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ABSTRACT
We provide prescriptions to evaluate the dynamical mass (Mdyn) of galaxies from kinematic measurements of stars or gas
using analytic considerations and the VELA suite of cosmological zoom-in simulations at z = 1–5. We find that Jeans or
hydrostatic equilibrium is approximately valid for galaxies of stellar masses above M� ∼ 109.5 M� out to 5 effective radii (Re).
When both measurements of the rotation velocity vφ and of the radial velocity dispersion σ r are available, the dynamical mass
Mdyn �G−1V 2

c r , can be evaluated from the Jeans equation V 2
c = v2

φ + ασ 2
r assuming cylindrical symmetry and a constant,

isotropic σ r. For spheroids, α is inversely proportional to the Sérsic index n and α � 2.5 within Re, stars for the simulated galaxies.
The prediction for a self-gravitating exponential disc, α = 3.36(r/Re), is invalid in the simulations, where the dominant spheroid
causes a weaker gradient from α � 1 at Re, gas to 4 at 5Re, gas. The correction in α for the stars due to the gradient in σ r(r) is
roughly balanced by the effect of the aspherical potential, while the effect of anisotropy is negligible. When only the effective
projected velocity dispersion σ l is available, the dynamical mass can be evaluated as Mdyn = KG−1Reσ

2
l , where the virial factor

K is derived from α, given the inclination and vφ /σ r. We find that the standard value K = 5 is approximately valid only when
averaged over inclinations and for compact and thick discs, as it ranges from 4.5 to above 10 between edge-on and face-on
projections.
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1 IN T RO D U C T I O N

Estimating the total mass of a galaxy is an important challenge in
astrophysics, in particular to assess the dark matter (DM) fraction
within given radii and its potential evolution with cosmic time.
Recent kinematic observations by Wuyts et al. (2016) and Genzel
et al. (2017), Genzel et al. (2020) indicate low central DM fractions
in massive star-forming disc galaxies at z = 0.6–2.6 within their
effective radius. If confirmed, this result would have important im-
plications for our understanding of galaxy formation and evolution,
since it requires to rapidly drive DM out of the initial central cusps
while baryons move inwards. Mechanisms such as dynamical friction
(e.g. El-Zant, Shlosman & Hoffman 2001; El-Zant et al. 2004) and
feedback from stars and AGN (e.g. Pontzen & Governato 2012;
El-Zant, Freundlich & Combes 2016; Freundlich et al. 2020) or
the combination of both may account for the observed low DM
fractions in the early universe (Dekel et al., in preparation). More
generally, estimating the total mass of a galaxy enables us to better
understand the interplay between baryons and DM and hence to test
the predictions of the LCDM model of structure formation.

� E-mail: michael.kretschmer@physik.uzh.ch

Using kinematic data, it is possible to infer the dynamical mass
from simple mass-estimation models based on Jeans equilibrium.
However, the derived total mass from observed kinematics is uncer-
tain and sometimes even turns out to be smaller than the stellar mass,
indicating that the method used is flawed. It is therefore crucial to
verify the validity of the Jeans equation and to quantify the associated
expression for mass estimation during the different phases of galaxy
evolution and for the different components – spheroid and disc, stars,
and gas.

Observationally, galaxy kinematics can be derived from spatially
resolved emission-line maps. To measure gas rotation and dispersion
profiles, position-velocity cuts along the galaxy’s major axis are fitted
assuming Gaussian line profiles, such that both the rotation curve and
the velocity dispersion are measured simultaneously (Kassin et al.
2007, 2012; Dicaire et al. 2008; Ho et al. 2014; Wuyts et al. 2016;
Barat et al. 2019).

When both the rotation velocity vφ and velocity dispersion σ r

are available, the dynamical mass can be assessed from the Jeans
equation, which implies for cylindrically symmetric systems with a
constant radial velocity dispersion (Jeans 1915; Binney & Tremaine
2008, Section 4.8):

V 2
c (r) = v2

φ(r) + α(r)σ 2
r , (1)
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where Vc is the circular velocity associated with the gravitational
potential and α is a dimensionless parameter. The right-hand side is
valid for each component of the galaxy separately, disc or bulge, gas
or stars, potentially with different α(r). One needs estimates of α(r)
for the different galactic components, either derived analytically in
simple cases or computed from simulations.

Observationally, it is often difficult to obtain independent reliable
values for rotation and dispersion such that only a line-of-sight (los)
velocity dispersion σ l, is available. Usually, this is done by fitting a
Gaussian to a given spectrum (Cappellari & Emsellem 2004; Falcón-
Barroso et al. 2011; Peralta de Arriba et al. 2014). In this case,
the dynamical mass within the effective radius Re is often simply
estimated as

Mdyn = K
Reσ

2
l

G
, (2)

where G is the gravitational constant, σ l the los-velocity, and K
a dimensionless parameter (Ciotti et al. 1991; Pettini et al. 1998;
Pettini et al. 2001; Bertin, Ciotti & Del Principe 2002; Cappellari
et al. 2006; Erb et al. 2006; Walker et al. 2009; Wolf et al. 2010;
Ferré-Mateu et al. 2012; Courteau et al. 2014; Peralta de Arriba et al.
2014; Wuyts et al. 2016; Campbell et al. 2017). The value of K
is uncertain and different values have been used (Bertin et al. 2002;
Cappellari et al. 2006; Walker et al. 2009; Wolf et al. 2010; Campbell
et al. 2017). A commonly used value is K = 5, or a similar constant
value (Pettini et al. 1998, 2001; Cappellari et al. 2006; Walker et al.
2009), which, in some cases, lead to non-physical results where the
estimated total mass was smaller than the stellar mass: Mdyn < M�

(Erb et al. 2006; Ferré-Mateu et al. 2012; Peralta de Arriba et al.
2014).

In this paper, we use analytic arguments and high-resolution
cosmological zoom-in simulations to estimate the parameters α and
K, necessary for mass estimates from observations where reliable
values for rotation and dispersion are obtained and for observations
where only a line-of-sight velocity dispersion is available. Since
all of these mass estimates rely on the assumption of dynamical
equilibrium, we first have to validate Jeans equilibrium for the
stars and the equivalent hydrostatic equilibrium for the gas. Then
we measure for the simulated galaxies the velocities. Combining
these with the measured total mass within the relevant radius, we
obtain α and K as a function of observables. We investigate the
importance of additional terms including a gradient in σ r(r), a non-
spherical potential and anisotropic velocity dispersion. We do this
for different structural components of the galaxies, namely the disc
and the spheroid, gas, and stars.

Galaxies are highly perturbed and gas-rich at high redshifts. In
many cases, the disc is intensely fed by incoming intense streams
(Dekel et al. 2009). Through episodes of dissipative gas contractions,
the gas can be quickly pushed towards the central region of the
galaxies, leading to the formation of compact, gas-rich, star-forming
blue nuggets (Zolotov et al. 2015; Tacchella et al. 2016a,b; Dekel
et al. 2020b, a). This phenomenon has been been referred to as wet
compaction (Dekel & Burkert 2014). Those objects are small in
size but very massive, star-forming systems. Through intense star
formation, the inner gas supply will be exhausted and the Blue
Nuggets will gradually turn into quenched Red Nuggets with low
star formation. Cosmic gas streams feed the galaxy at the same time
with fresh cold gas. A galactic disc is slowly formed (Tacchella
et al. 2016a,b). These characteristic episodes from compaction
events into Nuggets and finally disc like systems, surrounding the
compact spheroids, are a robust phenomena that are accompanied by
distinctive changes in morphology and kinematics. It has been shown

that one very distinct feature is a clear critical stellar mass of M� ∼
109.5 M� for the major event of compaction followed by quenching.

Galactic gas discs are likely to survive only in DM haloes of mass
above a threshold of ∼2 × 1011 M�, corresponding to a stellar mass
of ∼109 M�.

This is mostly because in the low-mass regime, the angular
momentum is predicted to flip on a time-scale shorter than the orbital
time-scale due to mergers (Dekel et al. 2020a). Additionally, violent
disc instability exerts torques that shrink the disc by removing angular
momentum. Lastly supernova feedback plays an important role in
disrupting discs below the critical mass (Dekel & Silk 1986). Above
the threshold mass, disruptive merger events are less frequent and
not necessarily associated with a change in the pattern of the feeding
streams. At the same time, the effects of supernova feedback are
reduced (e.g. Kretschmer & Teyssier 2020; Kretschmer, Agertz &
Teyssier 2020). All these effects allow gas discs to survive. Other
changes are the transition from diffuse to compact with an extended
disc and envelope, from prolate to oblate, from pressure to rotation
support, from low to high metallicity, and from supernova to AGN
feedback (Zolotov et al. 2015; Dekel, Lapiner & Dubois 2019a).

We have structured this paper as follows: First, in Section 2, we
describe the simulation setup and derive analytic expressions that
we will use to investigate the assumptions for Jeans- and hydrostatic
equilibrium. Secondly, in Section 3, we focus on the case when both
rotation velocity and velocity dispersion (vφ and σ r) are measured to
obtain α. We focus on Jeans and hydrostatic equilibrium in different
components and we investigate if models for self-gravitating discs
are valid and applicable. In Section 4, we focus on cases where
only σ l is available to obtain K both for stars and gas. We finally
summarize our results and conclude in Section 5.

2 J E A N S E QU I L I B R I U M IN TH E V E L A
SI MULATI ONS

Our methodology is as follows: In the first subsection, we describe
the simulation setup that we will use in our analysis. Then we recall
the Jeans equation and derive analytic expressions for α for specific
cases. We describe how we obtain the quantities of interest from
the simulation and how we use them to infer if Jeans or hydrostatic
equilibrium is valid. Finally, we derive three correction terms in the
Jeans equation.

2.1 Simulation method and subgrid physics

Alongside our analytical modelling, we use a series of VELA zoom-
in hydro-cosmological simulations at z = 1–5, which are described
in Appendix A (Table A1) and previous works (e.g. Ceverino et al.
2014; Zolotov et al. 2015; Dekel et al. 2019b, 2020a,b).

The simulations were performed using the adaptive refinement
tree (ART) code (Kravtsov, Klypin & Khokhlov 1997; Ceverino &
Klypin 2009). The suite comprises 34 galaxies evolved to z ∼ 1,
with a maximum spatial resolution of 17.5–35 pc at any given time.
The dark matter halo masses at z = 2 span from 1011 to 1012 M�.
The choice of galaxies was made such that their DM haloes have not
undergone a major merger close to z = 1.

Additionally, the code contains a set of subgrid physics models
that describe many relevant processes of galaxy formation that are
not directly calculable because of the limited resolution (Ceverino &
Klypin 2009; Ceverino et al. 2012; Mandelker et al. 2014; Zolotov
et al. 2015). Those processes include gas cooling by atomic hydrogen
and helium, metal and molecular hydrogen cooling, photoionization
heating by the UV background with partial self-shielding, stochastic
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star formation, stellar feedback, metal enrichment, stellar mass-loss,
thermal feedback from supernovae, stellar winds, gas recycling, and
an implementation of feedback from radiation pressure as described
in Ceverino et al. (2014).

2.2 Analytic expressions for α

Consider a cylindrically symmetric galaxy that is rotating. Assume
that along the radial direction, the stellar component is in Jeans
equilibrium and the gas component is in hydrostatic equilibrium
(Jeans 1915; Weijmans et al. 2008; Burkert et al. 2010; Capelo,
Natarajan & Coppi 2010; Wellons et al. 2020). This implies that at
any given radius r, the gas and stars each obey

V 2
c (r) = v2

φ(r) − 1

ρ(r)

d(ρ(r)σ 2
r (r))

d ln r
, (3)

where the circular velocity Vc represents the gravitational force
through the potential gradient,

V 2
c (r) = r

∂�(r)

∂r
� GM(< r)

r
, (4)

and where the last expression is accurate for a spherical system,
with M(< r) the total mass within a sphere of radius r. The velocity
vφ(r) is the actual angular-averaged rotation speed in the disc plane
(perpendicular to the angular-momentum vector), representing the
centrifugal force. The last term represents the pressure gradient
in the disc, where ρ(r) is the 3D density profile of the given
component and σ r is the radial velocity dispersion of that component
(with the thermal pressure assumed to be negligible for the gas).
We additionally assume that the velocity dispersion is isotropic.
Equation (3) is valid for the stars and the gas separately.

2.2.1 The Jeans equation with constant dispersion

Assuming the radial velocity dispersion σ 2
r to be constant with radius,

equation (3) can be written as

V 2
c = v2

φ + α σ 2
r , (5)

with α the logarithmic slope of the density profile,

α ≡ −d ln ρ

d ln r
. (6)

For example, for an isothermal sphere α = 2, but different values for
different 3D density profiles within the disc are obtained.

2.2.2 Self-gravitating exponential disc

For a self-gravitating disc, following Burkert et al. (2010), if the
velocity dispersion σ is isotropic and constant also in the z-
direction, the vertical density distribution ρ(z) is given by the vertical
hydrostatic Spitzer solution (section 4 in Spitzer 1942; Binney &
Tremaine 2008):

ρ(z) = ρ0sech2(z/h), (7)

where ρ0(r) is the density at the mid-plane (z = 0) and the scale
height is

h(r) = σ√
2πGρ0(r)

. (8)

The surface density �(r) for such a scenario is given by

�(r) = 2ρ0(r)h(r). (9)

Combining the two equations above yields the density,

ρ0(r) = πG�2(r)

2σ 2
. (10)

After inserting in the definition of α (equation 6), we obtain

α(r) = −2
d ln �(r)

d ln r
. (11)

For the special case of an exponential disc with �(r) = �0exp (−
r/rd), where the half-mass radius is related to the exponential radius
rd by Re = 1.68rd, one obtains

α(r) = 2
r

rd
= 3.36

r

Re
. (12)

The value of α at the effective radius is larger than that of an
isothermal sphere, indicating that one should not expect the same
value of α for all galaxy types or all components.

2.2.3 Sérsic profile model

One can determine α for a Sérsic profile as a function of the Sérsic in-
dex n. Consider the Sérsic profile that describes the two-dimensional
surface density �(r) as a function of the two-dimensional radius r,
with the parameter n, the Sérsic index describing the steepness of the
profile (Sérsic 1963). The profile is given by

�s(r, n) = �e exp

[
−b(n)

[(
r

Re

)1/n

− 1

]]
, (13)

where b(n) is chosen such that Re is the half-mass radius. Therefore,
�e is the surface density at the half-mass radius. The function
b(n) can be approximated as (Graham & Driver 2005; Gerbrandt,
McConnachie & Irwin 2015)

b(n) � 1.9992n − 0.3271. (14)

(See Ciotti & Bertin 1999 for an alternative approximation.)
Choosing n = 1 yields the surface density profile of an exponential

disc. A de Vaucouleurs profile, characteristic of an elliptical galaxy,
is obtained if n = 4 (de Vaucouleurs 1948). Integrating the two-
dimensional Sérsic profile gives the three-dimensional density profile
within the disc:

ρ(r ′, n) = − 1

π

∫ ∞

r ′

d�s(r, n)

dr

1

(r2 − r ′2)1/2
dr, (15)

where r
′

is the spherical radius. Here we have inverted the formula
for the projection of the density to a surface density with Abel’s
formula (Ciotti et al. 1991; Binney & Tremaine 2008). From this,
α(n) can be obtained numerically as a function of Sérsic index n with
equation (6):

α(n) = −d ln ρ(r, n)

d ln r
. (16)

This is shown in Fig. 6 for different radii.

2.3 Testing Jeans/hydrostatic equilibrium: αv and αρ

Rearranging equation (5), we first measure from the velocities,

αv = V 2
c − v2

φ

σ 2
r

. (17)

The rotational and radial velocities vφ and vr are calculated using the
coordinates x, y in the plane of rotation,

vφ = (xvy − yvx)/r, vr = (xvx + yvy)/r, (18)
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with r =
√

x2 + y2. The circular velocity Vc is calculated with the
total mass enclosed in a sphere. The radial velocity dispersion is
calculated as σr = √〈v2

r 〉 − 〈vr〉2, where the average is computed in
a cylindrical ring. We note that if σ r is measured over segments of
cylindrical rings, a smaller value is obtained. However, it has been
shown (see section 4.2 in Wellons et al. 2020) that such an estimate
underpredicts the pressure term in the Jeans equation. In comparison,
using equation (6), we measure from the density profile,

αρ = −d ln ρ

d ln r
, (19)

where the density ρ(r) = (4πr2)−1 dM(r)/ dr is calculated from the
smoothed cumulative mass profile M(r). If Jeans or hydrostatic equi-
librium is valid and the velocity dispersion is constant, equation (5)
is valid and αv and αρ are identical. Therefore, we can validate
the assumption of equilibrium based on the agreement between αv

and αρ .

2.4 Correction terms in the Jeans equation

Deviations may arise if one of the above stated assumptions are not
valid. We therefore include the following corrections.

2.4.1 Non-constant velocity dispersion

First, we include the term,

γ ≡ −d ln σ 2
r

d ln r
, (20)

to account for non-constant velocity dispersion in equation (3).

2.4.2 Non-spherical potential

The above given expression V 2
c � GM/r is only true for a spherical

mass distribution. To allow for a more accurate expression, we
expand the potential � in multipoles to find non-spherical correction
terms. We write the potential at position r as

�(r) = −G

r
M − G

r3
rαDα − G

2r5
rα rβQαβ − . . . , (21)

where r = |r| and summation is implied over double occurring
coordinates α, β = x, y, z. The terms M, Dα and Qαβ are the monopole,
the dipole, and the (traceless) quadrupole:

M =
∑

i

mi,

Dα =
∑

i

mi r i,α,

Qαβ =
∑

i

mi(3r i,α r i,β − δαβr2
i ). (22)

Since the monopole represents the total mass and the dipole vanishes,
the quadrupole is the first term that contributes as a non-spherical
correction to the potential.

To obtain the quadrupole correction in the symmetry plane of the
disc at the effective radius Re, we calculate the eigenvalues of Qij.
The correct eigenvalues are identified using the properties that the
quadrupole is by construction traceless and the trace is invariant
under rotation. Including contributions from the non-spherical part
of the potential, the circular velocity Vc, Q is changed and therefore
also the resulting αv, Q. We define the difference as

�Q ≡ αv − αv,Q. (23)

Figure 1. Validity of the Jeans equation for the bulge as a function of stellar
mass. Values for αρ obtained from the density profile and αv obtained
from the velocities for the galactic bulge at the effective radius Re, in with
additional corrections. Shown is the median of the obtained values and the
68 per cent confidence level for αρ and αv. Curves agree after compaction
(M� > 109.5 M�), which indicates Jeans equilibrium with α ∼ 2.55. The
corrections for a non-constant dispersion γ , non-spherical potential �Q

and anisotropic dispersion β are included. The Jeans equation is valid for
M� > 109.5 M�.

2.4.3 Anisotropic velocity distribution

Lastly, we include corrections for anisotropic dispersion where we
define the anisotropy parameter as

β ≡ 1 − σ 2
φ

σ 2
r

. (24)

Taking the three corrections mentioned above into account, equa-
tion (3) becomes

V 2
c = v2

φ + σ 2
r (αρ + γ + �Q − β). (25)

From this, together with the definition of αv (equation 17), we obtain

αv = αρ + γ + �Q − β. (26)

By comparing the two sides of this equation (see e.g. Fig. 1), we can
evaluate the degree of validity of the Jeans equation or the equation
for hydrostatic equilibrium, respectively, and the relative contribution
of each correction. If equilibrium is approximately valid, we can
estimate Mdyn by using the values for αv in equation (25),

V 2
c = v2

φ + αv σ 2
r . (27)

3 MEASURI NG THE DYNAMI CAL MASS FRO M
DECOMPOSED KI NEMATI CS

We now report on our findings for equilibrium in different com-
ponents of the galaxies. First, we focus on bulges; secondly, we
investigate equilibrium in galactic discs; and, lastly, we analyse
equilibrium in whole galaxies. Using the VELA suite of high-
resolution cosmological simulations, we test if stars and gas in
high-redshift galaxies are in Jeans or hydrostatic equilibrium. We
compare values for αv obtained from the velocities and αρ ob-
tained from the density slope. As described above, equilibrium
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is indicated if those values agree. The analysis is done in steps
of scale factor �a = 0.01 using the entire VELA suite in the
redshift range z = 1–5, which includes 933 snapshots. We do
not show the evolution of the measured quantities with redshift
explicitly, but report instead on the evolution with stellar mass, since
the two quantities are strongly correlated. Furthermore, the stellar
mass provides an important indication of the evolutionary phase of
galaxies, since below a stellar mass of 109.5-M� galaxies are highly
perturbed and only above this critical mass long-lived discs are
expected.

3.1 Jeans equilibrium in galactic bulges

First, we are interested in verifying the assumption of Jeans
equilibrium for stars in bulges of galaxies. We focus on Jeans
equilibrium of the stars only, since there is little gas left in the
central part of galaxies. To separate the galactic bulge from the
disc we fit a double Sérsic profile to the surface density profile
of the stars face-on, where the Sérsic index for the outer disc
part is kept constant at nout = 1 (see Section 3.5). Although stars
from the bulge dominate at Re, in, there are also stars belonging to
the disc present. However, disc stars (as defined in Section 3.3)
inside Re, in, on average, only make up 8.5 per cent of the to-
tal bulge mass and therefore will not significantly change our
results.

At the resulting effective radius Re, in of the bulge, the velocities
are measured and mass-weighted averaged in rings centred on Re, in

with size �R = ±Re, in/2. The plane of rotation is determined by
the angular momentum inside Re, in. To verify if the assumption of
Jeans-equilibrium is valid, we show the values for αv obtained from
the velocities and αρ obtained from the density slope in Fig. 1.
For M� > 109.5 M�, the similarity between αv and αρ indicate the
validity of Jeans equilibrium with a scatter of ∼ 20 per cent around a
value of

αv = 2.63 ± 0.53, (28)

constant in stellar mass. This is consistent with the finding that
long-term discs form in these simulations above a threshold mass
of Mvir ∼ 1011 M�, due to the infrequent merger-driven spin flips
and compaction-driven bulges (Dekel et al. 2020a).

Including γ as a correction for a non-constant dispersion does not
significantly improve the validity of Jeans equilibrium at low masses,
and generates a slight overestimate by ∼0.4 of αρ at high masses (γ
= 0.38 ± 0.25). This discrepancy is alleviated if the correction for
a non-spherical potential are included (�Q = −0.31 ± 0.18). This
is because a deeper potential well will be counteracted by a larger
dispersion. Accounting for anisotropic dispersion through β does not
change the results significantly (β = −0.01 ± 0.16).

In galaxies with stellar masses below 109.5 M�, before compaction
and where discs are disrupted by frequent merger-driven spin flips, αv

systematically underestimates αρ , by an amount that is comparable
to the 1σ scatter among galaxies. The corrections for a non-spherical
potential or anisotropic dispersion and non-constant dispersion are
not significant (�Q = −0.05 ± 0.13, β = −0.03 ± 0.20, γ =
−0.10 ± 0.66). Below M� = 109.5 M�, the value for α can be crudely
approximated with

αv(M�) = 1.8 log(M�/109.5M�) + 2.63. (29)

For galaxies with stellar masses M� < 108.5 M�, the discrepancy
between the curves is large and therefore the assumption of Jeans
equilibrium is invalid.

3.2 Equilibrium in the plane of galactic discs

We expand our study of equilibrium to galactic discs. We are espe-
cially interested in the validity of Jeans and hydrostatic equilibrium
in the plane of the disc. Therefore, we choose a small height of h =
±Re/4 and use the 3D half-mass radius Re of the analysed component
(computed inside 0.1Rvir). The discs are orientated relative to the
angular momentum of the analysed component, stars or cold gas (T
< 5 × 104K). The velocities are mass-weighted averaged over rings
of width 0.5Re from 0.5Re to 5.5Re.

Fig. 2(a) shows the values of αρ and αv for the stars as a function
of stellar mass at Re, stars. For the stars, there is good agreement
between αρ and αv for M� > 109.5 M�, which indicates Jeans
equilibrium with α � 2.6, constant for galaxies with large stellar
masses. The small but systematic deviations for low-mass systems
indicate that deviations from Jeans equilibrium are not too large and
the presented approach to α is still usable for crudely estimating
the total mass. These discrepancies are alleviated if corrections are
included. For galaxies above the threshold mass the contribution
from non-spherical potentials �Q = −0.3 ± 0.1 is counteracted
by the non-constant dispersion term γ = 0.4 ± 0.2. Anisotropic
dispersions are not significant (β = 0.0 ± 0.2).

Fig. 2(c) refers to the gas, where we show values of αρ and αv as
a function of stellar mass at Re, gas. We see large fluctuations of the
radial velocity in rings, possibly reflecting variations along the rings
and between the rings. However, the average value for the radial
velocity is consistent with zero (vr = −10.7 ± 11.7 km s−1). (Note
that in contrast, for the stars we find vr = −0.8 ± 2.0 km s−1). These
errors propagate to αv and the large size of the errors may indicate
that there are deviations from equilibrium. We see that the median
values for αv agree with αρ , especially if non-spherical potentials and
non-constant dispersions are taken into account (�Q =−0.47 ± 0.28,
γ = −0.20 ± 0.26). We find that the velocity dispersion for the gas
is not isotropic (β = 0.52 ± 0.14) and should be taken into account
(Agertz et al. 2009; Chemin et al. 2020).

For massive galaxies, we show radial profiles in Fig. 2(b) for the
stars and Fig. 2(d) for the gas. For the stars, it is apparent that there
is equilibrium up to radii of ∼5Re, stars where α increases from �
2.5 to � 3.5. For the gas, the agreement between the curves imply
that the assumptions of hydrostatic equilibrium are valid in the plane
of the disc for radii up to ∼5Re, gas, where α increases from � 1 to
� 4. The large errors however may indicate certain deviations from
equilibrium. Increasing values of α with radius from � 1 to � 4 were
also obtained by Wellons et al. (2020) where four massive galaxies
of the FIRE-2 suite were analysed. These findings imply that a radial
gradient of the pressure is significantly contributing. We see that
the radial gradient of the velocity dispersion γ is insignificant in
comparison to the slope of the density profile αρ . This demonstrates
that pressure support is mostly provided through the slope of the
density profile.

There are large deviations from the predictions for an exponential
disc (equation 12) where α was supposed to grow linearly with radius
and should be e.g. 3.36 at Re, gas or 6.72 at 2Re, gas. These deviations
arise because the assumption of a self-gravitating disc is not valid,
being embedded in a DM halo (see below).

3.3 Self-gravitating discs

As discussed above, we have seen that values obtained for α

in the disc deviate from the predictions for an exponential disc
(equation 12). To investigate this we first measure az, the specific
force exerted by each component in the z-direction at a distance z
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Evaluating galaxy dynamical masses 5243

Figure 2. Validity of the Jeans/hydrostatic equilibrium in the disc. Values for αρ obtained from the density slope and αv obtained from the velocities in the
galactic disc. Panel (a): the evolution of measured values for the stellar system as a function of stellar mass at Re, stars. The agreement of the lines indicates Jeans
equilibrium. Panel (b): the radial profile of the stars above 109.5 M� (post-compaction) indicates Jeans equilibrium up to ∼ 5Re, stars. Panel (c): the evolution
of measured values for the gas as a function of stellar mass at Re, gas. The agreement of the lines indicates crude hydrostatic equilibrium. Panel (d): the radial
profiles of the gas above 109.5 M� (post-compaction), indicating hydrostatic equilibrium out to 3.5Re, gas, and crude equilibrium out to ∼5Re, gas. The profile
deviates significantly from the prediction for an self-gravitating exponential disc that is shown as grey dotted line (see Figs 3 and 4).

= −Hd from the disc plane, where Hd is half the gas-disc height, as
defined in Mandelker et al. (2014). The specific forces are calculated
by direct summation for test-points lying in the plane of z = −Hd at
various radii out to 5Re, gas. We separately compute the contributions
from DM, stars, and gas. Furthermore, we divide stars into disc
stars and spheroid stars, where for the disc, we adopt a threshold of
Jz/Jc > 0.7 for each star particle where Jz is the angular momentum
component parallel to the z-axis and Jc the angular momentum of a
co-rotating circular orbit with the same energy.

Fig. 3 shows the specific force exerted by different components
az in the z-direction as a function of R/Re, gas for galaxies with M�

> 109.5 M� where gas discs are likely to survive. When comparing
contribution of the spheroidal components (bulge stars and DM)
to the contribution of the disc components (gas and disc stars),
we see that the spheroidal components dominates over the disc
component by a factor of larger than two at R < Re, gas. For R >

Re, gas, this factor increases linearly in radius from ∼2 at Re, gas to
∼6 at 5Re, gas. It is apparent that the gas disc contributes only little.
This is consistent with the α values that we obtain, which are very
different from the self-gravitating disc prediction. We see that the
DM is the dominating component at radii r > 0.5Re, gas. Only inside
0.5Re, gas the contribution from bulge stars becomes more dominant.

Fig. 4 shows the obtained α from the simulations, divided by
the prediction αself = 3.36(R/Re) for self-gravitating disc given by
equation (12). It is shown versus az by the disc with respect to the
total az, with the colours indicating R/Re, gas. It is apparent that near
Re, gas, the relative contribution of the disc to az is ∼0.25 and α ∼
0.45αself accordingly. Namely, αself underestimates the contribution
of the pressure term by a factor of 2.

Figure 3. Is the approximation of self-gravitating disc valid? Shown is the
specific force in the z-direction, az, in the plane z = −Hd, as a function of
R/Re, as exerted by different components of the galaxy (see labels). The force
is normalized by ag = V 2

c (r)/r . The half-mass radius refers to the gas. The
sample is limited to galaxies with M� > 109.5 M�. We see that the contribution
of the spheroidal component (DM plus bulge stars) dominates over the disc
component (mostly stars) by a factor larger than two at R < Re, and by a larger
factor at large radii, implying that the approximation of self-gravitating disc
is problematic.
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5244 M. Kretschmer et al.

Figure 4. Validity of the self-gravitating disc approximation. Values for αρ

from the simulations, divided by the prediction αself = 3.36(R/Re) for self-
gravitating discs, versus the specific force in the z-direction az exerted by
the disc with respect to the total az. Colours indicate radial bins, where the
half-mass radius refers to the gas. We learn that at 1–2Re α is about 0.45αself

(consistent with Fig. 2d).

At larger radii, the relative contribution of the disc drops even
further, and α ∼ 0.3αself at R ∼ 5Re, gas. The pressure term grows
slower than linearly with radius. We conclude that the approximation
derived from a self-gravitating disc for the asymmetric-drift pressure
term in the Jeans equation is not valid in our simulated high-z discs.

3.4 Jeans and hydrostatic equilibrium in whole galaxies

Up until now, we only analysed the validity of equilibrium for stars
and gas in the bulge and in the plane of the galactic disc. Often, it
is however not possible to obtain kinematic measurements for gas
or stars separately in the bulge or only in the thin plane of the disc.
Therefore, we now expand our study to galactic systems, namely
where we use all the stars or gas inside a sphere with radius Re, the
half-mass radius of the analysed component. The resulting values for
α for stars and gas are shown in Fig. 5.

For the stars, we find for M� > 109.5 M�, where there are long-lived
discs,

αv = 2.61 ± 0.35, (30)

in line with the values that we obtained for the bulge only and
for the disc only. The correction for non-constant dispersion γ =
0.30 ± 0.27 is partly counteracted by the correction for non-spherical
potential �Q = −0.26 ± 0.16 and the correction for anisotropy β =
−0.04 ± 0.15 is negligible. For galaxies below the threshold mass
(M� < 109.5 M�), αv increases with M� from ∼1.7 to ∼2.25, γ =
−0.1 ± 0.3 is negligible but β = 0.14 ± 0.16 together with �Q =
−0.12 ± 0.07 alleviate discrepancies with αρ . If all corrections are
applied, we find Jeans equilibrium over the whole analysed mass
range. Polynomial approximations to the values of α can be found in
Table 1. These findings are consistent with results from a different
suite of simulations (NIHAO), where the anisotropy β was close
to zero except very close to the centre and towards the virial radius
such that anisotropy is negligible when assessing the dynamical mass
and that the Jeans equation was valid with a ∼ 13 per cent rms error
between 0.02Rvir and 0.56Rvir (Freundlich et al. 2020).

Figure 5. Values for αρ and αv for stars (top) and gas (bottom) evaluated at
Re of the stars and the gas respectively. Here all the material inside a sphere
is used - including stars/gas from the bulge and the disc - where in previous
sections, we separately analysed the bulge and the disc. For the stars, αv

increases with mass from ∼2 to ∼2.6 at M� < 109.5 M� and is constant
for more massive galaxies with αv ∼ 2.6. For the gas, at M� < 109.5M�
(pre-compaction), αv ∼ 1.4 and it decreases from ∼1.5 to ∼0.5 for more
massive systems. Hydrostatic equilibrium at high masses is achieved only if
the corrections are included.

Table 1. Coefficients for polynomial approximations to the different mea-
sured values of α for gas and stars in different volumes.

x Type Volume a b c σ̃ (per cent)

m Stars Disc −0.078 0.411 2.304 16 (11)
R/Re − 1 Stars Disc −0.075 0.591 2.544 16
m Gas Disc −0.298 0.061 1.411 37 (18)
R/Re − 1 Gas Disc −0.146 1.204 1.475 40
m Stars Sphere −0.047 0.356 2.412 12 (9)
m Gas Sphere −0.243 −0.147 1.486 20 (15)

Notes. α(x) = ax2 + bx + c, where x is the observable (where m ≡
log (M�/109.5) M�), together with corresponding 1σ confidence intervals,
where the number in brackets is for M� > 109.5 M� (the radial profiles were
analysed above the threshold mass).

For the gas, αv � 1.2 for massive galaxies with M� > 109.5 M�
(see the approximation in Table 1). There is a discrepancy with
αρ that is alleviated if corrected for a non-constant dispersion γ

= −0.18 ± 0.48, and for non-spherical potentials (�Q)(M�) =
−0.307log (M�/109.5 M�)–0.228, which evolves with mass. Includ-
ing corrections for anisotropy β = 0.48 ± 0.16 leads to slightly lower
predictions of α. Below the threshold mass, the typical value for
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Evaluating galaxy dynamical masses 5245

Figure 6. Dependence of α on Sérsic index. Values for αv and αρ for the stars shown as a function of Sérsic index n. Solid lines show theoretical expectations
obtained by equation (16) for different radii. Measured values are shown as circles for αv and diamonds for αρ . The shaded area indicates the size of the errors
on αv as example for r = Re. Panel (a): The left-hand panel shows results for the bulge. Panel (b): The right-hand panel shows results for whole galaxies.
The half-mass radius refers to Re, in for the bulge and Re, stars for whole galaxies, obtained from the Sérsic fits. Measured values agree well with the theoretical
expectations except for small n at r ≥ 2Re.

αv � 1.4 is in good agreement with αρ and the corrections are
smaller (γ = −0.07 ± 0.9, �Q = −0.18 ± 0.09, β = 0.27 ± 0.31).

3.5 Sérsic profile

In addition to α as a function of stellar mass, we provide α as a
function of Sérsic index. Fig. 6 shows the theoretical curves that we
have derived in Section 2.2.3. For an exponential disc, α(n = 1) =
2 at the effective radius Re. For larger Sérsic indices, namely around
n = 4, which reflect a de Vaucouleurs profile, α(n) � 2.7 at Re. For
a fixed Sérsic index, α gets larger with increasing radius. For n >

0.5, the theoretical curves can be approximated at any given radius
by the functional fit,

α(n) = a

n
+ b, (31)

where for r = (0.5, 1, 2, 4)Re, the parameters are approximated by

a = −1.54, −0.86, 0.98, 4.08,

b = 2.87, 2.98, 2.9, 2.69.
(32)

We provide α(n) separately for the bulge and for whole galaxies.
We measure the Sérsic indices n for the bulge by fitting a two-
component profile to the surface density profile of the stars, where
the Sérsic index for the outer disc part is kept constant at nout = 1.
Secondly, we measure global Sérsic indices by fitting a single Sérsic
component to the stellar surface-density profiles using equation (13).

The values that we report in the following are measured face-on,
i.e. the z-axis of the simulations are aligned with the AM-vector of
the stars. We fit the logarithm of the stellar surface-density profile of
each simulated galaxy using a least-squares minimization. We use
logarithmically spaced bins from 100 pc to 0.1Rvir. Of all snapshots,
less then 7 per cent did not converge for the two-component fit and
less then 5 per cent did not converge for the single-component fit.
Obtained values for Re from the global fit are in agreement with the
true half-mass radius with deviations of less then 9 per cent.

The measured values of αv and αρ as a function of Sérsic index n
are shown in Fig. 6(a) for the bulge and 6(b) for the global fit. There
is good agreement between αv and αρ , indicating Jeans equilibrium
for all radii in the bulge and the disc as discussed above. Furthermore,
measured values agree well with the theoretical expectations. Only

for systems with small n we find small discrepancies at radii
≥2Re. This may be because at large radii there are deviations from
spherically symmetric density distributions to more prolate systems.
With equation (31) for α(n), the dynamical mass is recovered within
20 per cent. It is apparent that for galaxies with n ≥ 2, the value for
α is � 2.5–2.7 at the effective radius.

3.6 Prescriptions and tests

We approximate the values of α separately for galactic discs and for
whole galaxies as a function of either M� or R/Re with parametric
third-order polynomials of the form

α(x) = ax2 + bx + c, (33)

where x = log (M�/109.5 M�) or x = R/Re − 1 and Re is the half-mass
radius of the analysed component. The coefficients for the different
components are given in Table 1. We estimate the dynamical mass
using these prescriptions together with equation (1) and compare it
to the true value of the dynamical mass in the simulations. From the
distribution of the ratio between the estimated dynamical mass and
the true dynamical mass Mdyn, estimated/Mdyn, true, we can estimate the
statistical 1σ confidence interval within which our prescriptions will
successfully recover the dynamical mass. For the stars, the typical
scatter is � 16 per cent for all prescriptions. For the gas, the scatter
is larger but above the threshold mass and at Re, gas the error is
� 20 per cent.

Furthermore, we validate the prescriptions for whole galaxies
by applying them to two different sets of zoom-in simulations,
namely the MIGA suite detailed in Appendix B and the NIHAO
suite detailed in Appendix C. These simulations use different codes,
numerical resolutions, and models for galaxy formation physics
where in particular different implementations for star formation and
stellar feedback are used. The resulting relative errors are shown
in Fig. 7. Using the stars, we find that the estimated dynamical
mass is slightly underestimated by � 15 per cent in MIGA and
NIHAO. Using the gas in NIHAO, the estimated dynamical mass
is underestimated by a systematic bias of ∼ 20 per cent. This is
likely because NIHAO galaxies have more radial outflows caused by
strong supernova feedback. Using the gas in the MIGA galaxies,
the estimated dynamical mass is overestimated by ∼ 5 per cent.
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5246 M. Kretschmer et al.

Figure 7. Accuracy of the dynamical mass prescription for decomposed
kinematics in different simulation suites. Relative errors in terms of the ratio
between the estimated dynamical mass Mdyn, estimate and the true dynamical
mass Mdyn, true are shown using the prescriptions for α for whole galaxies
with symbols for the median and error bars for the 1σ confidence interval.
The average dynamical mass is recovered to better than 20 per cent in all
cases.

For all simulations sets, the true value for the dynamical mass is
recovered within the 1σ scatter except for the stars in MIGA where
it is recovered within 2σ . The average dynamical mass is recovered
to better than 20 per cent in all cases, which demonstrates the validity
of our prescriptions.

4 MEASU R ING THE DYNAMICAL MASS FROM
THE LOS VELOC ITY DISPERSION

When only a line-of-sight velocity dispersion σ l is available, the
dynamical mass can be estimated using the virial factor K.

4.1 The virial factor

4.1.1 Isotropic case

In order to estimate dynamical masses from the line-of-sight velocity
dispersion σ l alone, the virial factor K in equation (2) should be
evaluated. We define the dynamical mass Mdyn to be twice the total
mass inside the effective radius Re, which, using equation (4), gives

Mdyn = 2G−1ReV
2

c . (34)

We wish to express this in terms of observables, namely the effective
radius Re and the line-of-sight (los) velocity dispersion σ l,

Mdyn = KG−1Reσ
2
l , (35)

and find the value of the virial factor K under different conditions,

K = 2
V 2

c

σ 2
l

= GMdyn

Reσ
2
l

. (36)

For a given line of sight with an inclination i relative to the rotation
axis (i = 0 for the face-on view) of the observed galaxy, the los
velocity dispersion can be written as

σ 2
l = ψ(sin i vφ)2 + σ 2

i , (37)

where ψ represents the projection of the rotation velocity at each
point on to the direction of the line of sight. σ i is the actual velocity
dispersion while σ l includes additional contribution from the rotation
in the foreground and the background with respect to the galaxy
centre line-of-sight distance to the line-of-sight dispersion. For a

transparent cylindrical disc extending to radius R and viewed with
an aperture of radius R,

ψ = 1

2

∫ R

0
v2

φ(r)�(r) dr/

∫ R

0
�(r) dr, (38)

where vφ is expressed in units of the characteristic value vφ that
appears in equation (37). The value of ψ depends on the shape of
the rotation curve. For a flat rotation curve ψ = 1/2 independent of
�(r). For an exponential disc with a rising rotation curve vφ∝r1/2

evaluated at the exponential radius, Rexp gives ψ � 0.3, and at R �
Rexp, it approaches unity. With a decreasing rotation curve vφ∝r−1/2,
the value at Rexp is ψ � 1.2, and at R � Rexp, it approaches ψ = 1/2.

In the face-on view, σ i = σ z, and in the edge-on view, σ i is an
average of σ r and σφ . In the simplest case, we assume isotropy such
that σ i is the same for every i.

Combining equation (5), (36), and (38) and with

ξ ≡ vφ

σr
, (39)

we obtain both for gas and stars separately the virial factor,

K = 2(α + ξ 2)

1 + ψξ 2(sin i)2
, (40)

with α from the pressure term in equation (5). We can find approxi-
mations for various cases. For example, in the dispersion-dominated
case (ξ = 0), we have K = 2α, which for a de Vaucouleurs spheroid
(n = 4) is K = 5.54. In the face-on case, we obtain

K = 2(α + ξ 2), (41)

for rotation-dominated systems (ξ 2 � α), this becomes K = 2ξ 2,
which may yield values up to ∼30. In the edge-on case,

K = 2(α + ξ 2)

1 + ψξ 2
, (42)

which, for rotation-dominated systems, becomes K = 2/ψ .

4.1.2 Anisotropic case

In practice, the assumption of isotropic velocity dispersion may
need to be modified, especially for the gas. This may represent a
true anisotropy in the velocity dispersion, e.g. due to small-scale
anisotropy in feedback-driven outflows or recycled inflows. Alter-
natively, σ z as measured in the selected face-on view may include
additional contributions from coherent motions. Such motions can
arise from not dealing with the best face-on view of the gas, which
may occur if the face-on view is determined from the stars, and the
gas and stellar discs are misaligned. A similar contamination can
arise from intrinsic misalignment between the inner and outer disc,
in the form of strong warps (Danovich et al. 2015). In those two
cases, gas rotation also contributes to σ z.

Without assuming isotropic dispersion, equation (40) is replaced
by

K = 2(α + ξ 2)

σ 2
i /σ 2

r + ψξ 2(sin i)2
, (43)

where in the edge-on view, σ i is an average of σ r and σφ , and in the
face-on view, σ i = σ z. We can thus generalize the toy model for the
case

μ ≡ σz

σr
, (44)

where for the face-on view, the isotropic K should be divided by μ2.
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Figure 8. Measured values of the virial factor K for the stars. The inclination changes from the top to bottom: face-on (red), average (black), and edge-on
(blue). Different columns show K as a function of M�, n, and vφ /σ r. Measured values are shown as solid lines with errors as shaded areas. Approximations
are shown in dashed lines. Face-on, the model with anisotropy (μ) successfully predicts K. For systems with low masses or small vφ /σ r, the model without μ

for Kf is good. Edge-on, Ke = 2/ψ is not a good approximation since the systems are not purely rotation-dominated. The other two models predict Ke more
successfully. The last model, which includes anisotropic dispersion, does not give a better approximation. Additionally in the middle row, K is measured at a
fixed angle of 60◦ in yellow (K60◦

averaged) and compared to the theoretical expectations at this orientation in green (K60◦
expected). The similarity of the measured and

predicted values for a fixed angle demonstrates the validity of our approach for K. In the face-on case K increases with M� and n from 4.5 to 7.5, and with ξ

from 4.5 to 10. In the edge-on case, K is ∼4.5 except for n < 2. Averaged over inclinations, K is consistent with K = 5 but only for n > 2 and 0.25 < ξ < 1.5.

4.2 Measuring K

Using equation (36), we can directly measure K in the simulations.
We measure line-of-sight velocities along cylinders of radius Re

and depth 3.4Re, where the cylinder is rotated to 64 randomly
chosen orientations. For each orientation, the line-of-sight velocities
is calculated as

σl =
√

〈v2
z 〉 − 〈vz〉2, (45)

where vz is the velocity-component of the analysed component along
the z-axis of the cylinder. Finally, the average over the 64 orientations
is computed.

4.3 The virial factor in the simulations

We measure the virial factor K separately for stars and gas using
equation (36). From the discussion in Section 4.1, it is apparent that
the orientation of a galaxy influences the value for K significantly.
Therefore we separately measure K for each snapshot in the face-on
and edge-on cases as well as an average over 64 random orientations.
Additionally, we measure K at a fixed angle of 60◦ and compare it
to the expected values. The average values for the measured K as a
function of the stellar mass of the system, the Sérsic index and vφ /σ r,
are shown in Fig. 8 for the stars and Fig. 9 for the (cold) gas. We
do not show an explicit redshift dependence of K but instead note
that vφ /σ r and M� are strongly correlated with z and can therefore be
interpreted as indicators of the evolutionary phase.
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Figure 9. Measured values of the virial factor K for the gas. The inclination changes from the top to bottom: face-on (red), average (black), and edge-on (blue).
Note the different scaling of the y-axis in the top row (face-on). Different columns show K as a function of M�, n and vφ /σ r. Measured values are shown as solid
lines with errors as shaded areas. Approximations are shown in dashed lines. In the face-on case, the two models give good approximations to the data, especially
if accounted for anisotropic dispersion (μ). Edge-on, only the last model, which accounts for anisotropic dispersion, successfully predicts Kf. Additionally in
the middle row, K is measured at a fixed angle of 60◦ in yellow (K60◦

averaged) and compared to the theoretical expectations at this orientation in green (K60◦
expected).

The agreement between the measured and predicted values for a fixed angle demonstrates the validity of our approach for K. In the face-on cases K rises with
M� and ξ from 5 to 30 and decreases with n from 12 to 7.5. Averaged over inclinations, K increases with M� and ξ from 4.5 to 6, and decreases with n from 6 to
4.5. Averaged over inclinations, K is consistent with K = 5 only for n > 1.5 and ξ < 2. Edge-on, the typical value for K is 4.5.

The measurement is done at the effective radius Re of the analysed
component, where the reference dynamical mass is taken to be twice
the total mass inside a sphere of radius Re. The line-of-sight velocity
is measured along cylinders of radius Re and depth 3.4Re. For the av-
erage case, the cylinder is rotated to 64 randomly chosen orientations.

To compare with theoretical values and approximations discussed
in Section 4.1, we use α, ψ , and the velocity components evaluated
at Re inside the same volume where K is measured. The values for
ψ , ξ , and n are shown in Fig. 10. The values for α are taken from
Section 3.4.

4.4 K for the stars

Generally for the stars, we learn from Fig. 10 that most systems have
Sérsic indices n ∼ 1–2 for M� < 109.5 M�, and n ∼ 2–6 for M� >

109.5 M�. Pre-compaction, the ratio vφ /σ r < 0.5, which increases
post-compaction for more disc-like systems to vφ /σ r = 1.3 ± 0.4
(Fig. 10). This implies that for low-mass systems, the stellar com-
ponents of galaxies are not discs and that massive galaxies do have
a disc component, but the bulge dominates. It is apparent that ψ �
0.5 for low-mass systems, implying a flat rotation curve for the stars.
In galaxies above the threshold mass, we find ψ ∼ 0.5–0.7, which
implies that these systems have slightly decreasing rotation curves.

From Fig. 8, the strong dependence of K on the inclination is
apparent. For high-mass systems, Kstars is ∼4.5 in the edge-on case
and ∼7.5 in the face-on case. Furthermore, K in the face-on case
is increasing with mass and with vφ /σ r. The reason for this is that
high-mass systems form thin discs with large vφ /σ r such that the
line-of-sight velocity in the face-on case gets smaller. Note that only
in the average case K ∼ 5, which is the value often used in the
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Figure 10. The line-of-sight projection ψ , the velocity ratio ξ = vφ /σ r, and the Sérsic index n for the stars and the gas separately evaluated at the effective
radius Re of the analysed component as a function of the stellar mass. These values were used to calculate the virial factor K. The dashed line in the left plot
represents ψ = 0.5, which is the value obtained from a flat rotation curve. Low-mass systems have flat gas and stellar rotation curves. High-mass systems (M�

> 109.5M�), post-compaction, have slightly decreasing rotation curves. The stellar systems evolve from being highly dispersion dominated to systems with a
dominant bulge and a disc component. The gas discs evolve from being marginally rotation dominated to highly rotation-dominated with exponential profiles.

literature. However, K ∼ 5 is only consistent with our measurements
for n > 2 and for 0.25 < ξ < 1.5, namely compact and thick discs. In a
similar study, Frigo & Balcells (2017) demonstrated that for compact
galaxies K is systematically smaller than 5, which is consistent with
our findings.

The measured values in the face-on case agree well with the
approximation Kf = 2(α + ξ 2)/μ2, which accounts for anisotropic
dispersion μ. In the middle row, the value for the averaged K is
shown together with the measured value for galaxies oriented at 60◦

in yellow (K60◦
averaged) and the expectation from equation (40) in green

(K60◦
expected). The agreement between the average K and the measured

K60◦
averaged is consistent with the fact that the average orientation is near

60◦. Furthermore, the agreement between the averaged measured
K60◦

averaged and the expected K60◦
expected demonstrates the validity of

equation (40). In the edge-on case, the approximations K = 2(α
+ ξ 2)/(1 + ψξ 2) (equation 42) and K = 2(α + ξ 2)/(σ 2

i /σ 2
r + ψξ 2)

(equation 43) yield good agreement with the measured values. Since
the systems are not heavily rotation dominated, K = 2/ψ is not a
good approximation.

Courteau et al. (2014) compared predictions for the virial factor
from three different formulas to various idealized models (see
their table 2). These formulas should be used a priori for average
inclinations and we therefore limit our comparison to this case. We
find that the formulas from Spitzer (1969) and Wolf et al. (2010),1

where K = 7.5 and 8.0, respectively, overpredict the dynamical mass.
The predicted value of K = 5 from Cappellari et al. (2006) yields the
closest approximation of the three formulas to our measured values,
which is only valid for compact and thick discs as discussed above.
The values for K from Wolf et al. (2010) are larger than those from
Cappellari et al. (2006) or ours because σ l is measured inside Rvir

instead of Re. We compare our values to the model of Courteau et al.
(2014), which features a Sérsic profile for the stars together with
a fixed m = 6 Einasto profile for the DM. We use the values that
were obtained following the definitions of Cappellari et al. (2006),
which are the closest to our definitions. We see the same trend of K
decreasing with n. Their values however overpredict the dynamical
mass by 30–50 per cent. The discrepancies likely originate from
the fact that the simple models used fixed DM and stellar profiles,
isotropic velocities (β = 0) and no rotation.

1We have doubled the original values to convert from the half-light mass into
the dynamical mass, ignoring variations in the mass-to-light ratio.

4.5 K for the gas

We extend the study for K to the gas in galaxies. From Fig. 10, it is
apparent that for systems with M� < 109.5 M� the gas typically has
vφ /σ r = 0.9 ± 0.3. For high-mass systems (M� > 109.5 M�), post-
compaction, thinner and more quiet gas discs are formed with vφ /σ r

= 2.7 ± 0.8. The Sérsic index of the gas is typically n ∼ 0–1, except
during compaction when gas is driven to the centre into a compact
object resulting in n > 1. It is apparent that ψ � 0.5 for low-mass
systems, implying a flat rotation curve for the gas. In galaxies above
the threshold mass we find ψ ∼ 0.5–0.9, which implies that these
systems have decreasing rotation curves.

The dependence of K on the inclination is even stronger for the
gas compared to the stars. Note the different scaling of the y-axis
in the first row of Fig. 9 compared to the other rows and compared
to Fig. 8. For massive systems, we find that Kgas is ∼4.5 edge-on,
∼6 for an average orientation, and ∼10–30 face-on. We find that the
literature value K = 5 is only valid for the averaged case with n >

1.5 and vφ /σ r < 2, namely for compact and thick gas discs.
In the face-on case, K is crudely approximated by Kf = 2(α +

ξ 2) (equation 41). If anisotropic velocity dispersion are taken into
account through μ = σ z/σ r, the values in the face-on case are well
approximated by Kf = 2(α + ξ 2)/μ2 (equation 43). This is expected
since coherent motions, especially outflows from various feedback
processes, can give rise to anisotropic gas velocity dispersions.

In the middle row of Fig. 9, the measured value for galaxies
orientated at 60◦ in yellow (K60◦

averaged) and the expectation at i = 60◦

in green (K60◦
expected) agree well, which demonstrates the validity of

equation (40).
In the edge-on case, the approximations for isotropic dispersion

K = 2(α + ξ 2)/(1 + ψξ 2) (equation 42) underestimate K by �
1.0. However, there is good agreement if we account for anisotropic
dispersion with K = 2(α + ξ 2)/(σ 2

i /σ 2
r + ψξ 2) (equation 43).

4.6 Prescriptions and tests

We approximate the values of K for the stars and the gas separately,
as a function of either M�, n or ξ with parametric polynomials of the
form

α(x) = ax3 + bx2 + cx + d, (46)

where x = log (M�/109.5 M�), n, or ξ . We fit K in the face-on, average,
and edge-on case individually, using a least-squares minimization.
For each case, we fit separately a cubic, square, linear, and constant
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Table 2. Coefficients for polynomial approximations to the different mea-
sured values of K for the gas and stars.

K x a b c d σ̃ (per cent)

Stars
Kf m 0.00 0.00 1.18 6.70 20
Kf n − 4 0.00 − 0.11 0.13 6.96 25
Kf ξ − 1 0.00 0.00 2.53 7.23 16
Kavg m 0.00 0.00 0.10 4.97 13
Kavg n − 4 0.05 − 0.07 − 0.31 5.09 13
Kavg ξ − 1 0.00 0.00 0.76 5.04 15
Ke m 0.00 0.00 − 0.14 4.45 15
Ke n − 4 0.05 − 0.04 − 0.36 4.46 13
Ke ξ − 1 0.00 0.00 0.40 4.39 16
Gas
Kf m 0.00 2.80 5.73 10.17 65
Kf n − 1 0.00 0.73 − 3.55 11.67 76
Kf ξ − 1 0.00 2.43 2.50 7.68 46
Kavg m 0.00 0.00 0.26 5.49 20
Kavg n − 1 0.00 0.00 − 0.52 5.61 18
Kavg ξ − 1 0.00 0.00 0.44 5.26 19
Ke m 0.00 0.00 − 0.24 4.52 19
Ke n − 1 0.00 0.00 − 0.32 4.37 19
Ke ξ − 1 0.00 0.00 0.18 4.18 20

Notes. K(x, a, ..., d) = ax3 + bx2 + cx + d, where x is the observable (m =
log (M�/109.5 M�), n, ξ = vφ /σ r), and relative 1σ confidence interval on the
estimated value for Mdyn.

polynomial form of equation (46). The best fit and the corresponding
polynomial form is then chosen by evaluating the reduced χ2. The
coefficients for the different components are given in Table 2.

We estimate the dynamical mass using the prescriptions and
compare it to the true value of the dynamical mass. From the
distribution of Mdyn, estimated/Mdyn, true, we can estimate the statistical
1σ confidence interval within which our prescriptions will success-
fully recover the dynamical mass. Using these prescriptions the
dynamical mass is recovered within relative errors of � 20 per cent
using equation (2). Only for the face-on cases using the gas, larger
deviations occur.

Furthermore, we test our prescriptions on two different sets
of simulated galaxies (see Appendix B for the MIGA suite and
Appendix C for the NIHAO suite). Fig. 11 shows the resulting relative
errors using the stars or the gas for different simulations with different
feedback strengths. Using K for the stars, we find for all orientations
and observables that the dynamical mass is underestimated by a
systematic bias of ∼ 25 per cent. The statistical error is comparable
to the scatter obtained from the VELA simulations. For the gas, using
the prescriptions for K in the NIHAO simulations underpredict the
dynamical mass by ∼ 35 per cent. However, using the prescriptions
for K in the MIGA simulations overpredicts the dynamical mass by
∼ 7 per cent. The larger scatter for K using the gas in NIHAO and
MIGA originates mostly from face-on cases and is caused by stronger
gas motions driven by the stronger feedback that is implemented in
these simulations. The good agreement between the estimated and
true dynamical masses in the different simulations demonstrates the
accuracy of our prescriptions.

5 C O N C L U S I O N S

We derived recipes for evaluating the dynamical mass of a galaxy
from kinematic measurements, based on the VELA suite of high-
resolution zoom-in cosmological simulations. First, we studied the
validity of Jeans and hydrostatic equilibrium for the stars and

Figure 11. Relative errors on the dynamical mass using the prescriptions
for K for different simulations. The distributions for a given component
and simulation set include values obtained using the prescriptions for all
orientations and observables. Shown is the median and the 1σ confidence
interval. The dynamical mass is accurate to better than 20 per cent in MIGA.
It is underestimated by ∼ 35 per cent for the gas in NIHAO, possibly because
of the strong feedback inducing outflows.

gas, respectively. Assuming cylindrical symmetry and a constant,
isotropic velocity dispersion σ r, the Jeans equation was written as

V 2
c = v2

φ + α σ 2
r , (47)

with the circular velocity Vc, the rotational velocity vφ , and α =
− d ln ρ/ d ln r the logarithmic slope of the density profile. We have
compared values for αρ obtained from the density slope (equation 6)
and αv obtained from the velocities (equations 17 and 47). Equi-
librium is indicated if both measurements yield consistent values.
Otherwise, we inspect corrections from aspherical potentials, non-
constant and anisotropic velocity dispersions. Our analysis reveals
that equilibrium is valid for stars and gas above a stellar mass of M�

∼ 109.5 M�, the threshold mass for long-lived discs associated with
infrequent merger-driven spin flips (Dekel et al. 2020a), compaction
events (Zolotov et al. 2015; Tomassetti et al. 2016; Tacchella et al.
2016a,b; Dekel et al. 2020b), and less effective supernova feedback
(Dekel & Silk 1986; Ceverino, Primack & Dekel 2015; Dekel et al.
2019b). The equilibrium is typically valid out to ∼5Re. We separately
analysed the bulge component, the disc component, and the two
components together. For each component, we provide functional
fits for α as a function of mass and radius to enable measurements
of the dynamical mass Mdyn from stellar and gas kinematics. When
only the line-of-sight velocity dispersion σ l within Re is available, we
provide fitting functions for the virial factor K, which was defined as

K = GMdyn

Reσ
2
l

, (48)

as a function of various observables. A summary of our results is as
follows:

(i) For high-mass systems with M� > 109.5M�, the stars are in fair
Jeans equilibrium. We find the typical value to be α � 2.6 for the stars
at the effective radius. The effect of a non-constant velocity disper-
sion (γ ∼ 0.3) is counteracted by the effect of a non-spherical poten-
tial (�Q ∼ −0.3), while the anisotropy has a negligible effect (β � 0).

(ii) For the gas, we find that hydrostatic equilibrium is valid above
a similar mass threshold with a typical value of α � 1. We find that
the corrections from anisotropic velocity dispersions (β � 0.5) as
well as contributions from non-spherical potentials and non-constant
velocity dispersion (γ ∼ −0.2, �Q ∼ −0.5) are not negligible.

MNRAS 503, 5238–5253 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/4/5238/6179857 by guest on 10 April 2024



Evaluating galaxy dynamical masses 5251

(iii) For galaxies below the mass threshold, we find small but sys-
tematic deviations from Jeans and hydrostatic equilibrium. However,
these deviations are sufficiently small to allow crude estimates of the
dynamical mass.

(iv) For massive galaxies, the equilibrium is valid up to radii of
∼5Re where α increases from � 2.5 below Re, stars to � 3.5 at 5Re, stars

for the stars, and from � 1 below Re, gas to � 4 at 5Re, gas for the
gas.

(v) We find large deviations from the predictions for self-
gravitating exponential discs. By analysing the force exerted by each
component in the vertical direction at a distance z = −Hd from
the disc plane, we learned that the contribution from the spheroidal
components (DM and bulge stars) dominate over the contribution
from the disc component (gas and disc stars) by a factor larger than
2 at R < Re, gas, and by an even larger factor at large radii.

(vi) We provided α as a function of Sérsic index. A simple
estimator for the theoretical predictions is given by α(n) = a/n +
b, where we provide a, b at various radii. For an exponential disc,
α(n = 1) = 2 at the effective radius Re. For a de Vaucoleurs profile,
α(n = 4) � 2.7 at Re.

(vii) When only an estimate of the line-of-sight velocity dispersion
σ l within Re is available, we use the demonstrated validity of
hydrostatic and Jeans equilibrium and provide the virial factor K
(equations 36 and 48) for different inclinations and as a function of ei-
ther M�, n, or vφ /σ r. For the stars, K varies from 4.5 to 7.5 from edge-
on to face-on views, respectively. For the gas, it varies from 4.5 to 30.

(viii) For the stars, the standard value of K = 5 is valid in the
simulations for values averaged over inclinations, but only for n > 2
and 0.25 < vφ /σ r < 1.5. Similarly, for the gas, we find that K = 5
is only valid for values averaged over inclinations with n > 1.5 and
vφ /σ r < 2, namely for compact and thick gas discs.
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A P P E N D I X A : TH E V E L A C O S M O L O G I C A L
SI MULATI ONS

We base our analysis on cosmological zoom-in hydro-cosmological
simulations. We analyse the VELA simulation suite (Ceverino et al.
2014; Zolotov et al. 2015), which consists of 34 simulated galaxies
produced with the Adaptive Refinement Tree (ART) code (Kravtsov
et al. 1997; Ceverino & Klypin 2009). In this Appendix, we give an
overview of the key aspects of the simulations and their limitations.
Most of the galaxies reach a redshift of z = 1. The analysis is done in
steps of scale factor �a = 0.01, which corresponds to �t � 150 Myr
at redshift z = 2.

The ART code uses high-resolution algorithms to calculate grav-
itational forces for N-body systems and solves the equations of
hydrodynamics on a grid. The grid has a regular Cartesian structure
and is split into smaller cells in dense regions.

First, the initial conditions for the high-resolution hydrodynamical
run are generated in low-resolution, N-body DM-only simulations.
Haloes are selected based on their virial masses. Haloes with
major mergers at z = 1 were excluded, which may affect the
resulting galaxies to be more disc-dominated. The range of the

Table A1. Relevant global properties of the VELA galaxies.

Properties of the VELA galaxies
Galaxy Mv Ms Mg SFR Re, stars Rd Hd vφ σ r e f afin nbulge re, in B/T

(1012M�) (1010M�) (1010M�) (M� yr−1) (kpc) (kpc) (kpc) (km s−1) (km s−1) (kpc)

01 0.16 0.20 0.14 2.64 0.93 5.15 2.57 66.0 50.3 0.72 0.97 0.50 2.26 0.37 0.44
02 0.13 0.16 0.12 1.43 1.81 6.37 3.57 71.6 39.1 0.81 0.98 0.50 2.58 0.81 0.50
03 0.14 0.38 0.08 3.67 1.41 5.21 2.34 78.3 59.7 0.75 0.96 0.50 2.87 2.39 0.49
04 0.12 0.08 0.08 0.45 1.73 5.71 2.79 23.3 54.3 0.96 0.88 0.50 2.38 0.56 0.49
05 0.07 0.07 0.05 0.38 1.81 5.36 1.98 60.4 32.8 0.94 0.75 0.50 1.18 0.66 0.51
06 0.55 2.14 0.33 20.60 1.05 2.53 0.42 221.1 48.1 0.56 1.00 0.37 4.44 1.03 0.50
07 0.90 5.75 0.79 18.13 2.85 12.59 2.06 285.5 71.4 0.85 1.00 0.54 8.15 0.95 0.38
08 0.28 0.35 0.15 5.70 0.74 4.03 1.53 91.6 48.5 0.80 0.96 0.57 6.69 0.39 0.50
09 0.27 1.03 0.29 3.57 1.74 7.34 2.12 152.9 36.0 0.99 0.85 0.40 4.37 0.28 0.55
10 0.13 0.60 0.13 3.20 0.46 4.51 1.19 137.1 40.9 0.50 0.99 0.56 7.50 0.34 0.48
11 0.27 0.76 0.33 8.94 2.14 8.34 5.08 121.3 71.1 0.90 0.80 0.46 - 2.90 0.44
12 0.27 1.95 0.20 2.70 1.13 6.53 1.72 181.2 43.7 0.97 0.78 0.44 3.81 0.21 0.50
13 0.31 0.57 0.35 4.48 2.48 9.74 4.75 131.7 41.3 0.97 0.88 0.40 3.12 0.42 0.41
14 0.36 1.26 0.44 23.31 0.32 1.10 0.14 213.9 82.8 0.43 0.98 0.41 5.12 0.22 0.46
15 0.12 0.51 0.08 1.35 1.07 6.26 1.08 110.2 37.9 0.80 0.98 0.56 3.80 0.15 0.47
16 0.50 4.09 0.50 18.46 0.61 6.05 0.99 269.4 104.8 0.37 0.98 0.24 2.00 0.25 0.44
17 1.13 8.48 1.11 61.37 1.36 7.70 1.10 288.6 180.6 0.43 0.99 0.31 3.35 0.44 0.48
19 0.88 4.49 0.57 40.46 1.22 1.55 0.12 257.2 91.9 0.70 0.99 0.29 1.38 0.35 0.34
20 0.53 3.59 0.35 5.55 1.72 9.57 2.75 235.0 62.0 0.78 1.00 0.44 1.76 0.56 0.38
21 0.62 4.05 0.43 7.89 1.73 9.48 1.18 261.6 42.9 0.52 1.00 0.50 2.60 1.31 0.29
22 0.49 4.40 0.25 12.00 1.31 4.70 0.40 285.6 50.3 0.48 1.00 0.50 4.42 1.34 0.50
23 0.15 0.76 0.13 3.06 1.16 6.28 1.54 133.0 49.2 0.78 0.99 0.50 4.43 0.80 0.50
24 0.28 0.88 0.25 3.88 1.68 7.29 1.95 131.5 42.0 0.99 0.97 0.48 4.58 1.48 0.50
25 0.22 0.69 0.08 2.29 0.73 5.70 0.82 93.9 71.3 0.80 0.99 0.50 3.19 0.99 0.50
26 0.36 1.58 0.26 9.36 0.74 5.42 1.30 179.6 65.0 0.74 1.00 0.50 3.84 1.35 0.36
27 0.33 0.71 0.29 6.10 1.98 9.16 4.97 122.8 60.4 0.25 0.98 0.50 3.91 0.85 0.35
28 0.20 0.18 0.21 5.54 2.32 5.66 2.97 37.3 84.6 0.92 0.63 0.50 5.39 0.99 0.48
29 0.53 2.00 0.49 11.83 1.46 8.50 1.41 195.2 77.7 0.93 0.27 0.50 4.47 2.50 0.45
30 0.31 1.57 0.24 2.97 1.43 9.32 1.67 192.1 37.3 0.68 1.00 0.34 3.56 0.76 0.41
31 0.23 0.78 0.13 15.26 0.43 4.19 0.96 195.4 48.1 0.82 0.99 0.19 3.19 0.28 0.52
32 0.59 2.66 0.43 14.86 2.58 4.98 1.06 195.4 56.4 0.84 1.00 0.33 1.31 0.19 0.47
33 0.83 4.81 0.44 32.68 1.23 4.59 0.88 262.7 114.2 0.49 0.95 0.39 3.14 0.49 0.50
34 0.52 1.57 0.44 14.47 1.84 5.29 1.87 156.9 70.8 0.29 1.00 0.35 7.88 1.06 0.50
35 0.23 0.56 0.25 22.93 0.33 1.13 0.30 204.4 40.4 – – 0.22 2.48 0.18 0.58

Notes. The quantities are quoted at z = 2 (a = 0.33) or at the final time-step afin when it is <0.33. Mv is the total virial mass. The following four quantities are measured
within 0.1Rv: Ms is the stellar mass, Mg is the gas mass, SFR is the star formation rate, and Re, stars is the half-stellar-mass radius. The disc outer cylindrical volume, as
defined in Mandelker et al. (2014), is given by Rd and Hd, the disc radius and half-height, respectively, that contain 85 per cent of the gas mass within 0.15Rv. vφ and σ r

are the rotation velocity and the radial velocity dispersion of the gas, respectively. e and f are the shape parameters of the gas distribution, representing the ‘elongation’ and
‘flattening’ as defined in Tomassetti et al. (2016). afin is the expansion factor at the last output. For the final snapshot, the following three quantities are listed: nbulge is the
Sérsic index of the bulge, re, in is the effective radius of the bulge, and B/T is the bulge-to-total mass ratio.
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selected haloes for the hydrodynamical run was selected to be
Mvir = (2 × 1011–2 × 1012) M�; Ceverino et al. 2014; Zolotov
et al. 2015), where the virial mass is the total mass in a sphere
of radius Rvir chosen such that it encompasses an overdensity of
�(a) � (18π2 − 82��(a) − 39��(a)2)/�m(a); Bryan & Norman
1998; Dekel & Birnboim 2006), which is an approximation for a flat
cosmological model with ��(a) = 1 − �m(a).

After gas was inserted in the initial conditions, the galaxies
have been evolved in an hydrodynamical run using additional
subgrid physics on an adaptive co-moving mesh. The best physical
resolution is 17–35 pc at all times, which is achieved at densities of
∼ 10−4–103 cm−3. The force resolution is two cells. DM particles
have a mass of 8.3 × 104 M� and stars have a mass of 103 M�.
Refinement to a higher level of resolution is done if a cell contains a
mass of DM and stellar particles larger than 2.6 × 105 M� or if the
gas mass is higher than 1.5 × 106 M�.

Additionally, the code contains a set of subgrid physics models
that describe many relevant processes of galaxy formation that are
not directly calculable because of the limited resolution (Ceverino
& Klypin 2009; Ceverino, Dekel & Bournaud 2010; Ceverino et al.
2012, 2014; Mandelker et al. 2014; Zolotov et al. 2015). Those
processes include gas and metal cooling, photoionization heating,
stochastic star formation, stellar feedback, metal enrichment, stellar
mass-loss, thermal feedback from supernovae, stellar winds, gas
recycling, and an implementation of feedback from radiation pressure
as described in Ceverino et al. (2014).

A P P E N D I X B: TH E M I G A C O S M O L O G I C A L
SIMULATION S

The MIGA suite consists of nine simulated galaxies that were per-
formed with the AMR code RAMSES (Teyssier 2002). The simulation
methods are described in detail in Kretschmer & Teyssier (2020) and
Kretschmer et al. (2020). We analyse 676 snapshots in the redshift
range z = 0–5.

From an N-body simulation with 5123 DM particles in a periodic
box of size 25 h−1Mpc, haloes at z = 0 with virial masses in
the range Mvir = (0.75–1.5) × 1012M� were selected, where the
virial radius was calculated using a spherical overdensity according
to the definition of Bryan & Norman (1998). Additionally, we
required that the haloes were in relative isolation at z = 0 and
without major mergers events after z = 1. We then performed
zoom-in hydro-cosmological simulations where refinement levels
were progressively released to enforce a quasi-constant physical
resolution, such that the smallest cells have sizes �xmin = 55 pc.
The mass of DM particles is mdm = 2.0 × 105 M� and the initial
baryonic mass is mbar = 2.9 × 104 M�.

Star formation is modelled using a Schmidt law. We use a novel
approach for the star formation efficiency per free-fall time εff

where εff is based on the turbulent state of the gas. This allows
for varying efficiencies ranging from 0 to 100 per cent, different
from traditional models where εff = 1 per cent is set to a constant
value. Furthermore, in addition to thermal energy, momentum
from supernova explosions is also injected into the surrounding
gas if the cooling radius is unresolved by the grid. Individual
supernovae explosions are resolved in time, with each star par-
ticle triggering multiple supernovae explosion, spread randomly
between 3 and 20 Myr after the birth of the star particle. Ad-
ditionally, RAMSES contains a set of physics models the describe
gas cooling and heating, metal cooling, heating by the UV back-
ground, stellar winds, photoionization, stellar mass-loss, and metal
enrichment.

A P P E N D I X C : TH E N I H AO C O S M O L O G I C A L
SI MULATI ONS

The NIHAO suite (Wang et al. 2015) consists of ∼90 cosmolog-
ical zoom-in hydrodynamical simulations that were ran with the
smoothed particle hydrodynamics (SPH) code GASOLINE2 (Wadsley,
Keller & Quinn 2017).

The NIHAO sample consists of halo masses in the range of
log Mvir/M� = 9.5–12.3 chosen to be in isolation at z = 0. In the
selection of the haloes, merging histories, concentrations, and spin
parameters were not taken into account. The particle mass and force
softening was chosen such that the mass profiles at 1 per cent of the
virial radius are well resolved. The code contains a set of subgrid
physics models that describe the processes of turbulent mixing of
metals and thermal energy (Wadsley, Veeravalli & Couchman 2008),
metal cooling, heating by the UV background (Shen, Wadsley &
Stinson 2010) and ionizing feedback from massive stars (Stinson
et al. 2013a).

Stellar feedback is modelled using the blast-wave formalism
(Stinson et al. 2006) where cooling is delayed for 30 Myr to prevent
spurious cooling. Additionally, stars inject thermal energy and metals
into the surrounding ISM. Star formation is modelled according to the
Kennicutt–Schmidt relation with a constant star formation efficiency
per free-fall time εff = 0.1 if the gas temperature is below T =
15 000 K and the gas density is above n = 10.3 cm−3 (Stinson et al.
2013b). The resulting galaxies range from dwarfs to Milky-Way-
sized galaxies and reproduce a range of observational quantities.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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