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ABSTRACT
Pulsating ultraluminous X-ray sources (PULXs) are characterized by an extremely large luminosity (>1040 erg s−1). While there
is a general consensus that they host an accreting, magnetized neutron star (NS), the problem of how to produce luminosities
>100 times the Eddington limit, LE, of a solar mass object is still debated. A promising explanation relies on the reduction of
the opacities in the presence of a strong magnetic field, which allows for the local flux to be much larger than the Eddington
flux. However, avoiding the onset of the propeller effect may be a serious problem. Here, we reconsider the problem of column
accretion on to a highly magnetized NS, extending previously published calculations by relaxing the assumption of a pure dipolar
field and allowing for more complex magnetic field topologies. We find that the maximum luminosity is determined primarily
by the magnetic field strength near the NS surface. We also investigate other factors determining the accretion column geometry
and the emergent luminosity, such as the assumptions on the parameters governing the accretion flow at the disc–magnetosphere
boundary. We conclude that a strongly magnetized NS with a dipole component of ∼1013 G, octupole component of ∼1014 G,
and spin period ∼1 s can produce a luminosity of ∼1041 erg s−1 while avoiding the propeller regime. We apply our model to
two PULXs, NGC 5907 ULX-1, and NGC 7793 P13, and discuss how their luminosity and spin period rate can be explained in
terms of different configurations, either with or without multipolar magnetic components.
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1 IN T RO D U C T I O N

Ultraluminous X-ray sources (ULXs) are X-ray bright compact
objects inside or near the optical extent of a galaxy but off-nucleus.
Their observed X-ray luminosity exceeds the Eddington limit for a
stellar mass, M ∼ 1−10 M�, compact object (L > 1039 erg s−1). The
nature of the compact object and the exact mechanism that powers
the observed luminosity remains debated to this day (see Kaaret,
Feng & Roberts 2017 for the most recent review).

For a long time, ULXs were thought to be either intermediate mass
black holes (Colbert & Mushotzky 1999) accreting at sub-Eddington
rates or stellar mass black holes accreting at super-Eddington rates
(King et al. 2001). The discovery of a pulsating ULX (PULX)
M82 X-2 in 2014 by Bachetti et al. (2014) revolutionized our
understanding of these sources. For the first time, firm evidence was
presented that a ULX could host an accreting, neutron star (NS).
Since then, further discoveries of PULXs have been made (Fürst
et al. 2016; Israel et al. 2017a,b; Carpano et al. 2018; Wilson-Hodge
et al. 2018; Sathyaprakash et al. 2019; Rodrı́guez Castillo et al.
2020; Chandra et al. 2020). At present, there is no evidence that
PULXs differ from non-pulsating ULX basing on their spectral
properties alone, which hints at the possibility that there are may
be many more NS-powered ULXs than previously thought (e.g.
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King & Lasota 2016). This sparked a new theoretical effort aimed
at investigating and modelling the physics of ultra magnetized
accreting NSs, which is crucial to our understanding of ULXs.

The very first investigations of whether a strongly magnetized NS
may be capable of emitting above its Eddington limit was presented
several decades ago by Basko & Sunyaev (1976). In their model, it
is assumed that the accretion disc is truncated far from the NS, due
to the interaction between the disc and the star magnetic field at the
magnetospheric radius. The accreting matter is then channelled along
magnetic field lines on to the polar caps. However, this particular
model was primarily concerned with how the maximum luminosity
can be affected by the presence of a funnelled accretion column
and a radiative shock occurring above the star surface. The model
neglected the effects induced by the strong magnetic field on the
plasma opacities and on the radiation field and consequently, Basko &
Sunyaev (1976) found that the maximum luminosity could only be
increased by a factor of a few above the Eddington limit. This alone
is insufficient to explain the super-Eddington luminosity observed in
PULXs, e.g. in M82 X-2.

Lyubarskii & Syunyaev (1988) expanded the previous model by
calculating the structure of the slow sinking region below the shock
in two dimensions. This provided the basis for the most recent model
by Mushtukov et al. (2015), which also includes the opacity reduction
effect due to the NS’s strong magnetic field. Mushtukov et al. (2015)
concluded that a maximum luminosity of up to 1040 erg s−1 can be
sustained by the accretion column, depending on the strength of the
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magnetic field. However, problems arose in trying to explain the
observed luminosity and spin period of NGC 5907 ULX-1 due to
the assumption of a pure dipole field. Namely, using the model of
Mushtukov et al. (2015), the required dipole magnetic field strength
of NGC 5907 ULX-1 would place the source in the propeller regime
(Israel et al. 2017a). In such a regime, the propeller effect is thought
to halt the accretion process due to the transfer of angular momentum
at the magnetopsheric radius from the NS to the accretion disc (see
Illarionov & Sunyaev 1975).

In order to overcome this issue, Israel et al. (2017a) proposed that
the pure dipole field assumption should be relaxed and that higher
order multipole moments of the magnetic field may be dominant close
to the surface of the NS (see also Eksi et al. 2015 for the suggestion of
a multipolar magnetic field in the case of M82 X-2). Such a magnetic
field configuration is reminiscent of the one suggested for magnetars
(Turolla, Zane & Watts 2015) and is supported by observational
data from the magnetar SGR 0418 + 5729 (Tiengo et al. 2013), the
isolated NSs RX J0720.4-3125 and J1308.6 + 2127 (Borghese et al.
2015, 2017), and the millisecond pulsar PSR J0030 + 0451 (Bilous
et al. 2019). A multipolar magnetic field configuration would avoid
the problem of the propeller effect induced by a superstrong dipolar
component while also allowing for sufficient opacity reduction and
in turn the release of a substantial super-Eddington luminosity.

In this paper, we construct a model of column accretion on to
an NS that allows for a multipolar magnetic field. As a basis for
our calculation, we use the model described by Mushtukov et al.
(2015). The paper is laid out as follows: in Section 2, we give the
basic equations and assumptions used in the model calculations.
In Section 3.1, we present results of our numerical computations
and compare with the previous model of Mushtukov et al. (2015).
In Section 3.2, we present models based on different degrees of
X-mode polarization, while in Section 3.3 we discuss how our
results are affected by different assumptions on disc parameters.
The robustness of some of our model assumptions and their regime
of validity is discussed in Section 3.5. The results of an application to
two astrophysical sources, which were suggested to have multipolar
magnetic fields, is given in Section 3.6. Finally, we discuss our results
and present our conclusions in Sections 4 and 5.

2 AC C R E T I O N C O L U M N MO D E L

Through the whole paper, we assumed an NS mass and radius of
M = 1.4 M� and R = 106 cm, respectively.

As a basis for our calculation, we consider the accretion column
model originally developed by Basko & Sunyaev (1976), according
to which the free falling plasma is efficiently decelerated in a
radiative shock above the surface of the NS. Below the shock, the
plasma slowly sinks towards the surface and liberates its gravitational
potential energy in the form of X-ray radiation. This region is referred
to as the sinking region.

2.1 Basic equations

For completeness and to introduce our notation, we summarize the
radiative hydrodynamical equations that describe the plasma flow in
the region below the radiative shock, using the same assumptions as
in Mushtukov et al. (2015).

Since the accretion column is localized at the magnetic poles and
the height of the sinking region is less than the star radius, we neglect
the curvature of the magnetic field lines and adopt an orthonormal
coordinate system (x, h), with the h-axis along the magnetic field

Figure 1. A vertical cross-section of the sinking region in the accretion
column. The red line indicates the location of the shock in (x, h) space. Below
it, the plasma sediments towards the surface of the NS. The blue-dashed lines
represent magnetic field lines confining the accretion column. The maximum
shock height is labelled H and half the column base width is labelled as d0/2.
For a given x, the coordinates of the shock boundary are (x, Hx). Alternatively,
for a given h, the coordinates of the shock boundary are (dh/2, h).

lines. We define x = 0 to be the centre of the accretion column and
h = 0 to be at the surface of the NS.

We indicate with H the maximum height of the radiative shock,
and with d0 the width of the accretion column base. Hx is the height of
the shock at width x along the base and dh is the width of the sinking
region at height h above the surface. These geometrical quantities
are illustrated in Fig. 1, which shows a vertical cross-section of the
sinking region. The footprint of the accretion column on the surface
is an annulus with arc length l0 and width d0. The area of the accretion
column base is given by SD = l0d0. The calculation of l0 and d0 is
detailed in Section 2.3.

Inside the sinking region, we consider a steady-state flow, with
velocity directed along the magnetic field lines only. A number of
additional assumptions are made in order to simplify the equations
further. First, we assume that the radiation pressure, Prad, dominates
the gas pressure, Pgas. Following Mushtukov et al. (2015), we assume
that the density and velocity profiles are independent of x, and
coincide with the profiles at the centre of the column (see Section 2.2).
Finally, we assume the energy flux to be dominated by the radiative
flux, which is a the sum of two components, one directed vertically
along the field lines, F�, and one perpendicular to them, F⊥.

Accordingly, the equations of continuity, momentum, and energy
can be written, respectively, as

ρv = Ṁ

2SD
, (1)

v
∂v

∂h
+ 1

ρ

∂Prad

∂h
+ GM

(R + h)2
= 0, (2)

∂F‖
∂h

+ ∂F⊥
∂x

= 0, (3)

where ρ is the plasma density, v is the plasma velocity, Ṁ is the
accretion rate, M and R are the mass and the radius of the NS,
respectively. The energy fluxes F� and F⊥ can be expressed as

F‖ = − c

κ‖ρ
∂Prad

∂h
+ Pradv + uv + ρv

(
v2

2
− GM

R + h

)
, (4)
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F⊥ = − c

κ⊥ρ

∂Prad

∂x
, (5)

where u is the radiation energy density, and κ� and κ⊥ are the
angle and energy averaged Rosseland mean opacities in the direction
parallel and perpendicular to the magnetic field lines, respectively
(see Section 2.4).

In the sinking region below the shock, the flow is decelerated
to a velocity much less then the free fall velocity, ∂

∂h

(
v2/2

) �
−GM/(R + h)2, so hydrostatic equilibrium can be assumed in the
vertical direction, and thus equation (2) is simply

∂Prad

∂h
= −ρ

GM

(R + h)2
. (6)

Moreover, since the energy flux is dominated by the radiative flux,
equations (4) and (5) can be written as

∂Prad

∂h
= −ρκ‖

F‖
c

, (7)

∂Prad

∂x
= −ρκ⊥ F⊥

c
. (8)

Equations (7) and (8) can be integrated to calculate the radiation
pressure distribution within the sinking region, and hence the whole
structure of the latter. First, the parallel flux, F�, can be obtained by
coupling equation (7) with the momentum conservation equation (6).
This yields

F‖(x, h) = c

κ‖

GM

(R + h)2
, (9)

which is the local Eddington flux, FEdd(x, h). Then, the perpendic-
ular flux, F⊥, can be obtained integrating the energy conservation
equation (3) in x and by assuming ∂F‖

∂h
≈ constant in x. This yields

F⊥ = F⊥,esc(h)
2x

dh
, (10)

where F⊥, esc(h) denotes the perpendicular flux escaping from the
sinking region at height h, and we used the boundary conditions

F⊥(x = 0, h) = 0, F⊥(x = dh/2, h) = F⊥,esc(h). (11)

Equations (7) and (8) can now be integrated, yielding

Prad,‖(x, h) =
∫ Hx

h

ρ
GM

(R + y)2
dy + 2

3

FEdd(Hx)

c
, (12)

and

Prad,⊥(x, h) = F⊥,esc(h)

c

[
2

dh

∫ dh/2

x

ρκ⊥z dz + 2

3

]
, (13)

where Prad, � and Prad, ⊥ are the radiation pressure obtained by
integrating the PDE in h and x, respectively. Here, we used the
boundary conditions

Prad,‖(x, h = Hx) = 2

3

F‖(x, Hx)

c
= 2

3

FEdd(Hx)

c
, (14)

Prad,⊥(x = dh/2, h) = 2

3

F⊥,esc(h)

c
. (15)

2.2 Density profile

The expressions for the radiation pressure in the sinking region, (12)
and (13), depend on the plasma density, ρ. The mass continuity
equation (1) can be used to obtain the density profile in the sinking
region, once the velocity profile is known. In principle, we should
solve the radiative hydrodynamical equations including the velocity

terms to obtain a fully self-consistent velocity profile. Instead,
following Mushtukov et al. (2015), we approximate the velocity
profile by a power-law v ∝ hξ , taking a fiducial value of ξ = 1. In
Section 3, we will discuss the effects of varying the value of ξ on the
accretion column properties.

As previously mentioned in Section 2.1, we consider for simplicity
the case in which the velocity profile is unchanged along x, so that
v(x, h) = v(h). As one of our boundary conditions, we assume
that the plasma is in free fall with velocity vff above the shock,
and is decelerated to vff(H)/7 below the shock (therefore losing
all but ∼1/50 of its kinetic energy), where vff(H) is the free-fall
velocity at height H. We refer to Becker (1998) for a one-dimensional
treatment of an adiabatic flow around the shock point that motivates
the aforementioned velocity jump. The second boundary condition
is given by the velocity vanishing at the surface of the NS. Hence, at
the height h above the NS surface, the velocity is given by

v(h) = vff

7

(
h

H

)ξ

= 1

7

√
2GM

R + H

(
h

H

)ξ

. (16)

By the mass continuity equation (1), we obtain the density profile

ρ(h) = Lacc

2SD

(
GM

R

)− 3
2
(

49

2

) 1
2
(

1 + H

R

) 1
2
(

H

R

)ξ (
h

R

)−ξ

,

(17)

where we introduced the accretion luminosity Lacc = ṀGM/R.
Note that, as already pointed out by Mushtukov et al. (2015), formally
the density diverges at h = 0. Thus, the model assumptions become
inadequate very close to the surface of the NS. In particular, at
some point the gas pressure will start to dominate over the radiation
pressure. In order to avoid this, and following again Mushtukov
et al. (2015), we truncate the numerical calculation slightly above
the surface, where Prad ≈ Pgas.

2.3 Geometry of the accretion column

The expressions for the radiation pressure in the sinking region, (12)
and (13), explicitly contain terms related to the geometry, Hx and
dh. In addition, the density profile equation (17) contains the sinking
region area SD. These geometrical quantities depend on the accretion
column base geometry, SD(h = 0) = l0d0, which in turn is determined
by the specifics of the disc–magnetosphere interaction. The simplest
and most commonly used model is the one proposed by Ghosh &
Lamb (1978), according to which the disc is not sharply truncated
at the magnetospheric radius. The result is a boundary region with a
finite width, although much smaller than the magnetospheric radius
(see Fig. 2). The two crucial quantities that appear in this simple disc–
magnetosphere interaction model are the magnetospheric radius, Rm,
and the penetration depth, Pm, which determines the boundary region
width.

The magnetospheric radius is given by

Rm ≈ 7 × 107� M1/7R
10/7
6 B

4/7
d,12L

−2/7
39 cm, (18)

where � is a dimensionless parameter depending on the accretion
mode, R6 is the radius of the NS in units of 106cm, Bd, 12 is the surface
strength of the dipole component of the magnetic field in units of
1012 G, and L39 is the accretion luminosity in units of 1039 erg s−1. In
this work, we use the canonical value of � = 0.5 (Ghosh & Lamb
1978) for disc-fed accretion, and we investigate the effects of using
different values of � on the luminosity in Section 3.3. Besides, for the
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Figure 2. A 2D plot of the magnetic field lines, which have been computed
numerically, in Cartesian coordinates centred on the NS. A multipolar
magnetic field configuration, consisting of a dipole component and an
octupole component three times as strong as the dipole component, was
used. Far from the NS (h � R), there is no significant departure from the
shape of a pure dipole magnetic field. The outer field lines (blue) are drawn in
correspondence to the magnetospheric radius, while the inner ones (purple)
to the inner radius of the boundary region. The two red segments show the
part of the disc which enters the magnetosphere.

magnetic field configurations considered in this work, the effects of
including higher order multipole components on the magnetospheric
radius can be neglected, as they decay much faster than the dipole
component with increasing radius, and typically Rm ∼ 100R.

The penetration depth, Pm, is expected to be of the order of the disc
height for a geometrically thin disc (Ghosh & Lamb 1978). However,
as it will be discussed later on, in certain models considered in this
work, the thin disc approximation is not valid, and the parameters are
more consistent with a geometrically thick disc. In these cases, by
taking a prescription that relates Pm to the disc height would result in
a penetration depth greater than the magnetospheric radius, which is
physically unreasonable. To account for this, we introduce an upper
limit to the boundary region width with respect to the magnetospheric
radius. We introduce the penetration parameter ζ ≡ Pm/Rm, and we
assume ζ ≤ ζ max, where ζ max is a maximum penetration parameter.
In the calculations, we use the prescription that the penetration depth
is equal to the disc height, following Mushtukov et al. (2015), and
separate from this assumption only when ζ would be larger than the
preset maximum (see Section 3.3 for more details). For our models,
we use a fiducial value of ζ max = 0.2 (see Li & Wang 1999 for a study
of the boundary region width). However, in order to account for the
uncertainty in the specifics of the disc–magnetosphere interaction,
we also made some calculations by leaving ζ max as a free parameter,
and in Section 3.3 we discuss the sensitivity of the accretion column
base geometry to changes in ζ max.

Once the penetration depth is set, the shape of the magnetic field
lines constrains the accretion flow, and fully determines the accretion
column base width, d0, and length, l0. Since, for general magnetic
field topologies, the equation of the magnetic field lines cannot be
expressed analytically, we compute their shape numerically. This is
done by finding the vector expressions for the multipolar magnetic
field in polar coordinates and proceeding to integrate in the direction
parallel to the magnetic field lines until reaching the surface of the
NS. A graphic of the result of one such calculation, involving a
multipolar magnetic field, is shown in Fig. 2.

The footprint of the magnetic field lines that also pass through the
disc–magnetospheric boundary region forms an annulus centred on
the magnetic axis with width d0. The accretion column base length,
l0, is then given by the mean of the inner circumference and the outer
circumference.

In addition to the column base geometry, the sinking region
geometry depends on the shape of the magnetic field lines close
to the surface (0 ≤ h � R). This must be taken into account when

Figure 3. The dimensions of the accretion column against the height above
the NS surface. The horizontal axis shows the quantity 1 + h/R, to make the
relationship outlined in equations (20) manifest. From the bottom to the top,
the colored curves are calculated in the case of a magnetic field with a pure
dipole component only, or with Boct = Bdip, Boct = 3Bdip, and Boct = 10Bdip,
respectively.

calculating the sinking region width above the surface, dh, as well as
the accretion column area above the surface, SD.

In the case of a pure dipole magnetic field, it is

d = d0

(
1 + h

R

)3/2

, l = l0

(
1 + h

R

)3/2

, (19)

where d and l are the accretion column width and length, respectively,
at a height h above the surface. As stated above, in the case of
a multipolar magnetic field, a numerical computation is required.
However, we find that the accretion column dimensions can still be
written in the form

d = d0

(
1 + h

R

)α

, l = l0

(
1 + h

R

)β

, (20)

with the area thus being given by

SD = l0d0

(
1 + h

R

)α+β

. (21)

In Fig. 3, we show the variation of the accretion column dimen-
sions, for a selection of multipolar magnetic field configurations. The
values of α and β in the multipolar magnetic field case can differ
considerably with respect to those of the pure dipolar case.

2.4 Scattering opacity

The expressions for the radiation pressure in the sinking region,
(12) and (13), contain the Rosseland mean opacity terms κ� and κ⊥,
which are the angle and frequency averaged opacities in the directions
parallel and perpendicular to the magnetic field lines, respectively.

In a strongly magnetized plasma, and assuming large Faraday de-
polarization, radiation propagates in two normal modes, the ordinary
(O) and the extraordinary (X) mode, with different polarization and
opacity properties (see e.g. Meszaros 1992; Harding & Lai 2006).
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In this paper, we consider a pure scattering medium and calculate
the electron scattering opacities in the (magnetic) Thomson limit,
neglecting both the ion and vacuum contributions. The accreting
plasma in the sinking region is assumed to be cold (kBT � mc2 and
|E − Ecyc| � E(2kBT/mc2)1/2|cos (θ )|, where m is the mass and T
is the temperature of the electrons). We use the expression for the
frequency and angle-dependent electron scattering opacity of the two
modes as discussed in Kaminker, Pavlov & Shibanov (1982; see also
Zane, Turolla & Treves 2000), and we assume a fully ionized solar
mix plasma with mean molecular weight μe = 1.17.

The Rosseland mean opacity parallel to the magnetic field lines is
given by

1

κi
‖

=
∫ ∞

0
∂BE (T )

∂T
dE

∫ 1
0 dμ 3μ2 1

ki (E,μ)∫ ∞
0

∂BE (T )
∂T

dE
, (22)

and the Rosseland mean opacity perpendicular to the magnetic field
lines is given by

1

κi
⊥

=
∫ ∞

0
∂BE (T )

∂T
dE

∫ π

0 dϕ
∫ 1

0 dμ⊥ 3
π
μ2

⊥
1

ki (E,μ)∫ ∞
0

∂BE (T )
∂T

dE
. (23)

Here, ki(E, μ) is the electron scattering opacity integrated over all
possible outgoing photon directions (see the appendix of Zane et al.
2000 for further details), the index i denotes the polarization mode,
where i = 1 is the X-mode and i = 2 is the O-mode, BE(T) is the Planck
function, E is the photon energy, μ is the cosine of the angle between
the photon propagation direction and the magnetic field lines, and μ⊥
is the cosine of the angle between the photon propagation direction
and the direction perpendicular to the magnetic field lines. μ⊥ is
related to μ by μ =

√
1 − μ2

⊥ cos φ, where φ is the azimuthal angle
relative to μ.

Following Mushtukov et al. (2015), we estimate the effective
opacity for mixed polarization modes by

1

κ
= f

κ1
+ 1 − f

κ2
, (24)

where f is the fraction of radiation in the X-mode. To make
comparisons with the purely dipolar model presented by Mushtukov
et al. (2015), we adopt the same approach of considering an accretion
column with X-mode photons only (f = 1). We discuss the variation
of accretion column properties with a change in the X-mode fraction
in Section 3.2.

Note that κi
‖ and κi

⊥ depend on the temperature, T, of the plasma.
Since the sinking region is optically thick, we can approximate the
plasma to be in thermal equilibrium with the radiation field. We
relate the radiation pressure Prad to the temperature locally using the
Eddington approximation and the blackbody approximation

Prad ≈ u

3
≈ aT 4

3
, (25)

where a is the radiation constant. Thus, the Rosseland mean opacities
are calculated once the radiation pressure is known (see Section 2.6
for an outline of the computation scheme).

2.4.1 Scattering opacity for a hot plasma

The cold plasma approximation is valid only when the thermal
motions of the electrons are negligible compared with the phase
velocity of the wave (Harding & Lai 2006). While this is a sound
assumption for many of the photon energies and plasma temperatures
encountered in the models studied here, there are a few cases for
which the cold plasma approximation no longer holds. To estimate

the effects of a hot plasma on the scattering opacity, we average
the cold plasma scattering opacity with the thermal motions of the
electrons and introduce a line broadening of the cyclotron resonance.
This treatment has the advantage of providing an approximation
without resorting to a full computation of the magnetic Compton
cross-section (which is beyond the purpose of this investigation).

In our treatment of the thermal motions of the electrons, we
consider the electron velocity distribution to be a one-dimensional
relativistic Maxwellian, given by

f (p; T ) ∝ exp

[
−mc2

kBT

(
1 + p2

m2c2

) 1
2
]

, (26)

where p is the electron momentum along the magnetic field lines, and
the proportionality constant is given by imposing the normalization
condition:∫ ∞

−∞
f (p; T ) dp = 1. (27)

The averaged scattering cross-section is given by

σ (E,μ, T ) =
∫ ∞

−∞
f (p; T ) (1 − μβ) σrf(Erf, μrf) dp, (28)

where Erf is the energy of the photon in the rest frame of the
electron and μrf is the incident angle that the photon makes with
the magnetic field lines in the rest frame of the electron. β = v/c is
the dimensionless electron velocity.

For line broadening, we increase the resonance width by adding

� =
(

2
kBT

mc2
μ2

)1/2

(29)

to the resonance damping term. The full calculation is beyond the
scope of this paper (see Meszaros 1992).

Following these estimations, the hot plasma scattering opacity
is frequency- and angle-averaged to obtain the Rosseland mean
opacities, as described in Section 2.4.

2.5 Model estimates

An estimate of the radiation pressure, shape, and luminosity of an
accretion column can be made for a sinking region with constant
density profile ρ(h) = ρ, and constant parallel and perpendicular
opacity κ�, κ⊥. In this case, Prad, � and Prad, ⊥ can be expressed
analytically as

Prad,‖(x, h) = ρ
GM

R

[
Hx/R − h/R

(1 + h/R)(1 + Hx/R)
+ 2

3

1

ρRκ‖

1

(1 + Hx/R)2

]
(30)

and

Prad,⊥(x, h) = F⊥,esc(h)

c

[
ρκ⊥dh/4

(
1 − (2x/dh)2

) + 2/3
]
, (31)

where only the functions Hx and dh are left to be determined. Note
that ρκ�R is approximately the vertical optical depth of the sinking
region, while ρκ⊥dh/2 is the horizontal optical depth of the sinking
region at h.

The expression for the normalized escaping flux can be obtained
by equating the radiation pressure values obtained through equations
(30) and (31) computed at x = 0. For h = 0, this yields

F⊥,esc(h = 0)

c
= ρ

GM

R

[ H/R

(1+H/R) + 2
3

1
ρκ‖R

1
(1+H/R)2

ρκ⊥dh/4 + 2
3

]
. (32)

Following Mushtukov et al. (2015), we now use Prad, �(x, h = 0) =
Prad, ⊥(x, h = 0), and assume Hx/R � 1, to obtain the relation

Hx/R ∝ −x2. (33)
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Hence, in this simplified case the shape of the shock is approximately
quadratic near the base of the column and becoming less so near the
top.

The luminosity of the column is obtained by integrating the
escaping flux over the surface of the column. Doing so yields

L = 4l0

∫ H

0

(
1 + h

R

)β

F⊥,esc(h) dh, (34)

which is not integrable analytically due to the dependence of dh

on h. However, we can obtain a lower bound for the luminosity by
setting dh ≈ d, i.e. approximating the horizontal optical depth of
the accretion column with its maximum value. Since the column is
optically thick, i.e. ρκ⊥dh � 1 and ρκ�R � 1, then the luminosity
is approximately given by

L � 4

π

(
l0

d0

)(
κT

κ⊥

)
f (H/R)LEdd, (35)

as also obtained by Mushtukov et al. (2015), where

f (H/R) = 1

1 + H/R

[
(1 + H/R) log(1 + H/R) − H/R

]
. (36)

However, note that the above equations are valid for any magnetic
field configuration, provided α = β, which for instance turns out to
be the case when the magnetic field multipoles are aligned (as it is
assumed in this work). Equation (35) gives an approximate relation
between the luminosity and the accretion column base geometry. As
previously discussed by Mushtukov et al. (2015), we can also see
that f(H/R) grows only logarithmically for large H/R, and this sets
a natural scale for the maximum luminosity at H/R = 1, since the
luminosity increases only marginally for higher H.

2.6 Computational scheme

The procedure for computing Prad from the radiation pressure
equations, (12) and (13), is non-linear owing to the dependence
of the opacity terms, κ� and κ⊥, on the plasma temperature, which
itself depends on Prad through equation (25). For this reason we use
an iterative method, and again we follow the scheme as given by
Mushtukov et al. (2015), and we refer to this paper for all details.

We assume a magnetic topology of either purely dipolar or made
up of a dipole plus an octupole component. The model parameters are
the NS mass M, radius R, the accretion luminosity Lacc = GMṀ/R,
the velocity power-law index ξ , the polarization fraction f, the
penetration parameter upper bound ζ max, and the strength of each
of the two magnetic field components at the NS surface. The total
surface magnetic field strength at the poles, B, is the sum of the
strength of each component at the poles, i.e. B = Bdip + Boct.

Subsequently, the magnetospheric radius Rm is calculated accord-
ing to equation (18). The column base arc length l0 and the column
base width d0 are calculated from Lacc and B by following the
magnetic field lines from the magnetospheric radius to the surface of
the NS (described in Section 2.3).

For every set of parameters, the calculation is a double iterative
process. First, we assume a trial value for the maximum shock height
H, and we calculate iteratively the radiation pressure profile and the
shape of the sinking region. This inner loop is repeated until the
calculated accretion column luminosity is within 1 per cent from
its value in the previous iteration. At convergence, the luminosity
corresponding to this trial value of H is calculated by integrating the
escaping flux over the surface of the accretion column:

L = 4l0

∫ H

0

(
1 + h

R

)β

F⊥,esc(h) dh, (37)

A second iteration is then started, where H is then adjusted until the
luminosity of the accretion column matches the accretion luminosity
to within 1 per cent.

3 N U M E R I C A L R E S U LTS

3.1 Effects of the magnetic field strength and topology

In this section, we investigate how changes in the magnetic field
strength and topology affect the accretion column properties, due
to the changes they produce in the radiative opacities. We consider
a magnetic configuration made of two components: a dipole and
a higher order multipole. The dipole component dominates the
behaviour of the field at large distances, i.e. at the magnetospheric
radius, while the higher order multipole regulates the behaviour of
the field near the NS surface. In the following calculations, we take
the multipole moment to be the octupole. We chose the octupole
moment over the quadrupole moment to better localize the effects
of the surface magnetic field and avoid potential problems with null
points of the magnetic field above the magnetic poles. In principle,
other multipoles can be used.

We start calculating a series of models by varying the strength
of the octopolar component. In order to separate the effects of the
change in opacity from the changes in the column geometry (base
and thickness) that are, in principle, also introduced by the magnetic
field, we keep the accretion column base variables, l0 and d0, fixed to
the values that they assume in the pure dipolar case. For these models,
we also neglect the curvature of the magnetic field lines. Numerical
results are presented in black in Figs 4 and 5 for a particular accretion
luminosity and a velocity profile with power-law index ξ = 1. We
present two set of models, for two different values of the accretion
luminosity and magnetic dipole strength (L39 = 1.0 and Bdip =
3 × 1012 G, on the left, and L39 = 10 and Bdip = 5 × 1013 G, on the
right). In particular, in Fig. 4 we show the vertical cross-section of the
sinking region (only half of the region is shown, due to symmetry), to
investigate the changes in the shock shape. Figs 5 shows the profiles
of the central internal temperature, of the effective temperature, and
of the perpendicular mean opacity in the accretion column. These
properties allow an easy comparison with the model presented by
Mushtukov et al. (2015), in which the field was assumed to be a
simple dipole.

For a more self-consistent treatment of the effects of a multipolar
magnetic field, l0 and d0 must also be allowed to vary. As discussed in
Section 2.3, in a general case the base size and depth of the accretion
column differs from those of a pure dipole magnetic field, so that
l0 and d0 can both be reduced by a factor of several. In turn, this
will affect the plasma density, the internal temperature, the escaping
flux, and the maximum shock height. We therefore computed a set of
models, by accounting for this effect and using the approach outlined
in Section 2.3 to calculate numerically l0 and d0 in correspondence
of every assumed magnetic topology. For these models, the curvature
of the magnetic field lines was taken into account. Numerical results
are shown in red in Figs 4 and 5, alongside the results for models
with fixed column base geometry.

When using our numerical scheme we find that the maximum
height of the shock, H, is slightly smaller than in the models presented
by Mushtukov et al. (2015), which may be due to a difference in the
calculation of the opacity (see Section 2.4). However, the internal
temperature profile, effective temperature profile, and opacity profile
of our models (including those with an octupolar component) are
qualitatively similar with those of Mushtukov et al. (2015). This
indicates that the different field topology changes the quantitative
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Super-eddington emission from NSs 707

Figure 4. Half vertical cross-section of the sinking region. In (a), we use L39 = 1.0, and the accretion column base variables were fixed at the values calculated
for a pure dipole field with surface strength 3 × 1012G, i.e. l0 = 7.6 × 105 cm and d0 = 1.4 × 104 cm. In (b), we use L39 = 10.0, and d0 = 4.5 × 104 cm, and
l0 = 4.7 × 105 cm, which correspond to a dipolar field of 5 × 1013 G. In both models the NS mass and radius are M = 1.4 M�, R = 106 cm, and the velocity
power-law index is ξ = 1.

Figure 5. Plots of properties of the accretion column sinking region, with (a) and (b) corresponding to the models shown in Fig. 4. From the top to the
bottom, the different panels show: the internal (x = 0) temperature profile of the accretion column, the effective temperature of the emitted radiation, and the
perpendicular mean opacity, κ⊥ (see text for details).

details of the models but not the overall trend of the column
properties.

The first thing to note from Fig. 4 is that, as also pointed by
Mushtukov et al. (2015), the shape of the shock is not quadratic

in x, but instead the accretion column is quite narrow and the
height of the shock above the surface drops practically to zero at
a certain width x̃ � d0/2 (we will refer to x̃ as the ‘sinking region
width’). The sinking region width is the width at which the radiation
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708 N. Brice et al.

Figure 6. Half vertical cross-section of the sinking region for models with
L39 = 1.0, Bdip = 3 × 1012G, and Boct = 0. The different curves correspond
to different values of the power law index: ξ = 1 (the black solid line), ξ =
0.2 (the blue-dotted line), and ξ = 2 (the orange dot–dashed line).

pressure at the base becomes equal to the Eddington flux pressure,
i.e. Prad(x̃, h0) = 2

3 FEdd(h0)/c. For x > x̃, the radiation pressure at
the base is smaller than the Eddington flux pressure and no shock
height can be supported.

The radiation pressure at (x, h0), i.e. at some distance along
the column base, determines the height of the shock at x, Hx, by
equation (12). Thus, the radiation pressure profile along the column
base determines the shape of the shock. Prad(x, h0) is determined by
equation (13), in which we have assumed a linear function for the
perpendicular flux, F⊥, in our model. A different choice of function
for F⊥ will give a different shock shape.

In Fig. 6, we present a series of models calculated varying the
velocity index. As expected, a shallow velocity profile yields a shape
more similar to that found for the analytical model, which predicts
a quadratic column shape and is based on the simplified assumption
of constant density. On the other hand, when a velocity index ξ > 1
is used, the sinking region becomes narrower. This is a consequence
of the greater deceleration of the particles in the lower layers of the
accretion column. The upshot is that the radiation energy released
by the particles is concentrated in the lower layers, which results in
a lower shock height.

Fig. 4 shows that the maximum shock height, H, decreases for
an increasing surface magnetic field strength. By reversing the
argument, for a fixed maximum shock height, a higher luminosity can
be obtained by increasing the strength of the multipolar components.
Increasing the magnetic field produces a larger opacity reduction in
the X mode therefore radiation escapes more readily from the sides
of the sinking region. As a consequence, a smaller maximum shock
height is sustained from the vertical radiation pressure.

The internal central radiation temperature profile also shows an
anticorrelation with the magnetic field strength (see the top plots of
Fig. 5). This is because models with a stronger magnetic field have a
lower H, for reasons outlined previously. In models with a stronger
magnetic field, particles start to be significantly decelerated by the
shock at a point nearer to the NS surface. Hence, by continuity,
the density in the sinking region is lower, and in turn the internal
radiation temperature is lower.

The effective temperature, Teff, obtained from the escaping flux
using F⊥,esc = σT 4

eff, is also shown in Fig. 5. As already noticed by
Mushtukov et al. (2015), this quantity does not have a profile that

simply reflects that of radiation temperature. Instead Teff increases
with increasing height above the NS surface and then drops near the
top of the accretion column. At the bottom of the accretion column,
both the density, ρ, and the geometrical thickness of the sinking
region, dh, are large, which results in a large horizontal optical depth
and a smaller escaping flux in that direction. Higher up, the accretion
column becomes smaller in size, and the horizontal layers have a
lower optical depth. The reduction in the optical depth is greater
than that in the central temperature, and this is why the effective
temperature generally increases with column height in the deeper
regions. In fact, the peak of the effective temperature profile identifies
the altitude at which the escaping flux is the greatest, and in turn this
depends on the assumed density profile. For the accretion columns
with velocity index ξ = 1, the effective temperature peak is close to
the maximum shock height, where the optical depth is lower. For ξ

< 1, the peak in Teff is at a lower altitude than when ξ = 1.
The perpendicular Rosseland mean opacity, κ̃⊥ (shown in Fig. 5),

is calculated at the central plane of the sinking region, x = 0. This
quantity depends on both the total magnetic field strength in the
accretion column and the temperature. In general, a higher magnetic
field strength or lower temperature reduce the perpendicular Rosse-
land mean opacity. However, the perpendicular mean opacity is not
a monotonic increasing function of temperature or magnetic field
strength. In fact, it is largest when the photons in the sinking region
have energies close to the electron cyclotron resonance energy.

Comparing the models with fixed column base geometry (the black
lines in Figs 4 and 5) and models including the curvature calculation
(the red lines in Figs 4 and 5), it is immediate to note that there are no
simple trends that explain the changes from the black curves to the red
ones. This is because the change in accretion column base geometry
(which decreases when the strength of the multipolar component
is increased) results in a squeezing of the accretion column into a
smaller area, while the change in the curvature of the magnetic field
lines results in an increase of the accretion column area moving
higher up the accretion column. For each model, the overall outcome
of these competing effects is different. However, it is worth noting
that the change in the accretion column properties is modest and does
not affect the qualitative behaviour discussed so far.

The effect of including the column geometry calculation is easier
to explain in the models with multipolar magnetic fields shown
in Figs 4(b) and 5(b), which are low enough in height that the
curvature does not make a substantial difference and the main
effect is the reduction of the base size. For these models (in red),
the internal temperature at a given height in the sinking region is
increased compared with the fixed base geometry models (in black),
since the same amount of energy is produced in a smaller area,
and the perpendicular mean opacity rises following this increase in
internal temperature. In addition, the density of the sinking region is
increased, which makes it more difficult for radiation to escape from
the sinking region, hence decreasing the effective temperature.

On the other hand, the effect of the curvature alone can be
understood by comparing the purely dipole models with Bdip =
5 × 1013 G [Figs 4(b) and 5(b)]. In this case, the accretion column
base area is unchanged, since there are no multipolar magnetic fields,
and the density is sufficiently high that the change in area due to the
curvature is a consequential factor. For this model (in red), the density
of the accreting plasma is lower near the top compared with the fixed
base geometry model (in black), and this subsequently decreases the
perpendicular mean opacity, allowing for more radiation to escape.
Hence, a lower maximum shock height is sustained. At lower fields
[as for Bdip = 3 × 1012 G, Figs 4(a) and 5(a)], the density inside the
column is not high enough to make this effect substantial.
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Super-eddington emission from NSs 709

Figure 7. Half vertical cross-section of the sinking region. From top to
bottom, the curves correspond to different values of the X-mode polarization
fraction: f = 0.3 (the orange dot–dashed line), f = 0.7 (the blue-dotted line),
and f = 1.0 (the black solid line).

3.2 Mixed polarization

So far, we have considered only models with X-mode fraction f =
1. However, a more complete description of the radiation field in
the sinking region includes a mix of X-mode and O-mode photons
as well as scattering between polarization modes. In particular,
one may be worried that when a substantial fraction of O-mode
photons are present, the resulting decrease in the total opacity
induced by the magnetic field is not sufficiently large to allow for
super-Eddington emission. Solving this problem self-consistently
requires a complete angle and frequency-dependent solution of the
radiative transfer problem, which is not the purpose of this paper.
Instead, we investigate the issue by varying the value of f in our
calculation, i.e. we build-up solutions by assuming that the radiation
field consists of a given, fixed fraction of X- and O-mode photons
throughout the entire accretion column.

In general and as expected, we find that when a fixed fraction of
O-mode photons is included, for an accretion column with a given
magnetic field strength and accretion luminosity, the total opacity
increases (as can be seen in the bottom plot of Fig. 8). However,
even with a significant fraction of O-mode photons (f = 0.3), the
average perpendicular mean opacity is still well below the Thomson
scattering opacity in the cases considered here. Solutions with a
luminosity well above the Eddington limit are still possible, but
since the opacity is larger, a higher shock height H is sustained.
This results in a higher internal temperature and lower effective
temperature. A set of fixed X-mode fractions, f = 1, 0.7, 0.3, was
used to illustrate the effect of changing the polarization degree. In
Fig. 7, we show the vertical cross-section of the sinking region for
an accretion column with magnetic field Bdip = 3 × 1012 G, Boct =
3 × 1013 G, and accretion luminosity L = 1039 erg s−1. Figs 8 show
the internal temperature, effective temperature, and perpendicular
effective opacity profiles respectively for an accretion column
computed by using the same parameters as in Fig. 7.

It is worth noticing that for low magnetic field strengths (B <

1013 G), the opacity decreases when a fraction of O-mode photons
is included. This occurs when a large portion of the photons have
energy close to or higher than the electron cyclotron resonance
energy, Ecycl ≈ 11.6 B12 keV. However, we are primarily interested in
modelling sources with high magnetic field strengths (B > 1013 G),

Figure 8. The accretion column properties for the same set of models as in
Fig. 7. From top to bottom, the plots show the central internal temperature
profile, the effective temperature profile of the emitting radiation, and the
perpendicular mean opacity, respectively.

in which case most photons in the accretion column will have
energies below Ecycl.

3.3 Disc–magnetosphere interaction

In our modelling, calculation of the magnetospheric radius from
equation (18) requires an input parameter �, while calculation of the
penetration depth requires taking a particular prescription for ζ (see
Section 2.3 for details). However, both the exact value of � and the
expression for ζ are poorly known. Thus, to test the robustness of the
model results, we studied the response of the accretion column base
geometry variables, l0 and d0, to changes in � and ζ , respectively.

For the models presented previously, we used the canonical disc
accretion value of � = 0.5 (Ghosh & Lamb 1978). However, the
exact value of � depends on the extent to which the NS magnetic field
threads the accretion disc (Wang 1996), and for instance Dall’Osso
et al. (2016) suggest � in the range 0.3−1 as a conservative estimate
of the possible values. Repeating our calculations for l0 with various
�, we find that l0 changes less than an order of magnitude when � is
varied from 0.3 to 1. Since L ∝ l0 and ρ ∝ S−1

D , the overall accretion
column properties are not very sensitive to changes in �.

With regards to ζ , we assumed a penetration depth proportional
to the disc height at the magnetospheric radius, as done by Mush-
tukov et al. (2015). According to this prescription, the penetration
parameter is given by

ζ = κT
c

3
8π

Ṁ
Rm

≈ 0.2L
9/7
39 B

−4/7
d,12 . (38)
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Figure 9. The accretion column base width, d0, in units of 104cm for a given
ζ . We used L39 = 1.0, M = 1.4 M�, R = 106 cm.

However, since many of the models studied in this paper have a large
accretion luminosity (with L39 ∼ 10) and low dipole magnetic field
strength (with Bd, 12 ∼ 1), the penetration parameter in equation (38)
can be close to or in excess of ζ = 1. Such values for ζ correspond
to the disc penetrating through the entire magnetosphere to the
surface of the NS, which is a physically unlikely scenario. Thus, we
introduced a maximum penetration parameter by hand (accordingly
constraining d0), although the behaviour of ζ remains unchanged
from equation (38) unless the disc becomes geometrically thick.

Alternatively, a self-consistent approach would be to introduce
a new prescription for the penetration depth based on some set
of physical principles, such as was done by Li & Wang (1999).
However, this would require extending previous disc–magnetosphere
interaction models to the case of a geometrically thick disc, which is
not the purpose of this paper. Hence, as a substitute to considering
many different prescriptions, we tested the response of d0 to changes
in ζ in general, without assuming a particular disc–magnetosphere
interaction model. To do this, we repeated the calculation for d0

(see Section 2.3) while varying ζ ∈ (0, 1). In each case, the accretion
luminosity and magnetic field configuration are fixed. We considered
L = 1039 erg s−1 and several magnetic field configurations with Bdip =
3 × 1012 G. The results are reported in Fig. 9.

Our calculations show that across the domain of ζ , the change in
d0 can be an order of magnitude or more. Since F⊥,esc ∝ d−1

0 (see
Section 2.5), the luminosity of the accretion column is sensitive to
changes in ζ . Hence, different prescriptions for the penetration depth
can lead to dissimilar results for the accretion column properties, in
particular the maximum luminosity.

3.4 Maximum luminosity

One of the central aims of this work is to investigate the maximum
possible luminosity from a highly magnetized, accreting NS, given
some set of assumptions (such as the magnetic field configuration).
In order to calculate the maximum luminosity that can be sustained
by the NS accretion column, we compute the maximum Lacc for each
set of model parameters by fixing the maximum shock height at H =
R. In fact, at higher accretion column heights the luminosity only
grows more slowly (see Section 2.5) and also the curvature of the
magnetic field lines affects the vertical pressure balance equation (2),
making our approximation unsuitable. We repeated the calculation of
the maximum luminosity for several magnetic field configurations,
namely a pure dipole field, a field with Boct = 3Bdip, and a field with

Figure 10. Maximum luminosity against surface dipole field strength. The
red-shaded region indicates the region for which L exceeds the NS Eddington
luminosity at the magnetospheric boundary, i.e. when the accretion flow is
super-Eddington. The circles, the triangles, and the diamond points show the
computed maximum luminosity for a pure dipole, a Boct = 3Bdip, and a Boct =
10Bdip surface magnetic field configuration, respectively.

Boct = 10Bdip, while the other model parameters have been fixed at
ξ = 1, f = 1, ζ max = 0.2.

In agreement with the findings of Mushtukov et al. (2015), we
find that, for total surface field strengths of B < 1013G, the value of
the maximum luminosity is mainly dictated by the accretion column
geometry. This is because, at internal temperatures typical of the
accretion column and for these low magnetic field strengths, most
of the photons have E > Ecycl and therefore are not subject to the
reduction in opacity induced by the magnetic field. For higher total
surface field strengths (B > 1013 G), the scattering opacity of the X-
mode is instead significantly reduced (by a factor of several to several
orders of magnitude from κT) such that this becomes the determining
factor in constraining the maximum luminosity. This can be seen by
the change in slope of the maximum luminosity line in Fig. 10.

The decreasing trend for the maximum luminosity for magnetic
field strengths up to 1013 G can be explained by an increase in the
temperature of the accretion column. Since the accretion column
becomes thinner for higher magnetic field strengths (due to the choice
of a maximum penetration paramater of ζ = 0.1), the temperature
increases, which also increases the overall scattering opacity.

As expected, when multipolar magnetic field configurations are
accounted for, we find that the maximum luminosity is increased
when a stronger octupole component is present. However this is
simply due to the fact that the magnetic field increases in strength:
in fact, the maximum luminosity of a multipolar magnetic field
corresponding to a total surface strength B matches closely with the
maximum luminosity for a purely dipolar magnetic field at the same
B. Thus, the change in the column geometry due to the presence of
higher order multipoles does not affect the maximum luminosity in
a significant way. Instead, as we will discuss in the next subsections,
the maximum luminosity is more sensitive to the accretion column
geometry and hence to the prescription for the penetration depth into
the magnetosphere.

3.4.1 Maximum luminosity with mixed polarization

Since the introduction of a mixed polarization radiation field changes
the accretion column properties (see Section 3.2), we also calculated
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Super-eddington emission from NSs 711

Figure 11. Same plot as in Fig. 10 for models with different polarization
fraction. The circles, the triangles, and the diamonds in green are computed
using f = 0.7, and assuming a pure dipole, a Boct = 3Bdip, and a, Boct =
10Bdip, surface magnetic field configuration, respectively. The solid, dashed,
and dot–dashed black lines shows the same configurations but computed with
f = 1.

the maximum luminosity for a fixed X-mode fraction of f = 0.7 (as
might be expected in a more realistic case, for a scattering dominated
model). Results are presented in Fig. 11. As the maximum shock
height is typically increased, the maximum luminosity is lower
than in the pure X-mode case. However, this trend is reversed for
magnetic field strengths below ∼1013 G. This is due to a lowering
of the average Rosseland mean opacity when a fraction of O-mode
photons is included, which occurs when a large portion of the photons
have energy close to or higher than the electron cyclotron resonance
energy Ecycl ∼ 11.6B12 keV.

Otherwise, from Fig. 11, the relation between the surface dipole
field strength and the maximum luminosity is seen to follow a
shallower slope, as generally predicted. However, the deviation is not
too significant, less than a factor of 2 in all cases we have examined.
This is due to the fact that most of the flux that supports the accretion
column, in the diffusion approximation, is due to X-mode photons.
Thus, the effective mixed mode opacity, calculated in Rosseland
approximation, is dominated by the X-mode opacity.

3.4.2 Comparisons with previous models

Compared with the model of Mushtukov et al. (2015), we have
used a different method of calculating the scattering opacity as well
as a different disc–magnetosphere interaction model (as described
in Section 3.3). In Fig. 12, we show the curve that represents the
maximum luminosity obtained using our opacity files and assuming
the same disc model as Mushtukov et al. (2015), namely by using
ζ max ∼ 1. In this case, the maximum luminosity differs only by a
factor of a few with respect to the calculation presented by these
authors, indicating a good agreement between the two codes.

3.5 Constraints on the parameter space

Before applying our accretion column model to observed PULXs,
there are several considerations that we need to take into account.
First, the region of the parameter space in which the model holds
self-consistently is bound by the model assumptions, and in primis
by the fact that we assumed a geometrically thin accretion disc at the

Figure 12. Same plot as in Fig. 10 for models with a different disc model.
The orange circles show the computed maximum luminosity for a pure dipole
surface magnetic field configuration, and with ζmax ∼ 1. The black line is
the maximum luminosity according to the relation given by Mushtukov et al.
(2015).

magnetospheric boundary. This means

Hm < Rm , (39)

where Hm, the disc height at the magnetospheric radius, depends on
the assumed disc model. By using the standard thin accretion disc
model of Shakura & Sunyaev (1973), we find that, for the strong
accretion luminosities in which we are interested (L > 1039 erg s−1),
the magnetospheric radius is always within the radiation-pressure-
dominated zone of the accretion disc. In this zone, the disc height
expression is given by

Hm = κT

c

3

8π
Ṁ, (40)

which is independent of the radius.
Using equations (40) and (18), the condition Hm < Rm is equivalent

to a lower bound on the dipole field strength, above which our model
is valid, which is given by

Bd,12 � 0.034 L
9/4
39 R

−3/4
6 m−2�−7/4. (41)

For magnetic configurations with smaller dipole component, the
thickness of the disc becomes large at the magnetospheric boundary,
causing it to envelop the magnetosphere. In this case, our estimates
of the accretion column geometry and our assumptions about the
distribution of infalling plasma are no longer applicable. A proper
analysis of this scenario requires a new disc–magnetosphere interac-
tion model, which is beyond the purpose of this work.

Secondly, since PULX are rotating NSs, the strength of the dipole
component must also be sufficiently small so the propeller effect is
avoided. This means the magnetospheric radius must be smaller than
the Keplerian corotation radius, so

Rm < Rco, (42)

The Keplerian corotation radius is given by

Rco =
(

GMP 2

4π2

)1/3

� 1.5 × 108m1/3P 2/3cm, (43)

where P is the NS spin period. Equation (42) can thus be written as
an upper bound for the dipole magnetic field strength:

Bd,12 � 4.57 �−7/4m−1/12R
−5/2
6 L

1/2
39 P 7/6. (44)
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For magnetic configurations with a larger dipole component, the
propeller effect prevents accretion on to the poles (Illarionov &
Sunyaev 1975).

Thirdly, we will assume the spin period derivative to be dominated
by the accretion torque. A simple accretion torque model is used to
estimate the minimum average accretion rate that can give rise to the
measured secular spin period derivative. In this model, we assume
the angular momentum of the accreting matter is transferred to the
NS at the corotation radius, which is the largest distance at which
accretion can still occur. This produces the largest torque on the NS
for a given amount of accreted material (and thus the lowest accretion
luminosity). Thus,

− 2πI
Ṗ

P 2
< Ṁ

√
GMRco, (45)

where I ≈ 1045 g cm2 is the moment of inertia of the NS, P and
Ṗ are the spin period and its derivative. Equation (45) can then be
rearranged to give a lower bound on the accretion luminosity:

Lacc = Ṁ
GM

R
> 0.66 Ṗ−10P

−7/31039erg s−1, (46)

where Ṗ−10 = 10−10Ṗ and P is in seconds. Values of the accretion
luminosity lower then this limit would be insufficient in explaining
the observed Ṗ , according to our simple model.

3.6 Applications

Working with the parameter space restrictions derived in Section 3.5,
we can diagnose the necessity of higher order multipole magnetic
field components in observed astrophysical sources. We apply the
model to two PULXs, for which the face value application of the
model by Mushtukov et al. (2015) has led to the suggestion of the
presence of multipolar magnetic fields, namely NGC 5907 ULX1
(Israel et al. 2017a) and NGC 7793 P13 (Israel et al. 2017b). The
luminosity of both of these sources show a variation by a factor of
∼8, which is large but still more likely to be due to a variation in the
accretion rate rather than a transition to the propeller effect. Hence,
we apply the dipole magnetic field strength upper bound condition
given by equation (44) for the entire luminosity range exhibited.

3.6.1 NGC 5907 ULX-1

NGC 5907 ULX-1 (Israel et al. 2017a) is the brightest PULX found
to date, with a peak luminosity Lpeak = (2.3 ± 0.3) × 1041 erg s−1

and observed luminosity variation between L = 2.6 × 1040 erg s−1

and L = 2.3 × 1041 erg s−1. Observations performed with XMM–
Newton in 2003 and 2014, have shown a decrease in the pulse period
from ∼1.43 to ∼1.137s, which corresponds to a secular spin period
derivative Ṗ ≈ −8 × 10−10 s s−1.

By discussing the source in the context of the Mushtukov et al.
(2015) model, Israel et al. (2017a) suggested the need of multipolar
magnetic components. In order to test this argument, we plot again
a figure analogous to fig. 3 of Israel et al. (2017a) but using our
computed maximum luminosity. The parameter space constraints in
the L–Bdip plane, and few example configurations for NGC 5907
ULX-1 are shown in Fig. 13.

In agreement with previous findings, we find that in order to
explain the whole range of observed luminosities up to Lpeak ∼
1041 erg s−1 while assuming a pure dipole magnetic field, a strong
magnetic field strength is necessary, i.e. B > 1014G (from our
model) or even B > 1015 G (from the model of Mushtukov et al.
2015). Specifically, our model suggests that a pure dipole field of

Figure 13. The parameter space plot of the magnetic field dipole component
strength and the accretion luminosity for the source NGC 5907 ULX-1. The
light red and darker red-shaded area indicate the region for which L exceeds
the thick disc and NS Eddington luminosity at the magnetospheric boundary,
respectively. The blue-shaded area indicate region for which the source is in
the propeller regime. The green-shaded area shows the region for which the
accretion rate is too low to provide sufficient secular spin period derivative
Ṗ = −8 × 10−10s s−1, calculated based on equation (46). The solid, dashed,
and dash–dotted black lines show the maximum luminosity in the case of a
pure dipole field, a field with Boct = 3Bdip, and a field with Boct = 10Bdip,
respectively. The solid grey line shows the maximum luminosity according to
the relation given by Mushtukov et al. (2015). Several example configurations
for the source are shown by the black, red, and orange dots. In each case, the
vertical lines represent the observed luminosity range when the source was
in a high luminosity state (Israel et al. 2017b). In particular, the black dot
shows the configuration required to remain under the maximum luminosity
when using the relation given by Mushtukov et al. (2015). The red circle,
the diamond, and the triangle show possible configurations (pure dipole,
Boct = 10Bdip, Boct = 3Bdip, respectively) with beaming factors of b =
1.0, 1.0, 0.1475, respectively. The orange circle shows a configuration with
high radiation collimation (b < 0.02).

surface strength Bdip ≈ 3.1 × 1014 G can give rise to a luminosity
of 2.3 × 1041 erg s−1. Although the strength of this magnetic field is
an order of magnitude lower than inferred from the Mushtukov et al.
(2015) model, the source would still be in the propeller regime (see
Fig. 13).

For the PULX to be emitting with Lpeak without entering the
propeller regime, a multipolar magnetic field is required, in particular
a dipole component surface strength of Bdip ≈ 5.5 × 1013 G and
octupole component surface strength of Boct � 5.5 × 1014 G (see
Fig. 13). However, for all observed values of the luminosity, this
configuration falls within the thick disc regime, i.e. the dipole
magnetic field strength is lower than the bound given in equation (41).
While it can not be excluded that this contradiction may be resolved
once a different and less simplified disc model is adopted, to answer
this question would require a thorough treatment of disc accretion
and disc–magnetosphere interaction, which is beyond the scope of
this paper.

As it can be seen in Fig. 13, both the super-Eddington disc
accretion rate and the propeller regime can be avoided by introducing
a moderate beaming factor of b � 0.15. In this case, a model based
on a multipolar magnetic field configuration with dipole component
surface strength of Bdip ≈ 2.8 × 1013 G and a slightly larger octupole
surface strength of Boct � 8.4 × 1013 G can explain the entire observed
range of luminosities, up to bLpeak.
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Figure 14. The parameter space plot of the magnetic field dipole component
strength and the accretion luminosity for the source NGC 7793 P13. The
shaded regions indicate the same regimes as in Fig. 13, except using P =
0.42 and Ṗ = −4.0 × 10−11s s−1. The different lines mark the maximum
luminosity for the same magnetic field configurations as in Fig. 13. The
observed range of luminosities is shown in two configurations, with the red
triangle and the red circle assuming unbeamed emission and beamed model
with b = 0.25, respectively.

Stronger beaming factors b � 0.02 allow for a reduced accretion
luminosity and therefore again make possible a pure dipole field
configuration. However, in this case, the average accretion luminosity
falls below the threshold required to give the secular spin period
derivative Ṗ ≈ 8 × 10−10 s s−1, i.e. the luminosity is lower than
the bound given in equation (46). Hence, according to our model,
the most favourable configuration for NGC 5907 ULX-1 includes a
moderate beaming factor and crucially a multipolar magnetic field.

3.6.2 NGC 7793 P13

The PULX NGC 7793 P13 was observed to have a peak luminosity
Lpeak = 1.6 × 1040 erg s−1 and luminosity variation between L
∼ 2.0 × 1039 erg s−1 and L = 1.6 × 1040 erg s−1. A spin period
of ∼0.42s was measured and a secular spin period derivative
Ṗ ∼ −4.0 × 10−11s s−1 inferred from two observations 1 yr apart
(Israel et al. 2017b). Our constraints on the possible values of L and
Bdip are shown, together with some example configurations for this
source, in Fig. 14.

In this case, the whole range of observed luminosities, up to the
peak value of 1.6 × 1040 erg s−1, can be achieved by a configuration
with a multipolar magnetic field of dipole component surface strength
Bdip ≈ 7.3 × 1012 G and a much stronger octupole component with
surface strength Boct > 7.3 × 1013 G (see the red triangular point in
Fig. 14). Under these conditions, the source is not in the propeller
regime and no beaming is required to avoid the super-Eddington disc
regime. This particular configuration has the advantage of being
comfortably above the lower luminosity bound required to also
explain the observed spin period derivative. However, the largest
observed flux levels are not compatible with the assumption of
geometrically thin disc, which again may demonstrate that disc model
is over simplified.

When a mild beaming factor b � 0.25 is introduced, the effective
luminosity bLpeak becomes small enough that it can be explained by
a configuration with a pure dipole field of surface strength Bdip ∼
1.4 × 1012 G. This is at variance with respect to the conclusions based
on the calculation of Mushtukov et al. (2015). The only downside is

that the lowest observed luminosities fall below the bound required
to explain the observed spin period derivative. On the other hand,
the secular spin period derivative may be the cumulative result of
alternating accretion phases and may have been accumulated during
epochs of larger mass transfer. Thus, this particular configuration is
not severely disfavoured, according to the accretion torque model
used here.

4 D ISCUSSION

Motivated by the recent discovery of pulsating ULXs (Bachetti et al.
2014; Fürst et al. 2016; Israel et al. 2017a,b; Carpano et al. 2018;
Wilson-Hodge et al. 2018; Sathyaprakash et al. 2019; Rodrı́guez
Castillo et al. 2020; Chandra et al. 2020) and their proposed interpre-
tation in terms of accreting magnetars (see Tong & Wang 2019), we
have reconsidered the problem of columnated accretion on to a highly
magnetized NS. The main aim was to find model configurations
capable of producing a high, super-Eddington luminosity while not
in the propeller regime (for the values of the spin period typical of
PULXs, P ∼ 1 s).

We worked in a scenario similar to the one recently discussed by
Mushtukov et al. (2015) but we relaxed the assumption of a purely
dipolar magnetic field. Instead, we considered combinations of
dipolar and octupolar components. This combination was chosen due
to the fall-off of the octupole component strength with distance from
the surface, thereby providing a magnetic field more concentrated
close to the NS than a quadrupole component of similar strength.

We computed a series of models, characterized by either a sole
low dipolar field (at 3 × 1012 G) or a low dipolar field in addition to a
stronger octupolar component (∼3, 10 larger). We first investigated
the solutions by assuming that radiation is dominated by the lower
opacity X-mode photons, and we indeed found a super-Eddington
solution with L ∼ 1039 erg s−1 and L ∼ 1040 erg s−1 is always possible.

With respect to models based on a pure dipole field, we find
that when an octopolar component is accounted for, the accretion
column height is lower for a given luminosity. We find that in order
to compensate the decrease in height, the effective temperature of
the accretion column sinking region, Teff, is larger in models with
octupolar components. Typically, Teff is in the range ∼3−15 keV,
with the peak temperatures at the higher end of the sinking region.
This thermal component is not observed directly as the radiation
escaping the sinking region must pass through a region of free-falling
material inside the accretion column. It may yet then be reprocessed
in a thick accretion curtain (Mushtukov et al. 2017).

This accretion column model relies on the Ghosh & Lamb (1978)
disc model, specifically in order to derive the truncation radius
of the disc as well as the penetration depth of the flow into the
magnetosphere. One can question to what extent the standard disc
model parameters of Ghosh & Lamb (1978) affect the accretion
column properties as well as more generally the existence of a
solution for a given set of model parameters. We investigated this
aspect, and found that an accurate value of the truncation radius
is almost irrelevant, while the assumption regarding the penetration
depth is more crucial (see Section 3.3). In particular, a variation
of 30 per cent in the depth can decrease the base linear size of the
column by an order of magnitude.

Another limitation concerns the way in which we treat the curva-
ture of the field lines that constitute the boundary of the accretion
column. A more detailed calculation, which is beyond the purpose of
this particular paper, may account for the influence of the geometry
changing with h on the basic hydrodynamical equations (see Canalle
et al. 2005).
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The accretion column properties also depend on the assumed frac-
tion of X-mode photons present in the radiation field. We investigated
the impact of this, by introducing a fixed fraction of O-mode photons
(see Section 3.2). Although we found variations in the X-mode
fraction introduce differences in the accretion column properties for
most of the magnetic field strengths considered here, this does not
lead to a significant variation in the maximum luminosity curve.

In general, the opacity local to the NS surface is a decisive factor
in allowing for the super-Eddington luminosities observed in ULXs
(L > 1039 erg s−1). However, the geometry of the accretion column
footprint on the surface of the NS is also of crucial importance
in determining the column properties. In particular, we found that
the thickness of the accretion column has a significant effect on the
luminosity (see 3.3). Indeed, we found a greater maximum luminosity
for a given magnetic field strength compared with the one calculated
by Mushtukov et al. (2015) in part due to our different approach to
calculating the accretion column thickness.

Accretion columns with luminosity L ∼ 1041 erg s−1 are in prin-
ciple obtainable with our modelling. However, in order to avoid
the propeller regime for a source with pulse period of the order of
∼1 s, the dipole field strength must be sufficiently low (∼1013 G). A
low strength dipole component (Bdip ∼ 1012 G) together with high
accretion luminosity results in a thick accretion disc, as already
noticed by Israel et al. (2017a). This is in contradiction with the
assumption of a thin accretion disc of our model. Consequently, the
problem of an upper limit to the luminosity related to the strength of
the dipole component remains.

We applied our model to the two sources NGC 5907 ULX-1 and
NGC 7793 P13 (see Section 3.6). The necessity of a multipolar
magnetic field configuration is different for each source, once
beaming is taken into account.

For NGC 7793 P13, the observed luminosity is L ≈
1.6 × 1040 erg s−1. When taken face value, this luminosity level
is too large to be compatible with the calculation of Mushtukov
et al. (2015) since it would require a magnetic field so high that
the source would be deep in the propeller regime. On the other
hand, according to our model, the lowest observed flux levels are
compatible with a purely dipolar configuration of strength Bdip ≈
7.3 × 1012 G, and the addition of a stronger octupole component with
surface strength of Boct > 7.3 × 1013 G can explain the whole range
of observed luminosities, up to the peak value of 1.6 × 1040 erg s−1.
This latter particular configuration does not conflict with the propeller
effect, nor with the super-Eddington disc accretion. Furthermore, it is
compatible with the interpretation of the source spin period derivative
according to a simple treatment (see Section 3.5). The only problem
is that the largest observed luminosities are not compatible with
the assumption of a geometrically thin disc, which in principle may
be indicative of an overly simplistic disc model. Other possibilities
include a moderate beaming, in which case the observed flux levels
can be reached even for a purely dipolar magnetic field, with Bdip ∼
1.4 × 1012 G. However, this configuration requires that the observed
spin period derivative is due to a secular torque, most of which is
produced by the accumulation of material at the disc–magnetosphere
interface during epochs of high flux level.

The PULX NGC 5907 ULX-1 has a much larger peak luminosity
of 2.3 × 1041 erg s−1. In this case, both a super-Eddington disc
accretion regime and the propeller regime can be avoided by invoking
a moderate beaming factor of b � 0.15 (Fig. 13). If the source
has a dipolar magnetic field Bdip ≈ 3.2 × 1013 G and a slightly
larger octupole surface strength Boct � 9.6 × 1013 G, then the entire
observed range of luminosities can be reached. Even for this source,
stronger beaming factors b � 0.02 allow for a reduced accretion

luminosity and therefore make possible to explain the observed flux
levels with a pure dipole field configuration, provided that, at the
same time, it is assumed that most of the torque that gives rise to
the spin period derivative is accumulated during phases of larger
accretion rate.

There is still a number of open issues that needs to be addressed,
before a self-consistent explanation of PULXs can be reached. As
already mentioned, the presence of multipole magnetic field compo-
nents can change the properties of the accretion column significantly.
The maximum shock height, H, is reduced in comparison to a
pure dipole magnetic field case. This in turn results in a higher
effective temperature, which may manifest in the spectral data. In
principle, a super strong magnetic field would be able to lower the
maximum shock height very close to the surface so that H � R.
However, since our model assumes the radiation primarily escapes
perpendicular to the sinking region, its validity would become more
dubious as H → 0. In addition, as the maximum shock height of the
column is lowered, the temperature of the sinking region may exceed
100keV, whereupon we expect electron–positron pair creation and
annihilation to play an increasingly important role in limiting the
temperature of the accretion column while also increasing the gas
pressure (see Mushtukov, Ognev & Nagirner 2019). A calculation
including the gas pressure as well as pair creation and annihilation
will be necessary for a more accurate description of the accretion
column properties.

Several other simplifying assumptions were made in the model
presented in this paper. First, we assumed that the radiation pressure
dominates over the gas pressure in the sinking region of the accretion
column. Through numerical calculation of several models, we found
this assumption breaks down at the lower layers of the sinking region.
Since we used a power-law ansatz for the velocity profile of the
accreting plasma, the model is not expected to give an accurate
picture of the lower layers of the sinking region, where the plasma
flow becomes stagnant and hence the density becomes infinite.
However, the contribution to the luminosity from these lower layers is
negligible compared to higher up in the column, where the radiation
pressure does indeed dominate over the gas pressure.

Secondly, in our calculation of the scattering opacity, we neglected
the contribution from ions in the plasma and the contribution from
vacuum polarization effects, which both become significant exactly
in the strong magnetic field regime we consider here (B � 1013 G).
Additionally, we assumed that a fixed fraction of X-mode photons
made up the radiation field throughout the column and approximated
the opacity as an effective scattering opacity (see Section 2.4). A
more physically realistic treatment consists of a careful treatment of
the scattering between the polarization modes as well as including
mode switching due to resonant scattering. This will be the focus of
our future work in development of the accretion column model.

Finally, we did not take into account the role of energy advection
by the accreting plasma and cooling via neutrino emission. These
processes were studied by Mushtukov et al. (2018) and are expected
to be relevant in the case of very luminous sources L ∼ 1041 erg s−1.
In Section 3.6, we opted instead to assume the was beamed by some
mechanism. The exact details of admissible beaming factors for each
of these sources is beyond the scope of this paper.

5 SU M M A RY

We developed a simplified model of the accretion column for strongly
magnetized NSs, building on and altering the model of Mushtukov
et al. (2015). Crucially, we relaxed the assumption of a purely
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dipolar magnetic field, which we found allows for a larger maximum
luminosity.

We found that when a magnetic field configuration with a sig-
nificantly strong multipolar component is assumed, the luminosity
released in the accretion column is limited only by the accretion
rate from the disc. This, in turn, calls for more refined models of disc
accretion and disc–magnetospheric interaction at the near-Eddington
regime.

We applied the model to two PULXs, NGC 5907 ULX-1, and NGC
7793 P13, and discussed how their observed properties (luminosity
and spin period derivative) can be explained in terms of different
configurations, either with or without multipolar magnetic compo-
nents. Generally speaking, the latter scenario is more favorable in
case the emission is assumed to be highly beamed. Although at this
level it may be difficult to differentiate further, we notice that strong
multipole components may manifest in the spectra or polarization
signal, an issue that we plan to investigate further in following work.
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