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ABSTRACT
Galaxy lenses are frequently modelled as an elliptical mass distribution with external shear and isothermal spheres to account
for secondary and line-of-sight galaxies. There is statistical evidence that some fraction of observed quads are inconsistent with
these assumptions, and require a dipole-like contribution to the mass with respect to the light. Simplifying assumptions about
the shape of mass distributions can lead to the incorrect recovery of parameters such as H0. We create several tests of synthetic
quad populations with different deviations from an elliptical shape, then fit them with an ellipse + shear model, and measure
the recovered values of H0. Kinematic constraints are not included. We perform two types of fittings – one with a single point
source and one with an array of sources emulating an extended source. We carry out two model-free comparisons between our
mock quads and the observed population. One result of these comparisons is a statistical inconsistency not yet mentioned in
the literature: the image distance ratios with respect to the lens centre of observed quads appear to span a much wider range
than those of synthetic or simulated quads. Bearing this discrepancy in mind, our mock populations can result in biases on H0

∼ 10 per cent.

Key words: gravitational lensing: strong – galaxies: haloes, structure – cosmology: distance scale.

1 IN T RO D U C T I O N

The two major competing methods to measure H0, through tempera-
ture anisotropies of the CMB and standard candle distance determi-
nations, currently disagree at the 4.4σ level (Planck Collaboration
VI 2018; Riess et al. 2019). To diagnose or potentially resolve this
tension, the gold standard is to measure H0 to 1 per cent precision.
One method which may be competitive for this goal is to use time
delays from strong gravitational lensing as a direct measure of
distance. The most precise constraint from this method to date comes
from the H0LiCOW (H0 Lenses in COSMOGRAIL’s Wellspring)
program (Wong et al. 2019), who recently used a combined analysis
of six lens systems to find H0 = 73.3+1.7

−1.8 km s−1Mpc−1 (2.4 per cent
uncertainty), in agreement with the Riess et al. (2019) standard candle
value.

The lensing method works by measuring the difference in arrival
time between two or more images, which arises due to the paths
having different lengths and passing through different gravitational
potentials. This determination provides a direct measure of a
combination of distances, and therefore is directly related to H0:
D�t = (1 + zd ) DdDs

Dds
∝ 1

H0
(Refsdal 1964; Schechter et al. 1997).

The accuracy of this determination can only be as good as the
measurement of the time delays and the accuracy of the lens model.
As such, the H0LiCOW group has gone to great efforts to precisely
model each of their lens systems. Time delays are measured from
the COSMOGRAIL program, a long-term monitoring program of
multiply imaged quasars, which has measured time delays to within
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1–3 per cent (Courbin et al. 2004; Bonvin et al. 2016). The main lens
is modelled as an ellipse + shear, either as a power-law profile or a
composite profile with a baryonic component and a dark matter (DM)
NFW component (Navarro, Frenk & White 1996), and a Bayesian
inference is used to choose the best model (Wong et al. 2019). Line of
sight and neighboring galaxies are included in the modelling process.
Large-scale smooth line-of-sight structure is accounted for through
a statistical comparison with control surveys and simulations. Stellar
kinematic information of the lens is used to constrain the mass of the
system, breaking the mass-sheet degeneracy (MSD).

1.1 Lensing degeneracies

Despite this enormous effort, there is still room for uncertainty.
Gravitational lensing is plagued by many degeneracies, where the
same observables can be reproduced by a family of lenses. The most
famous is the aforementioned MSD, (Falco, Gorenstein & Shapiro
1985; Saha 2000), where scaling of the convergence (�/�crit) by a
factor of λ and adding a uniform convergence of (1 − λ) does not
affect the image positions or the relative fluxes

κλ(�x) = λκ(�x) + (1 − λ). (1)

However, the relative time delays are affected by a factor of λ,
which, in turn, means the recovered value of H0 will be biased by
a factor of λ. In principle, any value of λ is equally well supported
by the lensing data, but one particular value is artificially selected in
the modelling process. If the effect is similar for many systems, this
could impart a bias on the recovered value of H0 (Schneider & Sluse
2013; Xu et al. 2016). Phrased another way, the choice of lens model
may select the value of λ which causes the recovered lens to most
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closely match that choice model, whether or not that corresponds
to the true mass distribution. No model mass distribution will ever
perfectly match the true mass distribution of a particular lens, so this
effect is always present to some degree. In this way, since the mass
distributions of real galaxies will always be more intricate than our
lens models, the simplifying assumptions made in the construction
of those models may introduce systematic effects in the recovery of
parameters like H0.

The MSD in particular is one of the more-studied lensing degen-
eracies. Recent work by Birrer et al. (2020), Birrer & Treu (2020)
explicitly folds uncertainties related to the MSD into the analysis of
H0LiCOW lenses, resulting in a constraint on H0 of ∼ 8 per cent.
Xu et al. (2016) and Tagore et al. (2018) extracted haloes from the
Illustris and EAGLE simulations and examined their lens profiles in a
statistical way. The studies envisioned fitting each mock lens profile
as a power law and calculating the λ necessary to transform each
profile into a power-law shape near the image radius. Assuming
this distribution of λ values would be equivalent to the bias on
H0, the authors make statistical determinations as to the bias and
spread of H0 recovery for these lenses. Gomer & Williams (2019)
instead explicitly fit mock quads from two-component analytical
profiles using a power-law model and found that the bias and spread
on H0 was not the same as the λ values expected from the above
rationale, perhaps casting doubt on the applicability of the statistical
distributions of λ calculated by Xu et al. (2016) and Tagore et al.
(2018).

As mentioned above, the H0LiCOW project includes stellar
kinematic information to break the MSD. The principle is that the
velocity dispersion is measured at distances from the galaxy centre
where stars dominate, which provides an absolute measure of mass at
those radii. Forcing the lens model to match this constraint restricts
the freedom of λ, and therefore H0. Gomer & Williams (2019)
discovered interesting results with regard to this practice. In the
fitting procedure, they forced the slope to take on the actual value
of the lens profile slope (near the image radius) which serves to
emulate the effect of stellar kinematics constraints. Slope constraints
and stellar kinematic constraints are similar because in both cases
external information about the mass distribution near the image
radius is used to inform the fitting process. Strangely, Gomer &
Williams (2019) found that this could introduce significant bias
in the recovery of H0. When the value of slope corresponding
to that of the actual mass distribution is provided, the MSD is
broken, but it is done so incorrectly, so as to introduce bias on
H0. Lensing degeneracies continue to surprise us as they manifest in
unexpected ways. Simplifying assumptions about the profile shape
have caused the modelling process to recover the wrong value of
H0, even when informed with external information which should
have improved the recovery. This may have consequences for the
H0LiCOW determination of H0, or any other determination which
uses stellar kinematic information to break the MSD.

Unfortunately, the problem is not limited to the MSD. For one,
the MSD is actually a special case of the more general source-
position transformation (SPT, Schneider & Sluse 2014), which takes
any single source which produces multiple images and describes
the possible mappings to reproduce those images using a different
source position. With more flexibility than the mass-sheet transfor-
mation (MST), the image positions and relative magnifications are
reproduced exactly in the axisymmetric case. Though the observable
quantities are not perfectly reproduced in the general case, they are
very nearly matched (within the errors of observations) with realistic
ellipticity values. Like the MST, the time delays (and therefore H0)
are affected, although unlike the MST they do not scale evenly

Figure 1. An example of the monopole degeneracy. On the left-hand side is a
simple elliptical mass distribution with the four images from an example quad
depicted in magenta (scale in arcsec). On the right-hand side is the distribution
after three monopoles have been applied. The quad images are in the same
location with the same time delays because of the monopole degeneracy. The
structure of the mass distribution could be quite complex, but this particular
quad would not reveal it. If the true mass distribution were akin the that on the
right, models would only ever recover the mass distribution on the left-hand
side, since they assume a perfectly elliptical lens mass.

with the source position, making the effects more complicated to
parse.

Another known degeneracy is the monopole degeneracy, where
any circular region of the 2D mass distribution which does not
contain an image can be altered by simultaneously adding and
subtracting convergence in a circularly symmetric way (i.e. can be
described with a monopole moment) such that the total convergence
is the same (Liesenborgs & De Rijcke 2012). The lens equation is
unaltered outside of the circular region in question. Image positions,
magnifications, and relative time delays are all recovered exactly.
This transformation can be applied multiple times to different regions
to drastically change the shape of the mass distribution with no affect
on any lensing observable (example in Fig. 1). Since this degeneracy
does not directly affect time delays, it is more or less omitted from
the discussion of H0.

Degeneracies need not reproduce the image positions exactly to
have an effect on time delays. Observables can be reproduced well
enough to be consistent with observations but not perfectly. Read,
Saha & Macciò (2007) showed that a general first-order perturbation
to a power-law lens potential can produce zeroth-order changes
in the time delay. It seems plausible that an imperfect monopole
transformation could produce lenses, which approximately repro-
duce image positions, but significantly alter time delays. Since the
introduction of one or more monopoles to a lens can alter the shape
of the density contours, model assumptions on the shape of the mass
distribution may be tied to the monopole degeneracy in a similar
way that model assumptions about slope are tied to the MSD (or
SPT). Since no galaxy will perfectly match a given model, lensing
degeneracies work behind the curtain of the fitting process to find
a close degenerate solution within the assumptions of the model.
Similar to how Gomer & Williams (2019) explored the effects of the
MSD in the fitting process with slope as the focus, the effects of other
degeneracies must be explored with the shape as the focus (Saha &
Williams 2006), serving as partial motivation for this study.

1.2 Ellipse + shear assumption

Nearly all parametric lens models assume that the mass distribution is
elliptical and has some external shear, which serves as a stand-in for
external influences and higher order effects. For example, H0LiCOW
uses a Bayesian inference between multiple models, but the primary
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model is their singular power-law elliptical mass distribution model
with external shear. While assumptions regarding the radial profile of
lens mass distributions have been somewhat explored in the literature
(Enzi et al. 2019), this ubiquitous assumption about the azimuthal
shape of the mass distribution has been less well explored.

Woldesenbet & Williams (2012) studied the azimuthal image
positions of quad lenses, and found that for single-component
elliptical mass distributions, the relative polar angles of the images lie
on a well-defined surface, called the Fundamental Surface of Quads
(FSQ). Because quads from all simple elliptical lenses, regardless
of the degree of ellipticity or density profile shape, lie on the
FSQ, it provides a model-independent benchmark for analyzing
galaxy properties. Deviations from the FSQ signal departures from
simple elliptical mass distributions. The observed galaxy-scale quad
population has a significant deviation from this surface, confirming
that real lenses are not simply elliptical mass distributions. Even more
interestingly, Woldesenbet & Williams (2015) then showed that the
addition of external shear was insufficient to bridge the gap, and that
while many individual quads can be described as ellipse + shear,
the population of quads cannot be reproduced – it must come, at
least in part, from lenses with more complicated mass distributions.
Gomer & Williams (2018) expanded on this analysis, finding that the
observed population cannot be accounted for by including Lambda
cold dark matter (�CDM) substructure, even if the mass of each
clump is increased by a factor of 10.

Images happen to lie at similar radii to the transition region
from an inner component being baryon dominated to an outer
component being dominated by dark matter. It is quite likely that this
transition region produces asymmetries to the lens shape. Gomer &
Williams (2018) went on to explore the effect of certain types of
macro-structure within otherwise elliptical lenses. Two-component
profiles were constructed with a variety of perturbations added to
the shape. The authors found that the only way to reproduce the
observed azimuthal structure was through two-component profiles
with a combination of Fourier components and offset centres, with a
magnification bias present. This conveys that at least some fraction
of mass distributions must be considerably more complicated than
ellipse + shear models (even two-component models where the
components are aligned) can describe. Because these mass models
match the observed population in this respect, they are used as the
starting point for the models in this work.

This is not to say that the ellipse + shear assumption has never been
tested within the time-delay cosmography framework. H0LiCOW
uses a two-component model as one of several models within a
Bayesian framework, and this model has been used to introduce
some level of asymmetry. However, most two-component models
still assume that the centres of the two components coincide such
that the overall shape is still elliptical. The baryon component may
itself be composed of multiple components, e.g. two Chameleon
profiles. Some two-component models, such as the model of HE
0435-1223 by Wong et al. (2017), also align centroids, but allow the
position angles and ellipticities of the components to vary, providing
a possible overall shape, which is not elliptical. Again allowing the
position angles (but not centroids) of the two components to vary,
Millon et al. (2020) found that a two-component model was able
provide a better fit than a power law. However, the FSQ comparison
of Gomer & Williams (2018) required a combination of perturbations
to an elliptical shape beyond a difference in position angles, so even
misaligned position angles such as in these models cannot provide
sufficient asymmetry to match the observed quad population. While
the main goal of H0LiCOW et al. is to apply models to fit specific
lenses, one goal of this paper is to make sure that the lens models

being prescribed are a good match to the general population of
lenses.

Based on modelling of SLACS lenses, the two components of
haloes are not necessarily aligned, and instead can have different
axis ratios or position angles. Offset centres of order 0.1 arcsec are
not uncommon (see fig. 5 of Shajib et al. 2019). When a composite
model is used in the H0LiCOW analysis of WFI2033-4723, the
model centre is offset from the light by ∼200 pc (Rusu et al. 2020).
DM haloes are not necessarily any more spherical than the light (see
table 1 of Shajib et al. 2020a). Since these measurements come from
parametric fittings which assume all components are elliptical, they
may not fully capture the inherent asymmetries of these systems.
This paper seeks to explore a range of structure beyond a simple
elliptical halo.

Efforts to compare external shear with actual lens environments
have found that in many cases the shear does not match what one
would expect from the environment in either direction or magnitude
(Wong et al. 2011), implying that shear may not be a physical quantity
as is typically assumed, but more of a first-order fitting parameter
which compensates for simplifying assumptions. Biggs et al. (2004)
used high-resolution VLBA imaging to study a radio jet where three
knots in the jet were multiply imaged. While a single knot could
be fit with a singular isothermal ellipsoid (SIE) + external shear
model, it was not possible to fit all three images with SIE + shear.
They were only able to fit the images by modelling the mass as a
sum of Fourier components (Evans & Witt 2003) which resulted
in rather extreme ‘wavy’ features. High-resolution constraints using
radio sources offer a testing ground for lens models, currently being
explored by the strong lensing at high angular resolution program
(SHARP). Spingola et al. (2018) present their findings regarding the
first target of the program, MG J0751+2716, wherein both a single-
lens SIE + shear model and one accounting for the nearby galaxies
drastically failed to reproduce image positions relative to the tight
constraints of the VLBI observations.

Coming from another angle, Nightingale et al. (2019) analyzed
three SLACS lenses using PyAutoLens, a fully automated software
which fits light and mass distributions simultaneously and determines
the lens model complexity through Bayesian model comparison
(Nightingale, Dye & Massey 2018). The resulting models require two
mass components which are offset both in terms of position angle and
centroid position, effectively introducing a lopsidedness in the shape
of the mass distributions, echoing the findings of Gomer & Williams
(2018). Meanwhile, Williams & Zegeye (2020) also required a
model with lopsided mass contours resulting from two offset mass
components to fit the lensed supernova, iPTF16geu. Wagner (2019)
developed a method to analyse lens systems in a model-independent
way by comparing the observable properties of individual images
locally to one another rather than globally to a particular model. The
distinct separation of the locally constrained regions near the images
from the regions with no images where model assumptions are the
only constraint allows a way to determine the effects of different
model assumptions. The process makes it clear that only part of
the information comes from the observational data alone– a large
part comes from the modelling assumptions. Comparing this method
with others for the B0128 + 437 system, Wagner & Williams (2020)
found that the lens could not be adequately fit as an ellipse + shear
and that the implicit assumptions inherent to parametric modelling
introduced incorrect local constraints which could not reproduce the
millisecond image structure when applied globally.

The general trend seems to be that modifications to the
ellipse+shear model are increasingly necessary as astrometry and
modelling techniques improve. While the ellipse + shear model has
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been incredibly useful, it seems that it ignores (or possibly covers
up) complexities in the mass distributions which are only now being
revealed.

Since the ellipse + shear assumption is not always representative
of the true mass distribution, an analysis must be done to ascertain
whether or not the assumption itself can introduce scatter or bias
in the recovery of H0, similar to how the assumptions on the radial
profile shape can introduce biases through the MSD. The goal of this
paper is to begin that discussion.

To explore the possible effects of this assumption, we will
be producing quads from mock lenses which are not necessarily
ellipse+shear, then fit the images as if they were real quads, with no
knowledge of the true mass distribution, assuming ellipse + shear.
Since there are many ways to construct a mass distribution and
many ways to model lenses, the space of this problem has many
facets to it. The context of this paper is to begin the exploration,
but cannot comprehensively investigate all parts of it. Eventually,
the effects of spatially resolved kinematics, line-of-sight structure,
and finite source size should all be included (as in H0LiCOW), but
at present these are beyond the scope of this exercise. For now, we
will simply try to match the image positions and time delays of these
synthetic quads and determine the extent to which recovery of H0 is
affected.

2 TEMPLATE LENS

Before we create lenses with deviations from their simple elliptical
shape, we need a control lens against which to compare our results.
With the focus of this work being the effect of the ellipse+shear
model, rather than the radial profile, we will use the same radial
profile for all tests. A thorough exploration whether or not the
ellipse+shear effect has any dependence on the radial profile (such
as the presence of a core, or different DM concentration) is a task for
future work. Our template mock lens will be a purely elliptical lens,
such that the ellipse + shear model will be an accurate representation.
As such, any bias or spread in the recovery of h, if present at all, would
not be due to the ellipse + shear simplifying assumption. Later tests
will use this lens as a template and add perturbations to the elliptical
shape.

This lens is constructed as a two-component potential with a
steep power-law component (α = 0.4, i.e. density slope =−1.6)
representing baryonic matter and an NFW component representing
dark matter (rs = 10 kpc). In addition to being physically motivated,
the use of two components will eventually make for an elegant way to
introduce perturbations from the elliptical shape by slightly changing
one-component relative to the other (Section 3). Since Gomer &
Williams (2019) focused on the effects of radial profile shape while
keeping the lens as ellipse + shear, this paper focuses on altering
the azimuthal structure while keeping the radial profile intact. The
lens we will use as a template is the same as the ‘Model D’ lens
from Gomer & Williams (2019), who made four such model profiles
from this formula. Of the four, this model is considered the most
representative of real haloes, as it has a slope near the image radius
which is slightly steeper than isothermal (Barnabè et al. 2011). The
halo has a viral mass of 1.7 × 1012 M� and an Einstein radius of
5.5 kpc (0.82 arcsec), with dark matter becoming dominant at 2.0 kpc
(0.30 arcsec), with a lens redshift of 0.6 and a source redshift of 3.0.
Other physical attributes are available in table 1 of Gomer & Williams
(2019).

Lenses are created with hinput = 0.7. Since we are interested in the
bias of h, when recovered value of h are quoted, they will be relative
to 1.0, which corresponds to the correct recovery of h = hinput.

2.1 Fitting procedure

Each of our tests in this work will produce a set of lenses. One
quad is generated for each lens by placing the source randomly
within the caustic. Each of these quads is then fit as a power law
using lensmodel (Keeton 2001). Detailed in Gomer & Williams
(2019), the procedure searches over seven parameters: normalization,
ellipticity, ellipse PA, shear, shear angle, core softening radius,
and slope, minimizing χ2 and returning the best-fitting model
and corresponding value of h. The search works through several
steps. The first step holds all the parameters fixed except for mass
normalization and position angles, and grid searches over both the
ellipticity PA and shear angle. The second step frees ellipticity
(defined as 1 – qpotential) and shear, and grid searches over the interval
[0, 0.4]. The next step frees all the parameters and optimizes. The last
step repeats the whole loop for a new initial value of slope. The core
radius is initialized at zero, but can take on non-zero values in the
second-to-last step, when all parameters are free to vary. By default,
lensmodel uses a Gaussian prior for h, for which we set the sigma
to be large (106) so as to effectively be a flat prior, as in the example
in the lensmodel manual. Robustness of this fitting procedure is
demonstrated in Appendix A of Gomer & Williams (2019).

We fit the lens images in two different ways. In one fitting, we fit
the images as point sources with observational uncertainties of 0.003
arcsec in spatial resolution and 0.1 d in time delays.1 This fitting is
the same as the fitting process in Gomer & Williams (2019). We
hereafter refer to this fitting as the ‘point-source fitting’.

In addition, we perform a second fitting in which the source
includes an array of nine-point sources, meant to serve as an ap-
proximation for an extended source. These sub-sources are arranged
in a cross configuration with two sources extending in each direction
away from the centre. Sub-sources are placed at a distance of 0.05
and 0.1 arcsec (0.′′1 = 0.67 kpc in the lens plane and 0.77 kpc
in the source plane) from the centre. The central point source has
the same 0.003-arcsec astrometric uncertainty, while the eight sub-
sources each have a positional uncertainty of 0.03 arcsec (similar
to the size of an HST pixel, for comparison a H0LiCOW image
has a resolution of 0.05 arcsec, Wong et al. (2017)). Only the central
point source has a measured time delay, although we have relaxed the
uncertainty on the time delay to 1 d. The logic behind this choice is to
make the second fitting conform as closely to presently observed lens
systems as our framework allows, and 0.1 d is perhaps too optimistic.
In addition, we are also curious to compare the effect of extended
source information with that of enhanced time delay information –
both constraints should help with degeneracies, but they may or may
not eliminate similar sets of degenerate models. We hereafter refer to
this fitting as the ‘extended-source fitting’. Results for both fittings
will be shared and compared.

2.2 1ell test

With the profile shape parameters set, mock quads can be created
and fit. We create a population of 500 lenses from this profile shape
by introducing ellipticity to the mass distribution. Axis ratios for
the potential are uniformly chosen within the range of 0.85 to 0.99,
which corresponds to roughly 0.5 to 0.99 with respect to mass (the
same axial ratio is chosen for both the baryon and DM components).

1The astrometric errors are comparable with modern radio observations. The
errors in time-delay are likely more optimistic than present observations for
quasar sources and are meant to be more forward-looking (although they may
be reachable for supernova sources, Wojtak, Hjorth & Gall 2019).
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Table 1. A summary table of the tests in this paper. For each test, the type(s) of perturbations to the ellipse + shear model are designated. For each test, the
MLE determination of h is shown, as well as the measures of fitting success: the Pearson correlation coefficients between input and recovered ellipticity
and shear, and the fraction of systems which were successfully fit with χ2/dof < 1. The good sample refers to only those with χ2/dof < 1, while the whole
sample refers to all quads. Correlations are calculated for the good sample. Recovered values of h are relative to an unbiased value of 1.

Point-source fitting results
Test Shear? Different q? Tilted PA? Fourier? Offset centres? Good sample h Whole sample h Ell Rcorr γ Rcorr fχ2/dof<1

1ell – – – – – 0.98+0.02
−0.03 0.98+0.02

−0.03 1.00 – 0.98

2ell – X X – – 1.04+0.08
−0.09 1.03+0.08

−0.07 0.93 – 0.99

OffCent – X X – X 0.75+0.11
−0.04 0.58+0.23

−0.06 0.34 – 0.21

Fourier – X X X – 0.89+0.07
−0.13 0.83+0.19

−0.21 0.83 – 0.09

All – X X X X 0.60+0.16
−0.06 0.61+0.16

−0.07 0.35 – 0.05

1ellγ X – – – – 1.08+0.13
−0.10 1.08+0.13

−0.12 1.00 1.00 1.00

2ellγ X X X – – 1.06+0.07
−0.03 1.06+0.05

−0.03 0.91 0.99 0.98

OffCentγ X X X – X 1.12+0.04
−0.04 1.07+0.11

−0.40 0.59 0.92 0.31

Fourierγ X X X X – 1.11+0.04
−0.06 1.05+0.07

−0.11 0.83 0.95 0.35

Allγ X X X X X 1.16+0.03
−0.06 1.01+0.16

−0.46 0.47 0.86 0.17

Lenses from this test have no complications to their elliptical
shape.

This control test, designated ‘1ell’, is the same test as that
designated ‘Model D’ in Gomer & Williams (2019). Because the
lens truly is an elliptical lens, the ellipse + shear model used to
fit it is accurate. The only discrepancy between the created lens
systems and the model used to fit them is that the model is a power
law whereas the lens is a composite profile, a discrepancy explored
deeply in Gomer & Williams (2019).

The fitting results are listed in Tables 1 and 2. The images are
fit well, with 98 per cent (99 per cent) of quads having χ2/dof <

1 for the point-source (extended-source) fittings. Omitting the bad
fits, the recovered ellipticity values correlate spectacularly with
the input values (R = 1.00 for the point-source fitting and R =
0.99 for the extended-source fitting) and the recovered shear values
are nearly zero (median = 0.0021 for the point-source fitting
and 0.0053 for the extended-source fitting), indicating the fitting
process has accurately matched the true mass distribution shape
quite well. With well-recovered ellipticities and shears, the fitting
procedures have not been strongly influenced by the ellipticity-shear
degeneracy.

The recovered distribution of h is depicted in the upper left-hand
panel of Fig. 2. Each lens recovers a single best-fitting value of h, but
it is more useful to consider the value one would get by combining the
fits together, as is done in studies of real systems such as H0LiCOW.
To represent this value, a maximum likelihood estimation (MLE) is
performed by taking the distribution of χ2/dof with respect to h near
the best-fitting value and calculating a likelihood as a function of
h. The other parameters are marginalized over for this calculation.
Likelihoods are calculated for each lens. The lenses with χ2/dof <

1 best fits have their likelihoods combined together. To accurately
determine scatter, the distribution is bootstrapped and shown in Fig. 2.
The mean and standard deviation of the h distribution is listed in
Table 1.

For ‘1ell’, the recovered value of h relative to 1.0 is 0.98 ± 0.03 for
the point-source fitting (0.98 ± 0.02 for the extended-source fitting).
The scatter of the distribution is such that it is consistent with being
unbiased. This distribution of h will be the standard against which
later tests will be compared. If changes to the elliptical shape cause
the recovered value of h to drastically change from this value, we
can conclude that the ellipse + shear assumption has a biasing effect
on h.

3 A D D I T I O N O F PE RT U R BAT I O N S

At the heart of this exercise is the question of why the ellipse + shear
model may not be sufficient. Perhaps the most plausible physical
motivation for perturbations to the elliptical shape of haloes comes
from noting that the image radius (RE = 5.5 kpc in the circular
case) is not too far-removed from the transition radius where dark
matter begins to dominate the mass (Rtrans = 2.0 kpc again in the
circular case for the lens template). If the baryon component and the
dark matter component have even slightly different shapes, the mass
distribution in this transition region will not have purely elliptical
contours. Slight adjustment of the alignment of the two components
offers a natural way to make the lens slightly non-elliptical, an effect
which Shajib et al. (2019) measure in some real lenses (see Fig. 5
therein).

Gomer & Williams (2018) discovered that only these types of
perturbations to the elliptical shape were capable of reproducing the
angular distribution of quad images. As such, we seek to reproduce
the types of perturbed shapes which Gomer & Williams (2018) found
to be necessary. Several types of alterations to the elliptical shape
were used to introduce slight asymmetries. These include having
different ellipticities for the two mass components, misalignment of
the position angles and offset centres for the two components, and the
addition of a4 and a6 Fourier components (Bender & Moellenhoff
1987). Gomer & Williams (2018) found a combination of these
perturbations to be necessary to explain the population, so it will be
necessary to examine them individually and collectively in a series
of tests, which are detailed below.

Unlike ‘1ell’, all further tests have position angles for the baryons
and dark matter components which are offset by 15o. While Gomer &
Williams (2018) allowed this angle offset to vary between 0◦ and
45◦, we restrict it to a non-zero value in the interest of controlling
variables. Whereas ‘1ell’ kept the ellipticity the same for both
components, observed lenses appear to commonly have different
axis ratios for the two components (Shajib et al. 2019), and so we
have set both components to have separately drawn axis ratios which
range (in potential) from 0.85 to 0.99.

The following list details additional complications specific to each
test. Values are chosen to match the shape perturbations discussed in
Gomer & Williams (2018):

(i) 2ell: No further complications are present aside from the
misaligned axes and separate ellipticities of the two components.
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Ellipse + shear modelling assumption on H0 1345

Table 2. Same as Table 1 but for the extended-source fittings.

Extended-source fitting results
Test Shear? Different q? Tilted PA? Fourier? Offset centres? Good sample h Whole sample h Ell Rcorr γ Rcorr fχ2/dof<1

1ell – – – – – 0.98+0.02
−0.02 0.97+0.02

−0.02 0.99 – 0.99

2ell – X X – – 1.07+0.05
−0.03 1.06+0.04

−0.04 0.94 – 1.00

OffCent – X X – X 1.13+0.20
−0.12 1.23+0.27

−0.20 0.62 – 0.49

Fourier – X X X – 1.01+0.06
−0.05 1.03+0.10

−0.06 0.81 – 0.71

All – X X X X 1.08+0.11
−0.11 1.20+0.19

−0.16 0.57 – 0.38

1ellγ X – – – – 1.01+0.03
−0.01 1.01+0.03

−0.01 1.00 1.00 1.00

2ellγ X X X – – 1.03+0.01
−0.02 1.03+0.01

−0.03 0.93 0.99 1.00

OffCentγ X X X – X 1.15+0.06
−0.05 1.17+0.06

−0.08 0.45 0.84 0.79

Fourierγ X X X X – 1.05+0.04
−0.04 1.05+0.04

−0.04 0.77 0.95 0.94

Allγ X X X X X 1.15+0.06
−0.03 1.18+0.05

−0.06 0.42 0.82 0.73

Figure 2. The posterior distributions of h for each test for the point-source fitting (blue distribution) and the extended source fitting (red distribution). When
quads with χ2/dof > 1 are omitted, the solid curves are recovered, while the whole sample with no selection corresponds to the dotted curves. The distribution
is estimated by bootstrapping the set of the combined MLE determination of h.

(ii) OffCent: The centres of the mass distributions are offset by up
to 1 kpc in a random direction to introduce lopsidedness. Because the
offset coordinate is distributed uniformly by radius, the offsets are
more centrally concentrated than a uniform distribution within the
area. The lensmodel fit fixes the centre of the mass distribution to
the centre of the baryon distribution. The offset centre can be thought
of as introducing a mass dipole moment around the centre of light of
the lens.

(iii) Fourier: Centres are coincident, but Fourier components are
added, with a4 in the range of [–0.005, 0.005] and a6 in the range
of [–0.001, 0.001] with respect to potential.2 The resulting mass
distributions visually match the same range as Gomer & Williams
(2018), but the values are different since previously components were
added with respect to mass.

2The listed Fourier values are the coefficients in front of the cosine term. In
the notation of Xu et al. (2015), which explicitly includes a normalization for
the multipole moment, these values correspond to a4 ∈ [ − 0.075, 0.075] and
a6 ∈ [ − 0.035, 0.035]

(iv) All: The centres of the mass distributions are offset by up to
1 kpc as in ‘OffCent’. Fourier components are added, with the same
range of values as ‘Fourier’.

As an illustration of each type of perturbation, Fig. 3 shows a
single κ = 1 mass density contour for an extreme example lens from
each test. Caustics are also shown. Generally, the misalignment of
the position angles of the two components slightly tilts the caustics
of the other tests compared to ‘1ell’, with only subtle changes to
the mass contour at κ = 1. The offset centres of ‘OffCent’ and ‘All’
cause the mass contour to be lopsided, while also displacing and
slightly deforming the caustics. Meanwhile, the Fourier perturbations
of ‘Fourier’ and ‘All’ add wavy features to the shape of the mass
contours but do not significantly alter the caustics.

In addition to these five tests, we also wish to include tests with
external shear. Significant external shear is necessary to reproduce
the ratio of radial image positions in observed quad systems, which
will be discussed in detail in Section 3.2. In addition to the above
tests, we also run five tests with external shear included in lens
construction.
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1346 M. R. Gomer and L. L. R. Williams

Figure 3. The κ = 1 mass density contour and caustic for each of the five
types of tests, shown to illustrate the nature of each type of perturbation
to the elliptical shape. The degree of extremity for all these perturbations
is set to its highest level in this example – all created lenses for the
tests in this paper have perturbations of equal or lesser magnitude to this
example. Black corresponds to ‘1ell’, where the lens is a single ellipse. The
other four tests use different axis ratios for the two components with one
major axis tilted by 15o relative to the other. Red corresponds to ‘2ell’.
Blue corresponds to ‘OffCent’, where one centre is offset, in this case
1 kpc upward. Magenta corresponds to ‘Fourier’ where both components
have Fourier perturbations added. Finally, the green contour and caustic
correspond to the ‘All’ test, with all of the above perturbations included
simultaneously.

(i) 1ellγ : Same as ‘1ell’ in that position angles are aligned and
axis ratios identical for both components. A randomly oriented shear
is introduced with γ between 0 and 0.4.

(ii) 2ellγ : Same as ‘2ell’ except that a randomly oriented shear is
introduced with γ between 0 and 0.4.

(iii) OffCentγ : Same as ‘OffCent’ except that a randomly oriented
shear is introduced with γ between 0 and 0.4.

(iv) Fourierγ : Same as ‘Fourier’ except that a randomly oriented
shear is introduced with γ between 0 and 0.4.

(v) Allγ : Same as ‘All’ except that a randomly oriented shear is
introduced with γ between 0 and 0.4.

For each test, 500 lenses are created, each producing a single
quad, which is fit with the same lensmodel routine as before. The
resulting recovery of h for each test is depicted in Fig. 2, with the
results in Table 1.

3.1 Limitations

The main advantage of this study is that the deviations from a simple
elliptical shape are known beforehand and controlled to each different
test. However, there are some disadvantages that come from this type
of study as well. For example, stellar kinematics are commonly used
to break degeneracies through the spherical Jeans approximation
(Wong et al. 2017). In our case, it would be difficult to know the
effect of our complications on the velocity dispersion. Because we
lack adequate mock kinematics, the stellar kinematic information
which is used to break the MSD has not been included in this fitting
process. The role of stellar kinematic constraints was discussed by
Gomer & Williams (2019), who found that models for kinematics
which do not match the lens exactly can cause an incorrect breaking
of the MSD, leading to bias. The decision to omit stellar kinematics
from this paper is an attempt to control different forms of bias,
although in future work these simplifying assumptions will need to
be considered in aggregate.

In real systems, there is information to be gained from the ring
resulting from extended sources, which is used to help control
degeneracies. The extent to which this can help is debated (Saha &
Williams 2001; Suyu et al. 2017; Walls & Williams 2018), and may
be subject for further exploration. We have attempted to address this
by supplementing our point-source fitting with the second fitting
which uses an array of sources. This still may not fully capture the
information from an extended source, but it allows us to analyse
more quad systems since the lenses are simpler to synthesize and fit.

3.2 Comparison with observed quads

Before we draw any conclusions about the recovery of h for these
quads, we must first confirm that the population of mock quads
is representative of the observed population. Only then can we be
confident that our results will be generally applicable to real lens
systems.

Rather than comparing properties recovered from modelling, such
as ellipticity or shear, we would like to compare quad populations
independent of the modelling process. As such, we look at statistical
distributions of image properties, namely the distribution of relative
image angles relative to the FSQ (Woldesenbet & Williams 2015)
and the radial distance ratios. Any set of mock quads that seeks
to represent a real population should at the minimum match the
statistical properties of the observed population of quads.

The first statistical comparison to make is to compare the dis-
tributions of the angular positions of the images. Four images are
uniquely defined by three relative angles, which can be plotted
in 3D space. When plotted in this space, quads which come from
elliptical mass models will lie on the FSQ (Woldesenbet & Williams
2012). Meanwhile, the distribution of observed quads has significant
spread from the FSQ. External shear causes the distribution to split
above and below the FSQ, but is insufficient to account for the
observed distribution (Woldesenbet & Williams 2015). However,
the perturbations to the potential we use in our various tests can
reproduce the observed distribution (Gomer & Williams 2018).

These perturbations were sufficient to recreate the observed
distribution when used in conjunction with a magnification bias,
which selectively removes systems with lower magnifications from
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Ellipse + shear modelling assumption on H0 1347

Figure 4. The distribution of quads relative to the FSQ, projected such that
deviation from the FSQ is the vertical deviation from zero. The observed quad
population (red) has considerable deviation from the FSQ (and therefore an
elliptical mass profile). The blue points represent synthetic quads from the
‘1ell’ test (left-hand panel) and the ‘All’ test (right-hand panel). The ‘1ell’
quads do not deviate from the FSQ and are not consistent with the observed
population, while the ‘All’ quads are consistent with the observed population
in this respect.

the comparison set with a probability of being kept being proportional
to the summed magnifications. The bias is meant to emulate the
fact that brighter systems are more likely to show in surveys, and
therefore our data set, while dim systems are more likely to be
overlooked. For real systems, the probability of being found is also
related to the brightness of the quasar, but since this is independent
of the lensing effect, the magnification of the images is the relevant
parameter to describe this effect. For consistency, when we compare
our mock quads with the observed population, we will also apply
this magnification bias to our population of quads.

Previous work comparing the observed population to the FSQ
provides evidence for the presence of azimuthal substructure in
galaxy lenses and was the motivation for this work. As such,
we should confirm that the quads involved match the observed
population in this context. Fig. 4 shows the distribution of quad
image angles relative to the FSQ for ‘1ell’ (pure ellipse) and ‘All’
(all types of perturbations added). While ‘1ell’ fails to reproduce the
scatter relative to the FSQ, ‘All‘ is more consistent with the observed
population in this respect, with a p-value of 
 5 per cent, replicating
the findings from Gomer & Williams (2018).

In this work, we seek to expand the model-free population
comparison toolkit by adding a comparison with respect to image
distance ratios relative to the lens centre. Fig. 5 shows the observed
distribution of radial image ratios as solid curves (the full set of quads
used in this work listed in Table A1 in green and the H0LiCOW subset
in blue). Relative to the farthest-out image, the observed population
of quads consists of a large spread of image distances, ranging from
quads with multiple images at approximately the same image radius
(ri = rmax), to quads with some images drastically closer to the
centre than the outermost image (ri = 0.3rmax, for example). In the
same figure, we plot two synthetic sets from this work: the ‘All’
and ‘Allγ ’ tests. Clearly, the ‘All’ quads (red distribution) are a poor
representation of real systems in this respect, as the images lie at
too similar of radii, even with the additional perturbations to the
ellipse + shear model. It appears very difficult to get the image
distance ratio distribution to be as broad as in observations. This is
not unique to our quads, and in fact appears to be a problem with
quads from numerical simulations, or at least those with a single lens
plane and located in simple environments.

Figure 5. The radial distribution of images for quads as a ratio to the farthest-
out image. The H0LiCOW quads (solid blue) are a subset of the observed
quads used in A1 (solid green). The ‘All’ (red) and ‘Allγ ’ (purple) tests from
this work are shown, both as a full set (dashed) and with a selection bias
applied based on the summed magnification (dotted). The synthetic Rung 3
TDLMC quads (yellow dashed line) are also plotted. The clear discrepancy
between the ‘All’ test and the observed quads illustrates the need for some
additional perturbation to match the observed set. The large shear in ‘Allγ ’
helps to better match the distribution. The biased ‘Allγ ’ population returns a
p-value of 3.1 per cent when compared to the H0LiCOW population, higher
than the ‘All’ (< 1 per cent) or the TDLMC (2.1 per cent) populations) Note
that our biased ‘Allγ ’ set is very similar to the TDLMC numerically simulated
quads.

The time-delay lens modelling challenge (TDLMC, Ding et al.
2018) has created a population of synthetic quads to be fit and
modelled, serving as a standard to compare the accuracy of time delay
lens models. The synthetic quads come from 3 rungs, with the first
2 sets being created as elliptical power-law lens models (Ding et al.
2021). Rung 3 was constructed from numerical simulations, namely
Illustris (Vogelsberger et al. 2014) and the zoom-in simulations of
Frigo et al. (2019). The time delay results of Rung 3 are difficult
to interpret due to numerical resolution effects, but since they
are created from numerical simulations and are therefore more
complicated than a simple ellipse + shear model, we also plot the
Rung 3 lenses as the yellow dashed curve in Fig. 5. We can see that
the TDLMC Rung 3 quads also do not span the same range of radii
as the observed population.

The second set of tests with shear (with the γ suffix) was created
to attempt to address this concern. The most straightforward way
to create quads with smaller image ratios is to introduce significant
amounts of shear. As such, these tests are the same as the first set
but with shear introduced between 0 and 0.4, with the range chosen
simply to more closely match the image ratios (purple distributions in
5). While these values of shear may seem extreme, it is important to
restate that external shear likely represents more of a fitting parameter
than a physical quantity (Wong et al. 2011). The creation of these
tests is not a claim that lens environments produce physical shears
which are this large, but rather is just another perturbation added
to the quad creation to attempt to recreate the statistical population
of quad images. As is commonly done in lens modelling, shear
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1348 M. R. Gomer and L. L. R. Williams

serves as a first-order approximation for many types of perturbations.
It is conceivable that the reason real lenses have such extreme
image ratios is some unknown perturbation to their shape which we
have not included, but shear serves to approximate. The important
takeaway from this is that the tests with γ generate quads which
provide a closer match to the observed distance ratios than those
without γ .

All told, some of the 10 tests are more capable of matching
certain characteristics of the observed quad population than others.
The ‘All’ test best matches the angular distribution, while the tests
with γ attempt to match the observed radial distribution of images.
However, once the same magnification bias as Gomer & Williams
(2018) is applied, even the γ tests with a shear ranging between
0 and 0.4 are still unable to match the observed distribution of
distance ratios. The p-value for comparing the ‘Allγ ’ case with the
magnification bias to the for the H0liCOW set is still 3.1 per cent
(< 1 per cent for the full observed set). The inability of this lens
population to fully account for the observed radial spread of images
reflects a deep mystery about the structure of lens galaxies, which
will be discussed further in Section 4.5. The distribution closely
matches the TDLMC Rung 3 distribution in Fig. 5 (with a slightly
better p than the TDLMC quads), perhaps indicating that it is
similarly comparable to the observed quads. We continue to use
the γ test populations as a comparison, noting that this inadequacy
is no worse for our set than any synthetic population currently
available.

4 R ESULTS

The results from the 10 tests in this paper are described in Tables 1
and 2, with the recovered distributions of h in Figs 2 and 6.

We define the subset of systems with χ2/dof < 1 as the good
sample, as opposed to the whole sample of all 500 quads for each
test. We list the fraction of systems which are fit with χ2/dof < 1
for each test in each table. Unless otherwise stated, we will refer to
the result of the good sample, although the whole sample will be
discussed in Section 4.3.

4.1 Fitting success

Before discussing h, we wish to draw attention to our measures of
how successful we are in reproducing the lens mass distribution fea-
tures. Working with only the good sample, we consider two measures
to check if the values of ellipticity and shear are correctly recovered:
the correlations between the values used in lens construction to the
recovered values.

Perhaps unsurprisingly, the ‘1ell’ test has a perfect correlation
between the input ellipticity and the fit value, as well as a high
fraction of quads which are successfully fit with good χ2/dof. This
is expected because for this test the ellipse + shear model accurately
describes the lens. Similarly, the ‘1ellγ ’ test successfully fits nearly
all quads and recovers the parameters accurately because the model
matches the lens.

The other tests have varying degrees of success. The ‘2ell’
and ‘2ellγ ’ tests successfully recover the ellipticity and shear
of their lenses, despite the dark matter axis being tilted with
respect to the baryon distribution. Fourier components seem to
only marginally affect this correlation success, but the tests with
Fourier components fail to fit the majority of their quads with
χ2/dof < 1. Tests with offset centres fail on both accounts–
most fits have χ2/dof > 1 and the recovered ellipticity is poorly
correlated with the actual value. The ‘All’ and ‘Allγ ’ tests fall

Figure 6. A side-by-side comparison of the recovered distribution of h
for each of the tests in this paper (top panel: point-source fitting, bottom
panel: extended-source fitting). For each test, the coloured bar refers to the
68 per cent confidence interval of the good sample, omitting quads with
χ2/dof < 1, while the black bar below each coloured bar depicts the result if
the whole sample is used.

into the same category. For all tests with external shear, the
recovered shear correlates strongly with the input value, likely
because it is the same type of perturbation as anticipated in the
model.

For the extended source fitting (Table 2), the measures of success
are similar, although in general the fits across all tests have better
χ2/dof. More systems are successfully fit with χ2/dof > 1, a majority
in each test but the ‘All’ case. This better χ2/dof comes primarily
from a larger number of degrees of freedom, with χ2 alone being
similar in both fittings. Despite more good fits, the correlations with
respect to ellipticity and shear are mostly unchanged.

Two of these measures of success are observable for a population
of real systems, namely the correlation between baryon and mass
model ellipticity as well as χ2/dof. For example, it is interesting
that the ‘2ell’ tests retain a good ellipticity correlation, because this
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Ellipse + shear modelling assumption on H0 1349

implies that real dark matter haloes could have misaligned axis ratios
without providing an observable effect on the ellipticity correlation.
That is, just because the baryon elliptical axis is strongly correlated
with the mass model, it does not necessarily mean that the two
components are aligned or have the same axis ratios. Offset centres
of the two distributions affect these quantities most drastically, so if
real lenses have poor fits or ellipticity correlations, then offset centres
could be an explanation. For comparison, results from the EAGLE
simulation in Tagore et al. (2018) have only about 48 per cent of
quads fit with χ2/dof < 1, perhaps indicating complications to the
ellipse + shear model. This fraction for our tests is listed in Tables 1
and 2.

4.2 Recovery of h

We now turn to the recovery of h for the different tests. The
bootstrapped MLE distributions are shown in Fig. 2, with the median
and 1σ errors in Table 1. The question of interest is to what extent the
introduction of shape perturbations has changed the recovery of h.
To this end, the h distributions of the other tests should be compared
to the ‘1ell’ test, which has a simple elliptical lens.

We stress that because only the fits with good χ2/dof are included,
the results are what one would get from fitting these systems in
reality, ignorant of the complications to the shape of their true
mass distributions. Even though these results all have χ2/dof <

1, some systems recover very biased values of h. Since the fits
are good, these cases would likely not raise any notice if they
were real systems, which could introduce untrustworthy results.
Perhaps the only measurable indication one would have is that only
a fraction of systems within a large population are successfully fit
with χ2/dof < 1 when an automated fitting procedure is uniformly
applied.

4.2.1 Point-source fitting

The ‘1ell’ test result is what one would hope from this kind
of analysis. The MLE combination results in a constraint with
1.5 per cent bias downward and 3 per cent scatter. This is not precise
enough for a 1 per cent determination, but it is consistent with an
unbiased recovery of h and serves as a good point of comparison for
the effects of perturbations to the elliptical shape.

The resulting h of all 10 tests can be compared with one another
in Fig. 6. The ‘2ell’ test also resulted in recovered values of h
consistent with the unbiased case, although the scatter has increased
considerably (∼ 10 per cent, with the median at 1.04). The ‘Fourier’
test has a similar scatter, although the result is biased at just over 1σ ,
with the median at 0.89. The tests with offset centres, ‘OffCent’ and
‘All’, result in particularly bad recoveries of h, biased downward by
25 and 40 per cent, respectively, with non-Gaussian scatter of order
10 per cent. The ‘All’ test was the most extreme of these five, but
it was also the only one which matched the angular distribution of
images.

The γ tests have large external shear in the lenses, which has
changed the result considerably. All five of these tests return
approximately the same median value of h, biased ∼ 10 per cent
above the true value. The scatter for all of these tests, except ‘1ellγ ’,
has decreased compared to their counterparts without shear, to
∼ 5 per cent. The fact that these tests all result in similar values seems
to indicate that the effect of shear dominates over the other types of
perturbations. These tests have image distance ratios consistent with
those of the observed quad population.

4.2.2 Extended source fitting

The results for the fitting using an array of sources are similar, with
some exceptions. The ‘1ell’ and ‘2ell’ results are consistent with
the point-source values. The ‘OffCent’, ‘Fourier’, and All results
for h have moved upward by 1.6σ , 1.2σ , and 2.4σ respectively,
now consistent with an unbiased value of h. While the inclusion of
extended source information has reduced the bias in these cases,
there is still quite large scatter (∼ 10−20 per cent).

The γ tests return values which are consistent with the point-
source fittings, still biased ∼ 10 per cent upward, although they are
no longer all within 1σ of each other. All nine tests result in a median
value which is biased upward relative to the ‘1ell’ result.

Curious if the level of bias is related to the radial offset (in the tests
where the centres are offset), we searched for a correlation between
h and roffset and found no correlation for any of the relevant tests (R <

0.1). Large offset radius tends to reduce the fraction of good fits and
slightly increase the scatter of h, but the relationship between offset
radius and h is not straightforward to predict across many lenses.

4.3 Ramifications for H0

The tests in this paper recover a wide range of values for h. Here, we
will parse these results and determine what lessons can carry forward
to real measurements of h.

First, when we focus on the tests without shear, we note that all
four perturbations to a simple elliptical shape increase the scatter
considerably over the ‘1ell’ case. When the only complexity is
a misaligned position angle between the light and dark matter
distributions, the result is still consistent with an unbiased value
for the point-source fitting, but the other three types of perturbations
can cause significant bias in addition to the scatter in both fittings.
The tests with offset centres (‘OffCent’ and ‘All’) recover the most
biased values of h. We note that the direction of the bias is not the
same for these tests across the two fittings. This result, in conjunction
with the large scatter of these tests, implies that the recovery of h
for lenses with offset centres can depend considerably on the fitting
method, with no guarantee of an accurate or precise value.

Meanwhile, unlike the tests without shear, the main result of the
tests with shear is that both fittings return more or less the same
value of h, independent of the other additional perturbations to the
elliptical shape. Lenses which produce quads consistent with the
observed radial image ratios (i.e. those with shear) result in h being
biased upward by ∼ 10 per cent. In fact, at least for the extended
source fitting, all perturbations with or without shear result in this
upward bias. A concerning implication of this result is that the
observed population of quads may also recover h biased upward
by a similar amount. It is worth noting that the H0LiCOW value
of H0 at present is 8.9 per cent higher than the Planck value (Planck
Collaboration VI 2018; Wong et al. 2019), meaning that a bias of this
order could explain the discrepancy. Because the quads which best
match real systems are biased by an amount similar to the observed
h discrepancy, it is possible that the puzzles of the observed image
distance ratios and h may be related. The role of shear in this puzzle
will be discussed in Sections 4.4 and 4.5.

It is interesting to consider the effect of our χ2/dof < 1 selection.
Because we assumed quite optimistic error bars on image position
and time delay measurements for the point-source fitting, our
requirement of χ2/dof < 1 is likely more stringent than any existing
survey. If surveys of real systems made a similar selection, they
would probably allow more of the whole sample into their good
sample due to larger uncertainties and therefore more acceptable fits.
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As such, it is likely that the resulting distribution of h would be
somewhere between our good sample and our whole sample results.
In general, the scatter increases considerably in the whole sample,
especially in cases with offset centres. The more drastic change, in
this case, happens because a smaller fraction of systems for these
tests is fit with χ2/dof < 1. For the tests with shear, the good sample
is biased higher in h than the whole sample, but with significantly less
scatter. This selection is less relevant for the extended-source fitting
for several reasons, chiefly that since a higher fraction of quads are
fit with χ2/dof < 1, there is less difference between the good sample
and the whole sample.

4.4 Role of shear

Clearly, the role of external shear is important in the context of lens
models. The tests we have done here include values of shear as high
as 0.4 (uniformly distributed between 0 and 0.4), which is almost
certainly non-astrophysical if one interprets shear as representative
of external mass. Shears even more extreme than this are necessary to
explain the relative radial positions of quad images, but we make no
claims that this much mass exists outside the lens systems. Instead,
we argue that shear is a stand-in parameter for the inadequacies of
the ellipse model, adding in a type of perturbation to it. We have
tried to introduce every physically motivated form of perturbation to
this model that we can think of (for a fixed 1D density profile), but
none of them has been able to reproduce the observed radial image
ratios as well as shear can. The puzzle of how to reproduce these
ratios will continue beyond this paper, although we will speculate
as to potential causes in Section 4.5. For now, we will not dwell on
the large values that shear can take here and instead consider it just
another parameter to fit.

For all tests with shear, the correlation between recovered shear and
input shear is very good. In all cases, it is as strong or stronger than the
correlation between input and recovered ellipticity – when external
shear is present, it is recovered well. This likely happens because
the model explicitly includes shear, so the model is looking for the
right kind of perturbation to an ellipse. Compare this to ellipticity,
where we measure the correlation between the baryon ellipticity and
the ellipticity of the total recovered mass model, which is a different,
albeit related, quantity. The correlation in the recovery of ellipticity
is weaker than that of shear for all tests.

An interesting result is that for the point-source fitting the tests with
shear have more quads with good χ2/dof and also better-recovered
ellipticities than those without shear. All measures of goodness of
fit are improved, even though the lenses themselves are actually
more complicated than those without shear. It appears that the fitting
procedure is better tuned for finding shear and is better able to handle
other perturbations when shear is present. Perhaps the presence of
quads that have images at different radii has allowed for a better fit.
Additionally, for both fittings, the scatter in h has decreased for all
tests (except the ‘1ellγ ’ for the point-source fitting), so the presence
of shear has largely made the result more consistent.

Motivated to make a comparison to observables, we return to our
model-free statistical measures of a population of quads: the radial
position of images relative to the outermost image and the deviation
from the FSQ resulting from the angular distribution of images.
Woldesenbet & Williams (2015) showed that deviations from the
FSQ for a single system can be caused by external shear or by
deviations to the elliptical shape (Gomer & Williams 2018), while
we have shown that shear can also reproduce the distribution or
radial ratios. If shear were responsible for both quantities, then the
innermost radial ratio and the deviation from the FSQ should be

correlated. Meanwhile, a lack of correlation would imply that the two
measures are affected by different physical means. This correlation
would be observable without the need for any fitting processes, using
simply the radial and angular image positions. We will explore the
utility of this test for a population of systems.

We measured this correlation for synthetic quads from our tests
and for the observed population. In particular, it is useful to compare
‘1ellγ ’, where deviations from the FSQ are caused solely by shear,
‘All’, where deviations from the FSQ are caused by perturbations to
the elliptical shape instead of shear, and ‘Allγ ’, where both forms of
deviation are present. Quads from ‘1ellγ ’ return a moderate correla-
tion with a Pearson R of –0.47 (a small radial ratio correlates with a
large �θ23), while the ‘All’, and ‘Allγ ’ tests result in no correlation.
The fact that ‘Allγ ’ results in no correlation unfortunately means
that this test cannot diagnose the presence of shear– ‘Allγ ’ had shear
but returned no correlation. Rather, this test returns a correlation
if shear is the only cause of deviations from the FSQ. When we
measure the observed quad population, we recover no correlation.
We conclude that shear is not the sole cause of deviations from the
FSQ, confirming the results of Woldesenbet & Williams (2015)and
Gomer & Williams (2018), but this test is inconclusive regarding the
degree to which shear contributes to deviations from the FSQ. In
this manner, the ‘All’ tests are again the most similar to the observed
population of quads, but this test cannot distinguish between‘All’ or
‘Allγ ’.

4.5 Possible causes of extreme radial image ratios

Considering that none of the perturbations to the elliptical shape have
had as substantial an effect on the radial image ratios as shear, we
can only speculate as to a few other candidates, as well as discuss
why they may be unlikely.

To begin, we can explore some of the most extreme cases and
how they have been modelled in previous work. The most extreme
ratio of our sample of quads is the B1422 + 231 system. Attempts to
model this system with one ellipse have been insufficient. Hogg &
Blandford (1994) used 2 SIS haloes and included external galaxies
as point masses to get a χ2/dof of 16. Kundic et al. (1997) fit the
system with an SIS + shear model to get a χ2 of 40.3 with a shear of
0.23. Raychaudhury, Saha & Williams (2003) estimated the external
shear contribution of the nearby group to be between 0.16 and 0.67.
Clearly, this system is more complicated than a field elliptical galaxy.
Another extreme system is SDSS J002240, which has been fit by
Allam et al. (2007) with a very large ellipticity of 0.53, significantly
larger than the values we consider in this paper. RXJ 0911 + 0551 has
a nearby cluster, which provides a minimum external shear of 0.15
(Burud et al. 1998). Meanwhile, B2045 + 265 has been modelled
extensively as it has very anomalous flux ratios. McKean et al. (2007)
modelled the system as 2 SIEs + shear, with a χ2/dof of 1.9 and a
shear of 0.2. The authors suspect substructure, and additionally note
that the lens potential is likely more boxy than the elliptical mass
model, since the shear does not correspond to the nearby galaxy.
More recently, Spingola et al. (2018) modelled the same system as
part of the SHARP program and found the ellipticity misaligned with
the light and that the shear changes direction when group galaxies are
included, suspecting additional complexity in the mass distribution
beyond parametric models. To sum up, of the systems with the most
extreme radial ratios, many attempts to model them frequently result
in extreme ellipticities or shears, or other complications to the shape,
or poor χ2 fits.

Many of these extreme cases have nearby groups of clusters.
It seems logical that the go-to candidate for these extreme image
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Ellipse + shear modelling assumption on H0 1351

ratios would be the most commonly accepted physical interpretation
of shear: the effect of mass external to the system. External mass
certainly contributes to shear, but may not provide enough shear
to solve this mystery. To match the observed population, we used
synthetic quads with up to 0.4 shear, which still does not quite reach
the most extreme ratios in Fig. 5, but can statistically match the
population of systems. We can estimate size of a group necessary
to produce this shear by considering the external shear of a singular
isothermal sphere (SIS) with lensing potential

ψ(�θ ) = Dls

Ds

4πσ 2

c2
�θ (2)

and taking derivatives to evaluate the shear

γ1 = 1

2

(
∂2ψ

∂θ2
x

− ∂2ψ

∂θ2
y

)
,

γ2 = ∂2ψ

∂θx∂θy

,

γ =
√

γ 2
1 + γ 2

2 = Dls

Ds

2πσ 2

c2 �θ . (3)

Using our source and lens redshifts (3.0 and 0.6, respectively) and

converting units, we find that γ = 0.376
(

σ

200 km s−1

)2
θ−1, where σ

is in km/s and θ is in arcseconds. To produce an external shear of 0.4
from 1 arcsec away, an SIS would require a velocity dispersion of
just over 200 km s–1. From 1 arcmin away, an unrealistic dispersion
of 1600 km s-1 is required. As an example, one of the observed
systems with large external shear is PG 1115 + 080, which has a
group about 10 arcsec away with a velocity dispersion of 390 km/s
(Wilson et al. 2016). Using equation (3) for the redshifts of PG
1115 + 080, the group likely contributes an external shear of 0.15,
roughly matching most attempts to model the system (Keeton &
Kochanek 1997; Treu & Koopmans 2002; Chen et al. 2019). It is
difficult to imagine a system with two to three times more shear than
PG 1115 + 080, as it would need a similar-sized group to either
be two to three times closer to the lens or a group with a velocity
dispersion nearly twice as large. This rather extreme case seems
close to the upper limit on the extent to which external structure can
contribute to shear.

One factor to consider is that the amount of shear necessary to
produce extreme radial ratios depends somewhat on profile slope.
Lenses with shallower slopes have less-concentrated mass and
require less external shear to deflect images and produce extreme
ratios. A rough estimate of the magnitude of this effect can be
evaluated by considering several fits to the same system by Rusu
et al. (2020). Table C1 lists the fit values of slope and shear for seven
variants of the H0LiCOW power-law ellipse + shear model for the
WFI2033-4723 system. The values of slope and shear are correlated,
with 3D slope ranging from 1.90 to 2.02 and shear ranging from 0.109
to 0.126. Since these fits are on the same system, any possible effects
of quad configuration are controlled, and we can roughly conclude
that a slope change of 0.1 produces a shear change of approximately
0.015. The model we use for these tests has a 3D slope (before
perturbations are added) of approximately 2.14 (Gomer & Williams
2019). If real lens systems had shallower slopes, they would not
require a shear of 0.4 or greater to match the observed quads. If, for
example, the slope were 1.9, a shear of up to 0.36 would be required,
assuming the effect from WFI2033-4723 scales similarly to these
extreme cases, an assumption which merits caution. Even so, a shear
of 0.36 is still too high to be plausibly caused by external mass.

One possibility is that some fraction of lenses are not elliptical
galaxies, but actually edge-on discs. Hsueh et al. (2016, 2017) have
shown for two particular systems (B1555+375 and B0712 + 472,
respectively) that edge-on disks are able to explain flux ratio
anomalies. It is possible that a disk could masquerade as a high
ellipticity or shear, but seems unlikely that a disk could have sufficient
mass to drastically alter image positions. The two cases from Hsueh
et al. (2016, 2017) require the disk to constitute 
 15 per cent of the
mass within the Einstein radius. These systems have innermost radial
image ratios of 0.82 and 0.61, respectively, still leaving the most
extreme cases with innermost ratios <0.4 unexplained. In addition,
this would only affect the fraction of lenses which happen the be
spirals and also happen to be edge-on. Turning to simulations, Hsueh
et al. (2018) found that edge-on disks can introduce astrometric
anomalies of 3 mas in 13 per cent of lenses in the Illustris simulation.

Because this is an effect of spiral galaxies, it would be more
common in systems with smaller masses and therefore Einstein radii.
Based on fig. 2 of Hsueh et al. (2018), a selection of lenses with
Einstein radii greater than 1 arcsec would select mostly elliptical
galaxies. A comparison of the distributions of radial image ratios
between galaxies with Einstein radii larger or smaller than 1 arcsec
could help illuminate the degree to which edge-on disks play a role.
When comparing these subsets of the observed sample of 49 systems
(listed in Table A1), the lenses with smaller image radii, hypothesized
to be more commonly spirals, tend to actually have less extreme
image ratios (mean 0.71) than those systems with larger radii (mean
0.61). A notable exception is B1422 + 231 (discussed above), which
happens to be the system with the most extreme innermost ratio of
0.23 and a mean image radius of only 0.84 arcsec. A KS Test of
these two distributions returns a p-value of 5.9 per cent, so these
two subsets are consistent with having been drawn from the same
population. If there is any trend, the trend goes the wrong way, with
spirals having less extreme ratios, meaning it is unlikely that edge-on
discs are responsible for extreme radial image ratios.

The most extreme ratios come from only a few systems, so it is
possible that a combination of effects could happen for these systems.
Perhaps a system with a high (but still plausible) ellipticity and
similarly high (but still plausible) shear like 0.15 in the same direction
as the ellipticity axis, on a profile with a shallower than isothermal
slope could produce image ratios which are as extreme as the tail in
Fig. 5. Or perhaps these systems can be ruled out as outliers due to
nearby groups, mergers, edge-on disks, or other significant additions
to the ellipse + shear model, although the systems with ri/rmax � 0.8
still require explanation. A selection bias that preferentially selects
high-ellipticity systems likely plays a role. A metal-study is merited,
which fully explores how each of these systems is fit and the ways
in which the population of systems can or cannot be explained in the
context of the ellipse + shear model, which is beyond the scope of
this paper.

5 C O N C L U S I O N

When lens systems are fit with ellipse + shear models, it is implicitly
assumed that the mass distribution is elliptical. However, there is
statistical evidence that the observed quad population comes from
lens mass distributions which are more complicated than a simple
elliptical shape. Inclusion of �CDM substructure, even if all clump
masses are increased by a factor of 10, does not resolve the issue. A
mismatch between the true mass distribution and the model used to
fit it can alter the recovery of parameters such as H0.

We created a series of tests in which lenses with perturbations
to the elliptical shape are fit with an ellipse + shear model and
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compared the recovered values of H0. Following the prescription of
Gomer & Williams (2018), we produced a synthetic quad population
which matches the statistical properties of the observed azimuthal
distribution of quad images. We simultaneously attempted to create
a population which matches the statistical properties of the observed
radial image positions, with mixed success. When fitting these
populations, biases on H0 of order 10 per cent or more can result,
depending on the type of asymmetry being considered. Kinematic
constraints are not included. The distributions of H0 values are
shown in Fig. 6. The most significant perturbation in terms of
influencing recovered H0 is the mass dipole with respect to the
centre of light. This is also the perturbation needed to reproduce
the statistical distribution of relative polar image angles of observed
quads. More generally, this illustrates a danger of parametric models
when accuracy is required at the per cent level: parametric models
use assumptions about mass distributions to combat degeneracies,
but can return incorrect results if the assumptions are incorrect.

To carry out a fair comparison between observed and mock
quads, one needs to make sure that the statistical properties of
the image distribution around the lens centre are the same for both
samples. As such, we discuss some interesting statistical properties
of the observed population of quads and make comparisons to our
synthetic test populations. The most critical quantity of interest
is the ratio of image distances relative to the farthest-out image.
This measure of radial spread of the images can be quite extreme
for the observed quad population – more extreme than can be
reproduced with astrophysically reasonable values of external shear.
This property of the observed population of quads has not been
discussed in the literature and is difficult to explain. It adds to the
evidence that real systems have more complicated mass distributions
than ellipse + shear. We speculate as to some possible causes of
these extreme image ratios, but a fully realized reproduction of the
statistical properties of the quad population is a task for future work.
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Table A1. A list of the systems used when referring to the observed quad population. Systems which have a
well-defined lens centre (such that image angles and distances can be calculated) were selected from a variety
of surveys. Fig. 4 uses the only quads from Woldesenbet & Williams (2012), which are the first 40 quads in
this table, omitting the bottom 9.

System Reference(s)

MG 2016 + 112 Lawrence et al. (1984); Nair & Garrett (1997); Koopmans et al. (2002);
B 0712 + 472 CLASS Fassnacht & Lubin (2002); Jackson et al. (1998)
B 2045 + 265 CLASS Fassnacht et al. (1999); McKean et al. (2007); Sluse et al. (2012)
B 1933 + 503 lobe Nair (1998)
SLACS J2300 + 002 Ferreras, Saha & Burles (2008); figure 6.60 in Bolton et al. (2008)
MG 0414 + 0534 CASTLES Falco et al. (1999)
SLACS J1636 + 470 Ferreras et al. (2008); figure 6.58 in Bolton et al. (2008)
HS 0810 + 2554 CASTLES Falco et al. (1999)
B 1555 + 375 Marlow et al. (1999); Barvainis & Ivison (2002)
PG 1115 + 080 Miranda & Jetzer (2007)
J 100140.12 + 020 040.9 Jackson (2008)
SDSS J1330 + 1810 Oguri et al. (2008)
SLACS J1205 + 491 Ferreras et al. (2008); figure 6.38 in Bolton et al. (2008)
B 1422 + 231 CASTLES Falco et al. (1999)
WFI 2026-4536 CASTLES Falco et al. (1999)
CLASS B1359 + 154 Myers et al. (1999); Rusin et al. (2000))
RXJ 0911 + 0551 Burud et al. (1998)
SDSS J1538 + 5817 Grillo et al. (2010)
SDSS J125107 Kayo et al. (2007)
RXJ 1131-1231 Morgan et al. (2006))
SDSS J120602.09 Lin et al. (2009)
WFI 2033-4723 CASTLES Falco et al. (1999)
SDSS J002240 Allam et al. (2007); Dessauges-Zavadsky et al. (2011)
J 095930.94 + 023 427.7 Jackson (2008)
HE 0230-2130 Wisotzki et al. (1999)
SDSS 1402 + 6321 Bolton et al. (2005)
SDSS 0924 + 0219 Keeton et al. (2006)
LSD Q0047-2808 Koopmans & Treu (2003); Brewer & Lewis (2006)
B 1933 + 503 core Nair (1998)
B 1608 + 656 CASTLES Falco et al. (1999) (centre G1 has filter dependent position)
SDSS 1138 + 0314 CASTLES Falco et al. (1999)
Q 2237 + 0305 CASTLES Falco et al. (1999)
HE 1113-0641 Blackburne, Wisotzki & Schechter (2008)
HST 14113 + 5211 Lubin et al. (2000)
H 1413 + 117 MacLeod, Kochanek & Agol (2009)
HST 14176 + 5226 CASTLES Falco et al. (1999)
HST 12531-2914 CASTLES Falco et al. (1999)
HE 0435-1223 Kochanek et al. (2006); Courbin et al. (2011)
SDSS 1011 + 0143 CASTLES Falco et al. (1999)
SLACS J0946 + 006 Gavazzi et al. (2008); Vegetti et al. (2010)
GRAL113100-441959 Krone-Martins et al. (2018)
GRAL203802-400815 Krone-Martins et al. (2018)
J1606-2333 Lemon et al. (2018)
J1721 + 8842 Lemon et al. (2018)
ATLAS 0259-1635 Schechter et al. (2018) (galaxy position is from modelling)
B0128 + 437 Lagattuta, Auger & Fassnacht (2010)
KiDS0239-3211 Sergeyev et al. (2018)
DES J0408-5354 Agnello et al. (2017); Shajib et al. (2020b)
DES J0405-3308 Anguita et al. (2018)
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