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ABSTRACT
Theoretical models are vital for exploring the galaxy merger process, which plays a crucial role in the evolution of galaxies. Recent
advances in modelling have placed tight constraints on the build-up of stellar material in galaxies across cosmic time. Despite
these successes, extracting the merger rates from observable data remains a challenge. Differences in modelling techniques,
combined with limited observational data, drive conflicting conclusions on the merging time-scales of close pairs. We employ an
empirical model for galaxy formation that links galaxy properties to the growth of simulated dark matter haloes, along with mock
light-cone galaxy catalogues, to probe the dependences of pair merging probabilities and merging time-scales. In this work,
we demonstrate that the pair merging probabilities are best described by a logistic function and that mean merging time-scales
can be well approximated by a linear relation in the projected separation and line of sight velocity difference in observed pairs.
Together, our fitting formulas can accurately predict merger rates from galaxy pairs to at least z ∼ 4 under a wide variety of pair
selection criteria. Additionally, we show that some commonly used pair selection criteria may not represent a suitable sample of
galaxies to reproduce underlying merger rates. Finally, we conclude from our analysis that observation time-scales are primarily
driven by dynamics and are not strongly impacted by the star formation properties of the component galaxies.
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1 IN T RO D U C T I O N

Galaxy mergers play a crucial role in the build-up of stellar material
under the current hierarchical view of galaxy formation. The galaxy
merger process is responsible for not only stellar mass growth, but
is also invoked to explain many observed phenomena, such as AGN
(Choi et al. 2018; Steinborn et al. 2018; Gao et al. 2020; Marian et al.
2020; Sharma et al. 2021), stellar streams, disturbed morphologies
(Conselice et al. 2003; Lotz et al. 2008, 2010; Wen & Zheng 2016;
Martin et al. 2018; Bluck et al. 2019; Mantha et al. 2019; Yoon & Lim
2020), and quenching (Khalatyan et al. 2008; Jesseit et al. 2009; Bois
et al. 2011; Moody et al. 2014; Naab et al. 2014). Due to the large
time-scales involved in galaxy evolution, large-volume simulations
are necessary to understand vital aspects of galaxy formation such
as the galaxy merger rate. In order to validate these theoretical
predictions, we require theoretical methods to determine these key
quantities in an observational context.

When extracting the merger rate of galaxies from observations, the
so-called observation time-scale Tobs is of central importance. This
parameter specifies how long a galaxy pair will remain observable
under some specified selection criteria. Despite the importance of this
value, theoretical models have not yet converged on how this quantity
should scale with redshift, stellar mass, mass ratio, projected sepa-
ration, or redshift proximity (Kitzbichler & White 2007; Lotz et al.
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2008, 2011; Jiang, Jing & Han 2014; Snyder et al. 2017; O’Leary et al.
2021). Efforts to constrain this parameter are hampered by lack of
consensus regarding which pair selection criteria should be used, as
well as observable limitations that force various groups to adopt dif-
ferent stellar mass, and mass ratio constraints for their analysis (Lin
et al. 2008; Bundy et al. 2009; Man, Zirm & Toft 2016; Ventou et al.
2017; Mantha et al. 2018; Duncan et al. 2019; Ventou et al. 2019).

Large volume cosmological simulations are a useful tool for prob-
ing galaxy growth as they offer a robust statistical sample of galaxies
across large dynamic ranges. Different models for galaxy formation
offer unique strengths for probing various aspects of the galaxy
formation. Hydrodynamical simulations are well equipped to explore
the impact of baryons on the merging process and build-up of stellar
material (Dubois et al. 2014; Hirschmann et al. 2014; Vogelsberger
et al. 2014; Schaye et al. 2015; Hopkins et al. 2018; Pillepich et al.
2018). However, hydrodynamical simulations are computationally
expensive, limiting the volumes that can be simulated, and are subject
to often uncertain subgrid models that can obscure the salient aspects
of the problem at hand. Alternatively, Semi-analytic models (SAMs)
offer a more computationally efficient method where galaxies are
populated into dark matter haloes according to analytic prescriptions
(Bower et al. 2006; Somerville et al. 2008; Benson 2012; Henriques
et al. 2015). Both these models can struggle to reproduce a large
number of observations simultaneously due to the cost of exploring
their large subgrid parameter space.

Empirical models of galaxy formation offer a compelling alter-
native to hydrodynamical sims and SAMs, while providing several
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distinct advantages (Conroy & Wechsler 2009; Moster et al. 2010;
Moster, Naab & White 2013, 2018; Behroozi, Wechsler & Conroy
2013c; Behroozi et al. 2019; Moster, Naab & White 2020). These
models avoid baryonic and subgrid pitfalls by constructing simplified
formulas to relate galaxies to the properties of their host dark matter
haloes. Model parameters are then constrained directly by observable
data. This approach results in mock galaxy catalogues that meet
the relevant observables by design. Modern tree-based methods can
additionally provide a self-consistent framework for galaxy growth,
where scaling relations can be constrained out to high redshift.
Moreover, the simplicity and efficiency of these models allows
for a thorough exploration of parameter space. A more thorough
comparison of our empirical approach to ab-initio models can be
found in Moster et al. (2018).

The intent of this work is to further explore the observation
time-scales introduced in O’Leary et al. (2021) to determine more
precisely what drives this quantity. To that end we employ the
empirical model EMERGE, as we can readily translate pair fractions
into rates as both can easily be extracted. These can be used to place
tighter constraints on Tobs, which can be used to determine rates
from observed pairs. Through this work, we will provide utilities
for observers to translate observed pair fractions into galaxy merger
rates. In this effort, we will answer three key questions concerning
observed merger rates:

(i) What is the probability that two galaxies observed as a close
pair will merge by z = 0 and what is that dependence on radial
projected separation�r, line of sight velocity difference �v and z?

(ii) On what time-scale will an observed pair merge, and for how
long is that pair observable given the pair selection criteria?

(iii) What determines pair observation time-scales?

This paper is organised as follows: In Section 2, we will outline
the basic functionality of the empirical model EMERGE, and describe
the underlying N-body simulation. In Section 3, we discuss how
we construct the mock catalogues that we use in the course of this
analysis. Our pair selection criteria and approach to fitting functions
are described in Section 4, with fitting formulas for pair merging
probability and merging time-scales explain in Sections 4.1 and 4.2,
respectively. In Section 5, we show that the results of Section 4 can be
used to reconstruct the merger rates shown in O’Leary et al. (2021)
when applied to mock catalogues. Finally, in Section 6, we discuss
caveats of our analysis and summarise our key conclusions.

2 DARK MATTER SIMULATIONS AND
E M E R G E

Our analysis relies on producing galaxy merger trees encompassing
a large dynamic range, occupying an appropriately large cosmic
volume. We employ the empirical model EMERGE to populate dark
matter haloes with galaxies based on individual halo growth histories.
The details of this model have been thoroughly discussed in previous
works utilising this code (Moster et al. 2018, 2020; O’Leary et al.
2021). In this section, we will briefly summarise the aspects of the
model most relevant to this work.

2.1 The simulation

We utilize a cosmological dark matter only N-body simulation in
a periodic box with side lengths of 200 Mpc. This simulation
adopts Planck �CDM cosmology (Planck Collaboration 2016)
where �m = 0.3070, �� = 0.6930, �b = 0.0485, where H0 =
67.77 km s−1 Mpc−1, ns = 0.9677, and σ 8 = 0.8149. The initial

conditions for this simulation were generated using MUSIC (Hahn
& Abel 2011) with a power spectrum obtained from CAMB (Lewis,
Challinor & Lasenby 2000). The simulation contains 10243 dark
matter particles with particle mass 2.92 × 108 M�. The simulation
was run from z = 63 to 0 using the Tree-PM code GADGET3
(Springel 2005). In total, 94 snapshots were created evenly spaced in
scale factor (�a = 0.01). Dark matter haloes are identified in each
simulation snapshot using the phase space halo finder, ROCKSTAR

(Behroozi, Wechsler & Wu 2013a). Halo merger trees are constructed
using CONSISTENTTREES (Behroozi et al. 2013b), providing detailed
evolution of physical halo properties across time-steps.

2.2 Emerge in a nutshell

EMERGE (Moster et al. 2018) takes halo–halo merger trees as an
input and populates each halo with a galaxy by linking the galaxy
star formation rate (SFR) to the halo growth rate,

dm∗(M, z)

dt
= dmbary

dt
ε(M, z) = fbary

dM

dt
ε(M, z), (1)

where fb ≡ �b/�m is the baryon fraction, Ṁ is the halo growth,
ṁbary(M, z) is the baryonic growth rate that describes how much
baryonic material is becoming available, ε(M, z) is the instantaneous
conversion efficiency, which determines how efficiently this material
can be converted into stars, and ṁ∗ is the SFR.

The conversion efficiency is the core of the model, capturing
halo mass and redshift-dependent mechanisms that regulate star
formation,

ε(M, z) = 2 εN

[(
M

M1

)−β

+
(

M

M1

)γ
]−1

, (2)

where the normalization εN, the characteristic mass M1, and the low-
and high-mass slopes β and γ are the free parameters used for the
fitting. Furthermore, the model parameters are linearly dependent on
the scale factor:

log10 M1(z) = M0 + Mz

z

z + 1
, (3)

εN = ε0 + εz

z

z + 1
, (4)

β(z) = β0 + βz

z

z + 1
, (5)

γ (z) = γ0. (6)

These parameters are allowed to vary freely within their boundary
conditions in order to produce a fit in agreement with observation.
Observables are chosen such that model parameters can be isolated
and independently constrained, thus avoiding degeneracy. For a
complete description of the observations used to constrain the model
as well as the fitting procedure, we refer the reader to Moster et al.
(2018, 2020) and O’Leary et al. (2021). The model parameters used
in this work are repeated in Table 1 for completeness. Next we will
cover two specific aspects of the model that directly relate to the
results show in this work.

2.2.1 Galaxy merging

Merging in this model occurs between galaxies residing at the centre
of a resolved N-body halo and so-called orphan galaxies. Orphan
galaxies are those systems whose host halo has fallen below the
resolution limit of the halo finder due to real mass stripping in
the simulation. Rather than remove/merge these systems from the

MNRAS 503, 5646–5657 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/4/5646/6206839 by guest on 23 April 2024



5648 J. A. O’Leary, B. P. Moster and E. Krämer

Table 1. The best-fitting model parameters used for this work.

Parameter Best fit Upper 1σ Lower 1σ

M0 11.348 29 +0.039 25 − 0.041 53
Mz 0.654 238 +0.080 05 − 0.072 42
ε0 0.009 010 +0.006 57 − 0.004 51
εz 0.596 666 +0.028 80 − 0.023 66
β0 3.094 621 +0.152 51 − 0.149 64
βz − 2.019 841 +0.222 06 − 0.209 21
γ 0 1.107 304 +0.058 80 − 0.052 80

fesc 0.562 183 +0.028 40 − 0.031 60
fs 0.004 015 +0.002 09 − 0.001 41
τ 0 4.461 039 +0.425 11 − 0.401 87
τ s 0.346 817 +0.045 01 − 0.042 65

simulation when their halo is lost, we continue to track these galaxies
within the empirical model using approximate formulas to update
their halo mass and position within their host halo system.

The orbits of these orphan galaxies will continue to decay and
we merge them with their host system according to some dynamical
friction formula. In O’Leary et al. (2021), we showed that our merger
rates are not strongly driven by our choice of dynamical friction
formulation, or our treatment of orphans. This formulation does
however play a role in how we update the position of orphan galaxies
in emerge, and is thus relevant to the discussion of pair fractions, and
their merging time-scales.

When a galaxy first becomes an orphan, a dynamical friction clock
is set. We use its last known orbital parameters of the orphan’s halo
to compute the dynamical friction time. We employ the dynamical
friction formulation specified by Boylan-Kolchin, Ma & Quataert
(2008) to control orphan orbital decay,

tdf = 0.0216H (z)−1 (M0/M1)2

ln(1 + M0/M1)
exp(1.9η)

(
r1

rvir

)2

, (7)

where H(z) is the Hubble parameter, rvir is the virial radius of the
main halo (M0), r1 is the radial position of the subhalo (M1) with
with respect to the centre of the main halo, and η is a measure
for the orbital circularity of the subhalo. This formulation is tuned
to high-resolution idealized hydrodynamical simulations, and thus
includes mass-loss due tidal effects and baryonic processes in the
merging time-scale. When the systems are finally merged, stellar
mass is added to the descendant system as mdesc = mmain + morphan(1
− fesc), where mdesc is stellar mass of the descendant galaxy, mmain is
the stellar mass of the main progenitor galaxy, morphan is the orphan
galaxy stellar mass, and fesc is the fraction of the orphan stellar mass
that will be distributed to the ICM.

2.2.2 Galaxy clustering

The focus of this work involves galaxies in close pairs. The galaxy
pair fraction is related to, but distinct from, the projected galaxy
correlation function (wp), which is one of the observations used to
constrain EMERGE. Galaxy clustering in this model is largely driven
by our implementation for satellite stripping. The stripping model in
EMERGE is a simple halo mass threshold,

M < fs Mpeak, (8)

where M is the current halo mass, Mpeak is the peak halo mass, and
fs is the stripping fraction. In the case of orphans, we estimate their
current halo mass by assuming mass is stripped at a constant rate
defined between the time of peak mass and the time the halo was

lost in the simulation (see section 2.5 of O’Leary et al. 2021). As a
subhalo orbits within its host halo, it will gradually lose mass due
to tidal stripping. When the halo has fallen below some fraction of
Mpeak the galaxy residing in that halo will be stripped and its stellar
material distributed to the ICM. The consequence of this formula is
that lower fs will drive stronger clustering at small scales as more
satellites can survive to reach those small separations. Conversely,
larger fs will reduce clustering by stripping galaxies sooner.

Finally, in order to compute clustering, we need to know the
position of each galaxy in the simulation volume, including orphans.
For galaxies in resolved haloes, we use the position of the N-body
halo directly to compute clustering. In the case of orphans, positions
are approximated by placing the orphan galaxy randomly on a sphere
of radius

r = r0

√
1 − �t/tdf (9)

centred on the main halo. Here r0 is the radial position of the orphan
when its halo was last resolved and �t is the time elapsed since the
subhalo was last resolved (Binney & Tremaine 1987).

3 FRO M SI MULATI ON TO O BSERVATI ON

Simulations are a tool needed to interpret observed data. The galaxy–
galaxy merger rate is a particularly difficult quantity to derive from
the relatively static view of the the universe we see in galaxy surveys.
As we cannot view the complete merging of two galaxies in real
time, a proxy is required as stand in. Obvious physical tracers of
a recent merger such as disturbed morphologies present one option
for deducing the galaxy merger rate. Methods invoking quantitative
morphology such as G − M20 or asymmetry are not equally sensitive
to all merger mass ratios. Furthermore, these morphological methods
are sensitive to total mass, gas properties, orbital parameters, merger
stage, and viewing angles (Abraham, van den Bergh & Nair 2003;
Conselice et al. 2003; Scarlata et al. 2007; Lotz et al. 2008, 2011).
These additional difficulties present a greater barrier to identifying
mergers and determining a cosmological merger rate (Kampczyk
et al. 2007; Scarlata et al. 2007; López-Sanjuan et al. 2009; Shi et al.
2009; Kartaltepe et al. 2010; Abruzzo et al. 2018; Nevin et al. 2019).

One common observational method for deriving the galaxy merger
rate is through the analysis of galaxies in close pairs. The foundation
of this approach is simple, as galaxies found in close proximity are
expected to merge within some finite predictable time-scale. Three
key questions must be answered to utilize this method: How should
we select galaxy pairs, do those two pairs merge, and on what time-
scale does an observed pair merge?

3.1 Light-cone construction

Throughout this work, we will make use of mock light-cone galaxy
catalogues. Working with light cones offers a few advantages to
working with snapshot catalogues directly. The first reason is that
these catalogues provide a more natural comparison between simula-
tion and observation. In a snapshot catalogue, all galaxies exist at the
same cosmological stage of evolution. In contrast, real observations
have to contend with galaxies samples that span often large redshift
ranges encompassing galaxies at various stages of evolution. Our
catalogues are constructed in the same way, such that a galaxy is
placed at its cosmologically relevant stage of evolution according
to the comoving distance from the observer. Another advantage is
that these catalogues inherently adopt the same constraints seen in
observation due to limited viewing angles. While this does limit the
sample size we can use for analysis, it provides a more appropriate
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environment to test how the models we develop and the conclusions
drawn are impacted by these real limitations.

Our cone geometry is set using the method described by Kitzbich-
ler & White (2007). In this method, light-cone geometry is defined
by two integers m and n. The line-of-sight vector, u3, is defined by
a line drawn from the origin though the point (Lbox/m, Lbox/n, Lbox),
where Lbox is the comoving side length of our simulation volume
(200 Mpc). The second vector u1 is defined to be orthogonal to
u3 and the coordinate axis corresponding to the smaller value of
m and n. The final vector u2 is defined to be orthogonal to u3 and
u1, where all three taken together form a right-handed coordinate
system. The observation area of he light cone is then covered
by (m2n)−1 × (mn2)−1 rad2, which is centred along u3 with edges
aligned along u1 and u2.

When galaxies are placed into light cones, we draw from snapshots
according to

Di + Di−1

2
≤ Dgal <

Di + Di+1

2
, (10)

where Di is the cosmological distance to simulation snapshot with
index i, and Dgal is the comoving distance to the galaxy within
the light-cone. The ‘cosmological’ redshift of each galaxy is then
set by that comoving distance from the observer. Additionally, we
apply redshift space distortions to each catalogue galaxy to obtain
its observed redshift zobs.

We construct a series of light cones intended to reproduce the
observation area of the five CANDLES (Koekemoer et al. 2011)
survey fields. These fields serve as the test bed for applying our
fitting formula. In addition to these mock catalogues, we construct an
additional ‘full width’ light-cone catalogue. This data set has galaxies
placed according to equation (10) just as in the standard light-cone
catalogues. However, the line-of-sight vector u3 is aligned with the
coordinate z-axis, and no view restricting cone geometry is applied.
This results in a catalogue with galaxies occupying a rectangular
volume and creates a ‘smoothly’ evolving galaxy catalogue without
the restrictions due to limited viewing angle, which is helpful when
fitting data at low redshift.

3.2 Identifying close pairs

In this work pairs are identified and defined in terms of the following:

m1: The stellar mass of the main (more massive) galaxy in each
pair.

μ: The stellar mass ratio taken with respect to the two galaxies
forming the pair, μ ≡ m1/m2. Here m2 is the minor (less massive)
galaxy in the pair. The mass ratio is defined such that μ ≥ 1.

z: Pair redshift measured at the observed redshift of the main
galaxy.

�r : The projected radial separation between the two galaxies in
pkpc.

�v : The line-of-sight velocity difference between the two
galaxies, as measured by the difference in their respective zobs

In this work, we provide fits for a variety of mass and mass
ratio combinations. For simplicity of conveying key concepts and
conclusions, we use a single reference case when displaying results,
which refers to pairs with log10(m1) ≥ 10.3, �v ≤ 500 km s−1, and
1 ≤ μ < 4. This selection criteria is used for ease of comparison
with O’Leary et al. (2021). In Fig. 1, we compare the pair fractions
determined from the data sets described in Section 3.1 with the pair
fractions of O’Leary et al. (2021), which computed the pairs on a
snapshot by snapshot basis. With this, we are able to see that our

Figure 1. The pair fraction evolution in our simulated galaxy catalogues for
pairs with log10(m1/M�) ≥ 10.3, 5 ≤�r < 50 kpc projected separation, �v ≤
500 km s−1, and 1 ≤ μ < 4. The solid black line indicates the pair fraction
computed at each simulation snapshot as in O’Leary et al. (2021). Coloured
lines show the pair fraction evolution with our mock light cones. Poisson error
in the number count of pairs is reflected in the error bars for the mock light
cones, and the grey shaded region for the results of O’Leary et al. (2021).
Here we do not place any redshift restraints on the light cone catalogues that
would more closely resemble the observables limits of the noted surveys.

underlying results agree, and can get a good idea over the amount
of uncertainty in the pair fraction under more realistic observable
constraints. A more complete overview of how pairs are distributed
in our simulation volume is shown in Fig. 2.

4 M E R G I N G P RO BA B I L I T I E S A N D
TIME-SCALES

Once we have a handle on the pair fraction, we can determine the
galaxy merger rates: For a given mass range, observable aperture,
and redshift proximity criteria,, we compute the pair fraction and
divide that value by the average time that pairs under that selection
criteria will be observable. The galaxy rate can then be expressed as

R = Cmerge
fp

〈Tobs〉 , (11)

where 〈Tobs〉 is the average observation time-scale. The term Cmerge

is an optional correction factor to account for pairs that do not merge
before z = 0 or at all. In general, these two quantities are dependent
on the pair selection criteria imposed by the observer.

The goal of this work is to characterise these values, and provide
meaningful formulations that reduce the need to establish fitting
functions for each specific observation. In the theoretical framework,
there are a few ways we can do this. One approach is to use
idealised galaxy merger simulations, making mock pair observations,
and tracking these merging pairs to final coalescence (Lotz et al.
2011). Alternatively, one could employ some self-consistent model
for galaxy formation in large volumes, and track pairs identified
in mock observations (Snyder et al. 2017). Previous efforts have
focused on setting a fixed pair selection criteria, and finding some
fitting function for the observation time-scale under that criteria. The
issue with that approach is that those fitting functions cannot be easily
applied to pairs identified under some other criteria.

In the next two sections, we provide fitting functions for both
Cmerge and Tmerge. We will describe the process we use to determine
these formulas that can describe these values for a range of �r, �v,
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Figure 2. The distribution of pairs for log10(m1) ≥ 10.3 and 1 ≤ μ < 4. Each panel includes pairs where the observed redshift of the primary galaxy falls within
±0.5 of the noted central redshift. The percentages shown correspond to pairs within that redshift bin, not percentages to the entire catalogue of pairs.

Figure 3. The per cent of pairs that merge by z = 0 for pairs with log10(m1) ≥ 10.3 with 1 ≤ μ < 4. Each panel includes pairs where the observed redshift of
the primary galaxy falls within ±0.5 of the noted central redshift.

and redshift commonly used in the literature. In both cases, parameter
space is explored and best-fitting values determined using the affine
invariant ensemble sampler described in Goodman & Weare (2010)
as implemented in EMCEE (Foreman-Mackey et al. 2013). For each
mass range explored, we fit to three mass ratio intervals 1: 4 (major),
4: 10 (minor), and 1: 10 (all). Throughout, we only included pairs
with �v ≤ 500 km s−1 and �r ≤ 100 kpc.

As an aside, the nature of this problem makes it attractive to deal
with from a machine learning perspective. If our central interest is
determining the observation time-scale of any pair regardless of the
mechanisms driving those time-scales, it would appear on its surface
to be an ideal problem for machine learning algorithms. We tested
this approach using a random forest regressor to predict merging
probabilities and time-scales. In practice, we found there was not
enough information in the observable pair features to meaningfully
predict the desired values on an individual basis, due to information
loss in projected quantities. Other works have had greater success on
this front using more advanced networks (Pfister et al. 2020).

4.1 Merging probability

First, we need to address the merging probability. Traditionally
chance pairs, and pairs that did not have enough time to merge with
in the average time-scale were captured through a correction factor
Cmerge. This correction factor typically takes some value between
0.4 and 1.0. For instance, Lotz et al. (2011) adopt a constant 0.6 for
all scenarios they tested. Other works have chosen to marignalize
over this parameter by including it directly into the Tobs formulation.
This the approach taken in Snyder et al. (2017) as well as in O’Leary
et al. (2021).

Several recent works have adopted a probabilistic approach (Dun-
can et al. 2019; Ventou et al. 2019). In these works each pair is
assigned a weight, based on some observed properties, that the pair
is physically associated and will merge on in the expected time-scale.

Ventou et al. (2019) derived their weighting function through pairs
selected in the Illustris simulation; in their results, they determined
the merger probability could be well described by an exponential
function in both �r and �v with little redshift dependence. Looking
at Fig. 3, we can immediately see a redshift-dependent formulation
is required. Just probing this coarse redshift bins shown in Fig. 3,
we find the probability of merging ranges between ∼0.4 and ∼1.0.
For this selection criteria, our merger probability appears to saturate
near z ≈ 3.5. However it should not be surprising that there is a
redshift dependence to the merger probability. This value is defined
as the probability that two galaxies will merge by z = 0, which
directly implies that a pair at z = 0 would have no chance to merge.
Similarly, if two pairs at high z are, in fact, physically associated,
there is simply more time available where they could merge before
present day. Redshift dependences not withstanding, we found that
the fitting formula of Ventou et al. (2019) can only reasonably fit our
data for z � 1.

After testing several candidate fitting functions, we found that the
merger probability can be well described by a logistic function in
velocity, with redshift and radial dependences (equation 12):

W (�r, �v, z) = exp(b�r)

1 + exp[c0(�v − a)]
,

a = a0(1 + z)az + ar�r,

b = b0 + (1 + z)bz. (12)

In this formulation, the maximum of the curve is set by the term
exp (b�r) where the exponential slope b has a linear dependence on
redshift. The logistic mid-point a was found to have dependences in
both redshift and �r. For this parameter, a linear relation to �r and
a power-law relation to redshift produced the best results. We did
not find that the logistic growth rate c0, varies strongly with either
�r or redshift. Equation (12) reproduces the data best for smaller
�r and �v.
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Table 2. Best-fitting parameters for merging probability (equation 12).

log10(m1/M�) Mass ratio μ a0 ( km s−1) az ar ( km s−1 kpc−1) b0 ( kpc−1) bz ( kpc−1) c0 (s km−1)

1 ≤ μ < 4 41.1+16.8
−27.2 1.20+0.35

−0.35 −1.16+1.31
−1.08 −0.0277+0.0078

−0.0098 0.0049+0.0020
−0.0016 0.0083+0.0013

−0.0016

9.0–10.0 4 ≤ μ < 10 72.5+29.3
−36.1 0.95+0.30

−0.35 −1.43+1.13
−0.98 −0.0248+0.0096

−0.0124 0.0033+0.0026
−0.0021 0.0108+0.0019

−0.0025

1 ≤ μ < 10 57.6+23.6
−31.6 1.06+0.31

−0.35 −1.28+1.15
−0.97 −0.0265+0.0086

−0.0108 0.0040+0.0022
−0.0018 0.0098+0.0016

−0.0020

1 ≤ μ < 4 234+49
−48 0.629+0.167

−0.210 −1.84+1.25
−1.00 −0.0141+0.0056

−0.0065 0.0021+0.0014
−0.0012 0.0084+0.0021

−0.0029

10.0–11.0 4 ≤ μ < 10 197+47
−48 0.665+0.176

−0.221 −2.00+1.18
−0.95 −0.0145+0.0068

−0.0079 0.0019+0.0017
−0.0015 0.0093+0.0022

−0.0029

1 ≤ μ < 10 215+44
−44 0.644+0.153

−0.192 −1.89+1.13
−0.92 −0.0147+0.0057

−0.0067 0.0021+0.0013
−0.0012 0.0089+0.0020

−0.0027

1 ≤ μ < 4 400+120
−217 1.17+0.43

−0.41 −1.58+2.20
−2.08 −0.0141+0.0041

−0.0042 0.0027+0.0011
−0.0011 0.0030+0.0014

−0.0026

11.0–12.0 4 ≤ μ < 10 152+43
−60 1.33+0.36

−0.31 −0.54+2.20
−1.48 −0.0264+0.0062

−0.0067 0.0045+0.0016
−0.0015 0.0050+0.0017

−0.0026

1 ≤ μ < 10 339+110
−211 1.12+0.40

−0.41 −1.33+2.30
−2.02 −0.0170+0.0045

−0.0046 0.0031+0.0011
−0.0011 0.0026+0.0012

−0.0020

1 ≤ μ < 4 238+66
−71 0.467+0.200

−0.248 −2.38+1.47
−1.35 −0.0165+0.0067

−0.0073 0.0029+0.0015
−0.0013 0.0057+0.0012

−0.0017

≥9.5 4 ≤ μ < 10 163+45
−47 0.716+0.196

−0.245 −2.17+1.20
−1.04 −0.0165+0.0081

−0.0092 0.0021+0.0019
−0.0017 0.0086+0.0017

−0.0024

1 ≤ μ < 10 200+55
−59 0.584+0.200

−0.246 −2.18+1.43
−1.23 −0.0170+0.0074

−0.0080 0.0026+0.0016
−0.0015 0.0068+0.0014

−0.0020

1 ≤ μ < 4 262+64
−68 0.494+0.186

−0.230 −2.35+1.46
−1.30 −0.0151+0.0063

−0.0069 0.0025+0.0014
−0.0013 0.0061+0.0013

−0.0020

≥9.7 4 ≤ μ < 10 176+45
−47 0.718+0.184

−0.228 −2.14+1.25
−1.03 −0.0159+0.0074

−0.0085 0.0021+0.0017
−0.0015 0.0085+0.0018

−0.0024

1 ≤ μ < 10 218+55
−58 0.604+0.186

−0.232 −2.27+1.40
−1.21 −0.0153+0.0067

−0.0074 0.0023+0.0015
−0.0014 0.0068+0.0015

−0.0021

1 ≤ μ < 4 282+65
−69 0.592+0.195

−0.237 −2.39+1.51
−1.41 −0.0131+0.0056

−0.0061 0.0021+0.0013
−0.0012 0.0060+0.0014

−0.0023

≥10.0 4 ≤ μ < 10 188+45
−47 0.752+0.184

−0.229 −2.08+1.32
−1.12 −0.0152+0.0068

−0.0077 0.0021+0.0016
−0.0014 0.0082+0.0018

−0.0025

1 ≤ μ < 10 249+55
−57 0.617+0.175

−0.212 −2.41+1.38
−1.23 −0.0140+0.0058

−0.0065 0.0021+0.0013
−0.0012 0.0067+0.0015

−0.0023

1 ≤ μ < 4 289+65
−71 0.71+0.22

−0.27 −2.10+1.65
−1.57 −0.0126+0.0050

−0.0054 0.0020+0.0012
−0.0011 0.0061+0.0017

−0.0027

≥10.3 4 ≤ μ < 10 190+50
−47 −2.17+1.29

−1.44 0.84+0.24
−0.20 −0.0144+0.0072

−0.0064 0.0020+0.0013
−0.0015 0.0074+0.0025

−0.0017

1 ≤ μ < 10 260+58
−62 0.70+0.19

−0.23 −2.52+1.43
−1.40 −0.0126+0.0053

−0.0057 0.0019+0.0012
−0.0011 0.0061+0.0014

−0.0023

1 ≤ μ < 4 295+67
−76 0.813+0.241

−0.315 −1.97+1.75
−1.67 −0.0124+0.0044

−0.0049 0.0021+0.0011
−0.0010 0.0057+0.0017

−0.0028

≥10.5 4 ≤ μ < 10 175+49
−54 0.966+0.253

−0.309 −1.52+1.70
−1.49 −0.0164+0.0065

−0.0074 0.0024+0.0016
−0.0014 0.0071+0.0018

−0.0027

1 ≤ μ < 10 255+62
−67 0.816+0.222

−0.279 −2.04+1.74
−1.65 −0.0133+0.0051

−0.0055 0.0020+0.0012
−0.0011 0.0057+0.0015

−0.0024

1 ≤ μ < 4 321+80
−111 1.04+0.34

−0.42 −1.82+1.98
−1.97 −0.0128+0.0040

−0.0045 0.0023+0.0011
−0.0010 0.0044+0.0016

−0.0027

≥10.8 4 ≤ μ < 10 152+44
−56 1.21+0.33

−0.35 −0.65+2.01
−1.46 −0.0209+0.0061

−0.0068 0.0033+0.0015
−0.0014 0.0061+0.0018

−0.0027

1 ≤ μ < 10 267+72
−93 1.03+0.32

−0.39 −1.53+2.08
−1.90 −0.0149+0.0044

−0.0049 0.0024+0.0011
−0.0010 0.0042+0.0015

−0.0024

1 ≤ μ < 4 400+120
−220 1.16+0.43

−0.41 −1.51+2.22
−2.05 −0.0141+0.0040

−0.0042 0.0028+0.0011
−0.0011 0.0030+0.0014

−0.0027

≥11.0 4 ≤ μ < 10 153+43
−62 1.33+0.36

−0.32 −0.54+2.17
−1.49 −0.0264+0.0062

−0.0068 0.0045+0.0016
−0.0015 0.0050+0.0017

−0.0027

1 ≤ μ < 10 339+112
−209 1.12+0.40

−0.42 −1.29+2.34
−1.98 −0.0169+0.0044

−0.0045 0.0031+0.0011
−0.0011 0.0026+0.0012

−0.0020

Table 2 shows the best-fitting parameters from equation (12) for a
range of primary stellar mass thresholds, and mass ratios. For each
mass range, we fit to major (1 ≤ μ < 4), minor (4 ≤ μ < 10), and
major+minor (1 ≤ μ < 10) pair mass ratios.

4.2 Merging time-scales

The observation time-scales shown in O’Leary et al. (2021) are
derived by mapping the pair fraction directly on to the merger rate
without making any consideration over which pairs actually ended
up merging. There we found that Tobs ∝ (1 + z)−1 provided a
reasonable translation from pair fractions to intrinsic galaxy merger
rates. This is a weaker scaling than the Tobs ∝ (1 + z)−2 proposed
by Snyder et al. (2017), and the Tobs ∝ H(z)−1/3 scaling suggested
by Jiang et al. (2014).

In this work, we identify individual pairs and track them until the
point they finally merge. Here we should highlight that the value
that we are measuring is the merging time-scale, not the observation
time-scale. The observation time-scale tracks how long a pair would

remain in the aperture set by the observer. The observation time-scale
should, in principle, also incorporate information on how long a pair
remains in the mass and mass ratio criteria that has been set. Because
Tobs is dependent on the particular observation, we have elected to
fit to the merging time-scales as it can be more readily applied to a
broader range of selection criteria.

Fig. 4 shows the mean merging time-scale as a function of �r
and �v in several redshift bins for our reference case. For z � 0.5,
the data indicates merging time-scales that decrease with redshift, as
expected from previous results. We also find that the dependence on
�v has a stronger redshift scaling that the dependence on �r. We
found that a flat plane was sufficient to reproduce the data across a
wide range of redshifts:

Tmerge(z, �r, �v) = a + (b�r) + (c�v),

a = a0 + (1 + z)az,

b = b0 + (1 + z)bz,

c = c0 + (1 + z)cz. (13)
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5652 J. A. O’Leary, B. P. Moster and E. Krämer

Figure 4. The mean merging time-scales for pairs with log10(m1) ≥ 10.3 with 1 ≤ μ < 4. Each panel includes pairs where the observed redshift of the primary
galaxy falls within ±0.5 of the noted central redshift.

Table 3. Best-fitting parameters for merging time-scale (equation 13).

log10(m1/M�) Mass ratio μ a0 ( Gyr) az ( Gyr) b0 ( Gyr kpc−1) bz ( Gyr kpc−1) c0 ( Gyr s km−1) cz ( Gyr s km−1)

1 ≤ μ < 4 0.533+0.427
−0.420 0.0312+0.0423

−0.0420 0.0426+0.0252
−0.0252 −0.0050+0.0064

−0.0064 0.0118+0.0091
−0.0089 −0.0026+0.0021

−0.0022

9.0–10.0 4 ≤ μ < 10 0.498+0.401
−0.398 −0.0597+0.0808

−0.0797 0.0343+0.0089
−0.0090 −0.0011+0.0015

−0.0015 0.0077+0.0059
−0.0058 −0.0015+0.0014

−0.0014

1 ≤ μ < 10 0.483+0.372
−0.375 −0.0289+0.0385

−0.0390 0.0429+0.0202
−0.0204 −0.0040+0.0051

−0.0051 0.0081+0.0066
−0.0065 −0.0016+0.0016

−0.0016

1 ≤ μ < 4 −0.284+0.330
−0.330 0.224+0.105

−0.105 0.0315+0.0079
−0.0079 −0.0036+0.0023

−0.0023 0.0068+0.0015
−0.0015 −0.0019+0.0004

−0.0004

10.0–11.0 4 ≤ μ < 10 0.083+0.105
−0.106 0.024+0.031

−0.031 0.0334+0.0093
−0.0093 −0.0028+0.0029

−0.0029 0.0069+0.0017
−0.0017 −0.0015+0.0005

−0.0005

1 ≤ μ < 10 −0.164+0.211
−0.214 0.146+0.078

−0.078 0.0334+0.0085
−0.0085 −0.0036+0.0026

−0.0026 0.0069+0.0016
−0.0016 −0.0017+0.0005

−0.0004

1 ≤ μ < 4 −0.265+0.277
−0.277 0.179+0.084

−0.083 0.0311+0.0053
−0.0052 −0.0058+0.0016

−0.0016 0.0038+0.0009
−0.0009 −0.0011+0.0003

−0.0003

11.0–12.0 4 ≤ μ < 10 0.450+0.178
−0.176 −0.041+0.050

−0.052 0.0452+0.0084
−0.0078 −0.0093+0.0025

−0.0026 −0.0005+0.0005
−0.0005 0.0003+0.0001

−0.0002

1 ≤ μ < 10 0.133+0.094
−0.094 0.0003+0.0005

−0.0005 0.0272+0.0051
−0.0054 −0.0032+0.0014

−0.0015 0.0030+0.0008
−0.0008 −0.0007+0.0002

−0.0002

1 ≤ μ < 4 −0.137+0.181
−0.181 0.192+0.081

−0.082 0.0315+0.0091
−0.0092 −0.0028+0.0028

−0.0028 0.0053+0.0014
−0.0014 −0.0014+0.0004

−0.0004

≥9.5 4 ≤ μ < 10 0.135+0.161
−0.161 0.027+0.035

−0.035 0.0323+0.0078
−0.0078 −0.0018+0.0022

−0.0022 0.0064+0.0021
−0.0021 −0.0014+0.0006

−0.0006

1 ≤ μ < 10 0.012+0.016
−0.016 0.101+0.065

−0.066 0.0327+0.0092
−0.0093 −0.0025+0.0028

−0.0028 0.0055+0.0016
−0.0016 −0.0013+0.0005

−0.0005

1 ≤ μ < 4 −0.058+0.077
−0.077 0.149+0.063

−0.063 0.0276+0.0064
−0.0063 −0.0017+0.0019

−0.0019 0.0051+0.0011
−0.0012 −0.0014+0.0004

−0.0003

≥9.7 4 ≤ μ < 10 0.094+0.121
−0.123 0.034+0.042

−0.043 0.0322+0.0078
−0.0078 −0.0019+0.0023

−0.0023 0.0067+0.0018
−0.0018 −0.0015+0.0005

−0.0005

1 ≤ μ < 10 0.015+0.020
−0.020 0.098+0.060

−0.060 0.0313+0.0083
−0.0085 −0.0024+0.0025

−0.0025 0.0053+0.0014
−0.0014 −0.0013+0.0004

−0.0004

1 ≤ μ < 4 −0.187+0.233
−0.238 0.187+0.082

−0.082 0.0291+0.0071
−0.0070 −0.0030+0.0021

−0.0021 0.0055+0.0012
−0.0012 −0.0015+0.0004

−0.0004

≥10.0 4 ≤ μ < 10 0.102+0.124
−0.124 0.025+0.031

−0.031 0.0336+0.0091
−0.0090 −0.0029+0.0027

−0.0027 0.0061+0.0016
−0.0016 −0.0013+0.0004

−0.0004

1 ≤ μ < 10 −0.044+0.059
−0.059 0.109+0.053

−0.054 0.0309+0.0079
−0.0079 −0.0029+0.0024

−0.0024 0.0055+0.0013
−0.0013 −0.0014+0.0004

−0.0004

1 ≤ μ < 4 −0.226+0.267
−0.265 0.179+0.081

−0.080 0.0288+0.0061
−0.0061 −0.0036+0.0018

−0.0018 0.0058+0.0011
−0.0011 −0.0016+0.0003

−0.0003

≥10.3 4 ≤ μ < 10 0.068+0.089
−0.090 0.033+0.038

−0.038 0.0334+0.0087
−0.0086 −0.0034+0.0025

−0.0025 0.0063+0.0015
−0.0015 −0.0014+0.0004

−0.0004

1 ≤ μ < 10 0.008+0.010
−0.010 0.077+0.043

−0.043 0.0289+0.0067
−0.0067 −0.0026+0.0020

−0.0021 0.0052+0.0011
−0.0011 −0.0013+0.0003

−0.0003

1 ≤ μ < 4 −0.103+0.133
−0.134 0.113+0.050

−0.050 0.0273+0.0055
−0.0054 −0.0031+0.0017

−0.0017 0.0050+0.0009
−0.0009 −0.0013+0.0003

−0.0003

≥10.5 4 ≤ μ < 10 0.043+0.058
−0.058 0.047+0.043

−0.043 0.0363+0.0090
−0.0090 −0.0048+0.0026

−0.0026 0.0062+0.0014
−0.0014 −0.0014+0.0004

−0.0004

1 ≤ μ < 10 −0.042+0.056
−0.057 0.087+0.040

−0.040 0.0307+0.0064
−0.0064 −0.0037+0.0019

−0.0019 0.0051+0.0011
−0.0011 −0.0012+0.0003

−0.0003

1 ≤ μ < 4 −0.097+0.125
−0.126 0.096+0.041

−0.042 0.0280+0.0051
−0.0050 −0.0039+0.0015

−0.0015 0.0045+0.0008
−0.0008 −0.0012+0.0002

−0.0002

≥10.8 4 ≤ μ < 10 0.239+0.158
−0.156 0.023+0.030

−0.030 0.0330+0.0106
−0.0106 −0.0049+0.0032

−0.0033 0.0045+0.0016
−0.0016 −0.0011+0.0005

−0.0005

1 ≤ μ < 10 0.085+0.099
−0.099 0.020+0.025

−0.025 0.0295+0.0059
−0.0060 −0.0036+0.0017

−0.0017 0.0042+0.0009
−0.0009 −0.0009+0.0003

−0.0003

1 ≤ μ < 4 −0.267+0.275
−0.277 0.180+0.083

−0.084 0.0312+0.0052
−0.0051 −0.0059+0.0015

−0.0016 0.0038+0.0009
−0.0009 −0.0011+0.0003

−0.0003

≥11.0 4 ≤ μ < 10 0.449+0.169
−0.170 −0.040+0.049

−0.050 0.0453+0.0083
−0.0075 −0.0088+0.0026

−0.0020 −0.0005+0.0005
−0.0005 0.0003+0.0001

−0.0002

1 ≤ μ < 10 0.133+0.093
−0.095 0.0004+0.0006

−0.0006 0.0276+0.0054
−0.0051 −0.0032+0.0014

−0.0015 0.0031+0.0007
−0.0008 −0.0007+0.0002

−0.0002

In this formulation, allowing each parameter to scale linearly with
redshift provided the best reproduction of merger rates.

Table 3 shows the best-fitting parameters from equation (13)
for a range of the same mass ranges shown in Table 2. Generally
equation (13) provides an accurate description of the data for 1 � z

� 3.5 for most mass ranges and mass ratios tested. Within this redshift
range, merging time-scales increase with increasing �v as seen in
the data. However, outside this range, the scaling with respect to �v

undergoes a sign inversion due to the linear redshift scaling of the
parameter c. This inversion results in a considerable underprediction
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Figure 5. Galaxy merger rates reconstructed from mock pairs, the fitting functions of equations (12) and (13). The leftmost panel shows the reconstructed rates
under various apertures (coloured lines) against the intrinsic merger rates derived from trees in O’Leary et al. (2021) (black lines). The right-hnad panels show
how well our fitting functions (solid lines) reproduce the observation time-scales (blue lines) and merging probabilities (red lines) seen in the data for the noted
apertures (dashed lines). We also include the effective observation time-scales (blue dash-dot lines) defined as T eff

obs ≡ T obs(z)/C merge(z).

of the merging time-scales for small radii and �v � 200 km s−1.
However, since most of the major pairs sit below this �v and at
a more moderate �r, we find this limited fit to the data does not
strongly impact our reproduced major merger rates (see Section 5).

We tested a variety of fitting functions and parameter redshift
scaling to fit the pair merging time-scales. Notably, allowing for
c ∝ (1 + z)cz alleviates the severity of underpredicted merging time-
scales for high �v pairs. However, this improved fit at high-z comes
at the expense of a significantly worse reproduction of merger rates
for z � 3. The �v slope scaling with redshift is the dominate
parameter determining the goodness of fit for this parametrization.
The scaling with �r is relatively stable with redshift and a suitable
merger rate reproduction is possible if b is kept static, though in that
scenario we find a stronger overprediction of the merging time-scales
towards low-z, resulting in a more pronounced underprediction of the
merger rate. Just as in Jiang et al. (2014), we express merging time-
scales that scale linearly in �r, however in their work they elect
for a physically motivated redshift scaling with b ∝ H(z)−1/3. When
measuring average merging time-scales for fixed �rmax, we find that
our results are statistically consistent with that scaling. In practice,
we found this formulation did not offer an improved fit to the data, or
reproduction of merger rates. If we allow a more free scaling where
b ∝ H(z)α . there is a slight improvement over H(z)−1/3. Although
allowing that free scaling in H(z) makes the physical interpretation
of that term ambiguous, we opt for the more simple linear redshift
scaling, which produces the the better reproduction of merger rates.

In the next section, we will combine these fits for merging
probabilities and time-scales and recover the merger rate of galaxies
under a range of pair selection criteria.

5 R ECONSTRUCTING MERGER R ATES

Now that we have a handle on the merger probability, and the merging
time-scales for individual pairs we can apply these to our mock
observations and recover the intrinsic merger rates. If we blindly use
Tmerge in place of Tobs, the resulting merger rates we produce will be
lower than those predicted in O’Leary et al. (2021). First, we need
to approximate the observation time-scale by estimating how long

each of our pairs reside in the observable aperture. Taking inspiration
from the orphan position formula (equation 9), we obtain

T obs = T merge

[
1 −

( rinner

�r

)2
]

, (14)

where rinner is the inner radius of the observable aperture. Addition-
ally, we find it helpful to include an area correction to account for
pairs that sit below the chosen aperture. We use the same correction
shown in Ventou et al. (2019):

C1 = r2
inner

r2
outer − r2

inner

. (15)

Incorporating our weighting scheme (equation 12), individualized
observation time-scales (equation 14), and the area correction (equa-
tion 15), the merger rate formula from equation (11) can be rewritten
as

Rmerge = C1fp

∑Np
i W (�r, �v, z)∑Np

i T obs(�r, �v, z)
, (16)

Where fp is the pair fraction and Np is the number of pairs in the
sample.

Fig. 5 compares the galaxy merger rate derived from equation (16)
(coloured lines) with the merger rates shown in O’Leary et al.
(2021) (black line). In general, the results from this are in excellent
agreement with intrinsic rates. We find that we are consistently able to
reproduce major merger rates to at least z = 4 for a range of projected
separations. We find a notable exception in the often used �r = 5:
30-kpc aperture (Mundy et al. 2017; Duncan et al. 2019), which
underpredicts the intrinsic merger rate at nearly every redshift. If we
view the corresponding (upper right-hand) panel of Fig. 5, we can
see that the fitting functions reproduce the observation time-scales
and merging probabilities of the data just as well as any of the other
apertures we tested. Taken in the context of Fig. 2 and in the absence
of any other effects that might influence the observation time-scales
for this selection criterion, we can deduce that this aperture is ill-
suited for reconstructing the underlying merger rate as the small
outer radius excludes a significant fraction of pairs undergoing a
merger. The underprediction exhibited by this particular selection
criteria is present for all major merger rates that we tested.
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Figure 6. The ratio of predicted to intrinsic merger rates as a function of
radius, with various assumptions for area correction. In both panels, lines
labelled ‘fixed rinner’ indicate the rate ratio assuming fixed inner aperture
rinner = 0 kpc and a variable outer aperture router. Similarly, lines labelled
‘fixed router’ indicate the rate ratio assuming fixed outer aperture router =
100 kpc and a variable inner aperture rinner. Line colour indicates the redshift
at which the ratio is taken. Values near 1 indicate better agreement with
intrinsic values. Top panel: Solid and dashed lines show the rate ratio with
no area corrections applied. The dotted line shows the rate ratio with the
standard inner area correction of equation (15). Bottom panel: Dash–dotted
lines show prediction accuracy with the additionally correction factor shown
in equation (17), which addresses incompleteness for limited router. The long-
dash lines show prediction accuracy using a newly implemented inner area
correction (equation 18).

In Fig. 6, we show the accuracy of our predictions, exhibited
as the ratio of predicted to intrinsic merger rate, as a function
of observable aperture at three redshifts. For lines labelled ‘fixed
rinner’, we set a constant rinner = 0 kpc while increasing router out
to 100 kpc. Lines labelled ‘fixed router’ hold a fixed out radius at
router = 100 kpc with a variable inner radius rinner. In the top panel,
solid and dashed lines show the accuracy of our model absent any
area corrections. For ‘fixed rinner’, solid lines, we can see clearly if
router � 50 kpc, our predictions would undercut the intrinsic merger
rate. This coincides directly with the underprediction shown in the
�r = 5: 30 kpc range of Fig. 5, and illustrates the necessity for an
additional corrective factor. To address the pair incompleteness due
to limited outer aperture, we introduce the following correction:

C
logistic
2 =

[
L

1 + exp(−krouter)
− 1

]−1

, (17)

where L and k are free parameters. This functions once again takes
the form of a (half) logistic curve and is fit to the solid lines in the
top panel of Fig. 6. When fitting we assume z = 1.0, log (m/M�)
≥ 10.3, and 1 ≤ μ < 4. Under these conditions, and a simple
non-linear least-squares fit, we find L = 2.13 ± 0.02 and k =
0.050 ± 0.002 kpc−1. The bottom panel illustrates the impact of
this new correction, dash–dotted lines. Here we can see that this

Figure 7. The merger rates determined from mock light cones. Rates are
computed for log10(m1/M�) ≥ 10.3, 5 ≤ �r < 50 kpc projected separation,
�v ≤ 500 km s−1, and 1 ≤ μ < 4. The solid black line indicates intrinsic
merger rates as shown in O’Leary et al. (2021). Coloured lines show merger
rates determined from mock light cones using equation (16). Here we do not
place any redshift restraints on the light-cone catalogues that would more
closely resemble the observables limits of the noted surveys.

correction substantially improves the accuracy of predicted results,
particularly for router � 50 kpc. We found these best-fitting parameters
are suitable to correct major merger rates for log (m/M�) ≥ 9.5 and
log (m/M�) ≥ 11.0, indicating minimal mass dependence.

Additionally, the top panel of Fig. 6 shows that that equation (15)
provides a reasonable correction for non-optimal router (dotted lines),
but predictably deviates as rinner → router. The corresponding uncor-
rected result, i.e. dashed lines, suggests an exponential correction
may be be more appropriate. Thus, we introduce

C
exp
1 = α exp

(
rinner

β

)
, (18)

where α and β are free parameters. Using the same fitting criteria
noted above we find α = 0.889 ± 0.003 and β = 106 ± 1 kpc.
In the lower panel of Fig. 6 (long dashed lines), we can see this
updated correction factor improves the accuracy of predicted rates
even when rinner is similar to router. Just as before, we found this
correction factor broadly applicable to major merger rates without
the need to refit for higher or lower mass cuts. However, in practice,
this updated formulation does not provide significantly improved
results compared to equation (15) when applied to commonly used
apertures.

Further, for the lowest mass bin we fit, 9.0 ≤ log10(m1/M�) <

10.0, we found our fitting functions fail to accurately reproduce the
underlying major merger rate at any redshift. Here we generally find
a consistent overprediction in merger rates by a factor of ∼3–5. We
none the less include fits to this mass range for completeness.

When considering minor mergers we find that rates can be well
reproduced out to z ≈ 3.5 for all mass ranges tested. However, due to
the poorer performance of the fitting function at high z and �v, we
find a significant underprediction of the merging time-scales. This
translates into an overprediction of the merger rate by a factor of
∼1.5 near z ≈ 3.5 to a factor of ∼5 near z ≈ 5. This mismatch is
most pronounced where log10(m1/M�) ≥ 10.0.

Fig. 7 illustrates the derived merger rates from the mock light-
cone catalogues described in Section 3.1. Here we can see that our
formulas show excellent reproduction of underlying merger rates for
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a range of cone geometry, where each sample contains a unique set
of pairs.

6 D ISCUSSION

6.1 Fitting at low and high redshift

Although we are able to confidently reproduce merger rates using our
fitting functions, there are some regions where care should be taken
in how results can be interpreted. Notably, the data indicate that for
z � 1, the merger probability tends to zero. This trend makes sense
recalling that under our definition of merger probability that a pair
observed at zero should have zero per cent chance to merge by zero.
Looking back to the merging time-scales, here we also note that the
merging time-scale turns over and begins to sharply decrease for z �
1. This turnover does not indicate a physical process that suppresses
the merging time-scales for low z. These data are constructed only
from pairs that did merge by z = 0, so these must necessarily decrease
to reflect the decreasing time remaining for a pair to merge.

With these data, we are left to decide whether we should fit to
this low-redshift regime, given the bias towards pairs that merged
quickly. In selecting fitting functions, we also tested variations that
reproduced the trend to zero for both merging probabilities and time-
scales. Those fitting functions that worked for that low redshift region
typically struggled more to fit the data, and reproduce merger rates
at intermediate and high redshift. For this reason, we opted for fitting
functions that overshoot the data at low-z as they showed better
performance when reconstructing merger rates.

6.2 Completeness

In Section 5, we illustrated how improper selection of observable
aperture can result in large underpredictions in merger rates due
to missing pairs. Although corrections already exist to address
incompleteness due to large rinner, there are currently no widely used
treatments to counteract incompleteness due to small router. In this
section, we provided updated correction functions that successfully
improve the accuracy of predicted results for a large range of
observable area, and mass cuts.

The primary goal of this work is to place better constraints on Tobs

and Cmerge, and not address other observable restrictions that might
impact pair counts or their translation to rates. Therefore, for these
completeness corrections, we only tested their application to major
mergers 1 ≤ μ < 4 for select mass ranges. Although we do not
see evidence for any strong mass scaling in the function parameters,
future work should explore the mass and mass ratio dependences in
greater detail. Additionally, when fitting these functions we elected
to fit only at a single redshift, z = 1.0. The results shown in
Fig. 6 suggest either of these functions might have a weak redshift
dependence. Future work with these functions would benefit from a
fitting routine that considers the entire redshift range of analysis, or
even an additional parametrization for redshift dependence.

6.3 Sources of uncertainty

The results shown here stand as an extension to the results of O’Leary
et al. (2021); what we show here does not explore the complete
dependences of these formulations on our model assumptions. Thus,
there remain several sources of uncertainty that could impact these
results that we do not quantify in this work.

We have seen that merging time-scales, and merging probabilities
are strongly dependent on the relative line of sight velocities between

each galaxy in the pair. At present, EMERGE has no prescription for
updating velocities of orphan galaxies. Currently, orphans simply
inherit the velocity of their last resolved halo. Particularly at low
masses, where orphans make up a large portion of the galaxy stellar
mass function, this may alter the distribution of velocities in observed
pairs, as well as the assumed fitted parameters to equations (12)
and (13). For the example case, we show in this work major pairs
consisting of at least one orphan galaxy constitute as much as ∼30
per cent of all pairs at z ≈ 0 falling to around ∼5 per cent by z ≈
4. For the lowest mass bin shown in Tables 2 and 3, the orphan pair
fraction increases to around ∼60 per cent by z ≈ 0. This may be one
of the sources for the poor reproduction of major merger rates in this
mass range.

Additionally, merging in EMERGE is entirely defined by the
dynamical friction formula chosen. In practice, there are other aspects
of the physical system that should be considered. In this model, a
satellite galaxy can be placed arbitrarily close to its host system
but will only be merged at tdf. In practice, these satellites may
be affected by the radial extent of the host system resulting in
a galaxy merging sooner than tdf. Such mechanisms could be a
driver in the lower galaxy merger rates exhibited by our model
compared with others. If merging time-scales are artificially long,
this would similarly extend the assumed observation time-scales of
satellite galaxies under our current formulation. Further, including
mechanisms that reduce merging time-scales may also impact the
distribution of observed pairs, our chosen fitting functions may not
be suitable under such model variations.

These results would benefit from a more complete study on how
model assumptions drive pair fractions and merging time-scales. Our
fitting functions assume a narrow description of the observation time-
scale. In this work, we assume the observation time-scale is driven
entirely by the time a galaxy pair fulfills the �r criteria chosen, which
linked directly to the average merging time-scale of such a pair. This
notably neglects the star formation properties in each pair. For z �
2 high star formation rates result in a strong mass evolution in the
galaxy population. This should reduce the amount of time any given
pair can satisfying the mass and mass ratio criteria. In this work, we
largely reference pair selections set by a lower stellar mass cut, which
mitigates the impact on observation time-scales by pairs moving out
of the noted mass bin. However it places no constraints on the impact
from pairs that evolve outside of the mass ratio criteria. Under the
broad assumption that these mechanisms would only serve to reduce
the observation time-scale, our results indicate that the observation
time-scale is instead largely driven by the time spent in the chosen
aperture, as our fitting functions generally do not underpredict the
merger rate.

7 C O N C L U S I O N S

In this work, we show that with our empirical model EMERGE

model, we are able to construct fitting functions for galaxy merging
probabilities and time-scales that can accurately recover the intrinsic
merger rate across range of selection criteria. To that end, we provide
best-fitting model parameters for a wide range of commonly used
stellar mass intervals, and mass ratios.

For a given aperture, the data indicate Tobs is approximately linear
between z ∼ 1 and ∼ 4, but T eff

obs can range between a linear scaling
and power-law scaling depending on the aperture chosen. However,
we reinforce a Tobs that does not evolve as strongly as Snyder et al.
(2017) or Jiang et al. (2014). We can conclude from our results that
pairs undergoing a major merger have a Tobs that is primarily driven
by dynamical processes to at least ∼3.5.
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We further show that it is not necessary to fit the observation time-
scales directly, but instead fit to merging time-scales and derive the
selection-criteria-dependent observation time-scales using a formula
that approximates radial decay in haloes. Additionally, we can
show with these methods that not all pair selection criteria are
equally suited to determining merger rates. If the outer radius of
the observable aperture is too small, a non-negligible fraction of
merging systems can be missed, resulting in an underprediction of
the galaxy merger rate. To combat this outer area incompleteness, we
suggest a new correction factor that should be applied to observations
with suboptimal apertures.

Finally, in the last section, we discussed areas where these results
could be improved with further study. At high-z (� 4), box size
limitations prevent us from placing tighter constraints on merger
time-scale evolution of massive objects due to low number counts.
At the lowest masses, our fitting functions are inadequate to reliably
reproduce the underlying galaxy merger rate at these masses, and at
high redshift, Tobs may be dominated by high star formation rates,
which reduce the time a pair spends in the mass and mass ratio bin.
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