

exp

(
− (ln(x) − μij)2

2 σ 2
ij

)
, (10)
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where x = CIGM, cell. For each snapshot zi and bin �δj, we evaluate
and record the parameters μij and σij.

A stochastic process is then applied to generate lognormal random
values from two-dimensional uniformly distributed variable u1, u2 ∈
[0, 1], by using a modified3 Box–Müller transformation.

CSC(z, �δ| μij, σij) = eμij+σij·
√−2 ln(u1)·cos(2π u2), (11)

where μij and σij are the weighed lognormal parameters for LB-1
and LB-2. Finally, we note that the range of overdensities in the SB
simulation is inevitably narrower due to the smaller volume compared
to our target reionization volumes. For data beyond the SB limits,
for high and low densities, we fix the mean value to the one given by
the IC model, while standard deviation is fixed to the one obtained
in the closest density bin.

These distributions are then sampled randomly to create real-
izations of the clumping in large-volume simulations. A similar
approach, but in a different context, has been used previously
by Tomassetti et al. (2014) and Lupi et al. (2018), motivated by
observation of density distribution in giant molecular clouds.

In Fig. 1, we show examples of the resulting parametrization
obtained from the three models at redshift z = 7.305, applied at the
LB-1 and LB-2 RT resolutions. We show the coarse-grained N-body
data, along with the BHC and IC models, as well as the mean, E[X] =
eμ+ 1

2 σ 2
, and the standard deviation, SD[X] = eμ+ 1

2 σ 2
√

eσ 2 − 1, of
our proposed lognormal distribution of the stochasticity. On the side
plot, we show the coarse-data distribution (shadow histogram) and
the resulting lognormal fit (solid line) with brief description of the
density-bin limits and fitting parameters shown in the legend.

2.4 Clumping implementation in large-scale volumes

We used simulations LB-1 and LB-2 as examples of our method
for creating large-volume simulation sub-grid clumping realization.
Results are shown in Fig. 2. In the figures we show the N-body
data upon which the model is based (black crosses), the volume-
averaged clumping factor BHC (black horizontal line), the one-to-
one quadratic fit IC (red solid line), the expectation value E[X]
and the standard deviation SD[X] of the lognormal distribution
in each density bin (blue error-bar points) with the relative bins
limits also shown (dashed vertical line). Finally, our SC model
clumping realization (green area) based on the density field of
LB-2 is shown with contours corresponding to the 95 (outer), 68
(middle), and 38 per cent (inner) confidence interval. Tables with
parameters of the three models used in this paper can be found
online.4

The results illustrate the extend to which each subgrid clumping
model reproduces the trends in the direct N-body data throughout the
evolution. The BHC (mean-clumping) model roughly matches the
peak of the contours and its evolution over time. The IC model
(quadractic fit) captures well the general trend of the density-
clumping relation and tracks well the highest density of data points.
Finally, our new SC model realization fully reproduces the data,
including the scatter around the mean relation. The contours trace
the majority of the simulation data quite closely, apart from a few
outliers. However, a few things should be noted here.

3A random variable is defined lognormal distributed when the natural
logarithm of the variable is normal distributed. Therefore, our modification
simply consist in taking the exponential of the transformation.
4Table for model parameters: https://github.com/micbia/SubgridClumping

First, as noted in Section 2.3.3, the large volumes generally
sample much wider range of environments than smaller ones used
to produce the model, thus inevitably the large-volume realization
should extrapolate to overdensities outside the range sampled by
the direct N-body data, for both larger and smaller overdensities.
Secondly, again as discussed above, for statistical reasons we fixed
the bin sizes so that they contain same number of data points, which
inevitably results in quite uneven bin widths. These are very narrow
near the peak density of points and are quite wide for extreme
values of the overdensity. The combination of these factors yields
the ‘flairing’ of the realizaion (green) points at both large and small
values of the overdensity, and thus possible minor discrepancies
with what we find in simulations. However, only small fraction of
the points are in these regions, as demonstrated by the density of
points, and therefore it is unlikely this will affect the results in any
significant way. Obviously, the IC model is potentially affected in a
similar way, since the quadratic fit is used beyond the range of the
original data points.

As a consistency check, we compare the redshift evolution of
the volume average of the clumping realizations based on the SC
and IC models versus the actual global mean Cglob based on the
simulated data (Fig. 3). The vertical line indicates the redshift
at which the SB simulation was stopped, thus data beyond that
is extrapolated. The relative errors of the mean values (bottom
panels) are in agreement within the 6−7 per cent for LB-2 (right-
hand panel) and within 10 per cent for LB-1 (left-hand panel),
throughout the relevant redshift range 6 ≤ z ≤ 30. At the highest
redshifts (z > 30), the errors appear larger, however, over that
redshift range the density fluctuations are small and thus all clumping
factors converge to 1 and do not contribute to the recombination
rate.

Hence, the local density inhomogeneity does not significantly
affect the global averages; however, we expect that the local clumping
factor plays a greater role in the recombination and ionization at
small scales (e.g. on the H II region size distribution, ionized bubble
volume evolution, etc.). The proposed models are roughly consistent
with results of previous papers Park et al. (2016), Iliev et al. (2007),
and once our the RT-simulation are performed we expect to obtain
similar confirmation from the work of Iliev et al. (2012).

3 C LUMPI NG MODEL EFFECT ON
O B S E RVAT I O NA L SI G NAT U R E

The sub-grid clumping model employed affects the local IGM
recombination rates, which is then reflected in the derived observable
signatures of reionization. In order to understand and try to quantify
the importance of this choice, we perform three RT simulations
where we fix the source production efficiencies of ionizing photons
and vary solely the clumping model. At each time step the precom-
puted N-body density fields are used to create a realization of the
corresponding gridded clumping factor, as described in Section 2.3.
These clumping grids are then stored and provided as additional
inputs to full radiative transfer simulations with the C2-RAY code
(Mellema et al. 2006a). Specifically, the simulation used for this
section is LB-1.

The simulation redshifts span the range z = 40 to 6, for a total
of 125 snapshots. The corresponding aperture on the sky vary from
3.◦6 to 4.◦7 per side, and covers the redshifted 21-cm frequency range
from 26 to 45 MHz. The resolution evolves from 43.′′5 to 56 arcsec
in the spatial direction, and from 0.08 to 0.15 MHz in frequency.

MNRAS 504, 2443–2460 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/504/2/2443/6185052 by guest on 19 April 2024

https://github.com/micbia/SubgridClumping


2448 M. Bianco et al.

Figure 2. Realization of clumping factor for LB-2 at different redshift. The horizontal line (solid black) is the globally averaged clumping factor BHC. In red
the one-to-one fit IC. Blue error barred points represent the expected value and standard deviation of the lognormal distribution. Vertical lines (grey dashed)
indicate the bin limits. The green area indicates the SC realization estimated by equation (11). We plot the 38 per cent (0.5 σ ), 68 per cent (1 σ ), and 95 per cent
(2 σ ) confidence interval to highlight the realization distribution. Cross-point are the coarse SB data used to calibrate the model parameters. In the case of
z = 7.305, they correspond to the one of Fig. 1 (left-hand column).
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Subgrid clumping II 2449

Figure 3. Comparison of mean clumping values for the three different models, the redshift evolution of the mean clumping factor for the three models,
respectively, shows the range of the standard deviation. On the bottom plot, we show the relative where the left image is for LB-1 and right for LB-2. On the
upper plot, we have the dashed black line is BHC, in red IC and in green SC model, the shadow error in percentage of the difference with BHC.

Figure 4. Left-hand plot, the volume-averaged neutral fraction for BHC
(solid red), IC (dashed blue), and SC (solid green) clumping models applied
to simulation SB-2. On the right-hand panel, we show the redshift delay of IC
and SC models compared to BHC. As a comparison, we include observational
constrains (see the legend) from Lyα emitters (cyan circle) (Ota et al. 2008;
Ouchi et al. 2010), Lyα clustering (orange circle) (Ouchi et al. 2010) and
from high-redshift quasars spectra (pink) (Davies et al. 2018).

3.1 Reionization history

Our results on the reionization histories are presented in Fig. 4 and
Table 2. Perhaps counter-intuitively, either of the more realistic,
density-dependent clumping treatments (SC and IC) yield somewhat
faster evolution and an earlier end of reionization compared to
the BHC model. The former models diverge from BHC around
z ≤ 12, and thereafter the mean reionization is accelerated with
a maximum difference at x̄i = 70 per cent, of �z � 0.3 at z � 7.5,
corresponding to a time difference of approximately 36 Myr. The
end of reionization is delayed by �z = 0.1, or 17 Myr. Here, there
is very little difference between the SC and IC models. Compared
to the observational constraints, all three models reionize somewhat
early, however, these constraints are largely upper limits, and with
significant uncertainties. Moreover, our main interest is the relative
effect of different sub-grid clumping models, rather than a faithful
reproduction of the constraints.

During reionization, free electrons scatter CMB photons via
inverse Compton scattering, suppressing CMB anisotropies on all

Table 2. Mean volume-averaged ionized fractions, x̄i, at reionization mile-
stones: 10,30, 50, 70, and 90 per cent, and volume of the gas ionized. The last
column zreion lists the end of reionization, defined as x̄i = 99 per cent. The
second section lists the redshift and time differences with respect to the BSC
model.

Model z10% z30% z50% z70% z90% zreion

BHC 11.918 9.533 8.118 7.221 6.721 6.483
IC 11.918 9.611 8.340 7.480 6.905 6.583
SC 11.918 9.611 8.340 7.480 6.905 6.549
�z 0 0.078 0.222 0.259 0.184 0.1
�t [Myr] 0 5.8 22.9 34.4 28.9 17.2

scales and introducing polarization on large angular sizes. The
contribution from free electron can be quantified by the inte-
grated Thomson scattering optical depth along the line of sight,
given by

τe(z) = c σT

∫ z

0

ne(z′)
(1 + z′) H (z′)

dz′, (12)

where σ T = 6.65 × 10−25 cm2 is the Thomson cross-section, c the
speed of light, and ne is the electron density at a given redshift.

In Fig. 5, we plot the volume mean of equation (12), integrated
back in redshift. In agreement with the global reionization histories,
the inhomogeneity-dependent models are very similar to each other
and are slightly optically thicker than the BHC case, due to the
more advanced reionization in the latter. Regardless of this small
difference, all three cases are in close agreement with the Planck-
LFI 2015 results Ade et al. (2016), which found τ e = 0.066 ± 0.016
corresponding to an instantaneous reionization for redshift zreion =
8.8+1.7

−1.4.
The importance of recombinations throughout reionization could

be quantified by the (dimensionless) mean rate of recombinations
per hydrogen atom per Hubble time:

〈
Ṅrec

〉 = 〈R〉
tH(z) 〈nH〉 Vcell

= 0.72
αB (1 + z)3

H (z)

ρ̄c,0 �b

μH mp
CH II 〈xH II〉2 (13)
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2450 M. Bianco et al.

Figure 5. Thomson scattering optical depth to CMB photons integrated
through our simulations, as labelled. Shown are also the Planck observational
constraint (black dashed line) along with its relative 1σ confidence interval
(violet shaded).

In Fig. 6 (top left-hand panel) we show the evolution of the mean
of this quantity over the full simulation volume (solid lines), as well
as averaged only over the overdense (dashed lines) and underdense
(dot–dashed lines) regions. Colours indicate the model used, as per
legend. We also show (bottom left-hand panel) the relative percentage
difference compared to the BHC model. As could be expected, the
number of recombinations grows strongly over time, starting close to
zero, departing from BHC model around z ∼ 12, and then all reaching
∼15 at late times, as more and more structures form over time.
Although all models end up at similar values by z∼ 6, the BHC model
lags behind throughout the evolution. The IC and SC models yield
very similar values at all times. The overdense/underdense volumes
yield much higher/lower number of recombinations, respectively,
demonstrating the wide variety of outcomes dependent on the
local conditions. Interestingly, the overdense average for the BHC
model results in very similar recombinations to the full-volume
averages of SC and IC models, showing that at least on average the
clumping in these last models behaves the same way as the overdense
regions in BHC. Overall, the SC model shows a few percent higher

recombination rate (∼ 1−5 per cent) compared to the IC model. This
is most likely due to the stochastic nature of the realization process,
also related to the broader scatter in Fig. 3 (shaded areas).

In Fig. 6 (right-hand panel), we compare the (non-equilibrium)
photoionization rates 
i computed during the run by the C2-Ray
code. Just as above, all mean photoionization rates are essentially
the same until z ∼ 12, after which the BHC model one rises more
slowly, lagging behind the other two cases by about factor of 2.5
throughout most of the evolution, eventually catching up by z ∼ 6.
The average rates in the overdense regions are higher than the mean
(reflecting the inside-out nature of reionization) by a similar amount,
while the mean photoionization rates in the underdense regions lag
behind by larger factors, up to several hundred, before again rising
steeply and catching up with the mean by z ∼ 6. Interestingly, the
mean rate in BHC overdense regions is again very close to the
whole volume means of IC and SC models. The average values
in the underdense regions remain the same for all models until much
later, z ∼ 9.5, indicating that the specific clumping model has little
influence before that redshift.

At first glance, it seems somewhat counterintuitive that reioniza-
tion proceeds faster in the density-dependent models IC and SC,
despite their notably higher recombination rates. The reason for
this is that in the former cases also the suppression of LMACHs
due to radiative feedback is weaker than in the BHC case, as
illustrated in Fig. 7. In the BHC case essentially all such galaxies
are suppressed by z ∼ 8.5, while in the density-dependent models
the suppression is slowed down, allowing LMACHs to last longer
in high-density regions. This is further clarified in Fig. 8 where we
show the number density distribution of ionized fraction of cells
at five different reionization stages, x̄i = 0.1, 0.3, 0.5, 0.7, 0.9,
approximately corresponding to redshift between z � 12 − 6 (see
Table 2). The vertical line indicates the partial suppression threshold
for LMACHs. Early on (x̄i = 0.1) the gas clumping has yet had
very litte effect, due to the still small ionized fraction and the short
time available for recombinations, thus all models yield very similar
results, with only BHC showing slightly fewer highly ionized cells.
As reionization progresses (x̄i = 0.3), IC and SC models remain very
similar, while BHC is gaining more ionized cells, and at the same
time it is starting to show a lack of neutral regions. Starting from

Figure 6. Evolution of the number of recombinations per hydrogen atom and per Hubble time throughout reionization (left-hand panel) and the volume-averaged
photoionization rate (right-hand panel). The bottom plots show the relative difference compared to BHC in each case. Dashed and dashed–dotted lines of the
same colour indicate the relative quantity in underdense and overdense regions, respectively.

MNRAS 504, 2443–2460 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/504/2/2443/6185052 by guest on 19 April 2024



Subgrid clumping II 2451

Figure 7. The number density evolution of unsuppressed LMACHs (fγ =
8.2). Solid red line the BHC model, dashed blue line the IC model and in
green the SC model.

Figure 8. Ionized cell number density at reionization milestone x̄i =
0.1, 0.3, 0.5, 0.7, 0.9, top to bottom panel, for model BHC (red), IC (blue),
and SC (green). Vertical line (black dashed) indicates the ionization threshold,
xi = 0.1, for partial suppression of LMACHs.

roughly mid-point of reionization (x̄i = 0.5), the dearth of neutral
cells becomes ever more prominent whereas the peak of highly
ionized cells stays roughly similar for all models. A faint difference
between SC and IC is visible at late times, where slightly more cells
remain neutral in SC.

3.2 Reionization morphology

The globally averaged quantities discussed above (Figs 4–6) give an
overall idea of the reionization history. Next step is to understand how

the sub-grid gas clumping model affects the propagation of radiation
and the local features of reionization. In Fig. 9, we show box slice
of LB-2 and compare simulation snapshots with similar globally
averaged ionized fraction and the three gas clumping models. From
the top to the bottom row, we have x̄i = 0.3, 0.5, 0.7, 0.9 (in Table 2,
we list the corresponding redshift at which this occurs and its
consequent time-delay compared to the BHC model) and from left-
to right-hand column we have the different models BHC, IC and SC.
Red/crimson regions indicate highly ionized cells xi > 0.9, in dark
blue neutral regions xi < 0.1, and in green/aquamarine the transition
phase xi ≈ 0.5. Within each image we embed a zoom-in region, of
85 cMpc per side, to better appreciate the morphological changes
of a randomly selected underdense neutral clump, as ionized fronts
expand (bluer blob, right-hand column plots).

Our simulations reproduce the general reionization features found
in previous simulations (e.g. Iliev et al. 2014; Hutter et al. 2021).
In high-density regions LMACH are the first haloes to form. In
our simulations, they make their first appearance at redshift z =
21, and by z ∼ 12 every volume element contains at least one
ionizing source. At first, a modest number of isolated sources, highly
clustered on small scale but homogeneously distributed on large
scale, start to ionize their surrounding gas, forming small regions of
a few Mpc size. The presence of sub-grid gas clumping slows down
the propagation of the I-fronts and yields somewhat smaller, more
fragmented H II regions. Throughout reionization, these H II bubbles
grow and eventually overlap, at which point the ionization process
accelerates and many of the smaller bubbles percolate to much larger
connected volumes.

The side-by-side comparison shows some notable differences
between BHC and the two density-dependent models, with the
latter starting at a faster pace, with earlier local percolation, then
slowing down compared to the former case. Modest differences
appear between the three models in terms of large scale morphology,
with a higher degree of ionization around early sources in the density-
dependent models IC and SC (respectively central and right-hand
panel). From around the mid-point of reionization (50 per cent ion-
ization by volume, second row of images), we can see neighbouring
growing regions connecting to each other and starting to highly
ionize the linking filament. At this point, accordingly to Fig. 8,
all cells in BHC have surpassed the threshold limit xi = 0.1 for
the partial suppression of low mass haloes. For IC (middle) and
SC (right-hand column) the degree of ionization around sources is
visibly more intense compared to BHC, in fact, we can distinguish
highly ionized cells clustered around the high-density peak, whereas
underdense regions are kept fairly neutral. This diversity is due to
the higher recombination rate in inhomogeneity-dependent model,
shown in Fig. 6 (left-hand panel), that effectively reduces the
number of photons able to escape the cells of origin and spread
into the neighbour grid elements. This is not the case for BHC, to
which clumping factor in high-density regions is underestimated and
ionizing photons are free to percolate and been absorbed elsewhere
in the surrounding IGM, therefore interconnecting filament cells
between sources clearly appears extended and in a more advanced
neutral-ionized transition (blue/aquamarine).

Later on (xi = 0.7, third row of images), ionized regions have
grown substantially and become strongly ionized. A first look
suggests similar structure patchiness on large scale, although from
the zoom-in we can observe that BHC has a wider and smoother
transition between the ionized/neutral phases, whereas IC and SC
show a narrower front, allowing more cells that host underdensity
to stay neutral. When the same transition region dwell across the
three model, density-dependent model shows more irregularity with
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2452 M. Bianco et al.

Figure 9. Box slice comparison of LB-2 ionization fraction for different clumping models. In red/crimson highly ionized regions xi > 0.9, in green/aquamarine
transition xi ≈ 0.5 and in dark blue neutral regions xi < 0.1. The zoom-in covers an area of 85 cMpc per side and each pixel represent a volume element of
2.381 cMpc per side. We compare slices at same global average ionization fraction, from top to bottom row we have x̄i = 0.3, 0.5, 0.7, 0.9 (see Table 2 for
corresponding redshifts). From left- to right-hand column, we show the models BHC, IC, and SC, respectively .
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Subgrid clumping II 2453

Figure 10. Ionized BSD for simulation LB-2 and the three gas clumping models BHC (red, solid), IC (blue, dashed), and SC (green, solid) at volume averaged
ionized fractions x̄i = 0.3, 0.5, 0.7, 0.9, as labelled. Vertical lines indicate the mean bubble radius R̄ = ∫

(R dN/dR)dR for the respective models.

occasionally one or few cells appearing slightly more ionized then
their surrounding.

The morphology differences are more evident at late times (xi =
90 per cent, bottom row of images), whereby H II bubbles connect
together to form one vast interconnected highly ionized region. At
this stage the vast ionized IGM in IC and SC show variations that
follow the higher recombinations due to density fluctuations, which
is not the case in BHC model and therefore the same regions appear
uniformly highly ionized, x ≈ 1. On the other hand, there is no
striking difference between IC and SC, except for small variations,
of a few pixels of size, on the ionized/neutral boundaries. We suspect
that this is numeric artefact due to the stochastic nature of SC. We are
developing a more complete clumping model, that we will present in
future work, to exclude this uncertainty.

3.3 Bubble size distribution

One of the key characteristics of reionization, which directly af-
fects all observables is the normalized distribution of bubble sizes
R dN/dR or volume sizes V 2 dN/dV of ionized regions (Furlan-
etto, Zaldarriaga & Hernquist 2004). A number of complementary
approaches to calculate these distributions have been proposed
(e.g. Friedrich et al. 2011; Lin et al. 2016; Giri et al. 2018a).
Here we employ the Mean-Free-Path (MFP) method to calculate
R dN/dR, and the Friends-of-Friends (FOF) algorithm (Iliev et al.
2006) to obtain V 2 dN/dV BSD. For both methods, we employ the
TOOLS21CM5 python package for EoR simulations analysis (Giri,
Mellema & Jensen 2020). In both cases, we apply a threshold value

5https://github.com/sambit-giri/tools21cm

of xth = 0.9, since we want to highlight differences in distribution of
highly ionized regions that develop around sources.

Results are shown in Figs 10 and 11, respectively, we see the
typical traits of the percolation process, with volume ranges that
roughly corresponding to what is expected from large simulated
box (Iliev et al. 2014). We present our results at four different
reionization milestones, x̄i = 0.3, 0.5, 0.7, 0.9, see Table 2 for
corresponding redshifts. In the case of MFP–BSD, we calculate
the mean bubble size by R̄ = ∫

(R dN/dR) dR, represented by the
corresponding vertical lines for each simulation. The sharp cut-
off at small scales 2.381 cMpc, for MFP–BSD, and 13.498 cMpc3

for FOF–BSD correspond to the simulation cells size and volume
respectively.

Early-on (x̄i = 0.3, top left-hand panel, Fig. 10), LB-2 hosts small
H II bubbles with radius smaller then 10 cMpc. For inhomogeneity-
dependent models IC and SC, distributions present many more highly
ionized regions, indication of a faster radiation propagation around
sources. All three distributions peak at the size corresponding to one
cell. The same trend is confirmed by the topologically connected
FOF volumes (Fig. 11), which are however typically larger than
MFP, with volumes between 30−700 cMpc3 for BHC and a wider
distribution for IC and SC, from one cell up to a few thousand
Mpc3.

Even though the number of bubbles increase as reionization
progress, at x̄i = 0.5 (top right-hand panel), the MFP–BSD remain
similar. However, the FOF–BSD shows a qualitative transition when
the small H II regions start to percolate into much larger, connected
one. Their sizes vary widely, with a broad flat distribution (plateau)
at smaller scales (V < 105 − 106 cMpc3). However, BHC and IC
also show a bifurcated distribution, with a second peak at large
scales, at 105 cMpc3 for BHC and 106 cMpc3 for IC, indicating that
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2454 M. Bianco et al.

Figure 11. Ionized volume size distribution for LB-2. In red, the result for BHC, in blue for IC and in green for SC. Distribution represents stages where the
volume averaged ionized fraction is x̄i = 0.3, 0.5, 0.7, and 0.9.

percolation process has started (Iliev et al. 2006, 2014; Furlanetto
& Oh 2016). Compared to BHC, the IC distribution is shifted
toward larger sizes, such that the limit for the plateau and the
percolation cluster are up to one order of magnitude higher. A
narrower separation between these two volume ranges indicates that
the merging of ionized region in BHC has just started (Iliev et al.
2014; Furlanetto & Oh 2016; Giri et al. 2018a), whereas in the case
of IC this process is already ongoing. On the other hand, IC and SC
distribution show similarity at small scale but they differ for larger
volumes. The former distribution shows a constant and continuous
range of scales from large volumes V ∼ 106 cMpc3 down to one
cell, sign that ionized regions are in principle less interconnected
and therefore the presence of one dominant supercluster has not yet
occurred.

During the later stages of the reionization process (x̄i = 0.7,
bottom left-hand panel), this bifurcation of the FOF–BSD continues
and strengthens, with ever more small patches merging into the large
one, while smaller patches become fewer and on average ever smaller.
At this stage, the three models present similar volume distributions,
whereas their MFP–BSD varies. BHC distribution starts to show
a clear characteristic size peak. Albeit of similar shape, the BHC
size distribution is clearly shifted to smaller scales, with the average
bubble size smaller by a few Mpc and the distribution peak at scale
about a factor of 2 smaller (8 versus 15 Mpc)

Towards late reionization (x̄i = 0.9, bottom right-hand panel), the
volume limit for isolated regions to grow before merging is further
reduced to V ∼ 103 cMpc3, while the percolation cluster surpass
volumes of 108 cMpc3 (i.e. close to the full simulation volume) in all
the three cases. In Fig. 10, the sizes distribution in the BHC model has
surpassed the other two, with average radius of 54.84 cMpc. IC and
SC show again similar distribution but with an increasing, although

still minor, difference in the mean radius. Volume distribution in
Fig. 11 present a similar situation, the only difference between IC
and SC consists in the value of the volume merging limit, with a
difference up to 1 cMpc3.

3.4 21-cm signal statistics and power spectra

The hyperfine transition of neutral hydrogen redshifed into meter
wavelengths is a key observable of reionization. Its characteristic
emission/absorption line has rest-frame wavelength λ0 = 21.1 cm
and corresponding frequency 1.42 GHz. Radio interferometry tele-
scopes measure the intensity of this signal by quantifying the
differential brightness temperature δTb ≡ Tb − TCMB signal from
patches of the sky, given as

δTb ≈ 28 mK(1 + δ)xHI

(
1 − TCMB

TS

)

×
(

�bh
2

0.0223

) √(
1 + z

10

)(
0.24

�m

)
, (14)

where xHI is the fraction of neutral hydrogen and 1 + δ =〈
nN,IGM

〉
/n̄N,IGM is the local IGM overdensity. The differential

brightness is characterized by the relation between the CMB tem-
perature TCMB and spin temperature TST (see e.g. Furlanetto et al.
2006 and Zaroubi 2012 for extended discussion). Equation (14)
saturates when the neutral hydrogen decouples from CMB photons
and couples with the IGM gas heated by X-ray sources (e.g. Ross
et al. 2019), so that TS � TCMB, which is the approximation we adopt
here. This is known as the heating-saturated approximation where
the signal is for the majority observable in emission, δTb > 0, true
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Subgrid clumping II 2455

Figure 12. Smoothed differential brightness temperature light cones, the colour map that shows the smoothed differential brightness �Tb intensity as a function
of redshifted 21-cm signal frequency νobs and aperture ��. The angular smoothing is performed by a Gaussian Kernel with FWHM �θ , on frequency direction
is done by a top-hat kernel with same width, we use a baseline of B = 2 km (maximum baseline of the core of SKA1-Low). The figure shows slice through the
simulation and a comparison between BHC (top panel), IC (middle panel), and SC (bottom panel).

only at low redshift z < 15. Thus in our simulation the approximated
differential brightness is dependent on the density distribution of the
neutral gas and redshift, such that δTb ∝ √

1 + z (1 + δ) xH I.
From the RT and N-body simulation outputs, we calculate the

differential brightness coeval cube at each time-step. The cube is
then smoothed in the angular direction by a Gaussian kernel with a
full width at half-maximum (FWHM) of λ0 (1 + z)/B, where B =
2 km corresponds to the maximum baseline of SKA1-Low core.
Smoothing along the frequency axis is done by a top-hat kernel
with the same width and the above Gaussian kernel. SKA1-Low will
not observe the coeval cube. Instead, it will observe a light cone,
in which the signal evolves along the line of sight direction. We
construct light cones from our simulation results using the method

described in Giri et al. (2018a). This method is also implemented in
TOOLS21CM.

In Fig. 12, we show the smoothed light cone for the three different
clumping models, BHC, IC and SC, respectively from top to bottom.
This type of data maps the 21-cm differential brightness evolution at
the observed frequency νobs = ν0/(1 + z), where ν0 = 1.42 GHz is
the rest-frame frequency when the signal was emitted at redshift z.
We then express the comoving box length in corresponding angular
aperture of 4.◦65 at z = 6.583.

Early on, the IGM remains mostly neutral, the average signal
largely follows equation (14) (δTb > 30 mK) and the fluctuations are
driven by the density distribution. The gas clumping also remains low
and therefore at low frequencies, νobs > 120 MHz, there is no visible
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Figure 13. Differential brightness statistic quantities derived from the light
cones data smoothed on the core baseline of SKA1-Low (B = 2 km). Plot
on top shows the frequency evolution of the signal root mean squared
(RMS). Bottom plot shows the skewness and an inset panel show the
frequency evolution of the averaged differential brightness on the logarithmic
scale.

difference between simulations. As radiation escapes the host haloes,
it starts to form small isolated transparent regions around sources
and gradually suppresses the average signal. The H II regions are still
small and thus are smoothed over by the observation beam. Fig. 12
shows very similar evolution for the three simulations at frequency
higher then 130 MHz (z < 10), but with different intensity of signal
suppression. For example the appearances of the first transparent
regions, due to lack of neutral hydrogen, at νobs � 147 MHz and
angular position 3.◦2 and 1.◦1 shows that ionization around sources are
more consistent for the simulation with inhomogeneity-dependent
clumping. This is the case even at higher frequency νobs > 180 MHz
(z < 7), during the final phases of reionization the morphology and
size of the percolation cluster strongly depends on the clumping
model employed by the simulation. BHC model has large regions
of feeble emission ∼3 mK that are extensively linked together. The
IC model shows the same morphology but with considerably smaller
and more isolated regions of signal. The SC model, in the other hand,
shows a conspicuous lack of signal and regions of emission have only
of a few Mpc size.

These differences between models are more clearly observed
in the statistics of the 21-cm differential brightness temperature
fluctuations. are significant variation in the statistics of the differential
brightness temperature - rms, PDFs, skewness and power spectra –
shown in Figs 13–15. The low-frequency cut-off is chosen for range
where differences between models becomes noticeable. The high-
density peaks get ionized early, and the corresponding H II regions
are smaller then the interferometer resolution, thus their effect on
rms (Fig. 13, top panel) is to diminish the averaged δTb without
increasing fluctuations. At this stage, the signal mostly follows the
underlying density field, apart from the peaks and there is little
difference between the models. The observed frequency of the RMS
dip indicates the timing at which H II regions become larger then
the interferometry smoothing scale and eventually start to overlap

Figure 14. Probability distribution functions of the differential brightness
temperature at ionized fractions xi = 0.1, 0.3, 0.5, 0.7, and 0.9, for the three
clumping models, as labelled.

locally. This is the case at frequency larger then 120 MHz (z ≈ 11).
For the IC and SC models, the turnover occurs earlier and with a
steeper slope than the BHC model, indication that signal fluctuations
increase faster and stronger. Moreover the peak value of the RMS
fluctuations varies, in the case of IC and SC models the amplitude
is 14 per cent higher, despite having a lower averaged brightness
temperature then the homogeneous case, indicating that the signal is
sensitive to a more physical treatment of the clumping factor. This
is the consequence of a lower clumping factor values in underdense
regions, consistent with the conclusion in Section 3.1. The faster
propagation of I-fronts, in the vast low-density regions, leads to a
earlier second peak in the RMS of the two former approaches. In
order of appearance at νobs = 165 MHz (z = 7.56) for SC, 169 MHz
(z = 7.34) for IC and slightly later at 176 MHz (z = 7.06) for BHC,
respectively, when the average neutral fraction is x̄n = 0.33, 0.28, and
0.25. The subsequent decline is the results of reionization reaching
its final stage, with almost complete ionization.

The averaged 21-cm fluctuations level at different scales is
reflected in the power spectra (Fig. 15), where we compare the
results for models BHC, IC, and SC at epochs at which the mean
ionization fractions are xi = 0.1, 0.3, 0.5, 0.7, 0.9, as well as around
reionization completion xi = 0.99. At first, the 21-cm signal follows
the underlying density distribution of neutral hydrogen and the power
spectra are very similar and approximately a power law in all three
cases. The flattening of the power spectra is an indication of the
expanding ionized region, shifting the signal toward larger scales
while suppressing small structures. Interestingly, this characteristic
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Figure 15. The effect of clumping factor on the 21-cm power spectra compared at volume ionization fraction xi = 0.1, 0.3, 0.5, 0.7, 0.9, and 0.99 for the models
under study: BHC (red, solid), IC (blue, dashed), and SC (green, solid).

appears at the same scale regardless of the clumping model but
modest difference in amplitude of signal. The BHC model yields
systematically lower power at all scales and at all redshifts except
close to overlap. The stochastic relation between local overdensity
and clumping factor does not have a large effect throughout most of
reionization, and is noticeable predominantly at small scales later on.
The most significant differences between IC and SC models emerges
at the end of reionization (xi = 0.99), where the SC model has less
power on all scales, by factor of up to a few. In fact, at that time the
SC model has less power than even the BHC, except at the small
scales k > 0.3Mpc−1.

The 21-cm signal fluctuations are strongly non-Gaussian (e.g.
Mellema et al. 2006b; Giri et al. 2019) and therefore are not
fully described by the power spectra. We therefore also present
the 21-cm differential brightness temperature distribution moments
of first (PDFs; Fig. 14) and second order (skewness; Fig. 13,
lower panel). For all the models and all times, 21-cm PDFs are
bimodal in nature, which is a clear signature of non-Gaussianity
(e.g. Ichikawa et al. 2010; Giri, Mellema & Ghara 2018b). Even
though all the models show non-Gaussianity, there are significant
variations between models. The SC and IC models are much more
non-Gaussian, with many more pixels at both high low values.
Particularly, they show a very strong tail at high values. This is
somewhat stronger for the SC model at all redshifts, indicating that
the clumping scatter yields more high brightness temperature peaks,
by factor of a few. The signal skewness confirms these observations.
It is going from negative to positive symmetry at νobs � 170 MHz,
when the volume ionized fraction is close to xi = 0.6 − 0.7 and
the RMS fluctuations reach maximum. Differences between models
are noticeable only later, once the simulation overpass the peak in
fluctuations, at frequency larger than 180 MHz. At this point the
skewness increases exponentially.

4 C O N C L U S I O N

Studies of the large-scale reionization morphology and its imprint
on the observable signatures requires large simulated volumes of a
several hundred cMpc per side. Due to computational limitations
which limit the dynamic range, uniformly high resolution cannot
be achieved in such a volume. Therefore, no general model of the
local recombinations on scale below the resolution of large numerical
simulation exists. Typically a constant value of clumping factor is
used, but recently, we presented a more general model (Paper I),
that depends on the local density, and we demonstrated how an
oversimplistic treatment of the clumping factor can have a strong
effect on the simulated reionization time-scale, topology, and size
distributions of the ionized region.

In the current work, we extend and improve this method by
including an empirical stochastic subgrid gas clumping (SC) model
(see Section 2.3.3) based on the results from high-resolution N-
body simulation, where the full range of relevant fluctuations is
fully resolved. Our approach considers a novel parametrization
of the correlation between local IGM overdensity and clumping
factor, which take into accounts the scatter due to e.g. tidal forces.
We employ a high-resolution N-body simulation SB, of spatial
resolution 260 pc per side, that resolve the Jeans length of the
cold IGM and structure evolution on scale much smaller then the
resolution of EoR simulations. The density-binned scatter is then
modelled with a lognormal distribution. Those distributions are
then randomly sampled to create a realization of the scatter. We
then apply our method to the density fields of larger volumes LB-
1 (714 cMpc per side) and LB-2 (349 Mpc) to infer its sub-grid
clumping factor (see Section 2.4). Subsequently, we post-process the
large scale N-body snapshot with C2Ray radiative transfer cosmic
reionization simulation code, in order to present the impact of various
modelling approaches for gas clumping on reionization observables
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(see Section 3). We then compare our stochastic model SC with the
inhomogeneous clumping model, IC, which is a simple deterministic
density-dependent fit, and a globally redshift-dependent averaged
clumping factor BHC, whereby the SC is independent of the local
density.

We find that density-dependent clumping models, IC and SC,
exhibit similar behaviour for globally averaged quantities, mean-
while there is a tangible difference when compared to the volume-
averaged model BHC. For instance, the reionization history (Fig. 4) is
delayed by as much as �z ∼ 0.3 at xi = 0.7 (z ∼ 7.5) and the average
neutral fraction decrease swiftly for z < 10. The evolution of ionized
regions in IC and SC models is a bit faster due to the on average
lower gas clumping factor that decreases gas recombination in the
underdense regions. Meanwhile, as structure formation advance,
the higher clumping factor C > 20 in high-density regions con-
siderably increase the recombination rate, such that recombination
is twice as effective as in the BHC model case for z < 12. We
find that the increase of rate in these regions, due to the different
density-dependent gas clumping approach, is responsible for the
divergence in the simulated observables. Despite the fact that the
overdense medium constitutes a minor fraction of the box volume,
compared to the vast underdense IGM, it is responsible for the
majority of recombinations. Our model and the IC method behave
similarly, with only 5 per cent of relative error to each other.
This difference is mainly due to the broad scatter at high density
in the clumping–density correlation plot (Fig. 2). The clumping
factor for IGM in the proximity of sources, is extremely high
C ∼ 100 and the introduced stochasticity can extend it to a factor
of few hundreds more. Moreover, the simulated electron scatter-
ing optical depth is very similar in IC and SC models and the
choice of the clumping model has little effect on the feedback of
sources.

The density-dependence of the sc accelerates the propagation
of ionizing fronts in the low-density IGM (Fig. 12), By z < 10
(νobs > 130 MHz), the regions with low 21-cm signal around the
sources are more pronounced than in the BHC case. The dif-
ferences between the new stochastic approach and the IC model
are minor, mostly appearing at late times (z < 7, νobs > 175),
where the SC scenario presents considerably less residual neutral
gas than the other two models. These last region of neutral gas
are mostly in large voids and distant from any ionizing sources,
therefore our interpretation is that at lower redshift the empirical
stochastic model becomes predominant in underdense IGM, ac-
celerating the propagation of ionizing radiation in these regions.
Meanwhile, at the early stages of reionization the gas recombination
in high-density region drives the reionization process, resulting
in reduction of the ionizing photons propagating into the neutral
surroundings.

We compared the simulation-derived observables at the same
reionization milestones, xi = 0.1, 0.3, 0.5, 0.7, 0.9. Compared to
our previous work, the BSD (based on both mean free path and
FOF methods) do not show large variation, as an indication that
the SC model does not increase the recombination rate in a way
that significantly alters the morphology and sizes of the ionized
regions. The same conclusion can be deduced from statistics of
the 21-cm differential brightness temperature. As we demonstrated
in Paper I, the density-dependent model increase the amplitude
and shift the fluctuations peak position to lower frequency with
a difference of approximately 20 MHz compared to BHC model,
and just a few MHz of difference when compared to the SC
model. Hence, the peak occurs at stage of reionization that differ

only of few percentage x̄n ≈ 0.3 for SC and IC models and 0.25
for BHC.

The PDFs of the redshifted 21-cm distributions show some notable
differences between our models. While all distributions are non-
Gaussian, the IC and SC yield significantly more non-Gaussianity,
with long tail of bright pixels, which is very different from the BHC
model. The bright tail is longer for the SC model compared to IC,
predicting many more and brighter pixels at all redshifts.

The power spectra of the 21-cm signal (see Fig. 15) show that in
the early phase of reionization, the BHC scenario yields a weaker
signal, when compared to density-dependent models on all scales.
IC and SC differ somewhat at large scale k < 0.1 cMpc−1 for x)i =
0.3−0.5. This largely disappears by x̄i = 0.7. Towards the final stages
of reionization (xi = 99 per cent) results for three models differ. The
IC model predicts the highest signal at all scales, higher by a factor
of a few compared to SC. The BHC model signal is intermediate
between them for most except the smallest scales.

The results presented here are not intended as a detailed pre-
diction of the reionization observables, but rather a demonstration
that an oversimplistic treatment of the clumping factor can have
strong effect on the reionization morphology and thus on simu-
lated observables. The widely used BHC model, overestimates the
rate at which the ionized IGM recombines, and therefore have
a strong influence on the time-scale of reionization, morphology
of the ionized region and the intensity of the expected 21-cm
signal. We demonstrated that density-dependent model takes better
account the cumulative effect of the clumping factor on the gas
recombination rate. On the other hand, we have also shown that
accounting for the scatter around the average, deterministic local
density–clumping relation has only modest effects on the reioniza-
tion morphology and observables, predominantly towards the end
of the reionization process. This indicates that the deterministic
IC model is usually sufficient except possibly around and after
overlap.

The gas clumping factors presented here should be considered as
an upper limit to the actual clumping since they are derived based
on high-resolution N-body simulations and thus do not capture the
photoionization feedback that would suppress small-scale density
fluctuations. Consequently, it overestimates the recombination rate
throughout reionization. We leave a more realistic approach, that
follows the feedback effects, and the complex physics of the cold gas
(T < 104 K) in IGM, for future work.
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Raičević M., Theuns T., 2011, MNRAS, 412, 1
Robertson B. E., Ellis R. S., Furlanetto S. R., Dunlop J. S., 2015, ApJ, 802,

L19
Ross E., Dixon K. L., Ghara R., Iliev I. T., Mellema G., 2019, MNRAS,

487, 1101
Shapiro P. R., Martel H., Villumsen J. V., Owen J. M., 1996, ApJS, 103, 269
Tegmark M., Silk J., Rees M., Blanchard A., Abel T., Palla F., 1996, ApJ, 12,

1
Tomassetti M., Porciani C., Romano-Dı́az E., Ludlow A. D., 2014, MNRAS,

446, 3330
Valageas P., Silk J., 2004, A&A, 413, 1087
Watson W. A., Iliev I. T., D’Aloisio A., Knebe A., Shapiro P. R., Yepes G.,

2013, MNRAS, 433, 1230
Yatawatta S. et al., 2013, A&A, 550, 136
Zaroubi S., 2012, in Wiklind T., Mobasher B., Bromm V., eds, The First

Galaxies. Springer-Verlag, Berlin, p. 45
Zhang J., Hui L., Haiman Z., 2007, MNRAS, 375, 324

SUPPORTI NG INFORMATI ON

Supplementary data are available at MNRAS online.

Please note: Oxford University Press is not responsible for the content
or functionality of any supporting materials supplied by the authors.
Any queries (other than missing material) should be directed to the
corresponding author for the paper.

APPENDI X A : C OMPARI SON BETWEEN O LD
A N D N E W

In the N-body simulations used in our Paper I (Mao et al. 2020), we
employed the version 1 of theCUBEP3M code, the most recent version
of the code at the time. Meanwhile, in this paper, we employed
the updated version 2 of that code, that reduces the error of the
near-grid point interpolation by extending the particle–particle (PP)
force calculation for a particle out to arbitrary number of cells. With
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Figure A1. Correlation between local coarse IGM overdensity and coarse
clumping factor at redshift z = 7.305 for the SB simulation. In red, the IC
model interpolation ran with the version 1 of the N-body code, with the solid
blue line the same quantity but with the updated code. Lower panel, the ratio
between the old and new quantity.

the latest version, the user can therefore choose how far outside
the hosting cell the PP-force is active. A detailed discussion of
this update can be found in section 7.3 of Harnois-Déraps et al.
(2013).

As an illustration of the effect of that change, in Fig. A1, we show
the IC model of the correlation between coarse IGM overdensity
and coarse clumping factor at z = 7.305 for the SB simulation. In
red, the interpolation obtained from N-body simulation run with
first version of the code, in blue, the updated code with PP-force
that extend for two neighbour cells. In both cases, we kept the same
cosmology, initial condition, and simulation parameters. In the lower
panel of the figure, we show the ratio between the two old and the
new result. The result of this more precise gravity forces calculation
is that the gas clumping is somewhat boosted, while the curve retains
the same shape, which has no significant effect on our method and
results.
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