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ABSTRACT
Radial-velocity follow-up of stars harbouring transiting planets detected by TESS is expected to require very large amounts
of expensive telescope time in the next few years. Therefore, scheduling strategies should be implemented to maximize the
amount of information gathered about the target planetary systems. We consider myopic and non-myopic versions of a novel
uniform-in-phase scheduler, as well as a random scheduler, and compare these scheduling strategies with respect to the bias,
accuracy and precision achieved in recovering the mass and orbital parameters of transiting and non-transiting planets. This
comparison is carried out based on realistic simulations of radial-velocity follow-up with ESPRESSO of a sample of 50 TESS
target stars, with simulated planetary systems containing at least one transiting planet with a radius below 4R⊕. Radial-velocity
data sets were generated under reasonable assumptions about their noise component, including that resulting from stellar activity,
and analysed using a fully Bayesian methodology. We find the random scheduler leads to a more biased, less accurate, and
less precise, estimation of the mass of the transiting exoplanets. No significant differences are found between the results of the
myopic and non-myopic implementations of the uniform-in-phase scheduler. With only about 22 radial velocity measurements
per data set, our novel uniform-in-phase scheduler enables an unbiased (at the level of 1 per cent) measurement of the masses of
the transiting planets, while keeping the average relative accuracy and precision around 16 per cent and 23 per cent, respectively.
The number of non-transiting planets detected is similar for all the scheduling strategies considered, as well as the bias, accuracy
and precision with which their masses and orbital parameters are recovered.
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1 IN T RO D U C T I O N

The radial-velocity (RV) follow-up of exoplanet candidates identi-
fied using the transit detection method is important to definitively
establish their planetary nature, estimate their masses and further
refine orbital parameters. It also makes atmospheric studies more in-
formative by constraining the scale height (e.g. Batalha, Kempton &
Mbarek 2017). Modelling the internal structure of each exoplanet
(e.g. Dorn et al. 2015; Dorn, Bower & Rozel 2018; Suissa, Chen &
Kipping 2018), and population-level studies, e.g. the characterization
of the mass–radius relation (e.g. Chen & Kipping 2016; Wolfgang,
Rogers & Ford 2016; Ning, Wolfgang & Ghosh 2018; Kanodia et al.
2019), are other applications that benefit from the extra information
brought by RV data.

In the next few years, RV follow-up of exoplanet transits will most
likely be dominated by observations of TESS [Transiting Exoplanet
Survey Satellite, e.g. Ricker et al. (2016)] objects of interest (TOIs).
Over the 2 yr of its primary mission, TESS is expected to discover
more than 14 000 new transiting exoplanets around almost as many
stars (Barclay, Pepper & Quintana 2018). The RV measurements
required to obtain precise mass measurements even for just a few tens
of these planets will easily exceed the many hundreds. Most will be
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part of concerted efforts by several groups, namely those taking part
in the TESS Follow-Up Observing Program (TFOP), with access
to large amounts of telescope time. In particular, the ESPRESSO
collaboration (Pepe et al. 2013, 2014, 2021) plans to devote around
32 per cent of its Guaranteed Time Observations (GTO) for TOI
follow-up, amounting to almost 88 nights distributed across 4 yr
(N. C. Santos, private communication).

Often RV measurements for a sample of stars known to host tran-
siting planets are performed in an almost random way, conditional on
the target stars being visible at low airmass. More commonly there
is some prior planning of the observations, for example to ensure
that the RV phase curves are sampled as uniformly as possible, given
the orbital periods inferred from the transit data (e.g. Burt et al.
2018). The most usual stopping criterion for the RV measurements
is reaching some relative precision with respect to the transiting
exoplanets masses (e.g. Montet 2018). However, in any case, the
observations are usually done in a myopic (or greedy) way, i.e. which
star is chosen to be observed at a certain time does not take into
account all possible scheduling configurations for the future, given
the time available and sample of stars to be observed. In principle,
this should lead to a less efficient use of available telescope time than
non-myopic (also known as batch or block) scheduling.

Our main objective in this work is then to quantify, using mock
but realistic RV simulations, the difference in efficiency, with respect
to the information gathered about exoplanet masses and orbital
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parameters through RV measurements, between different scheduling
strategies for the ESPRESSO follow-up of TESS targets. We will
consider algorithms whose objective function leads to a sampling
of the RV phase curves of the known transiting planets as uniform
as possible, and compare their results with those obtained under an
algorithm which just randomly samples the set of target stars that are
visible at observation time. The former, henceforth called uniform in
phase, will be implemented in both a myopic and a non-myopic way.

We start by laying out the procedures used to construct a sample
of simulated TOIs, and to generate mock distributions of the
ESPRESSO GTO. Next, we describe the scheduling algorithms that
will be compared. We then report the results obtained, discuss them,
and present our conclusions.

2 ME T H O D S

2.1 Stellar sample and simulated planetary systems

The TESS observing strategy was modelled by Barclay et al. (2018)
in order to identify the approximately 200 000 stars in the TESS
Input Catalog Candidate Target List that should be observed at 2-
min cadence. The remaining stars were assumed to be observed at
30-min cadence in full-frame image data. They then associated zero
or more orbiting planets to each star, with specific physical and
orbital characteristics, according to measured exoplanet occurrence
rates (Fressin et al. 2013; Dressing & Charbonneau 2015). Finally,
they used the TESS noise model to predict which exoplanets would
be detected and their derived properties. It was estimated that TESS
would find around 1250 exoplanets in the 2-min cadence mode, and
about 13 100 planets in the full-frame image data.

A sample of stars for possible ESPRESSO follow-up observations
was pre-selected among those stars considered in Barclay et al.
(2018) by demanding: a declination in the interval [−80o, +30o],
to ensure extended periods of visibility at low airmass from Paranal;
an effective temperature, Teff, in the interval [4000, 6000] K, and
high surface gravity, log g > 4.0, i.e. only G and K dwarf stars. We
then included in our final sample the 50 brightest stars among those
pre-selected with at least one orbiting planet with a radius below
4R⊕, 3 detected transits, and a transit signal-to-noise ratio greater
than 10. This final selection step effectively limits our sample to stars
with a magnitude, V, below 10.5, minimizing the RV measurement
uncertainty due to photon noise. It also aligns our sample with a
TESS primary science requirement: the estimation of the mass of
50 exoplanets with radius smaller than 4R⊕ (Ricker et al. 2016).
We ended up with 53 transiting planets orbiting 50 stars, with 3
systems having 2 transiting planets each. We associated with each
transiting planet the expected mass, given its radius, obtained using
the Forecaster algorithm (Chen & Kipping 2016). The radii were
assumed to be known within an uncertainty of 10 per cent (standard
deviation), typical of what is expected by combining data from Gaia
(Brown et al. 2016, 2018) and TESS (Burt et al. 2018).

In the publicly available from Barclay et al. (2018) catalogue only
planets that transit are identified. But, in order to generate realistic
simulations of an RV time series, we need to take into account all
planets around each star in the sample. Therefore, we added extra
orbiting planets to each star, non-detectable by TESS. In order to be
coherent with the choice of occurrence rates made in Barclay et al.
(2018), we used for such purpose the occurrence rates published
in Fressin et al. (2013). However, these do not extend to orbital
periods long enough to include all planets capable of generating a
RV semi-amplitude, K, larger than 0.5 m s−1, roughly the minimum
value we expect our simulated follow-up survey to be sensitive to.

This expectation was fully supported a posteriori by the results of
the analysis of the simulated RV data sets, we will later describe, as
only planets with values for K above 1 m s−1 were indeed detected.
Although the presence of planets with K < 0.5 m s−1 could make
the detection of planets with higher values for K more difficult, the
effect should be quite small given that we expect that almost always
there will be a large difference with respect to K between those extra
low-K planets and those that ended up being detected in the systems
considered.

Therefore, we first extrapolated the occurrence rates in table 2 of
Fressin et al. (2013) up to orbital periods of 2 yr, for radius in the
intervals [2, 4], [4, 6], and [6, 22] R⊕, and to 418 d for radius in
the interval [1.25, 2] R⊕. In order to achieve this, we assumed the
occurrence rate density, as a function of orbital period, is described by
a lognormal distribution (e.g. Fressin et al. 2013; Winn & Fabrycky
2015). The joint posterior probability distribution for the parameters
of such function was characterized within each of the four mentioned
radius bins, given the occurrence rates provided in table 2 of Fressin
et al. (2013) for the available period bins. The expected values for
those lognormal parameters were then used to infer the integrated
occurrence rates in the period bins: [145, 245] and [245, 418] d in
the case of radius between 1.25 and 2 R⊕; [245, 418] and [418, 730]
d in the case of radius between 2 and 4 R⊕; [418, 730] d in the case
of radius in the intervals [4, 6] and [6, 22] R⊕. These extrapolated
occurrence rates can be found in Table 1, together with the values
used from Fressin et al. (2013). With this extrapolation, we are able
to take into account all planets, with an orbital period smaller than
2 yr, that are capable of inducing a RV signal with K > 0.5 m s−1,
given their expected mass as estimated using the Forecaster algorithm
(Chen & Kipping 2016).

The number of planets we associate with each star, within the
radius-period bins identified in table 2 of Fressin et al. (2013) plus
those with extrapolated occurrence rates, was then randomly drawn
from a Poisson distribution with mean 0.92 (expected number of
planets across all such bins). If the number obtained was greater than
the number of transiting planets in the system, the radius-period bins
where the extra planets are located were randomly drawn from the
full radius-period bin distribution taking into account the respective
occurrence rates. Then, a specific radius and period was randomly
drawn for each extra planet inside the associated bin, assuming a
lognormal distribution (the same type that was considered in the
radius-period bin occurrence rates extrapolation). For each extra
planet, the radius and orbital period drawing procedure is repeated
until the transit signal-to-noise ratio is lower than 10, or the period
found is greater than twice the time span of the scheduled TESS
observations of the sector where the star is located. This ensures that
any extra planet associated with the stars in our sample would not
have been detected in the simulations of TESS observations made by
Barclay et al. (2018).

Since planets with radius above 4R⊕ can have K > 0.5 m s−1

even with orbital periods greater than 2 yr, we randomly added extra
planets with orbital period between 2 and 10 yr. For this we, used
the occurrence rates in Herman, Zhu & Wu (2019), respectively, 0.24
and 0.15 in the radius ranges [4.5, 9.5] and [9.5, 15.7] R⊕. We again
associated with each extra planet the expected mass, given its radius,
obtained using the Forecaster algorithm (Chen & Kipping 2016).

We ended up with 50 extra planets, distributed across 35 systems
(only one of which has three extra planets). Their orbital eccentric-
ities, e, were then randomly drawn from a Beta distribution with
parameters α = 1.03 and β = 13.6 following Kipping (2014). We
kept the assumption of Barclay et al. (2018) that all planets in any
system are co-planar, and set the inclination of all systems to 90o in

MNRAS 503, 5504–5521 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/4/5504/6179859 by guest on 20 April 2024



5506 L. Cabona et al.

Table 1. Average number of planets per star per radius and period bin (in per cent) from Fressin et al. (2013). Inside
square brackets are extrapolated values by assuming that, inside each radius interval, the occurrence rate density is
described by a lognormal function of the orbital period.

Period range Giant Large Neptunes Small Neptunes Super-Earths Earths
(d) (6–22 R⊕) (4–6 R⊕) (2–4 R⊕) (1.25–2 R⊕) (0.8–1.25 R⊕)

0.8–2.0 0.015 0.004 0.035 0.17 0.18
2.0–3.4 0.067 0.006 0.18 0.74 0.61
3.4–5.9 0.17 0.11 0.73 1.49 1.72
5.9–10 0.18 0.091 1.93 2.90 2.70
10.0–17.0 0.27 0.29 3.67 4.30 2.70
17.0–29.0 0.23 0.32 5.29 4.49 2.93
29.0–50.0 0.35 0.49 6.45 5.29 4.08
50.0–85.0 0.71 0.66 5.25 3.66 3.46
85.0–145.0 1.25 0.43 4.31 6.54 –
145.0–245.0 0.94 0.53 3.09 [0.91] –
245.0–418.0 1.05 0.24 [1.89] [0.35] –
418.0–730.0 [0.91] [0.12] [0.75] – –

order to enable a more direct comparison between true and estimated
planetary masses. At this point, we determined whether each possible
pair of planets in any given system is Hill stable, by finding if the
following inequality is true (Gladman 1993):(

μ1 + μ2
a1

a2

)(
μ1γ1 + μ2γ2

√
a2

a1

)2

> α3 + 34/3μ1μ2α
5/3, (1)

where μi, ai, and ei are, respectively, the ratio between the planet mass
and the mass of the star which it orbits, the orbital semimajor axis,
and the orbital eccentricity, with α = μ1 + μ2 and γi =

√
1 − e2

i , for
each planet i = {1, 2} in the pair being considered. All the systems
found to contain Hill unstable pairs of planets were re-simulated,
keeping the number of extra planets but randomly re-drawing their
radius and orbital parameters, until every simulated planetary system
only contained Hill stable pairs. In the process, we actually found
that the pair of transiting planets in system with identification number
304142124 is not Hill stable. In order to minimally change the
catalogue published by Barclay et al. (2018), while ensuring this
planet pair becomes Hill stable, we just decreased the eccentricity of
the outer transiting planet from 0.15453 to 0.142.

Finally, for both transiting and non-transiting planets, the mean
anomaly M0 at the time t0 (when we start our scheduler), and the
argument of periastron, ω, were randomly drawn from a uniform
distribution between 0 and 2π . With this it becomes possible to
compute the overall planetary contribution to the RV time series for
each star.

Fig. 1 shows the distributions for K, e and P, for the simulated
transiting and non-transiting planets. A detailed description of the
properties of every planet in our simulation is provided in a machine
readable table, with a summary shown in Table 2.

2.2 ESPRESSO GTO simulations

The ESPRESSO GTO consists of 273 nights during 4 yr, and began
on 2018 October 1.1 Exoplanetary science occupies 80 per cent of
the time, 10 per cent is allocated to fundamental constants time-
variability studies and 10 per cent is discretionary time at the
disposal of the ESPRESSO consortium (Pepe et al. 2013, 2021).
The total amount of time available for exoplanetary science is in
turn divided as follows: 30 per cent for exoplanetary atmospheric

1https://www.eso.org/sci/observing/policies/gto policy.html

characterization; 30 per cent for TOI follow-up; 40 per cent for
a RV survey. We simulated the scheduling of ESPRESSO GTO
observations from 2019 October 1 until 2022 September 30, i.e.
only for 3 yr. Furthermore, we assumed that on 2019 October 1 all
our TOIs would have been observed and characterized by TESS.

The 80 per cent of the ESPRESSO GTO dedicated to exoplanetary
science consists of close to 55 half-nights each semester. We
randomly spread them in such a way as to mimic the ESPRESSO
GTO distribution in ESO periods 102 and 103, the only known at
the time of writing, including aggregation of some half-nights into
full nights. Each full day is divided into 60 observation slots, all
with a duration of 24 minutes (15 as integration time plus 9 for
overheads), but due to seasonal variation, each astronomical night
will have a different number of observation slots associated. The
integration time was defined to be 15 minutes in order to average
out the RV variability induced by stellar oscillations in the G and K
dwarf stars we are considering (e.g. Dumusque et al. 2011). We
will only consider observations slots with an associated airmass
not greater than 2.0. Thus, taking into account the magnitude and
temperature ranges for the 50 stars we are considering, respectively,
[6.69,10.37] and [4408,5978] K, the ESPRESSO ETC (Exposure
Time Calculator)2 estimated RV variability due to photon-noise will
range from 0.1 to 0.5 m s−1, under normal atmospheric conditions.
The average value is close to 0.3 m s−1 across all observational slots
for which RV simulations were performed.

We further assumed that exoplanetary atmospheric characteriza-
tion takes precedence, given that they are performed during transit
and thus are time-critical. For each semester we thus first randomly
sampled, with repetition, the ESPRESSO consortium target list for
this type of study, until 30 per cent of the available time was reached.
Each scheduled transit observation is composed of enough sequential
observational slots to cover the time interval from one hour before the
transit starts until one hour after the transit ends. Some of the half and
full nights allocated to exoplanetary atmospheric characterization
are not completely filled with these type of observations and thus
the remaining slots are available for TOI follow-up and the RV
survey. We repeated this procedure 10 times, obtaining 10 different
distributions for the 80 per cent of the ESPRESSO GTO dedicated to
exoplanetary science. These simulations yielded between 2563 and

2https://www.eso.org/observing/etc/bin/gen/form?INS.NAME=ESPRES
SO + INS.MODE = spectro
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Figure 1. From upper to lower panel, distributions of RV semi-amplitudes,
K, orbital eccentricities, e, and periods, P, for the transiting (blue) and non-
transiting (orange) planets.

2628 (24-min) slots that can be used for TOI follow-up and the RV
survey. Among these we decided to schedule a fixed number of 1102
slots for TOI follow-up, which we assume take precedence over the
RV survey. This number is very close to the fraction that can be
used for TOI follow-up, i.e. 30 per cent of the total number of slots
associated with each GTO realization. Although we could have let
that number vary with each GTO simulation, we decided to fix it to

Table 2. Summary of the properties of all stars and planets in the sample.

Column Property

1 Sample ID number of star
2 TESS Input Catalog ID number of star
3 Right ascension 2000 (in deg)
4 Declination 2000 (in deg)
5 V-band magnitude
6 Stellar effective temperature (in K)
7 Stellar radius (in R�)
8 Stellar mass (in M�)
9 Number of TESS sectors the star is observed in
10 One-hour integrated noise level of the star (in ppm)
11 Stellar flicker, F8 (in ppt)
12 Stellar jitter, σ act (in m s−1)
13 Stellar rotation period, Prot (in d)
14 Systemic velocity (in m s−1)
15 Planet orbital period (in d)
16 Planet orbital eccentricity
17 Argument of periastron (in rad)
18 Time of periastron passage (in BJD)
19 Time of transit (in BJD)
20 Mean anomaly at time t0 (in rad)
21 Planet radius (in R⊕)
22 Planet mass (in M⊕)
23 RV semi-amplitude (in m s−1)

the mean averaged over all simulations so that the results could be
more easily compared.

2.3 RV simulations

Stellar activity also induces variations in the RV of a star (e.g.
Korhonen et al. 2015; Dumusque 2016; Cameron 2018; Cegla 2019).
Their overall amplitude, σ act, was determined, for all stars in our
sample, by randomly drawing from a Normal distribution with mean
given by equation (4) in Cegla et al. (2013), and a standard deviation
of 0.4. The mean reproduces the observed correlation between RV
variability and a measure of stellar flicker, F8, for stars with low
levels of activity, while the value of 0.4 is suggested by fig. 6 in
Cegla et al. (2013). The flicker parameter, F8, is determined using
equation (2) in Tayar, Stassun & Corsaro (2019), which depends on
stellar mass, effective temperature and log g, information we have
for all the TESS target stars we consider. The assumed value of σ act

for each star in our sample can be seen in Fig. A1 in the Appendix.
The RV variations induced by stellar activity have been shown to

be well modelled as a Gaussian Process, i.e. their joint probability
distribution is assumed to be a multivariate Normal with a number of
dimensions equal to the number of RV measurements under analysis,
and in particular as a Gaussian Process with a mean of zero and a
covariance matrix, 	, with entries calculated using a quasi-periodic
covariance function or kernel (e.g. Haywood et al. 2014; Faria et al.
2016; Rajpaul 2017; Angus et al. 2018). Nevertheless, as we will
later see, none of the three scheduling strategies under study relies
on the assumed model for the stellar activity induced RV variations to
decide on the best schedule, thus any changes to such model should
have little impact on the relative outcomes of those strategies. In
order to test this, we performed RV simulations where the impact
of stellar activity was assumed to be the result of either a quasi-
periodic Gaussian Process or Gaussian white noise, i.e. randomly
and independently generated (as a function of time) from a Normal
distribution with a constant mean (zero) and standard deviation (σ wn,
equal to σ act in our case). Note that Gaussian white noise is equivalent
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to a Gaussian Process with a covariance matrix, 	, whose entries are
zero everywhere except in its diagonal, where they are equal to the
square of the assumed standard deviation (i.e. the variance).

The assumption of a quasi-periodic kernel gives rise to entries in
the covariance matrix, 	, of the form

	ij = η2
1 exp

⎡
⎣− (ti − tj )2

2η2
2

−
2 sin2

(
π(ti−tj )

η3

)
η2

4

⎤
⎦ + s2δij , (2)

where η1, η2, η3, and η4 are parameters that can be interpreted as
the amplitude, time-scale of decay, periodic time-scale, and level
of high-frequency variability (within the periodic timescale) of the
RV variations. Because these are caused by stellar active regions,
whose appearance and disappearance along the line of sight is
modulated by the stellar rotation period, η3 should be close to its
value. The parameter s is usually known as jitter, and accounts for
(apparent) non-correlated variability. This can arise, for example,
through sampling with a much lower frequency than that associated
with correlated RV variability induced by one or more of the many
physical process involved in stellar activity.

For each star, the value of s was randomly drawn with equal
probability from the interval [0.1 m s−1, σact/2], while the value for
η1 was assumed to be the square-root of σ 2

act minus s2. The assumed
values of s and η1 for each star in our sample can be seen in Fig. 7.
We also set η3 equal to the rotation period of each star. This was
fixed using the following procedure. First, we selected all stars with
an effective temperature within [4000, 6000] K and log g > 4.0,
included in the catalogue of 34 000 Kepler main sequence stars
assembled by McQuillan, Mazeh & Aigrain (2014). Then, for each
star, we identified its nearest 100 neighbours in the plane defined by
effective temperature and log g, determined the mean and standard
deviation of the distribution of the rotation periods for those 100 stars,
and randomly drew a value from a Gaussian with the derived mean
and standard deviation. Finally, we associated with the star i under
consideration the measured rotation period, Prot ,i (and its associated
uncertainty, σrot ,i) in the sample of 100 stars that is closest to the value
previously drawn from the Gaussian. The rotation period assumed
for each star in our sample can be found in Table 2. For all stars in our
sample, the values of η2 were randomly drawn from a log-uniform
distribution truncated at η3 and 5η3, while the values of η4 were
randomly drawn from a Gaussian distribution with mean of 0.7 and
standard deviation of 0.05. This ensures the values thus obtained are
typical of those inferred from the analysis of RV data (e.g. Faria et al.
2016; Lopez-Morales et al. 2016; Cloutier et al. 2017; Faria et al.
2020).

We consider two other contributions to the variability of the RV
time-series, which we assume can be characterized as Gaussian
white noise: one due to photon-noise, σ ph, which was calculated
using the ESPRESSO ETC specifically for each star according
to its magnitude, effective temperature and airmass at the time
of observation; and another due to the RV variability induced by
instrumental-noise, σ ins, which we assumed to be constant and equal
to 0.1 m s−1 (Pepe et al. 2014, 2021). Therefore, the full covariance
matrix, 	v , associated with the multivariate Normal that describes
the stochastic behaviour of each RV time-series becomes equal to the
covariance matrix, 	, associated with the specific Gaussian Process
used to describe stellar activity induced RV variability (either quasi-
periodic or white noise), to whose diagonal the squares of both σ ph

and σ ins are added.
We also associated with every star a systemic RV relative to

the centre of mass of the system, vsys, drawn from a random
uniform distribution between −100 and 100 m s−1, roughly the

observed range for stars in the solar neighbourhood (e.g. Kushniruk,
Schirmer & Bensby 2017). Thus, the RV time series associated with
each star were generated based on the following model:

vr(t) = vsys +
np∑

i=1

vr,i(t) + ε(t) (3)

with

vr,i(t) = Ki{cos[φi(t) + ωi] + ei cos(ωi)}, (4)

ε(t) ∼ N (0, 	v) , (5)

where np is the number of planets orbiting the star, Ki is the RV
semi-amplitude, ωi is the argument of periastron, ei is the orbital
eccentricity, and φi(t) is the true anomaly as a function of time, t,
calculated from the other orbital parameters (e.g. Perryman 2018),
all with respect to planet i. Thus, we neglect any gravitational inter-
actions between orbiting planets when calculating the instantaneous
RV for every star.

2.4 Scheduling strategies

We will consider three different scheduling strategies. Two of them,
labelled A, are myopic, i.e. the best schedule is defined sequentially in
time. In strategy A1, the star chosen to be observed at any given time
is randomly drawn from all stars in the sample which can be observed
at that time, at an airmass equal or smaller than 2, and with a Moon
separation greater than 30 deg, henceforth known as the observability
constraint. In strategy A2, this sub-sample of stars is further restricted
to the stars that have a smaller number of observations than those
associated with the sample star with the largest number of allocated
observations at previous times, henceforth known as the equalizing
condition. Imposing the second condition leads to a more even
distribution of the observational slots between the sample stars.

However, in the case of strategy A2, we also want the sampling
of the RV phase-curves of the known transiting planets to be as
uniform as possible, i.e. to ensure as close as possible uniform-
in-phase sampling. This is achieved through the maximization of
the following objective function, capable of measuring the overall
dispersion of points in a given interval,

f ({xi}) ≡
{

1102∑
i=1

[d(xi)]
−q

}−1/q

, (6)

where d(xi) is the time distance between the observation xi and
its nearest neighbour in the orbital phase-space of the transiting
planet targeted by the observation (including across the phase-space
boundary), as a fraction of the orbital period of such planet. When
more than one transiting planet exists around a star, d(xi) equals
the sum of the distances with respect to all transiting planets in the
system, which favours the observation of stars for which multiple
transiting planets are known. We assume the orbital period and mid-
transit time for each transiting planet to be perfectly known a priori. In
a real application, this would mean fixing them to e.g. their expected
values given the TESS data.

In the context of strategy A2, the best schedule is then also
constructed sequentially in time. First, the stars that fulfil both the
observability constraint and the equalizing condition are identified.
The star chosen to be observed among these will be the star with
the smallest number of allocated observations at previous times. If
several stars share this number of previous observations, then the star
chosen to be observed is that which leads to the maximization of the
objective function provided, f({xi}). The same criterion is applied to

MNRAS 503, 5504–5521 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/4/5504/6179859 by guest on 20 April 2024



ESPRESSO follow-up of TESS targets 5509

all stars that satisfy the observability constraint in the situation where
no stars fulfil the equality condition (i.e. all have the same number
of allocated observations at previous times). However, these rules
are applied only at those times for which all stars that satisfy the
observability constraint and the equalizing condition have already
been observed at least once, else the star chosen to be observed
is randomly drawn among those that have not yet been so. As a
result of the this procedure, all 10 simulated schedules, according
to strategy A2, associate between 17 and 24 observational slots to
each star. In contrast, strategy A1 always leads to some stars being
observed only a few times, the minimum ranging from 2 to 8 across
the 10 simulations, while some other stars end up being slotted for
observation as many as 39 to 49 times.

The third strategy, labelled B, is non-myopic. In this case, the aim
is to compare all possible schedules, across the full time-span of 3 yr,
and then choose that which maximizes the objective function, f({xi}).
Given the form taken by such function, this procedure leads to what
is known as Lq relaxation of the points in the design space, in our
case the orbital phase-space of each planet. It yields a nearly optimal
approximation to the maximin solution to the problem (e.g. Pronzato
2017). The larger the q, the better should be this approximation. But
then the objective function becomes increasingly localised (in the
space of all possible scheduling configurations) and it is more difficult
to find the region where the function is maximised. After extensive
testing we decided to use q = 2 (also in the case of strategy A2 to allow
for easier comparison between myopic and non-myopic scheduling).

The maximin solution is a classical example of a space-filling
strategy (see e.g. Pronzato 2017, for a review). In our case, it
corresponds to finding the schedule that maximizes the sum over
all stars of the minimum (time) distance, normalized as a fraction of
the orbital period(s) of the known transiting planet(s) around each
star, between any observation and all others of the same star. An
alternative classical space-filling strategy is the minimax solution. In
this case, the objective would be to find the schedule that minimizes
the sum over all stars of the maximum distance (as defined before)
between any observation and all others of the same star. However,
the maximin solution is computationally faster to find, because it
only requires the calculation of distances between neighbouring
observations in the orbital phase-space of each planet. Whereas
finding the minimax solution would require the calculation of the
distances between all observations with respect to each planet (e.g.
Pronzato 2017). Nevertheless, we also implemented an algorithm to
identify the minimax solution, and found it leads to schedules very
similar to those obtained using strategy B.

Given the large number of time slots available for scheduling and
the fact that the stars considered are observable during most of any
given year, the number of possible scheduling configurations is very
large. Therefore, it is impossible to compare the values the objective
function takes for all such configurations. As a result, we used the
acebayes R package3 (Overstall, Woods & Adamou 2017) to find
the schedule that maximizes the objective function. This is done
via an approximate coordinate exchange (ACE) algorithm, where
a sequence of conditional one-dimensional optimization steps are
used, as described in Overstall & Woods (2017). In our case, the
objective function depends on the stellar label and the slot time,
which will hence be our coordinates. Each schedule, or design, can
be viewed as a collection of points in this two-dimensional space.
The search for the maximum of the objective function then proceeds
through the sequential change of the coordinates of each point in

3https://cran.r-project.org/web/packages/acebayes

a given initial schedule. In the case of the stellar label coordinate,
a change occurs when it is found that, for the time slot associated
with a particular design point, there is another star for which the
objective function attains a higher value and each star in the sample
continues to be observed within the pre-specified minimum number
of times. In the case of the time coordinate, a change occurs if there
is another time slot for which the objective function reaches a higher
value, among those which are not yet associated with a star and for
which the observability constraint is obeyed. The search for such
optimal time slot is performed by first approximating the objective
function with respect to observation time, for the star associated with
the design point under consideration, through a Gaussian process
(within acebayes), and then by identifying the time for which the
objective function is maximized.

The initial schedule for strategy B is created randomly, with the
only conditions being that the observability constraint is obeyed and
each star in the sample is observed at least the pre-specified minimum
number of times. The closer the latter is to the average number of
available observational slots per star, in our case 1102/50 � 22, the
harder it is for the ACE algorithm to optimize the schedule, and the
smaller will be the value of the objective function at the end of the
optimization process. This means that there is a trade-off between
ensuring an (almost) equal number of observations per star and an
optimized sampling of the orbital phase-space of each transiting
planet. Somewhat arbitrarily, we set the required minimum number
of observational slots per star to be 20. If it was much smaller,
there would be significant variations in the accuracy and precision
with which the mass and orbital parameters of each transiting planet
would be recovered.

In our case, each run of the ACE algorithm goes through a
sequence of 2 × 1102 = 2204 conditional optimization steps. In
order to consolidate the best schedule, we re-run 100 times the ACE
algorithm within acebayes, using the output of each ACE run as
input to the following one. As the runs progress, we keep track of the
objective function value, and choose the final best design (which is
not necessarily the last) as that with the highest associated value for
the objective function.

In Fig. 2, we show how many RV observations are scheduled, for
all 10 simulations per strategy, as a function of where each observed
planet is in the respective phase curve. This is equivalent to seeing
the phase curves in overlap, and as expected all scheduling strategies
lead to almost uniform distributions. However, this hides significant
differences in the phase-space distribution of RV observations be-
tween transiting planets. In particular, as expected, strategy A1 leads
to the most irregular phase-curve coverage per planet and data set,
followed by strategy A2. This can be clearly seen in Fig. 3. This shows
the root mean square (rms) of the difference between the simulated
orbital phase coverage of transiting planets and perfectly uniform
phase sampling, averaged over all such planets in each system and
the associated 10 simulated data sets per strategy. This difference is
obtained, for each planet and simulation, by summing the squares of
the distances between the sorted orbital phases (between 0 and 1),
with each distance subtracted by the inverse of the number of RV
measurements (which is the distance between orbital phases under
perfectly uniform phase sampling). As expected, the orbital phase
coverage is much consistently (low standard deviation) closer to
uniform (low average) in the case of strategy B than in the case of
the other two strategies, especially A1.

In practice, our assumption in the case of strategy B that the
ESPRESSO GTO schedule can be known a priori for the full 3 yr is
unrealistic. ESO will only inform the ESPRESSO consortium of its
schedule for each semester close to its beginning. Therefore, a more
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Figure 2. Total number of RV observations scheduled, averaged over 10 simulations per strategy, as a function of the orbital phase of the transiting planets
when each system is observed, for the three scheduling strategies, A1 (left-hand panel), A2 (central panel), and B (right-hand panel). Both the vertical axis and
the colour gradient indicate the number of RV observations per bin. Phase zero for each planet corresponds to its crossing of the line of sight.

Figure 3. Root mean square (rms) of the difference between the simulated orbital phase coverage of transiting planets and perfectly uniform phase sampling,
averaged over all such planets in each system and the simulated data sets, per strategy: A1, magenta; A2, orange; B, cyan. The bars represent the standard
deviations of the rms with respect to each set of 10 simulations. The systems are identified by an incremental number where 1 corresponds to the lowest TESS
ID number and 50 to the highest TESS ID number in our sample.

realistic implementation of strategy B would require re-scheduling
every 6 months the remaining time for the completion of the 3 yr.
This should not have a significant impact in the expected efficiency
with which information is recovered about planets properties through
the implementation of strategy B. This is because what is expected
to happen within each semester, as ESO relays the information about
the available observational slots, is just an effectively random re-
shuffling of their position within the semester. Thus, the expected
information gain guiding strategy B should remain essentially the
same. A more realistic implementation of this strategy should only
suffer from some loss of coherence around the start/end of each
semester, the more so the smaller the orbital periods of the systems
scheduled to be observed at those times. This near-randomization of
the scheduler at such a small fraction of the available time should have
a very small impact on the expected information gathered through
strategy B. Given the considerable amount of extra computing time
required to simulate a re-scheduling every 6 months, we decided
to implement strategy B in the more simplified manner previously
presented.

3 R ESULTS AND DI SCUSSI ON

3.1 Bayesian analysis

We used the open-source software kima4 (Faria et al. 2018) to
perform Bayesian statistical analysis of all simulated RV data sets.
These were analysed assuming the meta-model described in Section
2.3, with np now becoming effectively a label identifying mutually
exclusive models. We then have np = nt + nnt, where nt and nnt are,
respectively, the number of transiting and non-transiting planets in
each system. While the former is fixed, to either 1 or 2, we let the
latter vary between 0 and 5, with equal prior probability assigned to
each possible value. This means that we assume a priori all the planets
detected in transit to have the status of confirmed planets from the
point of view of the RV data analysis. The orbital periods, P, and times
of mid-transit with respect to the transiting planets were assigned

4https://github.com/j-faria/kima
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Table 3. Prior distributions for the parameters in the RV meta-model.

Transiting planets

P (d) G (PTESS,i , 0.001)
One per system
e HG (0, 0.32)
Two per system
e HG (0, 0.083)
Non-transiting planets
nnt U (0, 5)
P (d) J (1 , 10000)
e B (0.867, 3.03)
M0 (d) U (0, 2π )
All planets
K (m s−1) MJ (1, 1000)
ω (rad) U (0, 2π )
vsys (m s−1) U (RVmin,i , RVmax,i )
η1 (m s−1) J (0.1, RVmax,i − RVmin,i )
η2 (d) J (Prot,i , 5Prot,i )
η3 (d) G (Prot,i , 5σrot,i )
η4 J (1/e, e)
s (m s−1) MJ (1, RVmax,i − RVmin,i )
σwn (m s−1) MJ (1, RVmax,i − RVmin,i )

Gaussian priors, centred on the values provided by Barclay et al.
(2018), and with standard deviations of 0.001 d (which is the typical
level of uncertainty expected from TESS data). Knowledge about the
time of mid-transit effectively constrains the mean anomaly at some
particular time of choice, M0, given the other orbital parameters.
For the planets without transit information, the orbital periods were
assigned log-uniform (often called Jeffreys) priors between 1 and 10
000 d. For all planets, we assumed modified log-uniform distributions
for the RV semi-amplitudes, K, and the standard deviations associated
with the Gaussian white noise contributions, both s and σ wn, with
the knee located at 1 m s−1, while limited above by 1000 m s−1 in
the case of K and the RV span, i.e. the difference between the RV
maximum and minimum, for each RV data set i, RVmax, i − RVmin, i ,
in the case of both s and σ wn. These modified distributions are
defined until the lower limit of 0 m s−1. The prior for the orbital
eccentricities was set to a half-Gaussian with σ = 0.32 for the
transiting planet in systems with only one, and σ = 0.083 for both
transiting planets in systems with two, as suggested by Van Eylen
et al. (2019), and to a Kumaraswamy distribution (Kumaraswamy
1980), with shape parameters α = 0.867 and β = 3.03, for all the
possible extra, non-transiting planets (which is similar to what was
proposed in Kipping 2013). Finally, the priors we assumed for the
Gaussian Process parameters η1, η2, η3, and η4 were, respectively,
log-uniform within the interval [0.1 m s−1, RVmax, i − RVmin, i], log-
uniform between Prot, i and 5Prot, i, Gaussian with mean equal to
Prot, i and standard deviation set to 5σ rot, i, and log-uniform within
the interval [1/e, e]. Most other parameters are assigned uniform
priors between sensible limits, as can be seen in Table 3.

From the computational point of view, the total amount of data
sets is 3 (scheduling strategies) × 2 (stellar activity noise models) ×
10 (simulations) × 50 (systems) = 3000, each containing between 4
and 49 measurements (most being around 22). On a single processor,
kima requires a few hours to yield converged posterior probability
distributions with respect to all model parameters. Thus, it would
have been infeasible to perform the analysis sequentially on a single
computer. As a result, we adopted a full Cloud architecture by
exploiting the services offered by the commercial platform Amazon
Web Services (AWS). In particular, since the analysis of each data set

by is independent from the others, we used the architecture described
in Landoni et al. (2019) to run parallel applications by using clusters
offered by AWS. In this particular case, we used a cluster of 25
instances on AWS, each of them equipped with 64 vCPU and 256 GB
of RAM. This allowed the analysis of all 3000 data sets by kima in
less than 5 h and consuming roughly 8000 CPU h−1 in the process.
This approach is particularly useful when the full analysis needs to
be re-done, for some reason, since it can be performed quickly, while
keeping the overall price low.

Our main objective with this work is to compare the different
scheduling strategies with respect to: (1) the strength of the expected
constraints on the values for the mass and orbital parameters of
the planets that are known to transit; (2) the number of detected
non-transiting planets, as well as the strength of the expected
constraints on the values associated with the respective mass and
orbital parameters. These criteria are linked, given that a decision on
how many extra planets have been detected is effectively equivalent
to choosing the model, with some label np, to be used for parameter
estimation. We choose to base such decision on the comparison
between the Bayesian evidence or marginal likelihood, i.e. the
constant which normalizes the joint posterior distribution, for models
with associated consecutive values for np, starting with np = nt,
i.e. nnt = 0. Because we are assigning equal prior probabilities to
all models with respect to the same star, comparing evidences is
equivalent to determining the so-called Bayes Factor, B, which is
then just equal to their ratio. Its value can be interpreted through the
scale introduced by Jeffreys (1998; see also Kass & Raftery 1995),
according to which a Bayes factor of at least 150 between models
with associated consecutive values for np is required in order to
claim a planet detection (e.g. Feroz, Balan & Hobson 2011; Feroz &
Hobson 2013; Brewer & Donovan 2015). Note that this procedure
never leads to more detections of non-transiting planets than their
true number, in any given system. The correspondence between
detected and existing non-transiting planets in a system is based
on the proximity of values for K and P. This criteria never lead to
ambiguous cases in our simulations, as a result of the large difference
in the values of one or both of these quantities in the few systems
with more than one non-transiting planet.

It should be noted that by using the full RV data sets in the analysis
we are effectively assuming that there is neither partial or full loss
of planned RV measurements due to adverse weather conditions or
technical problems. Here, partial also means substantial degradation
of the expected RV measurement uncertainty due to photon-noise,
as a result of very bad seeing (>1.3 arcsec) or thick cirrus clouds.
Although such assumption is unrealistic, the loss should not amount
to more than 10 per cent of the expected data, according to the ESO
annual reporting on the operational conditions at Paranal.5 Therefore,
on average this should affect only a couple of RV measurements
per target in three years. In any case, which RV measurements are
affected or lost, as a result of such effects, will not be correlated with
the actual scheduling strategy chosen to be implemented. Therefore,
the data loss will impact in a similar way the information about
planetary masses and orbital parameters that can be reco-vered under
each scheduling strategy. Thus, we decided to ignore it in our analysis
since our interest is on the comparison of the relative merit of different
scheduling strategies. However, in a practical context, this issue can
be addressed and its impact minimized by rescheduling all future
observations after some amount of the planned RV measurements

5https://www.eso.org/public/products/annualreports/
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5512 L. Cabona et al.

Figure 4. In each plot, the upper panel shows the relation between the precision with which K is estimated based on the simulated RV data sets, σK(sim), and the
theoretical precision expected under equation (9), σK(the), for the transiting planets in the 450 data sets pertaining to the 15 systems with only one (transiting)
planet. The result of the analysis for each of those data sets is represented by a point, whose colour is associated with the scheduling strategy used: magenta
for strategy A1; orange for strategy A2; cyan for strategy B. In each plot, the lower panel shows the residuals R ≡ [σK(sim) − σK(the)]/σK(the). In the top figure,
the RV data sets were simulated assuming the stellar activity induced RV variations are uncorrelated, while in the bottom figure those variations were assumed
correlated. Equality between ordinate and abscissa is represented by the dashed line. Note that the only difference between both plots is in the values of the
ordinate.

are performed, and taking into account which were not or badly
affected.

3.2 Comparison with theoretical expectations

The RV variations induced by a transiting planet with known orbital
period, P, and time of mid-transit, Ttransit, depend only on the
(unknown) value of K if the orbit is assumed circular,

vr(ti) = K sin φ(ti, P , Ttransit) , (7)

with the true anomaly at time ti given by

φ(ti) = 2π (ti − Ttransit)/P . (8)

Further assuming that the measurements of such RV variations
are affected by uncertainties that are independent and identically
Gaussian distributed, i.e. Gaussian white noise, it can then be shown
(e.g. Cloutier et al. 2018) that the theoretically expected (a posteriori)
absolute precision in the estimation of K, which we will call σ K(the),
is given by

σK(the) =
{

NRV∑
i=1

{
sin[φ(ti, P , M0)]

σeff (ti)

}2
}−1/2

, (9)

where σ eff(ti) is the effective measurement uncertainty with respect
to the planet-induced RV at time ti, and NRV is the number of
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Figure 5. Each point represents the relative difference between σK(sim) and σK(the), as represented in the lower panel of the top plot in Fig. 4, averaged over
the 10 RV data sets simulated for each system per scheduling strategy (colour-coded as in Fig. 4), as a function of the eccentricity of the transiting planet in the
system.

RV measurements considered. The former can result from several
Gaussian white noise contributions, and is just the standard deviation
associated with the Normal distribution that describes the full
uncertainty with respect to the RVs induced just by the transiting
planet.

Assuming the effective RV measurement uncertainty is approxi-
mately constant with time, the minimization of σ K demands sampling
the orbital phase space only when the radial velocity reaches its
maximum absolute value. This corresponds to what is usually known
as quadrature sampling, whereby RV measurements are performed
only when the transiting planet is at right-angles with respect to our
line-of-sight to the star. In this case,

σK(the) = σeff√
NRV

, (10)

which is what one would expect under the central limit theorem if
each RV measurement corresponds in fact to a direct estimation of
K. Thus, quadrature sampling is the optimal procedure if (1) σ eff

is independent of the measurement time and (2) all the conditions
under which equation (9) was derived are assured. If the former is
not true, but the later is, then some RV measurements off quadrature
can actually yield more information about K, if the associated RV
measurement uncertainty is sufficiently smaller. If condition (2) is
not true, quadrature sampling can lead to biased results. This can
be easily seen in the case of non-circular orbits. If these are only
sampled in quadrature, the estimates for the eccentricity e and K
will be significantly degenerate, reaching complete degeneracy when
the argument of periastron is such that the orbital semimajor axis
becomes aligned with our line of sight to the star. These degeneracies
allow very high values simultaneously for e and K, given the RV
quadrature data. Although such combinations could be disfavoured
a priori, reducing their impact in a posteriori estimates of e and K,
like their means, medians or modes, they will nevertheless tend to
bias high any such estimates.

If the orbital phase-space is sampled uniformly, while still assum-
ing the effective RV measurement uncertainty to be approximately
constant with time, equation (9) then implies a decrease by a factor

of
√

2 in the absolute precision with which K can be estimated, i.e.

σK(the) = σeff

√
2

NRV
, (11)

with respect to quadrature sampling. This decrease can be understood
by realizing that now a significant fraction of the RV measurements
are made close to antiquadrature, when star and planet are aligned
along the line-of-sight, and thus the RV signal-to-noise ratio, i.e. that
between the expected RV amplitude and σ eff, becomes much smaller
with respect to RV measurements made in quadrature. Therefore,
less information about K will be gathered, on average, per RV
measurement.

However, in the case of non-circular orbits, uniform-in-phase sam-
pling partially lifts the degeneracies between argument of periastron,
e and K, so much so the denser the sampling. Thus, this type of
sampling does not lead to such strong biases as quadrature sampling.
We can then conclude that if there is some significant probability
of e being different from zero, one should opt for uniform-in-phase
rather than quadrature sampling to ensure that estimates of K in par-
ticular are as unbiased as possible. Nevertheless, uniform-in-phase
sampling is still not optimal if one wants to maximize the amount
of information that can be gathered through RV measurements about
the orbital parameters, when in the presence of non-circular orbits.
This is again, in part, the result of variations in the RV signal-to-
noise ratio across the orbital phase-space. The optimal sampling
solution could be found using the tools of Bayesian experimental
design (e.g. Ford 2008; Loredo et al. 2012; Hees et al. 2019). In
the absence of any RV information it would depend critically on the
assumed prior distributions for the orbital parameters. But as each
RV measurement is obtained, the optimal sampling solution can be
continuously updated, converging to the same solution whatever the
assumed prior distributions. Unfortunately, Bayesian experimental
design carries a very high computational cost, which is why we did
not consider using it in this work.

Our results present an unique opportunity to test the impact of
different effects on the absolute precision with which K can be
estimated for transiting planets, σ K. We start by considering the
results of the analysis of the 3 × 15 × 10 = 450 RV data sets
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Figure 6. The top and bottom plots show the same information as in Fig. 4, but now each point refers to the results for the 38 transiting planets in the 35 systems
with more than one planet. Again, note that the only difference between both plots is in the values of the ordinate.

pertaining to systems which contain only one (transiting) planet and
for which it was assumed just Gaussian white noise. In the top plot
in Fig. 4, the result of each of those 450 analysis is represented by a
point. The ordinates correspond to the values of σ K that result from
the analysis of the data sets, which we will denote as σ K(sim), while the
abscissas are calculated using equation (9) given the characteristics
of each data set. The later would correspond to the expected value
of the former if the orbits were circular. If this was the case, we
should see only stochastic variations about zero for the deviations of
the ordinates with respect to the abscissas. Although the lower panel
of the top plot in Fig. 4 seems to suggest otherwise, in particular
for the data sets acquired under strategy A1, the variations seen are
indeed statistically compatible with the expected value for σ K(sim)

being well approximated by equation (9), even though the orbits of
the planets considered are not circular: for strategies A1, A2, and
B, the mean and standard deviation of the residuals shown in the

lower panel of the top plot in Fig. 4 are 0.30 ± 0.36, 0.20 ± 0.25,
and 0.10 ± 0.19. Nevertheless, these values suggest that how well
equation (9) predicts σ K depends on how close the sampling of the
phase curve is to uniform. It also seems to depend on how high is the
information content of the RV measurements, given the decreasing
scatter in the residuals as the expected value for σ K(sim) decreases. All
these conclusions seem to be true irrespective of the eccentricity of
the planets considered, given that this does not seem to be correlated
with the magnitude of the residuals, as can be seen in Fig. 5.

The results of the analysis of the RV data sets pertaining to the 35
systems which contain more than one planet, and for which it was
assumed just Gaussian white noise, allow for the characterization
of the impact of extra planets in the absolute precision with each
K can be recovered for the 38 transiting planets in those systems.
In the upper panel of the top plot in Fig. 6, the results associated
with each of those 3 × 38 × 10 = 1140 analysis are represented by
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Figure 7. The upper panel shows the planetary system architecture as a function of orbital period. Light red circles represent transiting planets, while non-
transiting planets are represented by grey circles, when never detected, light blue circles, when detected at least once, and violet circles, when always detected,
with respect to the 3 × 10 simulations carried out for the three scheduling strategies. The planets coloured light blue were detected with strategies [A1, A2, B],
respectively, the following number of times: system 11 [7, 10, 10]; system 15 [1, 0, 0]; system 34 [0, 0, 1]; system 40 [8, 5, 7]; system 45 [6, 10, 10]. The size
of each circle is proportional to the mass of the respective planet. In the lower panel, the values for the correlated, η1 (yellow), and non-correlated, s (green),
components of the stellar activity induced RV variations are represented for the stars in our sample. Each star and its associated planetary system is identified
by an incremental number, where 1 corresponds to the lowest TESS ID number and 50 to the highest TESS ID number in our sample.

points, with the coordinates having the same meaning as in Fig. 4.
It is perceptible an increase in scatter, as well as a higher systematic
(positive) difference between the value for σ K that results from each
analysis and the value given by equation (9). Now, the mean and
standard deviation of the residuals shown in the lower panel of the
top plot in Fig. 6 are 0.95 ± 0.82, 0.53 ± 0.38, and 0.42 ± 0.36
for strategies A1, A2, and B, respectively. Again, there seems to
be no correlation between the magnitude of the residuals and the
eccentricity of the planets considered, all below 0.3 and with a mean
value of 0.08, very similar to what is obtained (0.07) for the 15 lone
transiting planets.

Finally, in the bottom plots of Figs 4 and 6 we show the results for
the same two sets of planets, but when stellar activity induced RV
variations are assumed correlated and jointly modelled as a GP. The
mean and standard deviation of the residuals shown in the bottom
panels are, respectively, for strategies A1, A2, and B: 0.23 ± 0.39,
0.18 ± 0.29, and 0.16 ± 0.24 for the 15 lone transiting planets;
0.98 ± 0.87, 0.58 ± 0.53, and 0.53 ± 0.40 for the 38 transiting planets
with companions. Remarkably, these numbers are very similar to
those obtained when the stellar activity induced RV variations are
assumed non-correlated and modelled as Gaussian white noise. This
is just a reflection of the fact that the abscissas are the same, and

the ordinates are very similar. As we will later discuss, when σ K

is averaged over all transiting planets, it differs by 0.03 at most
(less than 10 per cent), for any of the three scheduling strategies,
between what is obtained under the two contrasting assumptions
about the characteristics of the stellar activity induced RV variations.
This indicates that, as long as these variations are correctly modelled
(which is difficult to ascertain for any particular star besides the Sun),
and there is enough information in the RV measurements (as seem to
be the case in our simulated data sets), their impact on the absolute
precision with which K can be recovered for transiting planets is
essentially independent of whether they are correlated or not (but
dependent on their amplitude).

In summary, we find that equation (9) yields a good approximation
to the expected absolute precision with which K can be recovered
for transiting planets, even in the presence of mild eccentricity (less
than 0.3) and realistic correlated RV variations due to stellar activity.
Nevertheless, large deviations (typically up to a 50 per cent increase)
from the expectation are possible, the more so the less uniform is the
sampling of the orbital phase curves and the smaller the information
content of the RV measurements. As expected, the presence of extra
planets in a system leads to an increase both in the magnitude and
scatter of σ K with respect to the value expected under equation (9).
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Figure 8. Absolute bias, i.e. the difference between the marginal posterior
mean and the true value, as a function of the later, for the RV semi-
amplitude, K, and with respect to the transiting planets. Results averaged
over 10 simulations are shown, with the associated standard deviation, for
the three scheduling strategies, A1 (upper panel), A2 (middle panel) and B
(lower panel). Colour indicates the number of RV measurements per host star,
averaged over the 10 simulations: red, less than 15; blue, between 15 and 25;
purple, more than 25.

For the type of planetary systems considered, this increase is reflected
in a typical underestimation of σ K for the transiting planets, between
40 per cent and 100 per cent, and similar scatter, with higher values
corresponding to orbital phase curves sampled less uniformly and
less informative RVs. In any case, we would like to stress that these
conclusions are conditional on the assumption that the RV data
generating mechanisms, in particular those associated with stellar
activity and the instrumentation used, are well approximated by the
assumed model.

Figure 9. Absolute bias, i.e. the difference between the marginal posterior
mean and the true value, as a function of the later, for the orbital eccentricity, e,
and with respect to the transiting planets. Results averaged over 10 simulations
are shown, with the associated standard deviation, for the three scheduling
strategies, A1 (upper panel), A2 (middle panel) and B (lower panel). The
colour code is the same as in Fig. 8.

3.3 Results obtained assuming stellar activity correlated noise

We will now focus the discussion on the results obtained when the RV
variations induced by stellar activity were assumed to be correlated,
generated by a Gaussian Process with non-zero covariance terms,
given that this constitutes the most realistic scenario. In Appendix A,
we present and compare with these, the results obtained when stellar
activity induced RV variations were assumed to be uncorrelated, akin
to Gaussian white noise.

In Fig. 7, we show the architecture of the 50 planetary systems we
consider. We identify which planets transit, and differentiate between
the non-transiting planets that are never detected, sometimes detected
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Figure 10. Absolute bias, i.e. the difference between the marginal posterior
mean and the true value, as a function of the later, for the mass, M, and
with respect to the transiting planets. Results averaged over 10 simulations
are shown, with the associated standard deviation, for the three scheduling
strategies, A1 (upper panel), A2 (middle panel) and B (lower panel). The
colour code is the same as in Fig. 8.

or always detected, across all simulations and for all three scheduling
strategies. Averaging over the 10 simulations per strategy, a total
of 8.2 ± 0.6, 8.5 ± 0.5, and 8.8 ± 0.5 non-transiting planets are
detected using strategies A1, A2, and B, respectively, out of the 50
that we simulated orbiting our sample of stars. The numbers provided
represent means and standard deviations, and are very similar. The
differences are not significant given the variation seen across the
simulations.

In order to compare further the results, we define the following
quantities, with respect to some planet characteristic X, and to a given
simulation:

(i) Absolute bias, E[X] − Xtrue

(ii) Relative bias, (E[X] − Xtrue)/Xtrue

(iii) Absolute accuracy, | E[X] − Xtrue |
(iv) Relative accuracy, | E[X] − Xtrue | /Xtrue

(v) Absolute precision, σ X

(vi) Relative precision, σX/E[X]

where Xtrue, E[X] and σ X represent, respectively, the true, expected
value, and standard deviation of X. The latter two are estimated given
all values for X present in the MCMC output from the kima analysis
of the data set associated with the simulation being considered.

In Figs 8–10, we show the means and standard deviations for the
distributions of absolute bias associated with the orbital parameters
K and e, as well as mass, M, for the planets that are known to transit
and the three scheduling strategies. The averaging is performed over
the 10 simulations per system and strategy. Because the absolute bias
differs from the expected value by a constant, their distributions have
the same standard deviations. Expected values are more scattered
(with respect to the true values) and uncertain for some planets in the
case of strategy A1 mostly as a result of the respective host stars being
systematically underobserved (and others overobserved) with respect
to average, due to having shorter (longer) visibility windows. The
marginal posteriors used for this exercise, and those that follow, are
those associated with the model chosen using the detection procedure
for the non-transiting planets previously described, given the result
of the Bayesian analysis of each simulated data set.

In the upper panel of Table 4, the absolute and relative bias,
accuracy and precision with which K, e, and M are recovered,
averaged over all transiting planets and simulations, is shown for the
three strategies. The uncertainties provided are standard deviations,
and characterize the dispersion of such values taking into account all
transiting planets. They should not be confused with the uncertainties
associated with the estimates of K, e, and M for individual planets, and
thus should not be used to draw any conclusions regarding confidence
or credible intervals for those quantities. This is particularly true in
the case of quantities whose marginal posterior distributions are
heavily skewed, like the eccentricity. The same quantities shown
in the upper panel of Table 4 are provided in the lower panel,
including with respect to the orbital period, P, but now averaged
over the detected non-transiting planets. In Table 5, the absolute and
relative bias, accuracy, and precision with which η1, η2, η3, η4, and
s are recovered, averaged over all simulations, is shown for the three
strategies.

The estimation of M is most dependent of K, but it is also
contingent on the values for e, P, and the stellar mass. Thus, it is
not straightforward to extrapolate results for K to what would be
expected with respect to M. In order to estimate M one also needs to
assume an inclination for the orbital plane. We will assume this to
be known, and set it to 90◦, the same value assumed for all systems
when the RV measurements were simulated. Although this situation
is not realistic, it allows for a direct comparison between true and
estimated planetary masses.

Overall, the two uniform-in-phase scheduling strategies, myopic,
A2, and non-myopic, B, lead to very similar results. In the case of the
transiting planets, the values estimated for K and M are significantly
less biased, as well as more accurate and precise than those obtained
through the random strategy, A1. However, there are no significant
differences between the three strategies with respect to how well the
true values of e are recovered. Given that most of these are about 0.1
or smaller, as can be seen in Fig. 1, it is not surprising to find that
all scheduling strategies lead to values around 0.1 or smaller for the
absolute bias, accuracy and precision, and thus much higher values
for the relative counterparts to these quantities.
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Table 4. In the upper panel, it is shown the absolute and relative bias, accuracy, and precision with which K, e, and mass, M, are recovered, averaged over
all transiting planets and simulations, for the three strategies. The uncertainties provided are standard deviations, and characterize the dispersion of such
values taking into account all transiting planets. The same quantities, as well as the orbital period, P, are provided in the lower panel with respect to all
detected non-transiting planets. The absolute quantities with respect to K, M and P are in units of m s−1, M� and days, respectively.

Strategy Parameter Absolute Relative
Bias Accuracy Precision Bias Accuracy Precision

A1 K 0.18 ± 0.32 0.56 ± 0.32 0.91 ± 0.60 0.06 ± 0.13 0.20 ± 0.14 0.33 ± 0.24
e 0.08 ± 0.09 0.11 ± 0.06 0.11 ± 0.05 15.38 ± 55.66 15.52 ± 55.62 0.77 ± 0.05
M 0.20 ± 0.79 1.55 ± 0.96 2.30 ± 1.75 0.02 ± 0.11 0.19 ± 0.12 0.28 ± 0.16

A2 K 0.03 ± 0.16 0.40 ± 0.14 0.64 ± 0.24 0.03 ± 0.17 0.17 ± 0.16 0.28 ± 0.25
e 0.07 ± 0.09 0.10 ± 0.06 0.10 ± 0.05 14.95 ± 51.16 15.13 ± 51.11 0.78 ± 0.05
M − 0.16 ± 0.50 1.18 ± 0.58 1.63 ± 0.72 − 0.01 ± 0.12 0.16 ± 0.13 0.23 ± 0.15

B K 0.00 ± 0.16 0.38 ± 0.13 0.62 ± 0.22 0.01 ± 0.16 0.16 ± 0.15 0.28 ± 0.24
e 0.06 ± 0.09 0.10 ± 0.06 0.10 ± 0.04 15.01 ± 49.58 15.20 ± 49.22 0.77 ± 0.05
M − 0.20 ± 0.51 1.14 ± 0.50 1.60 ± 0.62 0.01 ± 0.11 0.15 ± 0.12 0.23 ± 0.14

A1 K − 11.38 ± 28.78 16.36 ± 26.32 13.14 ± 13.74 − 0.11 ± 0.25 0.15 ± 0.22 0.16 ± 0.09
e 0.04 ± 0.09 0.06 ± 0.07 0.06 ± 0.03 2.93 ± 5.18 3.05 ± 5.11 0.81 ± 0.39
P − 82.47 ± 580.39 335.58 ± 483.62 406.67 ± 374.74 − 0.01 ± 0.21 0.16 ± 0.15 0.61 ± 1.01
M − 242.48 ± 763.63 422.76 ± 681.17 339.97 ± 438.22 − 0.12 ± 0.28 0.80 ± 1.10 0.20 ± 0.12

A2 K − 11.55 ± 27.10 16.05 ± 24.72 13.72 ± 13.14 − 0.11 ± 0.23 0.15 ± 0.21 0.16 ± 0.09
e 0.01 ± 0.04 0.03 ± 0.03 0.05 ± 0.03 2.61 ± 5.70 2.74 ± 5.64 0.88 ± 0.42
P − 75.99 ± 570.33 334.29 ± 468.41 377.98 ± 391.85 − 0.02 ± 0.20 0.14 ± 0.15 0.21 ± 0.11
M − 255.13 ± 728.48 421.20 ± 647.21 331.58 ± 395.52 − 0.11 ± 0.27 0.74 ± 1.11 0.19 ± 0.12

B K − 9.69 ± 25.37 13.79 ± 23.41 12.35 ± 12.59 − 0.08 ± 0.21 0.13 ± 0.19 0.16 ± 0.10
e 0.02 ± 0.03 0.03 ± 0.02 0.06 ± 0.03 2.29 ± 4.77 2.40 ± 4.71 0.82 ± 0.32
P − 41.40 ± 558.24 301.71 ± 474.52 384.89 ± 389.36 0.02 ± 0.21 0.14 ± 0.15 0.45 ± 0.71
M − 206.87 ± 697.44 369.75 ± 626.67 310.89 ± 431.26 − 0.08 ± 0.24 1.08 ± 1.45 0.22 ± 0.15

Table 5. Absolute and relative bias, accuracy and precision with which η1, η2, η3, η4, and s, are recovered, averaged over all simulations,
for the three strategies. The absolute quantities with respect to η1 and s are in units of m s−1, in the case of η2 and η3 are in units of days,
while η4 is dimensionless.

Strategy Parameter Absolute Relative
Bias Accuracy Precision Bias Accuracy Precision

A1 η1 0.20 ± 1.32 0.85 ± 1.13 0.79 ± 0.74 0.36 ± 1.84 0.80 ± 1.72 0.57 ± 0.16
η2 3.21 ± 27.17 22.21 ± 16.04 16.44 ± 5.79 0.62 ± 1.31 0.94 ± 1.11 0.43 ± 0.04
η3 − 0.01 ± 7.94 6.23 ± 4.93 0.88 ± 0.94 0.16 ± 0.66 0.47 ± 0.49 0.05 ± 0.05
η4 0.47 ± 0.16 0.47 ± 0.16 0.59 ± 0.06 0.68 ± 0.24 0.69 ± 0.24 0.53 ± 0.05
s 0.54 ± 0.77 0.60 ± 0.73 0.61 ± 0.63 2.30 ± 3.20 2.41 ± 3.13 0.65 ± 0.15

A2 η1 − 0.70 ± 0.74 0.65 ± 0.50 0.62 ± 0.23 − 0.06 ± 0.54 0.48 ± 0.32 0.61 ± 0.12
η2 3.87 ± 27.73 22.50 ± 16.70 16.61 ± 5.74 0.65 ± 1.35 0.96 ± 1.15 0.43 ± 0.04
η3 0.00 ± 7.96 6.22 ± 4.97 0.90 ± 0.96 0.16 ± 0.66 0.47 ± 0.49 0.05 ± 0.05
η4 0.51 ± 0.16 0.51 ± 0.16 0.62 ± 0.04 0.74 ± 0.25 0.74 ± 0.25 0.53 ± 0.06
s 0.55 ± 0.42 0.60 ± 0.36 0.52 ± 0.17 2.37 ± 2.58 2.44 ± 2.52 0.58 ± 0.11

B η1 − 0.40 ± 0.55 0.65 ± 0.42 0.60 ± 0.23 − 0.20 ± 0.38 0.47 ± 0.21 0.71 ± 0.11
η2 2.66 ± 26.31 21.35 ± 15.60 16.94 ± 5.80 0.59 ± 1.28 0.90 ± 1.09 0.44 ± 0.02
η3 − 0.01 ± 7.93 6.19 ± 4.95 0.97 ± 1.05 0.15 ± 0.65 0.46 ± 0.48 0.05 ± 0.05
η4 0.50 ± 0.13 0.50 ± 0.13 0.64 ± 0.01 0.73 ± 0.21 0.73 ± 0.21 0.54 ± 0.04
s 0.83 ± 0.50 0.85 ± 0.46 0.48 ± 0.16 3.38 ± 3.30 3.41 ± 3.27 0.42 ± 0.07

With respect to the detected non-transiting planets, all scheduling
strategies lead to the acquisition of similar amounts of information
about the true values of K, e, P, and M. This is not surprising, given
that none of the strategies was designed with the aim of detecting such
planets. The same happens with respect to the parameters associated
with the Gaussian process model that is used to describe the stellar
activity induced RV variations. Interestingly, the expected values for
K, as well as for the mass, M, derived for the detected non-transiting
planets given the simulated data sets are typically smaller by a factor
of about 10 per cent with respect to the true values. However, the
expected values for the orbital period, P, are essentially unbiased
with respect to the true values. As expected, in particular given the

discussion in Section 3.2, the most important factors affecting the
detection probability of a non-transiting planet in our simulations are
the number of RV measurements available and the value of K/σ act. In
strategies A2 and B, the former is almost always 22, which is enough
for the detection of 8 non-transiting planets in all simulations. But the
non-transiting planet in system 40, which has a significantly lower
value for K/σ act, just 5.6, is only detected 50 per cent and 70 per cent
of the times in strategies A2 and B, respectively. This suggests that
for NRV around 22 only planets with K in excess of roughly 5.6 × σ act

can be detected with a probability greater than 50 per cent. On the
other hand, although the planets in systems 11 and 45, which have
very similar values for K/σ act (close to 68), are always detected in the
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simulations of strategies A2 and B, they are only detected 70 per cent
and 60 per cent of the times, respectively, under strategy A1. This is
due to NRV falling below 12 in the simulations were detection did not
occur.

In the case of the transiting planets, all the distributions associated
with the bias, accuracy, and precision are positively skewed, except
those for the bias and precision with respect to e for which the skew
is negative. The non-zero mean and positive skew in the distribution
of the bias for K and M, seems to be the result of the existence
of undetected (non-transiting) planets. The mean bias gets closer to
zero and the skew greatly diminishes, if only data sets whose analysis
lead to the detection of all non-transiting planets in the associated
systems are considered in the calculation of these statistics (and the
opposite occurs for the other systems). Interestingly, in the case of
the uniform-in-phase strategies, the sampling of the phase-curves of
the transiting planets seems to be so close to optimal in terms of
information gathering, that even in the presence of undetected (non-
transiting) planets the bias is very close to zero and the skew small.

The differences between the results obtained for each scheduling
strategy, regarding both the transiting and non-transiting planets,
should increase as the average number of possible RV measurements
per star, NRV, decreases, and vice versa. For example, if this number
was about half of what was assumed, i.e. around 10, we would still
expect strategy B, as well as A2 to a lesser extent, to yield fairly strong
constraints on the masses and orbital parameters of the transiting
planets, but it would be hard to detect any non-transiting planet. On
the contrary, in this situation, strategy A1 would probably fail to
deliver reliable constraints for the transiting planets around the least
observed stars, but some non-transiting planets would end up being
detected around the most observed stars. Although the mean NRV is,
by construction, exactly the same for all the scheduling strategies,
the associated standard deviation is 8.39 for strategy A1, while only
1.44 for A2 and 1.05 for B.

In the Appendix, we present the results obtained by assuming
the RV variations induced by stellar activity are uncorrelated, and
can be described as Gaussian white noise. As expected, given that
none of the three scheduling strategies considered relies on the
assumed model for such variations to decide on the best schedule,
the conclusions that can be drawn are very similar to the ones just
described.

4 C O N C L U S I O N S

We implemented three different scheduling strategies for the
ESPRESSO GTO allocated to radial velocity follow-up of TOIs. Our
main objective was to compare a novel uniform-in-phase scheduling
algorithm with a random scheduler, and determine whether a non-
myopic implementation of the former offered any advantage with
respect to the more common myopic way. The scheduling strategies
were compared with respect to the amount of information gathered
about the masses and orbital parameters of all planets in the TOIs
host systems. In particular, we considered a sample of 50 TESS
target stars, with simulated planetary systems containing at least one
transiting planet with a radius below 4R⊕ (Barclay et al. 2018).

We found that both uniform-in-phase scheduling strategies lead to
an unbiased (at the level of 1 per cent) measurement of the masses
of the transiting planets, while keeping the average accuracy and
precision around 16 per cent and 23 per cent, respectively. This is sig-
nificantly better than what can be achieved with random scheduling,
which does not only lead to more biased (about 2 per cent) estimates
of the mass of the simulated TOIs, but also to less accurate and
precise estimates, respectively about 19 per cent and 28 per cent on

average. The number of non-transiting planets detected is similar for
all the scheduling strategies considered, as well as the bias, accuracy
and precision with which their masses and orbital parameters are
recovered.

Although we have not found any significant difference between the
results obtained with the two uniform-in-phase scheduling strategies,
myopic and non-myopic, this may be due to an assumed time span for
the observations (3 yr) that is much larger than the orbital periods of
the target transiting planets (below 50 d). As this difference decreases,
a myopic scheduling strategy should lead to increasingly larger
deviations with respect to uniform sampling of the phase curves,
given that less than optimal choices early on become more difficult
to compensate later in the observation schedule.
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APPENDI X A : R ESULTS OBTA I NED ASSUMING
O N LY G AU S S I A N W H I T E N O I S E

Here, we present the results of the analysis of the RV data sets
generated assuming the stellar activity induced RV variations are
akin to Gaussian white noise, and compare them with the results
previously discussed.

In Fig. A1, we highlight the non-transiting planets that are
never detected, sometimes detected or always detected, across all
simulations and for all three scheduling strategies. Averaging over
the 10 simulations per strategy, a total of 9.8 ± 0.6, 9.9 ± 0.8, and
10.5 ± 1.2 non-transiting planets are detected using strategies A1,
A2, and B, respectively, out of the 50 that we simulated orbiting
our sample of stars. As before, these numbers are very similar, and
the differences not significant given the variation seen across the

Table A1. In the upper panel it is shown the absolute and relative bias, accuracy and precision with which K, e, and mass, M, are recovered, averaged
over all transiting planets and simulations, for the three strategies. The uncertainties provided are standard deviations, and characterize the dispersion of
such values taking into account all transiting planets. The same quantities, as well as the orbital period, P, are provided in the lower panel with respect to
all detected non-transiting planets. The absolute quantities with respect to K, M, and P are in units of m s−1, M�, and d, respectively.

Strategy Parameter Absolute Relative
Bias Accuracy Precision Bias Accuracy Precision

A1 K 0.25 ± 0.36 0.52 ± 0.32 0.90 ± 0.54 0.12 ± 0.21 0.21 ± 0.20 0.31 ± 0.21
e 0.10 ± 0.08 0.11 ± 0.06 0.11 ± 0.05 14.39 ± 44.04 14.46 ± 44.01 0.70 ± 0.10
M 0.40 ± 0.90 1.43 ± 0.85 2.27 ± 1.59 0.07 ± 0.17 0.19 ± 0.17 0.27 ± 0.15

A2 K 0.11 ± 0.21 0.44 ± 0.18 0.63 ± 0.21 0.06 ± 0.15 0.18 ± 0.14 0.26 ± 0.21
e 0.08 ± 0.08 0.10 ± 0.06 0.10 ± 0.04 14.71 ± 46.15 14.80 ± 46.512 0.70 ± 0.10
M 0.08 ± 0.63 1.26 ± 0.64 1.67 ± 0.67 0.03 ± 0.12 0.17 ± 0.12 0.23 ± 0.14

B K 0.05 ± 0.19 0.39 ± 0.13 0.58 ± 0.19 0.05 ± 0.14 0.16 ± 0.13 0.25 ± 0.20
e 0.08 ± 0.07 0.09 ± 0.06 0.10 ± 0.04 13.64 ± 39.94 13.48 ± 39.92 0.69 ± 0.11
M − 0.05 ± 0.55 1.15 ± 0.50 1.56 ± 0.61 0.01 ± 0.11 0.15 ± 0.11 0.22 ± 0.14

A1 K − 8.56 ± 25.04 11.97 ± 23.64 10.04 ± 11.64 − 0.01 ± 0.28 0.19 ± 0.22 0.24 ± 0.15
e 0.04 ± 0.06 0.05 ± 0.05 0.09 ± 0.05 3.32 ± 5.62 3.41 ± 5.57 0.87 ± 0.30
P 56.87 ± 568.78 352.88 ± 451.90 626.04 ± 467.78 0.15 ± 0.37 0.26 ± 0.31 0.78 ± 1.07
M − 180.26 ± 654.75 306.02 ± 606.78 257.13 ± 356.90 0.01 ± 0.35 10.04 ± 20.02 0.32 ± 0.19

A2 K − 5.96 ± 21.12 9.32 ± 19.87 8.08 ± 9.88 0.24 ± 0.67 0.38 ± 0.60 0.28 ± 0.23
e 0.04 ± 0.07 0.06 ± 0.06 0.08 ± 0.05 2.79 ± 4.44 2.91 ± 4.37 0.87 ± 0.34
P 257.82 ± 729.02 481.58 ± 605.37 701.87 ± 722.12 0.20 ± 0.37 0.28 ± 0.31 0.88 ± 2.24
M − 128.34 ± 556.24 244.17 ± 516.14 214.77 ± 324.32 0.32 ± 0.84 22.29 ± 39.88 0.36 ± 0.26

B K − 6.27 ± 21.98 10.03 ± 20.55 8.50 ± 10.39 0.19 ± 0.55 0.35 ± 0.46 0.26 ± 0.20
e 0.05 ± 0.06 0.06 ± 0.05 0.08 ± 0.05 3.39 ± 5.37 3.48 ± 5.31 0.87 ± 0.36
P 268.97 ± 853.49 518.99 ± 731.88 759.89 ± 702.79 0.22 ± 0.44 0.31 ± 0.37 1.04 ± 1.99
M − 137.18 ± 584.83 263.35 ± 540.07 220.32 ± 346.71 0.27 ± 0.73 23.90 ± 48.20 0.34 ± 0.22
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Figure A1. The upper panel shows the planetary system architecture as a function of orbital period. Light red circles represent transiting planets, while
non-transiting planets are represented by grey circles, when never detected, light blue circles, when detected at least once, and violet circles, when always
detected, with respect to the 3 × 10 simulations carried out for the three scheduling strategies under the assumption of non-correlated stellar activity induced
RV variations. The planets coloured light blue were detected with strategies [A1, A2, B], respectively, the following number of times: system 3 [5, 2, 0]; system
8 [2, 1, 7]; system 11 [8, 10, 10]; system 15 [2, 1, 1]; system 23 [1, 1, 3]; system 26 [0, 2, 1]; system 30 [0, 1, 0]; system 34 [1, 0, 1]; system 44 [0, 1, 2];
system 45 [9, 10, 10]. The size of each circle is proportional to the mass of the respective planet. In the lower panel, the amplitude of the stellar activity induced
RV variations, σ act, is represented for each star in our sample. All stars and their associated planetary systems are identified by an incremental number where 1
corresponds to the lowest TESS ID number and 50 to the highest TESS ID number in our sample.

simulations. They are also 15–20 per cent higher than those obtained
for the data sets with correlated stellar activity noise. This was
expected, given that it is more difficult to disentangle correlated
noise than uncorrelated noise from a signal.

In Table A1, the absolute and relative bias, accuracy and pre-
cision with which K, e, and M are recovered, averaged over all
simulations and either all transiting planets (upper panel) or all
detected non-transiting planets (lower panel), are shown for the
three strategies. In the lower panel the same quantities are shown
with respect to the orbital period, P, of the detected non-transiting
planets.

Overall, the results are very similar to the ones previously obtained
under the assumption of correlated stellar activity induced RV
variations. However, now the non-myopic uniform-in-phase strategy,
B, seems consistently, though only slightly, better on average than
the myopic strategy, A2, in terms of the information recovered about
the true values of K and M for the transiting planets. Again, both
these strategies lead on average to significantly less biased, as well
as more accurate and precise values for K and M than strategy A1,

with little difference between the three strategies with respect to how
well the true values of e are recovered.

Somewhat counter-intuitively, the estimates for the mass and
orbital parameters of the non-transiting planets seem now to be on
average significantly more biased, less accurate, and less precise, than
the estimates for the same quantities previously obtained under the
assumption of correlated stellar activity induced RV variations. This
is due to the fact that most of the 15–20 per cent extra non-transiting
planets that are now being detected have substantially lower values
for K. And given that the average number of RV measurements
per system is independent of its characteristics, significantly less
information is recovered about their mass and orbital parameters.
In turn, this brings down the information recovered about such
quantities when averaged over all detected non-transiting planets,
making the averaged bias, accuracy and precision obtained under the
assumption of non-correlated stellar activity noise seem worse than
when such noise is assumed correlated.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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