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ABSTRACT
OCTO-TIGER is an astrophysics code to simulate the evolution of self-gravitating and rotating systems of arbitrary geometry
based on the fast multipole method, using adaptive mesh refinement. OCTO-TIGER is currently optimized to simulate the merger
of well-resolved stars that can be approximated by barotropic structures, such as white dwarfs (WDs) or main-sequence stars.
The gravity solver conserves angular momentum to machine precision, thanks to a ‘correction’ algorithm. This code uses HPX

parallelization, allowing the overlap of work and communication and leading to excellent scaling properties, allowing for the
computation of large problems in reasonable wall-clock times. In this paper, we investigate the code performance and precision
by running benchmarking tests. These include simple problems, such as the Sod shock tube, as well as sophisticated, full, WD
binary simulations. Results are compared to analytical solutions, when known, and to other grid-based codes such as FLASH.
We also compute the interaction between two WDs from the early mass transfer through to the merger and compare with past
simulations of similar systems. We measure OCTO-TIGER’s scaling properties up to a core count of ∼80 000, showing excellent
performance for large problems. Finally, we outline the current and planned areas of development aimed at tackling a number
of physical phenomena connected to observations of transients.
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1 IN T RO D U C T I O N

Approximately two-thirds of observed stars are members of binary
or multiple stellar systems (Duquennoy & Mayor 1991). While
the evolution of single stars is predictable given the initial mass
and composition, the evolution of the components of a binary or
multiple system can be dramatically altered if they are close enough
to become interactive through mass transfer and mutual irradiation.
The most consequential interactions in binary systems occur when
the components are so close that one (or both) of the stars fill their
Roche lobes and mass is transferred from one star to the other. In some
cases, the transfer proceeds steadily for a long time; in others mass
and energy are exchanged in a common envelope; while in the most
dynamic and interesting cases, the interaction leads to a merger giving
birth to a single star of unusual properties that cannot be produced
by the evolution of a single star. We know that all of these processes
do occur in nature yielding observable outcomes such as contact
binaries (Smith 1984; Rucinski 2010), helium white dwarfs (WD;
Kippenhahn, Kohl & Weigert 1967; Kippenhahn, Thomas & Weigert
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1968), R Coronae Borealis stars (Clayton 2012), Type Iax supernovae
(Solheim 2010; Jha 2017), and dwarf novae (Frank, King & Raine
2002; Warner 2003). At least a fraction of all Type Ia supernovae,
which are some of the most energetic explosion in the Universe,
are likely caused by the Roche lobe-overflow induced merger of
two WDs (Hillebrandt & Niemeyer 2000). This particular type of
supernova is used as a ‘standard candle’ for measuring distances to
other galaxies. Because of this, understanding Type Ia supernovae
(SN) is important for understanding the origins of the Universe and
its eventual fate.

Common envelope binary interactions (Ivanova et al. 2013) play a
crucial role in the formation of close binaries of all types including X-
ray binaries (Tauris & van den Heuvel 2014), cataclysmic variables
(Meyer & Meyer-Hofmeister 1979; Webbink 1992), close binaries in
planetary nebulae (De Marco et al. 2015), and possibly even massive
stellar double black hole binaries (Ricker et al. 2019). Clearly,
common envelope interactions are close cousins of mergers, the
main differences being the final outcomes, which in turn depend
on the types of stars involved, their mass ratios, and the energetics
of mass-loss through unbinding and ejection of the envelope.

Important observational developments in the past decade or so
have lent further credence to the theoretical ideas involving binary
mergers and given further impetus to the development of accurate
and efficient numerical tools for investigating binary mergers and
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common envelope evolution. For example, in 2008 September,
the contact binary, V1309 Sco, merged to form a luminous red
nova (Tylenda et al. 2011). When the merger occurred, the system
increased in brightness by a factor of approximately 104. Mason
et al. (2010) observed the outburst spectroscopically, confirming it
as a luminous red nova. Because the Optical Gravitational Lensing
Experiment (OGLE) observed V1309 Sco prior to its merger for 6
yr, this provided the rare opportunity to observe a stellar merger
both before and after the event, prompting Tylenda to refer to
V1309 Sco as the ‘Rosetta Stone’ of contact-binary mergers. More
recently, the Zwicky Transient Factory discovery of an eclipsing
double WD binary with an orbital period of 8.8 min, which is
destined to merge and become a hot subdwarf or an R Coronae
Borealis star, makes it clear that such progenitor binaries do exist
and provides further motivation for investigating stellar mergers and
their outcomes (Burdge et al. 2020). Discoveries of close-binary
systems have multiplied in number due to surveys such as the Zwicky
Transient Factory, and are due to increase exponentially with the
arrival of the Vera Rubin Observatory in 2022 (Ivezić et al. 2007).

Ultimately, one would want a high-resolution 3D magneto- and
radiation-hydrodynamic simulation with nuclear energy production,
full chemistry, and resolution down to the dynamical time-scale
while also being able to follow the system over thermal time-scales,
but those capabilities are well beyond the horizon at this time. In
lieu of such simulations, studies have used all manner of hybrid
approaches. For example, 3D smooth particle hydrodynamics (SPH)
simulations of merging WD binaries with 1.8 million particles are
then mapped into grid codes to model SN detonations (Pakmor
et al. 2012) and the output is then used to study the light and
polarization signals (Bulla et al. 2016). In a different simulation, two
core hydrogen burning massive stars are merged using the moving
mesh code, AREPO, with a resolution of 400 000 to 4 million cells
and the merged stars were then mapped into a 1D code to study the
evolution of the remnant (Schneider et al. 2019). A simulation of
the V1309 Sco merger was carried out using 100 000 SPH particles
(Nandez, Ivanova & Lombardi 2014), and then used as a starting point
for a detailed discussion aided by analytical physics. A number of
3D hydrodynamic simulations were also used to model other binary
interactions such as the mass transfer preceding coalescence (e.g.
Pejcha, Metzger & Tomida 2016; MacLeod & Loeb 2020). Also,
Kashyap et al. (2018) carried out 200 000 particle SPH simulations
of WD mergers that then were mapped into a grid code to investigate
the detonation properties.

Much of the research in 3D hydrodynamic simulations of WD
mergers is aimed at understanding the dynamics of detonation with a
goal to understand Type Ia supernovae. In their detailed review of 3D,
WD merger simulations, Katz et al. (2016) described several efforts,
most of which concentrate on the details of the properties at the time
of merger but do not necessarily model the early mass transfer and
merger phase. This review cites the early pioneering efforts to model
the entire merger by Motl, Tohline & Frank (2002), D’Souza et al.
(2006), and Motl et al. (2007). In a recent counterpart to those papers,
Motl et al. (2017) carried out simulations of merging WD stars, using
a finite difference technique code with up to 4 million cells and an
SPH code with up to 1 million particles. Aside from the importance
of code comparison, that publication explicitly shows the resolution
and wall-clock time constraints of this type of simulations.

In this paper, we present OCTO-TIGER, a code that aims at improving
3D simulations of interactions using a number of computational
techniques that increase accuracy and scalability. This will allow
us to calculate full mergers with reasonably high resolution, and
reasonable wall-clock times and has the capacity to include a greater

amount of physics without moving the computation into the realm
of impossibility. OCTO-TIGER also conserves energy and angular
momentum to excellent precision. OCTO-TIGER’s main application
currently is simulating the merger of well-resolved stars that can be
represented via polytropes, such as main-sequence stars or WDs.
Marcello et al. (2016) presented OCTO-TIGER, with a description of
the governing equations along with some preliminary tests. Staff
et al. (2018) and Kadam et al. (2018) used OCTO-TIGER in parallel
with a suite of other codes to simulate WD binary mergers leading
to R Coronae Borealis stars and contact binaries. These studies
provided a test of sorts for OCTO-TIGER, but the scope of those
papers was such that a systematic verification and validation of OCTO-
TIGER was not carried out, and neither was a scaling test aimed at
measuring its speed. In the meantime, several improvements have
been implemented in the code. It is therefore appropriate and timely
to test and document OCTO-TIGER in a systematic way, by carrying
out a suite of standard benchmark simulations, a comparison to other
codes, complete with scaling tests of the latest code version.

This paper is structured in the following way. In Section 2, we
describe OCTO-TIGER’s underlying equations. In Section 3, we present
the benchmarks, starting with the shock tube (Section 3.2), the Sedov
blastwave (Section 3.3), a uniform static sphere (Section 3.4) and
continuing with a static pulsating polytrope (Section 3.5), a translat-
ing polytrope (Section 3.6), and a rotating polytrope (Section 3.7).
We conclude with a binary simulation with a mass ratio of 0.5 in
Section 4, and an assessment of the scaling properties of OCTO-TIGER

in Section 5. We conclude in Section 6.

2 TH E A M R C O D E O C TO-T I G E R

OCTO-TIGER is an Eulerian adaptive mesh refinement (AMR) code,
optimized for the simulation of inviscid, compressible fluids. Below
we fully describe its governing equations and numerical methods.

2.1 Hydrodynamic evolution equations

OCTO-TIGER evolves Euler’s inviscid equations of motion for a self-
gravitating fluid on a rotating mesh. The evolution equations are:

∂

∂t
ρm + ∇ · ρmv = 0, (1)

∂

∂t
s + ∇ · vs + ∇p = ρg − � × s, (2)

∂

∂t

(
E + 1

2 ρφ
) + ∇ · v (E + ρφ) + ∇ · up

= 1
2

(
φ

∂

∂t
ρ − ρ

∂

∂t
φ

)
+ ρ� · (x × g) , (3)

and

∇2φ = 4πGρ, (4)

where ρm is the mass density of the mth species, v is the velocity in
the rotating frame, s is the inertial frame momentum density, p is the
gas pressure, u is the inertial frame velocity, g is the gravitational
acceleration, � is the rotational frequency of the grid, E is the gas
internal plus bulk kinetic energy density in the inertial frame, ρ =∑

ρm is the total mass density, x is the position vector on the grid, φ

is the gravitational potential, and G is the gravitational constant. The
rotating frame velocity is related to the inertial frame momentum
density by

s = ρ (v + � × x) . (5)
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The gravitational potential is related to the gravitational acceleration
by g = −φ. The time derivatives are taken in the rotating frame.
These are related to time derivatives in the inertial frame by

∂

∂t
=

(
∂

∂t

)
inertial

+ (x × �) · ∇. (6)

A previous version of OCTO-TIGER used a hydro-solver that con-
served linear and angular momentum to machine precision. This was
based on the work by Després & Labourasse (2015). We successfully
adapted this method to OCTO-TIGER for use when velocities are
reconstructed in the inertial frame. However, our methodologies
could not be applied to when velocities are reconstructed in the
rotating frame. The rotating frame is a better choice when dealing
with binary interactions, because equilibrium rotating stars retain
their initial profiles much better. We thus abandoned the development
of the hydrodynamics angular momentum conservation feature. A
legacy of this development work is a separately evolved angular
momentum field, l, described by the following equation:

∂

∂t
l + ∇ · vl + ∇ × xp = ρx × g − � × l. (7)

In the current version, this quantity is evolved passively, meaning
the evolution of the other variables does not depend on the value
of l. It is initialized to x × s at t = 0. Although our gravity
solver exactly conserves angular momentum to machine precision,
because of numerical viscosity in the hydrodynamics solver, angular
momentum is not exactly conserved. The difference between x × s
and l after t = 0 gives a measure of the error in angular momentum
conservation.

The source terms on the right-hand side (RHS) of equation (2)
include a gravitational and a rotational term. The rotational term
accounts for the rotation of the momentum vector relative to the
rotating mesh. Because we evolve inertial frame quantities on a
rotating mesh, as opposed to rotating frame quantities on a rotating
mesh, this term is half the Coriolis force (only half because velocities
are taken with respect to the rotating grid, but momenta are calculated
in the inertial frame). Note that if

∫
Vs = 0, this term does not violate

momentum conservation.
Rather than solving equation (4) using an iterative approach, OCTO-

TIGER uses the fast multipole method (FMM; described below). To
calculate the first term on the RHS of equation (3), we solve for ∂

∂t
φ

using the FMM with the numerically computed value of ∂
∂t

ρ as the
source term. This results in the two parts of this term cancelling when
summed over the entire grid.

Equation (3) is derived from the usual form of the energy equation:

∂

∂t
E + ∇ · vE − ∇ · up = −ρu · ∇φ, (8)

along with equation (1). Equation (3) is written in a form that
emphasizes that the conserved quantity is the gas energy, E (internal
plus bulk kinetic), plus the potential energy or E + 1

2 ρφ. The first
term on the RHS of equation (3) vanishes globally because φ

is linearly related to ρ, while the second term vanishes globally
because the total change in angular momentum due to gravity over
all space is zero. As discussed by Marcello & Tohline (2012),
evolving the energy equation in this form prevents violation of
energy conservation due to matter moving up or down a potential well
because of numerical viscosity. Because our gravity solver conserves
linear and angular momenta to machine precision, using this form
of the energy equation conserves total energy to machine precision.
In practice, we actually evolve E instead of E + 1

2 ρφ, by taking the
discretized evolution equation for equation (3) and solving it for E.

Following the dual energy formalism of Bryan et al. (1995), OCTO-
TIGER evolves a second variable for the energy. While they used the
internal energy density as the second energy variable, we use the
‘entropy tracer’ (Motl et al. 2002), defined as

τ = (ρε)
1
γ , (9)

where ε is the specific internal gas energy and γ = 5
3 is the ratio of

specific heats. When there are no shocks, τ is conserved and evolves
as

∂

∂t
τ + ∇ · τv = 0. (10)

The specific internal energy, ε, is computed according to

ρε =
{

E − 1
2 ρu2, if E − 1

2 ρu2 ≥ ε1E

τγ , otherwise
, (11)

where the default value of ε1 = 0.001. Once we have the internal
energy density, we can compute the pressure with the ideal gas
equation:

p = (γ − 1)ρε. (12)

At the end of every update of the evolution variables, the entropy
tracer is then reset using equation (9) in computational cells, which
satisfy

E − 1
2 ρu2 > ε2E (13)

for at least one of the adjacent cells or the cell itself, where the default
value of ε2 = 0.1. Otherwise it is left alone. We use the values for ε1

and ε2 chosen by Bryan et al. (1995) .
This treatment allows for the proper evolution of shocks while

simultaneously retaining numerical accuracy of the internal energy
in high mach flows, where the kinetic energy dominates. It is roughly
analogous to adding extra digits of precision to the internal energy.
This method also guarantees positive values for the internal energy
even when E − 1

2 ρu2 < 0.
OCTO-TIGER evolves the gas using an ideal gas equation of state

(EoS), but by setting ε1 = ε2 = 1, shock heating is eliminated and
effectively OCTO-TIGER evolves the gas with a polytropic EoS. If

ppoly = Kρ1+ 1
n , (14)

initially, where K and n are constants, this condition will continue to
hold as the system evolves.

2.2 Gravity update and the angular momentum correction

OCTO-TIGER uses a variant of the Cartesian FMM described by
Dehnen (2000). This method conserves linear momentum to machine
precision. The FMM adapts naturally to an oct-tree based AMR
scheme such as that used by OCTO-TIGER. The multipoles of each cell
are composed of the multipoles of its child cells, and the expansion
in each child cell is derived from the expansion of its parent cell.
Both multipole and expansions are relative to cell centres.

OCTO-TIGER has an extension, detailed by Marcello et al. (2016),
which allows its gravity solver to conserve both angular and linear
momentum to machine precision. Based on the FMM described
by Dehnen (2000), which conserves linear momentum to machine
precision, the OCTO-TIGER extension works by adding an additional
higher order multipoles that is used to calculate a correction to
the calculated force. This angular momentum correction cancels
the angular momentum conservation violation while preserving
linear momentum conservation of the original method. As a result
of angular momentum conservation, the last term in the RHS of
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equation (3) also sums to zero over all space, enabling conservation
of energy to machine precision in the rotating frame.

Conservation of angular momentum and energy is important for
the self-consistent accurate modelling of near equilibrium astrophys-
ical systems such as binary stars in the early phases of mass transfer.
Violations in energy conservation can cause stars in equilibrium to
‘evaporate’, while the balance of angular momentum may affect the
ultimate merger if one occurs.

The FMM requires the specification of an opening criterion. Given
two cells, A and B, at grid locations xA and xB , respectively, the
opening angle is

θ ′ = �x

|xA − xB | , (15)

where �x is the width of a grid cell. If θ
′
< θ , where θ is a critical

value less than unity, then two cells are well separated. Two well
separated cells interact through the multipole interaction when they
are well separated from each other, but their respective parents are
not well separated. In the models presented in this paper, θ = 0.5 or
0.34, the latter being used for the interacting binary models.

We also define the quantity, θmin, to refer to the lowest θ allowed
by OCTO-TIGER. This is determined at compile time and its value
depends on the size of the subgrids, with larger subgrids allowing for
smaller values of θmin. For 8 × 8 × 8 subgrids, as used in this paper,
θmin = 0.34.

It should be noted the current version of OCTO-TIGER does not
conserve angular momentum in the hydrodynamics module. We
have experimented with extending an angular momentum conserving
hydrodynamics method described by Després & Labourasse (2015)
for use in OCTO-TIGER. While we have had success when the grid is
not rotating, the method fails in the rotating frame. The reconstruction
of face values is computed in the rotating frame, eliminating the
degree of freedom in the reconstruction required for Després &
Labourasse (2015) to work.

2.3 Hydrodynamic update

The hydrodynamic update begins by reconstructing cell averaged
values on the surface of the cells. OCTO-TIGER reconstructs values
at the geometric centres of the 6 cell faces, 12 cell edges, and 8
cell vertices, for a total of 26 quadrature points. Note this results in
each face having 9 quadrature points, 1 at the cell face centre, and 4
each for the cell face’s edges and vertices. This allows OCTO-TIGER

to compute the flux through a face as the integral of the fluxes at 9
points on the face.

Rather than reconstructing the vector of conserved quantities,

U =

⎡
⎢⎢⎢⎢⎣

ρm

s
E

τ

ρφ

⎤
⎥⎥⎥⎥⎦, (16)

we reconstruct

V =

⎡
⎢⎢⎢⎢⎣

ρm

v
E − 1

2 ρu2

τ

φ

⎤
⎥⎥⎥⎥⎦, (17)

and then transform back to U. The reconstruction of velocities is done
in the rotating frame. In OCTO-TIGER, the rotating frame is defined
as rotating around the z-axis, and the frequency can be specified by

the user. For the binary simulations in this paper, the rotating frame
frequency is the same as the initial orbital frequency of the binary.
Reconstructing the velocities in the inertial frame is also a valid
choice. However, we have found that single stars in initial equilibrium
retain their original density profiles better when reconstructing the
rotating frame velocities.

The total energy, defined as the sum of the potential and gas
energy, is a conserved quantity, but it is not a purely hydrodynamic
quantity. The local potential plays virtually no role in the formation
of discontinuities in the gas energy. When applying a central
advection scheme, we want the averaging of left-hand and right-
hand states to occur over hydrodynamic variables. Furthermore,
discontinuities in the potential energy are caused solely by the local
mass density, the specific potential energy itself being smooth. For
these reasons, we treat the two quantities as separate when computing
the reconstruction and fluxes.

The left-hand side of equation (3) is evolved as the sum of two
parts,

∂

∂t
E + ∇ · Ev + ∇ · Eup = 0, (18)

and

∂

∂t
1
2 ρφ + ∇ · vρφ = 0. (19)

Below we show how we combine these two parts to form a single
energy equation for the gas energy.

There are left and right values for each interface, and here we
denote those with R and L superscripts, respectively. For a quantity
u and for every i, j, and k there are eight vertex values,

uRRR
i+1/2j+1/2k+1/2, u

RRL
i+1/2j+1/2k+1/2, u

RLR
i+1/2j+1/2k+1/2,

uRLL
i+1/2j+1/2k+1/2, u

LRR
i+1/2j+1/2k+1/2, u

LRL
i+1/2j+1/2k+1/2,

uLLR
i+1/2j+1/2k+1/2, and uLLL

i+1/2j+1/2k+1/2, (20)

12 edge values,

uRR
i+1/2j+1/2k, u

RL
i+1/2j+1/2k, u

LR
i+1/2j+1/2k, u

LL
i+1/2j+1/2k,

uRR
i+1/2jk+1/2, u

RL
i+1/2jk+1/2, u

LR
i+1/2jk+1/2, u

LL
i+1/2jk+1/2,

uRR
ij+1/2k+1/2, u

RL
ij+1/2k+1/2, u

LR
ij+1/2k+1/2, and uLL

ij+1/2k+1/2, (21)

and six face values,

uR
i+1/2jk, u

L
i+1/2jk,

uR
ij+1/2k, u

L
ij+1/2k,

uR
ijk+1/2, and uL

ijk+1/2. (22)

Note that the u used here is not the inertial frame velocity used
elsewhere in this paper. We use the piecewise parabolic method
(PPM) of Colella & Woodward (1984, with contact discontinuity
detection) to compute these values. The five cell stencil required
for PPM is taken along the line from the cell centre to each face,
edge, or vertex. For example, the reconstructed values at uL

i+1/2jk

and uR
i−1/2jk are computed by applying PPM to the five cell stencil

formed by ui − 2, j, k, ui − 1, j, k, ui, j, k, ui + 1, j, k, and ui + 2, j, k, while the
reconstructed values at uLR

i+1/2j−1/2k and uRL
i−1/2j+1/2k are computed with

the stencil formed by ui − 2, j + 2, k, ui − 1, j + 1, k, ui, j, k, ui + 1, j − 1, k, and
ui + 2, j − 2, k. Reconstructing the primitive variables at 26 points across
the cell’s surface, using PPM, results in multidimensional third-order
convergence. Without this feature, the atmospheres of equilibrium
stars turn into box like structures.

Once a cell’s evolved quantities are reconstructed at each of the
26 quadrature points on the cells’ surfaces, OCTO-TIGER computes
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the fluxes at each of the 9 quadrature points for each cell’s face. We
use the central-upwind scheme described by Kurganov, Noelle &
Petrova (2000). This scheme was originally chosen because it was
straightforward to adapt it for use with OCTO-TIGER’s hydrodynamics
angular momentum conservation feature, as described in Section 2.1.
It can be defined in terms of left and right face values,

H (UL,UR) = a+F (UL) − a−F (UR)

a+ − a− + a+a−

a+ − a− [UR − UL] ,

(23)

where H is the numerical flux, F is the physical flux, and a+ and a−
are the positive and negative signal speeds. OCTO-TIGER obtains H
for each dimension using the physical flux,

Fx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

vxρ

vxsx + p

vxsy

vxsz

vxE + uxp

vxτ

vxρφ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fy =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

vyρ

vysx

vysy + p

vysz

vyE + uyp

vyτ

vyρφ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fz =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

vzρ

vzsx

vzsy

vzsz + p

vzE + uzp

vzτ

vzρφ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

and the signal speeds

a+
x = max

(
cs,R + vx,R, cs,L + vx,L, 0

)
,

a−
x = min

(
cs,R − vx,R, cs,L − vx,L, 0

)
,

a+
y = max

(
cs,R + vy,R, cs,L + vy,L, 0

)
,

a−
y = min

(
cs,R − vy,R, cs,L − vy,L, 0

)
,

a+
z = max

(
cs,R + vz,R, cs,L + vz,L, 0

)
,

a−
z = min

(
cs,R − vz,R, cs,L − vz,L, 0

)
,

(25)

where the cs is the sound speed,

cs =
√

γp

ρ
. (26)

The total flux through a face is then obtained by summing the
fluxes taken at each quadrature point on the face. For the x-face, for
instance, we have

Hx,i+1/2jk = 16

36

[
Hx(UL

i+1/2jk, U
R
i+1/2jk)

]
+ 4

36

[
Hx(ULL

i+1/2j+1/2k, U
RL
i+1/2j+1/2k)

+ Hx(ULR
i+1/2j−1/2k, U

RR
i+1/2j−1/2k)

+ Hx(ULL
i+1/2jk+1/2, U

RL
i−1/2jk+1/2)

+Hx(ULR
i+1/2jk−1/2, U

RR
i−1/2jk−1/2)

]
+ 1

36

[
Hx(ULLL

i+1/2j+1/2k+1/2, U
RLL
i+1/2j+1/2k+1/2)

+Hx(ULLR
i+1/2j+1/2k−1/2, U

RLR
i+1/2j+1/2k−1/2)

+ Hx(ULRL
i+1/2j−1/2k+1/2, U

RRL
i+1/2j−1/2k+1/2)

+ Hx(ULRR
i+1/2j−1/2k−1/2, U

RRR
i+1/2j−1/2k−1/2)

]
, (27)

where Hx,i+1/2jk is the total numerical flux through the x-face.
The semidiscrete form of the evolution equations then becomes

d

dt
Uijk + Hx,i+1/2jk − Hx,i−1/2jk

�x

+ Hy,ij+1/2k − Hy,ij−1/2k

�x

+ Hz,ijk+1/2 − Hz,ijk−1/2

�x
= Sijk, (28)

where we have added the source term Sijk (defined below).
We still need to recombine the gas energy and potential energy

parts of the flux to form a single equation for the gas energy. This is

accomplished through the transformation

HE → HE + Hφ

Hφ → 0,
(29)

where HE refers to the gas energy flux and Hφ refers to the potential
energy flux.

The source term, S, is equal to the RHS of the evolution equations 1,
2, 3, 4, and 10,

S =

⎡
⎢⎢⎢⎢⎣

0
ρg + � × s

1
2

(
φ ∂

∂t
ρ − ρ ∂

∂t
φ
) + � × (ρx × g)
0
0

⎤
⎥⎥⎥⎥⎦ (30)

Equations (28) and (29) account for all terms of equations (1) through
(3) and equation (10) except for the ∂

∂t
1
2 ρφ term on the LHS of

equation (3). This term is accounted for by updating the total energy
every time the FMM solver is called to update the potential,

Eafter = Ebefore + 1
2 ρ (φbefore − φafter) , (31)

where the ‘before’ and ‘after’ subscripts refer to before and after the
FMM solver is called.

The d
dt

operator from equation (28) is discretized using the third-
order total variation diminishing Runge–Kutta integrator of Shu &
Osher (1989). The time-step size, �t, is chosen by the Courant–
Friedrichs–Lewy (CFL) condition

�t = ηCFL maxall

[
�x

a±
x|y|z

]
, (32)

where the maximum is taken over all the computational cells in the
domain and ηCFL is a positive dimensionless constant less than 1

2 .
For the binary simulations presented below, ηCFL = 4

15 .
A schematic representation of the execution of the steps is shown

in Algorithm 1.

2.4 Adaptive mesh refinement

OCTO-TIGER uses an oct-tree based AMR. Each node of the oct-tree
has associated with it a single N × N × N subgrid and is either
fully refined with eight child nodes (an interior node) or not refined
at all (a leaf node). For the simulations in this paper, the subgrids’
interior size is 8 × 8 × 8. PPM requires a three cell boundary for a
total subgrid size of 14 × 14 × 14. OCTO-TIGER properly nests the
subgrids, meaning there can be no more than one jump in refinement
levels across subgrid boundaries.

We define an ‘AMR boundary’ as a subgrid boundary across which
the refinement level changes. Because of proper nesting, this involves
only two refinement levels, which we refer to here as the ‘fine’
and ‘coarse’ level. The fine subgrid at an AMR boundary cannot
get its boundary cells from a neighbouring subgrid of the same
refinement level, so it must interpolate its boundary from the coarse
subgrid sharing the same boundary. To describe our AMR boundary
interpolation scheme, we use an indexing system, which is aligned
such that xC

i−1/2j−1/2k−1/2 = xF
2i−1,2j−1,2k−1, where the superscripts ‘C’

and ‘F’ refer to the coarse and fine levels, respectively. The coarse
sub-grid has cell centres at xijk while the fine sub-grid has cell
centres at half integer locations, xF

2i±1/2,2j±1/2,2k±1/2. The slopes for
our interpolation scheme for a variable u (note, the u variable used
here is not the inertial frame velocity used everywhere else in this
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Set initial conditions;
Do initial output;
while do

for i ← 1 to 3 do
if i == 1 then

U0 ← U ;
Compute �t ;

end
Compute ∂

∂t
U due to advection only;

Compute g, φ, and ∂
∂t

φ using the FMM;
Add the source terms to ∂

∂t
U ;

Update U from ∂
∂t

U and U0 using the 3rd order R-K
method;

Update the entropy tracer using the dual energy
formalism;

if using floors then
Apply floor values for density and entropy;

end
end
if time to check refinement then

refine and de-refine the AMR mesh as needed;
redistribute the work-load;

end
if time to output then

output to SILO file;
end

end
Algorithm 1: The algorithm Octo-Tiger uses for evolution

paper) are

uC
x,ijk = minmod[uC

i+1jk, u
C
ijk, u

C
i−1jk]

uC
y,ijk = minmod[uC

ij+1k, u
C
ijk, u

C
ij−1k]

uC
z,ijk = minmod[uC

ijk+1, u
C
ijk, u

C
ijk−1]

uC
xy,ijk = minmod[uC

i+1j+1k, u
C
ijk, u

C
i−1j−1k]

uC
xz,ijk = minmod[uC

i+1jk+1, u
C
ijk, u

C
i−1jk−1]

uC
yz,ijk = minmod[uC

ij+1k+1, u
C
ijk, u

C
ij−1k−1]

uC
xyz,ijk = minmod[uC

i+1j+1k+1, u
C
ijk, u

C
i−1j−1k−1]. (33)

where minmod is zero if the signs are opposite, or the minimum
absolute value is taken if the signs are the same. The interpolation
scheme is then

uF
2i+q,2j+r,2k+s = uC

ijk + 9

64

(
sgn[q]uC

x,i,j ,k + sgn[r]uC
y,i,j ,k + sgn[s]uC

z,i,j ,k

)

+ 3

64

(
sgn[q]sgn[r]uC

xy,i,j ,k + sgn[q]sgn[s]uC
yz,i,j ,k + sgn[r]sgn[s]uC

xz,i,j ,k

)

+ 1

64
sgn[q]sgn[r]sgn[s]uC

xyz,i,j ,k , (34)

where q = ±1/2, r = ±1/2, and s = ±1/2 and we emphasize that the
variable s does not mean the inertial frame momentum density of
equation (5) and is used only here. The string ‘sgn’ means the sign
of q, r, and s.

To ensure conservation across the AMR boundary, coarse fluxes
on AMR boundaries are taken to be the sum of the fine fluxes through

the cell face:

HC
x,i+1/2jk = 1

4
HF

x,2i+1,2j+1/2,2k+1/2

+ 1

4
HF

x,2i+1,2j+1/2,2k−1/2

+ 1

4
HF

x,2i+1,2j−1/2,2k+1/2

+ 1

4
HF

x,2i+1,2j−1/2,2k−1/2. (35)

The refinement criteria for a cell to be refined is either

�x

ρ

dρ

dxi

> 0.1, (36)

or

�x

τ

dτ

dxi

> 0.1, (37)

for any i direction, where ρ is the density and τ is the entropy tracer
of equation (9).

2.5 Boundary conditions

OCTO-TIGER has three boundary conditions available. With ‘inflow’
boundary conditions, the ghost cells at the edge of the physical
domain are copied from the closest interior cell. ‘Outflow’ boundary
conditions are the same as inflow except that the momentum is set
to zero in the case where the momentum in the closest interior cell
points inwards. This prevents the artificial creation of inflows. For our
binary simulations, we generally use the outflow boundary condition.
These boundary conditions are meant to simulate isolated systems,
and do not need to be accounted for by the FMM gravity solver.

A reflecting boundary condition is available for pure hydrody-
namics runs with no gravity. Although it is certainly feasible to
incorporate reflecting boundary conditions into the FMM and peri-
odic boundary conditions into both the FMM and the hydrodynamics
solver, to incorporate these boundary conditions into the FMM solver
is a non-trivial task. Since OCTO-TIGER does not use these types
of boundary conditions to simulate binary systems, they were not
implemented at this time.

2.6 Minimum values for density and entropy

Both the mass density and entropy tracers should be always positive.
This condition is difficult to maintain numerically when there is a
large range of densities present. For the polytropic binary simulation
detailed in Section 4, we fill the regions around the stars with a
density equal to 10−10 times the maximum density on the grid.
The density can drop below this value, because the star’s gravity
is constantly pulling matter from the near-vacuum region on to the
stars. OCTO-TIGER also uses a third-order Runge–Kutta scheme, so
even without the presence of gravity, it is not possible to know a priori
the maximum time-step size needed to guarantee positivity. For these
reasons, OCTO-TIGER includes options to set minimum values for the
mass density and entropy tracer. These floor values are denoted ρ f

and τ f, respectively.
Imposing a density floor results in imposing values on other

variables that depend on density. We thus define the density floor
scaling parameter,

fρ = 1 − max

[
1 − max[ρ, 0]

ρf

, 0

]
(38)
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allowing us to transform the variables according to

s → sfρ

E → Efρ + τ
γ

f (1 − fρ)

τ → τfρ + τf (1 − fρ)

ρm → max[ρ, ρf ]
ρm

ρ
(39)

This deteriorates the strict machine precision conservation of the
affected variables, however, it only occurs in the near-vacuum
regions.

2.7 AMR refinement criteria

OCTO-TIGER checks for refinement every (2/ηCFL) time-steps, where
ηCFL is from equation (32). A window of two cells is used for refine-
ment. This condition prevents waves from propagating through an
AMR boundary before the relevant cells are checked for refinement.
If a subgrid contains one or more cells flagged for refinement, the
sub- is refined, converting its leaf node to an interior node with
eight children. Conversely, interior nodes whose eight children are
all leaf nodes are derefined if none of their cells and none of the
children’s cells are flagged for refinement. Subgrids are also flagged
for refinement as needed to ensure the difference in refinement levels
across grid boundaries is no greater than one.

For the binary simulations in this paper, we use a density based
refinement criterion. If lmax is the maximum allowed refinement
level and ρr is the refinement density cut-off, a cell is flagged for
refinement if the maximum level l for which

ρ > 8lmax−lρr (40)

holds true is greater than the cell’s level of refinement. For the binary
simulations ρr is held constant initially. Once material ejected from
the binary begins to fill the grid, ρr is adjusted dynamically in
a manner that attempts to keep the total number of subgrids at a
specified level. After every refinement,

ρr →
(

Ngrids

Ntarget

)2

ρr, (41)

where Ngrids is the total number of subgrids and Ntarget is the desired
number.

The CFL factor (equation 32) typically used by simulations is
∼0.4. Technically there is a limit to the maximum CFL number
one should use. In three dimensions with PPM, it is 1/7. This is
because the maximum ratio between the density reconstructed at
the cell’s face and the cell averaged density is 7/3. As a result,
the limit should be 3/7 in one dimension or 3/(3 × 7) in three
dimensions. This limit is stringent, in that it prevents any sharp
transition in density from emptying a cell of its content possibly
resulting in zero or negative densities. In OCTO-TIGER, negative
densities are corrected by introducing a ‘floor’ density value in
that cell (see Section 2.6), which in turn results in mass non-
conservation. Pre-empting the results of Section 3.6, this can result
in mass growth at the level of 0.0001 per cent from one time-
step to the next when highly supersonic motions are present. It
is therefore important to critically appraise the value of the CFL
factor to be used in each simulations, particularly if strong shocks
are present. We discuss these choices and their impacts further in
Section 3.6.

2.8 Code units

There are no physical constants present in the hydrodynamic equa-
tions, therefore the simulations without gravity enabled are unitless.
With gravity we have a single physical constant, G. In the code,
the value of this constant is set to unity. We convert between code
units and physical units in the cgs system using three conversion
factors, mcgs, lcgs, and tcgs for mass, length, and time, respectively.
Because the value of G is fixed at unity, we may specify two of these
conversion factors, with the third being determined by the relation

l3
cgs

mcgst2
cgs

= Gcgs, (42)

where Gcgs is the value of G in cgs units. In OCTO-TIGER, the
user specifies lcgs and mcgs and OCTO-TIGER calculates tcgs using
equation (42). When outputting the grid to file, OCTO-TIGER converts
all quantities to their cgs equivalents using these unit conversion
factors.

2.9 The temperature in OCTO-TIGER

OCTO-TIGER evolves the density, ρ, total gas energy density (internal
and bulk kinetic energy density), E, and velocities, and derives all
the other physical quantities based on these values and the EoS. The
evolution equations, equations (1)–(4), do not require knowledge of
the temperature. For post-processing purposes, the temperature can
be computed by assigning atomic mass and atomic numbers to each
mass density species and assuming a fully ionized gas according to

T = (γ − 1)ρε

kB

∑ ρm(1+NZ,m)
mH NA,m

, (43)

where NA,m and NZ,m are the atomic mass and atomic numbers of
the mth species and the specific internal energy ε, comes from
equation (11).

2.10 The C++ standard library for concurrency and
parallelism (HPX)

OCTO-TIGER is parallelized for distributed systems using the
C++ Standard Library for Concurrency and Parallelism (HPX; Daiß
et al. 2019; Heller et al. 2019; Kaiser et al. 2020). HPX is an open
source C++ Standard Library for Concurrency and Parallelism and
is within the class of the so-called asynchronous many-task AMT
runtime systems.

Another AMT utilized in astrophysics simulation, e.g. ChaNGa
(Jetley et al. 2008) or Enzo-P (Bordner & Norman 2012), is
Charm++ (Kale & Krishnan 1993). We focus on the comparison of
these two AMTs in this paper; for a more comprehensive review for
various AMTs, we refer to Thoman et al. (2018). The commonality
of HPX and CHARM++ is the usage of the same concepts for
‘parallelism’ and ‘concurrency’. The distinctness of HPX is that it
fully conforms to the C++ 17 ISO standard (The C++ Standards
Committee 2017) and implements proposed features of the upcoming
C++ 20 ISO standard (The C++ Standards Committee 2020). This
means that HPX’s features that are available in the C++ standard
can be replaced without changing the function arguments. From
a programmer’s perspective, HPX is more an abstraction of the
C++ language while CHARM++ is more a standalone library. The
requirement for OCTO-TIGER (distributed, task-based, asynchronous)
are met by only few AMTs, and HPX has the highest technology
readiness level according to this review (Thoman et al. 2018).
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OCTO-TIGER takes advantage of four main features of HPX : (i)
fine grained, (ii) task based parallelism through light weight user
space threads, (iii) the use of C++ futures to encapsulate both local
and remote work, and (iv) an active global address space (AGAS),
whereby global objects are remotely and locally accessible (Kaiser
et al. 2014; Amini & Kaiser 2019). These global objects reside in
the memory on a given node but can be accessed remotely from any
node.

Through HPX futures, OCTO-TIGER is able to overlap work with
communication in a straightforward and efficient manner. For a given
subgrid, the hydrodynamic and gravity computations are performed
by an HPX thread. This thread spawns threads sending boundary
data to sibling subgrids. HPX threads (Kaiser, Brodowicz & Sterling
2009) are lightweight and OCTO-TIGER may spawn hundreds or even
thousands of threads per system thread. The subgrid thread also
creates a set of futures encapsulating the boundary data it expects
from its siblings. This allows the subgrid thread to sleep while
waiting for its boundary data. When this data becomes available, HPX

automatically wakes the thread, allowing computation to begin. The
use of HPX futures in this manner allows OCTO-TIGER to overlap work
with communication in a natural way. AGAS allows each node of the
OCTO-TIGER oct-tree to be distributed across the system in a relatively
simple manner, and each oct-tree node can access its children or its
siblings using the same constructs regardless of whether a particular
child or sibling resides locally or on a remote processor. Another
benefit of HPX is that a unified application programmer interface
(API) for local and remote functionality is provided. Thus, there is
some simplification for the application programmer, since there is
no need to deal with two different interfaces, like combining the two
hybrid parallel approaches such as MPI and OPENMP . Note that HPX

utilizes MPI for the communication, but provides an abstraction to
the application programmer to hide the direct interaction with the
MPI API.

To integrate acceleration cards, like GPUs, HPX provides two
approaches: HPX::compute (Copik & Kaiser 2017) and HPX::cl
(Diehl et al. 2018) to overlap GPU kernel execution with CPU
work and networking. The GPU kernel execution returns a future
allowing asynchronous integration of the GPU work into the overall
asynchronous execution flow. HPX::cl provides features to inte-
grate existing CUDA kernels and texttthpx::compute automatically
generates CUDA kernels from C++ code. OCTO-TIGER extends
texttthpx::compute to launch hand-written CUDA kernels. For more
implementation details, we refer to Daiß et al. (2019b).

3 B E N C H M A R K I N G O C TO-T I G E R

Below we carry out a number of simulations aimed at verifying
and validating OCTO-TIGER. In doing so, we sometimes compare our
benchmark test results with a similar test performed with FLASH

(Fryxell et al. 2000), a well used hydrodynamic code often used for
astronomical applications including binary interactions.

3.1 Benchmark design

We start testing the code by running pure hydrodynamic problems,
namely, the shock tube problem (Section 3.2), and the blastwave
problem (Section 3.3). The purpose is to validate and examine the
performance of the hydrodynamic solver of OCTO-TIGER in isolation.
This is an important task as this current version of OCTO-TIGER has
an extended, more accurate (and more computationally demanding)
hydrodynamic solver, which includes reconstruction of the cell

averaged values not only on the cell faces and edges but also on
the cell vertices (see Section 2.3).

To test our gravity solver in isolation, we utilize the grid with
the mass distribution of a uniform density sphere and let the code
compute the gravitational potential without evolving it dynamically.
The sphere is surrounded by a negligible amount of gas (see
Section 3.4). OCTO-TIGER’s gravity solver uses an opening angle
parameter to modulate the accuracy of the gravity solution (see
Section 2.2). We examine the accuracy of the computed potential with
different values of this parameter as well with different resolutions.

The next test is a simulation of a polytropic structure (which could
model certain types of stars) evolved over a number of dynamical
time-scales. We check the structure stability over several dynamical
time-scales, for different resolutions, values of the gravity solver
opening angle and EoS (see Section 3.5).

Next, we test the polytrope in a wind tunnel to check how the
star behaves as it moves through a hot, low density medium (see
Section 3.6). We also test a rotating polytrope and we check for
diffusion of the stellar rotation profile over time (see Section 3.7).

Finally, in Section 4, we simulate two polytropic stars orbiting one
another in a detached configuration and then merging with a mass
ratio of 0.5. We check stability of the two structures over a number
of orbits with a number of resolutions.

We compare some of these tests with equivalent ones using the
code FLASH (Fryxell et al. 2000). We also carry out scaling tests in
Section 5.

3.2 Shock tube

To test the hydrodynamic solver, we run the Sod shock tube problem
(Sod 1978). We use the conventional initial configuration of this
problem: ρ l = 1, pl = 1, vl = 0; ρr = 0.125, pr = 0.1, vr = 0,
where l denotes the left-hand side of the discontinuity, and r the
right-hand side. The variables ρ, p, and v are the gas mass density,
pressure, and velocity, respectively. The gas is taken to be an ideal
gas with an adiabatic index of γ = 7/5 (this value is historical as it
pertained to molecular gas typical of air). Although the problem is
one-dimensional in nature, we run it in three dimensions for testing.
We simulated two configurations: in the first the discontinuity plane
is x = 0, and in the second the discontinuity plane is x + y = 0.
From the problem symmetry, planes parallel to the xy plane are
identical. We discuss the results of the simulations in the next two
subsections.

3.2.1 Shock front aligned along the x-axis

In this simulation, we set the initial discontinuity plane to be x = 0. As
the simulation evolves in time, a shock wave propagates to the right of
the box, along the positive x-axis, while a rarefaction wave propagates
at the sound speed of the unperturbed denser gas to the left, along
the negative x-axis. Between them the density discontinuity moves
to the right. To show the convergence of the numeric solution to the
analytical one, we run four simulations in which the grid is uniform
and have a growing resolution of 643, 1283, 2563, and 5123 cells. We
stop the simulation at time t = 0.2, when the shock fronts have not yet
reached the grid boundary. In Fig. 1, top row, we plot the density and
velocity in the x direction, respectively, at the end of the simulation,
along a line perpendicular to the discontinuity and through the centre
of the grid and compare it to the analytical solution.

The simulations, even with low resolution, nicely fit the rarefaction
wave. Around the discontinuity, there are cells that underestimate the
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Figure 1. Comparison in density and velocity between the numerical results with higher resolution of OCTO-TIGER simulations and the exact solution for the
shock tube at t = 0.2. Top row: The density and velocity are plotted in the x direction, respectively, at the end of the simulation, along a line perpendicular to the
discontinuity and through the centre of the grid. Bottom row: The density and the parallel component of the velocity are plotted along the line that starts from
the bottom left corner and ends at the upper right corner (in the xy plane).

density behind the shock and overestimate the density in front of the
shock. This discrepancy diminishes with higher resolution. We ran,
in addition, two simulations in which the shock is aligned to the
y-axis and the z-axis. We find the same behaviour along the direction
of the shock. The velocities perpendicular to the normal direction of
the plane of discontinuity vanish everywhere as they should.

Overall, the Sod problem with a shock aligned to an axis shows
agreement between the OCTO-TIGER simulation and the analytical so-
lution. As expected, the numerical solution approaches the analytical
one with higher resolution.

3.2.2 Shock front aligned diagonally

To check the effect of a discontinuity that is not aligned along an
axis, we fixed the discontinuity plane at an angle of 45 deg from
the x-axis (the x + y = 0 plane). A strong shock front propagates
towards the higher x and y values, to the less dense upper right
corner on the xy plane. A discontinuity propagates in this direction
as well but with lower speed. A rarefaction wave propagates toward
the bottom left corner at the sound speed. In this configuration, the
wavefronts do cross the grid boundary. As the simulation evolves, an
increasingly larger part of the waves encounters the grid boundary.
In principle, the analytical solution is only valid in the regions where

the wavefronts did not reach the boundaries, e.g. diagonally from the
bottom left corner towards the upper right corner.

In Fig. 1, bottom row, we plot the density and the parallel
component of the velocity along the line that starts from the bottom
left corner and ends at the upper right corner (on the xy plane) of
four OCTO-TIGER simulations that differ only in their resolutions.
Across this line, we notice similar behaviour to when the shock was
aligned along the x-axis. The simulations reproduce accurately the
rarefaction wave. Around the discontinuity, some cells underestimate
the density behind the shock and overestimate the density in front of
it, a discrepancy that diminishes with higher resolution.

It is, however, interesting to understand the features that appear at
the opposite corners as a function of particular boundary conditions.
For this test, we run two OCTO-TIGER simulations with 2563 cell
resolution that differ only in their boundary conditions. We also
compare the OCTO-TIGER simulations to an identical FLASH (version
4.6) simulation. We run FLASH with the split hydro solver that uses
the PPM method. The first boundary condition termed ‘outflow’
in FLASH and ‘inflow’ in OCTO-TIGER (see Section 2.5), means gas
can inflow back to the grid. The second boundary condition, called
‘diode’ in FLASH and ‘outflow’ in OCTO-TIGER means no inflow is
allowed.

In Fig. 2, we present slices along the xy plane (z = 0) of
the difference in the x components of the velocity between the
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Figure 2. OCTO-TIGER versus FLASH for a resolution of 2563 and an angle of 45 deg for the shock tube. Difference in the x-velocities between simulations and
analytical solution at the end of the simulation, time t = 0.2. The boundary condition in the top row is outflow without material inflow (diode), while in the
lower row it is an outflow condition that allows material to inflow back to the simulation domain (outflow).

simulations and the analytical solution, which assumes that there
is no boundary. Despite the excellent agreement with the ana-
lytical solutions (convergence is first-order near the shock front
and second order at the rarefaction wave), both FLASH and OCTO-
TIGER simulations show similar boundary features at the upper
left and bottom right corners. At those corners, the density is
smaller than the analytical solution due to gas that escapes from
the grid. The gas in the upper left corner escapes easily through
the y = 0.5 boundary and accelerates in the negative x-direction,
but it also encounters the gas to its right and decelerates in the
positive x-direction. The exact opposite happens at the bottom right
corner. For the same reason, the differences in the y-velocities have
exactly the same mirror picture. The diode boundary, by virtue of
setting to zero the momentum parallel to the boundary component,
does not allow velocities in the boundary direction to evolve. The
rarefaction wavefront diverts near the boundary and propagates in a
perpendicular direction to the boundary. This creates a square pattern
at the corners.

3.3 Sedov–Taylor blast wave

The Sedov–Taylor blast wave test (Sedov 1946) has an analytical
solution in three dimensions. The shock wave it produces is much
stronger than that produced by the usual Sod shock tube and its
spherical geometry provides a stringent test of the hydrodynamics.
The initial conditions are a constant density medium with a value of
1 code unit. The internal energy density is setup so as to be described
by a delta function: we approximate this in OCTO-TIGER, in a manner
similar to FLASH, namely by setting the internal energy density to
E0/(160�x3) for the 160 computational cells satisfying |x| < 3.5,
and setting its value to 1 × 10−20 for all other cells. We ran this

model using AMR with 2, 3, 4, 5, 6, and 7 levels of refinement and
the usual 83 base grid. The finest grid cell size of the model with 2
levels is 3.1 × 10−2 code units and the finest grid cell size of the
model with 7 levels is 9.8 × 10−4 code units.

Density slices at t = 0.25 code units are shown for the models with
6 and 7 levels in Fig. 3. We also show the AMR grid structure for
the run with 7 levels. In Fig. 3(d), we show the difference between
the computed density and the analytical solution as a function of
fine grid cell size. The blast wave is a difficult problem to obtain
convergence as it requires high resolution to resolve the shock
front. OCTO-TIGER obtains slightly better than first-order convergence
from the run with six level of refinement to that with seven
levels.

3.4 Uniform static sphere

To test the performance of the gravity solver that solves the
Poisson equation, we initiate a problem with a static uniform
density sphere. This problem has a simple analytical solution and
is widely used to test solvers for self-gravitating fluids (Motl
et al. 2002).

In this test, we place a sphere with a radius of 0.25 code units
at the centre of a cubic grid with a length of 1 code units. The
total mass inside this sphere is 1 code unit. We fill the grid outside
the sphere with a low density of 1 × 10−10 code units. We used a
uniform grid with four resolutions: 643, 1283, 2563, and 5123. To
demonstrate the effect of changing θ , the opening-angle parameter
(see Section 2.2), we carried out two additional simulations with
resolution of 1283 and 2563, where θ = 0.35 instead of the default
value of 0.5. The OCTO-TIGER simulations reproduce very accurately
the analytical gravitational potential. The residuals of the potential
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OCTO-TIGER: a new, HPX-powered, hydro code 5355

Figure 3. The Sedov–Taylor blast wave test. Density slices using OCTO-TIGER with 6 (a) and 7 (b) levels of refinement at t = 0.25 code units. Panel (c): the
AMR grid structure of the simulation with 7 levels. Panel (d): the absolute deviation of the density from the analytical solution as a function of grid cell size for
six simulations carried out with a maximum of seven levels of refinement to a minimum of 2.

on the equatorial plane

ε =
∣∣∣∣φ − φanalytic

φanalytic

∣∣∣∣. (44)

are plotted in Fig. 4 for four of the OCTO-TIGER simulations. A square
pattern is apparent for the residuals in the OCTO-TIGER simulations
with the maximum residuals appearing at the corners of a square
that encloses the sphere. These larger residuals do not decrease with
higher resolution, something that is expected of the FMM method.
The FMM computes the multipole expansion of the potential between
grid cells at the same refinement level as each other. Adding extra
refinement to those levels only increases the quality of the solution
between cells at the extra refinement level. The cells at the coarser
levels still interact with each other in the same way, and the same

expansions are passed to the more refined levels. The only way to
cause cells to interact with each other at finer levels of refinement is
to decrease the opening criterion.

We tested whether a smoother transition of the sphere to the back-
ground density can lower the residuals by carrying out simulations
of two other density distributions (which have known analytical
solutions), one where the density of this sphere decreases to the
ambient value by a parabolic dependence with radius (continuous
but not differentiable), and a second where the density distribution
obeys an n = 1 polytropic profile (continuous and differentiable). We
find that regardless of the smoothness of the density decrease, high
residual values remain at the corners. To decrease the high residuals
at the corners, a lower value of θ needs to be set. We also tried to
simulate an off-centre sphere and a range of additional sphere sizes.
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5356 D. C. Marcello et al.

Figure 4. Uniform static sphere test. Maps of the residuals of the gravitational potential, ε, at the equatorial plane z = 0 as a function of resolution, modelling
code, and opening angle θ .

Changing the sphere location does not affect the residuals. However,
increasing the sphere radius does result in lower maximum residual
values. We conclude that the maximum values are related to how
much mass is concentrated in a given volume.

For comparison, in Fig. 4, we present equatorial maps of several
1283 and 2563 cell FLASH simulations that used two gravity solvers:
multigrid (panel e) and BHTree (panel f). Here, we see that each
solver has a different residual shape.
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OCTO-TIGER: a new, HPX-powered, hydro code 5357

Figure 5. Uniform static sphere test. Histograms and mass distributions of the potential’s residuals of OCTO-TIGER and FLASH simulations. The vertical lines in
panels (a) and (c) mark the residuals’ mean value for each simulation.

In Fig. 5, we plot histograms of the residuals by volume (panels
a and c) and by mass (panels b and d). Fig. 5(a) shows that the
residuals’ maxima do not decrease by increasing the resolution;
however, the residuals’ mean and minimum values do. By increasing
the resolution, the distribution is stretched to lower residual values.
The notable second peak of the histogram for the lower resolution
simulations practically disappears for the two higher resolutions. The
most common residual value is consistently around 10−4 irrespective
of resolution.

In Figs 5(c) and (d), we present the residuals’ histograms and
mass distributions of the FLASH simulations, where we used three
commonly used FLASH gravity solvers: Multigrid, BHTree, and Mul-
tipole. The FLASH multipole gravity solver has the lowest maximum
residuals. The 1283 simulation that used the multipole solver has a
lower mean value 	2.23 × 10−4, than every one of the other FLASH

simulations (including the high-resolution simulations). Only the
OCTO-TIGER simulations have lower mean residuals: 1.93 × 10−4,
1.67 × 10−4, and 1.65 × 10−4 for the 1283, 2563, and 5123 simu-
lations, respectively. The FLASH multipole solver easily produces
an accurate solution to this problem because it has a spherical
symmetry. Including additional terms, besides the monopole, does
not contribute to the numeric solution in the FLASH multipole solver.
The maximum and mean values of the residuals slightly increase in
the high-resolution FLASH simulations. The OCTO-TIGER simulations
show overall low mean residuals and low most common residuals
(the peak in the distributions both with respect to volume and mass).

We summarize the residuals’ minimum, maximum, and mean
values for the OCTO-TIGER and FLASH simulations in Tables 1 and 2,
respectively. Table 1 shows that in OCTO-TIGER, a higher resolution
decreases the mean residual value, up to a certain resolution, where

the mean residual value converges to some low value. To decrease
the mean residual further, one must set a lower θ value.

From the mass distributions (Fig. 5b), we see that the cells that
have the highest residual values actually contain a negligible amount
of mass. Namely, the cube corners that have high residuals reside
outside the uniform density sphere, where the density is very low.
In addition, increasing the resolution results in having most of the
mass in lower residuals. The residual value, that has the maximum
mass, shifts from 3 × 10−3 in the 643 simulation to 10−4 in the
5123 simulation, and the mass distribution becomes flatter towards
smaller residuals with higher resolution. We infer that these regions
with high values of the potential residuals will have minimum effect
on the evolution of a simulation, once we evolve it, because of their
low total mass.

As can be seen from Figs 4 and 5, by decreasing the opening-angle
parameter, θ , we can increase the level of accuracy in the OCTO-
TIGER simulations even more. The residuals altogether are reduced,
including the maximum residual values at the corners. With such
low value of θ , we get the lowest mean residual values among all
the simulations even at the lower resolution of the 1283 cells. As
with the simulations with θ = 0.5, improving the resolution does
not reduce the residual maximum, but does improve the minimum
and mean values. By increasing the resolution, the main peak is
shifted to lower residual values of around 4 × 10−5. The mean
residual value in the high-resolution simulation indicates a deviation
of 0.0065 per cent from the analytical value. We note, though, that the
peak in the mass distribution of the residuals remains approximately
the same for the θ = 0.35 simulations and for the θ = 0.5 simulations
(compare the peaks of the purple square lines and the yellow cross
lines or the peaks of the green circle lines with the brown triangle
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5358 D. C. Marcello et al.

Table 1. Gravitational potential residuals of the static uniform sphere in OCTO-TIGER. OCTO-TIGER uses the
fast mutipole method to solve for the gravity, which has an opening angle parameter θ . Full distributions
appear in Fig. 5.

Ncells 643 1283 2563 5123 1283 2563

θ 0.5 0.5 0.5 0.5 0.35 0.35

Max 2.66 × 10−2 3.23 × 10−2 3.49 × 10−2 3.61 × 10−2 0.82 × 10−2 0.90 × 10−2

Mean 3.13 × 10−4 1.93 × 10−4 1.67 × 10−4 1.65 × 10−4 9.6 × 10−5 6.5 × 10−5

Min 3 × 10−8 1 × 10−9 1 × 10−11 1 × 10−11 1 × 10−10 1 × 10−11

Table 2. Gravitational potential residuals of the static uniform sphere in FLASH. Full distributions appear
in Fig. 5.

Solver BHTree BHTree Multigrid Multigrid Multipole Multipole
Ncells 1283 2563 1283 2563 1283 2563

Max 0.18 × 10−2 0.20 × 10−2 1.81 × 10−2 1.96 × 10−2 2.6 × 10−4 2.3 × 10−4

Mean 5.21 × 10−4 5.38 × 10−4 7.691 × 10−3 8.759 × 10−3 2.23 × 10−4 2.24 × 10−4

Min 1 × 10−8 5 × 10−9 4 × 10−8 4 × 10−7 1.1 × 10−4 1.9 × 10−4

lines in Fig. 5b). Reducing θ has a higher computational cost (see
Section 5). This compromise between the accuracy of the simulation
and the running time should be taken into account when simulating
a problem.

3.5 Stationary star

In this test, we set up a polytrope with an index of n = 3/2. The stellar
diameter is the same as we have used in the uniform static sphere test,
equal to half of the domain size, and the polytrope’s centre coincides
with the centre of the domain. A polytrope can be scaled to model
different types of stars. We show two such scalings in Table 3, one for
a low-mass, fully convective, main-sequence star and a second one
for a low-mass WD. Outside the star, we fill the domain with gas with
a density that is 10 orders of magnitudes smaller than the star’s central
density. While the star itself is in good hydrostatic equilibrium, the
outside medium is not in equilibrium and it starts free falling on to
the surface of the star as the simulation starts. The falling of the gas
together with the diode boundary condition, which prevents inflow,
create outer regions with very low densities. To avoid the creation of
a vacuum, whenever cell densities become lower than the threshold
floor density of 10−15 times the central density, we set the density
to be that value. In addition, to reduce shocks due to supersonic
in-falling gas we give the ambient medium a high internal energy
(and hence temperature). We list the ambient medium’s properties in
Table 3.

Any small perturbation from hydrostatic equilibrium will induce
an oscillation with polytrope eigenfrequencies and modes. Hurley,
Roberts & Wright (1966) computed numerically the fundamental
modes, as well as the first and second harmonic modes of several
polytropes with different adiabatic indices. They found that a
pulsating n = 3/2 polytrope has a fundamental frequency of

ω2
F (n = 3/2; γad = 5/3) = 0.3764

8πGρc

5
. (45)

The pulsation periods are of the order of the free-falling time of
the star. For the low-mass main-sequence star model, for example,
the fundamental period, TF, is 24 min, while for the WD model the
fundamental period is 18 s.

We compare the oscillations observed in the simulations with
the analytical solutions. We also monitor the diffusion of the outer
layers of the star and the behaviour of the low-density medium that

surrounds the structure and we verify the conservation of some basic
physical quantities.

We ran six simulations in total, two OCTO-TIGER uniform grid
simulations with resolutions of 1283 and 2563 cells and one OCTO-
TIGER AMR simulation with base resolution of 1283 and one level
of refinement that increases linearly the resolution by a factor of 2.
We refine based on a criterion of density (see Section 2.4). These
three simulations use the OCTO-TIGER FMM gravity solver, with an
opening angle parameter θ = 0.5. We also ran a fourth uniform grid
OCTO-TIGER simulation with resolution 1283, and θ = 0.35.

These four simulations used an ideal gas EoS. The fifth simulation,
a uniform grid of 1283 resolution and θ = 0.5, used a polytropic EoS
(see equation 14). The sixth simulation is carried-out with FLASH on
a uniform grid resolution of 1283, using the BH-tree gravity solver.

In OCTO-TIGER, we solve for each cell in the domain of the
Lane–Emden equation to obtain the polytrope, while in FLASH we
interpolated a one-dimensional polytropic solution into the three-
dimensional grid. This results in small differences between the initial
states of the OCTO-TIGER and FLASH simulations. In Fig. 6(a), we
show the AMR grid in a temperature slice at the equatorial plane
of the AMR OCTO-TIGER simulation. Each cube represents a subgrid
containing 83 equal volume cubic cells. As we refined by the density
criterion, only the inner region of the star is refined to the maximum
level. In Fig. 6(b), we plot the initial density profile of the stars in
both OCTO-TIGER and FLASH.

In Fig. 7(a), we plot the central density of the star, divided by
the initial central density, over time (in units of TF, the fundamental
pulsation period of our polytope). As expected, in all simulations, the
central density of the star shows clear oscillations. In the OCTO-TIGER

simulations, the central density oscillates around some converging
value, while in FLASH, there is a slow decrease with time overlaid
on the central density oscillations. By setting a lower value for the
opening angle parameter of the gravity solver (θ = 0.35, red crosses
in Fig. 7), we can lower the amplitude for these oscillations.

Although the oscillation amplitude might affect the amount of
noise in the solution, the clear-cut test is whether the oscillation
frequencies are aligned with the fundamental frequency predicted
by theory. The assumption is that both the initial state and the
numerical solving scheme inaccuracies will induce random noise
that will oscillate at the fundamental frequency of the polytrope.
For that, we plot the Fourier transform of the stars’ central density
(Fig. 7b), normalized by the initial pulsation amplitude, in units
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Table 3. Examples of how our polytope model of Section 3.5–3.7 can be scaled to represent stars of different types. We assume μHe+2 = 4/3,
and μCO = 2, μH = 1, μH+ = 1/2, and for calculating the temperature for the main-sequence star centre, WD centre, main-sequence star
surface, and WD surface, respectively. To calculate the medium’s temperature, we assume μH+ = 1/2. Note that Tf is the fundamental period,
while Ts, Tc, and Tmedium are temperatures.

Model M R ρc pc Tc cs,c Ts cs, s Tmedium cs, medium Tf K
(M
) (g cm−3) (dyne cm−2) (K) (km s−1) (K) (km s−1) (K) (km s−1) (s/min) (erg cm2/g5/3)

MS 0.27 0.25R
 150 1.7 × 1017 1.8 × 107 430 6300 9.3 1.9 × 108 2300 24 min 4 × 1013

WD 0.35 109 cm 106 2.5 × 1022 6.1 × 108 2000 7.3 × 104 44 4.3 × 109 11 000 18 s 2.5 × 1012

Note. Legend: MS = main sequence; WD = white dwarf; M = mass; R = radius; ρc = central density; pc = central pressure; Tc = central temperature; cs,c = central
sound speed; Ts = surface temperature; cs,s = surface sound speed; Tmedium = medium temperature; cs,medium = medium sound speed; Tf = fundamental period; K
= polytropic constant.

Figure 6. Stationary star initial state. (a) AMR grid in a temperature slice at the equatorial plane of the AMR OCTO-TIGER simulation. Each cube represents a
subgrid containing 83 equal volume cubic cells; (b) the initial density profile of the stars in OCTO-TIGER and FLASH. Small differences are present due to different
interpolation schemes.

of the fundamental frequency, fF. The vertical lines in Fig. 7(b)
show the fundamental frequency and the first and second harmonic
frequencies, 2.15fF and 3.13fF, respectively. The Fourier transform
of the densities of all the simulations notably peak close to the
fundamental frequency. Again, the star, that is evolved with a θ =
0.35, reproduced most accurately the fundamental mode, with a
frequency peak that deviates by only 0.5 per cent from the theoretical
fundamental frequency. The other OCTO-TIGER simulations deviate
by 1.5 per cent, while FLASH deviates by 3.8 per cent. The star that
is evolved with a polytropic EoS, naturally suffers least from low-
frequency noise.

We next plot (Fig. 7c) the deviation from conservation of mass,
�M/M0, in the OCTO-TIGER simulations. �M = M(t) + Mout − M0,
where M(t) = ∫

VρdV, Mout, and M0 are the mass inside the simulation
domain, the mass that outflowed from the grid, and the initial mass,
respectively. OCTO-TIGER calculates automatically, for every time-
step, the outflow of quantities such as mass, energy, and entropy,
which simplify following of every small change of those quantities.
Therefore, we plot only the conservation of mass in OCTO-TIGER

simulations. We see conservation at the 10−13 level up to a time when
the density flooring adds mass to the grid. Even then the conservation,
by the end of the simulation is still at the level of a few × 10−12.

In these simulations, we set a density floor that causes a deviation
from conservation at a machine precision level. The floor density is
5 orders of magnitude less than the initial density of the ambient
medium, and usually will not affect mass conservation. However,

at machine precision level, a deviation that grows approximately
linearly with time appears. This can be explained by considering
the following. As a consequence of ambient medium gas falling
on to the star surface, the density outside the star decreases with
time. Eventually, the density will decrease below the density floor
threshold at the outer regions, which is then filled with density at
the floor value. This happens after approximately 20, 25, and 35
fundamental periods in the low-resolution atmosphere with ideal gas
EoS simulations, polytropic EoS simulation, and the high-resolution
simulation, respectively. If the region that is being filled with a floor
density is a fraction α of the domain volume, we will get a deviation
from mass conservation of roughly αV ρfloor/M0 = αρfloor/ρ0, where
ρ0 is the initial mean density in the simulation’s domain. In our
simulations ρfloor/ρ0 	 9 × 10−14. If only one layer of cells at the
grid boundary is being filled with the floor density then α 	 0.05.
If, in addition, the cells will be refilled every five time-steps, after
∼20 000 time-steps a deviation of 2.2 × 10−11 from conservation of
mass will occur. In the simulations themselves, fewer cells are refilled
less frequently so the deviations are smaller. Additionally, as shock
heating is eliminated in the polytropic EoS simulation, the ambient
gas continuously falls on to the star’s surface without disturbance,
which results in a bigger volume of flooring, and in a somewhat
higher deviation from conservation of mass (purple line).

In Fig. 7(d), we show the total mass enclosed in a sphere with
a radius of the initial star’s radius. Here, we see that FLASH loses
1 per cent of the stellar mass in 40 pulsations, while the OCTO-
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5360 D. C. Marcello et al.

Figure 7. The stationary polytrope benchmark test. (a) Central density over time divided by the initial central density. (b) The Fourier transform of the central
density pulsations normalized by the initial pulsation amplitude. The vertical lines show the fundamental frequency and the first and second harmonic frequencies.
(c) Conservation of mass (only for OCTO-TIGER simulations). (d) Total mass enclosed in a sphere with a radius of the initial polytropic radius. (e) Conservation
of energy (only for OCTO-TIGER simulations with ideal gas EoS). (f) Conservation of entropy (only for the polytropic EoS OCTO-TIGER simulation). TF is the
fundamental period of a polytrope with n = 3/2 and γ = 5/3.

TIGER simulations lose at most 0.2 per cent of the mass flowing
out. The lower resolution, polytropic EoS, and the higher resolution
simulations perform best.

In Fig. 7(e), we show the deviation from conservation of
energy �E/E0, where �E = E(t) + Eout − E0, and E (t) =∫

V

(
E + 1

2 ρφ
)

dV , Eout and E0 are the energy inside the simulation

domain, the energy that outflows from the grid and the initial energy,
respectively. In Fig. 7(f), we show the deviation from conservation of
entropy �S/S0, where �S = S(t) + Sout − S0, and S(t) = ∫

VτdV, Sout,
and S0 are the entropy inside the simulation domain, the entropy that
outflows from the grid and the initial entropy, respectively. Beside the
small effect of the flooring, the ideal gas EoS simulations conserve
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Table 4. Translating polytrope benchmark test. Scaled quantities: motion velocities, total simulation
times, and displacement. For other scaled quantities, refer to Table 3.

Model v1 v2 v3 tsim1 tsim2 tsim3 Rtravel

(km s−1) (km s−1) (km s−1) (s/min/h) (R
)

MS 1.20 120 12 000 44 h 27 min 16 s 0.28
WD 5.6 560 56 000 33 min 20 s 0.2 s 0.016

energy at machine precision, while the polytropic EoS simulation
conserves entropy at a machine precision.

Click on the link1 to view a movie of the OCTO-TIGER, 2563, θ =
0.5 simulation.

3.6 Star moving linearly in the grid

We next simulate a star as in Section 3.5, except we initialize the
star with a non-zero bulk velocity, allowing it to translate at a given
constant velocity through the grid. This exercise tests the degree to
which the surface layers of our structure shear away due to interaction
with the low-density medium permeating the background. It also tests
how well a spherical star moves through our cubical grid and how
well our code conserves the total, non-zero linear momentum.

We test three velocities (a) a subsonic velocity, v1 =
5.2 × 10−4cs,medium, where cs,medium is the speed of sound of the
ambient hot medium (see Table 3); (b) an intermediate velocity,
v2 = 5.2 × 10−2cs,medium; and (c) a high, supersonic velocity, v3 =
5.2cs,medium. We list these three velocities scaled to a main sequence
and WD models, as well as the simulation time (shorter for the faster
stars) and the distance the star travels in Table 4. The distance the star
travels equals to 1.1 times the star’s initial radius for all simulations.
We placed the star initially at (−0.125, −0.125, 0) and gave it a
velocity in the direction towards grid position (1, 1, 0).

Each velocity regime contains a set of six simulations (as we
have done for the stationary star): two uniform grid, 1283 and 2563

cell simulations, one AMR simulation (1283 cells and one level of
refinement), with ideal gas EoS and θ = 0.5; a uniform grid 1283

simulation with ideal gas EoS and θ = 0.35; a uniform grid 1283

simulation with polytropic EoS and θ = 0.5; and a FLASH uniform
grid 1283 simulation. In Sections 3.6.1–3.6.3, we describe the results
of the simulations.

3.6.1 Star translating at low velocity

In this regime, the star translates at a very low velocity, equivalent to
a Mach number of 5.2 × 10−4, not only with respect to the ambient
medium speed of sound, but also with respect to the speed of sound of
the coldest regions at the star’s surface. Such low bulk velocities are
a challenge for hydrodynamic codes. Low level subsonic noise that
develops can advect the stellar momentum to the surrounding low-
density gas, diminishing the star’s initial low velocity. In addition,
the star’s low velocity allows us to run this test for over an hundred
fundamental pulsations periods, the longest time we have run a
polytrope simulation. During this time, the star should keep pulsating
at its Eigenmodes as it translates through the grid.

The star in the OCTO-TIGER simulations slowly moves from the
bottom left corner to the upper right corner (in the xy plane). As
in the stationary star simulations, the star remains in hydrostatic
equilibrium, while the ambient medium is free falling on to the

1https://youtu.be/4-ra6fY982Q

stellar surface. This slowly cools the ambient medium and creates
shocks on the star’s surface that heat the gas for ideal gas simulations.
We performed the same analysis as we did for the stationary star. We
find that the star’s movement does not affect the star’s pulsations.
Almost identically to the stationary star in Fig. 7(a), the central
density oscillates at the fundamental frequency in all OCTO-TIGER

simulations, while the mean central density of the star simulated
with FLASH decreases with time. Additionally, the star’s mass (Msp)
remarkably decreases at the same rate as for the stationary star in
Fig. 7(d), decreasing by 2 per cent in the FLASH simulation and by
less than 0.4 per cent with OCTO-TIGER, after 100 pulsations.

In Fig. 8(a), we plot the centre of mass position as a function
of time, while in panel (b) we show the deviation of the centre
of mass velocity from its initial value. The star in the OCTO-TIGER

simulations moves through the grid at a constant velocity, while in the
FLASH simulations, the star slows down, starts moving in the opposite
direction and then oscillates around the star’s initial position. The
OCTO-TIGER simulations deviate from the initial velocity by less than
1 per cent throughout the entire evolution.

We exploited OCTO-TIGER’s capability to track the provenance of
gas, to calculate the diffusion of linear momentum from the star to
its environment. In Fig. 8(c), we plot the x-momentum of the diffuse
medium divided by the initial total x-momentum in the OCTO-TIGER

simulation. The initial oscillation is due to the sharp density gradient
at the star’s surface. Soon after the value settles at values close to
zero. We mention though that the mass ratio between the ambient
medium gas and the star is of the order of 10−8. No comparison with
FLASH is possible due to FLASH not tagging gas provenance.

We find, similarly to the stationary star test, that mass, energy, and
entropy are conserved in the OCTO-TIGER simulations to excellent
precision, except for small deviations due to adding mass when a
cell’s density drops below the minimum floor value (see Section 2.6).
We additionally follow the conservation of x-linear momentum
(Fig. 8d), finding a machine precision level until flooring starts
operating at which point we observe a slow linear growth. The
deviation, though, is minimal, less than 10−10 after 100 pulsation
periods for all simulations except the polytropic EoS. The polytropic
simulations suffer more from flooring (because shock heating is
absent) and the deviation settles on a value of 8 × 10−9.

Click on the link2 to view a movie of the low velocity translating
star.

3.6.2 Star translating at intermediate velocity

With a speed of Mach 5.2 × 10−2 with respect to the outside medium,
the star translates at a subsonic velocity, but at a supersonic speed
with respect to the star’s surface. The simulation time is comparable
to the star’s fundamental period. This allows the star to pulsate only
once while it translates at a higher speed than the previous test.

2https://youtu.be/8ArZqP9F93Y
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5362 D. C. Marcello et al.

Figure 8. The translating star benchmark test with the star moving at Mach 5.2 × 10−4 (with respect to the diffuse medium). We plot various physical quantities
of interest over time. Time is in units of TF, the fundamental pulsation period.

The star’s gas diffuses out in the wake of the star, but then reverses
motion and trails the star moving in a flow that resembles accretion.
Shocks are apparent at this wake in the ideal EoS that increases the
diffusing out of material from the star.

In Fig. 9, we plot only the salient quantities that demonstrate the
level of accuracy of the simulations. In panel (a), we demonstrate how
the simulation time is approximately the time of the fundamental
period of pulsation and the amplitude is similar to the stationary
star simulations of Fig. 7(a). The error on the star’s velocity is
less than 10−3 for all simulations (Fig. 9b), where OCTO-TIGER

simulations have an error that is about 10 times smaller than the
OCTO-TIGER simulations in the case of the slow moving star of
Fig. 8(b) (Section 3.6.1). In Fig. 9(c), we see that the ambient
medium momentum in OCTO-TIGER simulations remains negligible.
After an oscillatory period, we expect it to converge to a value that
is of the order of 10−9, which is over 10 times smaller than for the
equivalent, slow moving test. Finally, in Fig. 8(d) the mass in the
original polytrope is also retained with a precision that is 10 times
that of the slow moving polytrope. An amount that is relatively high
if we consider the short simulation time.

Click on the link3 to view a movie of the intermediate velocity
translating star.

3.6.3 Star translating at a high velocity

For the highest velocity simulation, at Mach 5.2 with respect to the
sound speed of the ambient medium, the running time is shorter than
the dynamical time of the star so the star does not relax. There is a
slight overall mass increase in the two unigrid simulations, but not
for the AMR one (Fig. 10a) between the first and fifth time-steps
in the simulation. This is due to more mass leaving a cell than the
mass in that cell at the sharp stellar edges of the polytrope. Since the
mass in a cell is not allowed to be zero nor negative, mass is added
to reach the density floor value, hence introducing mass in the grid.
At subsequent time-steps when numerical diffusion has softened all
edges, this does not happen. This is not a large problem and can be
resolved with a reduction of the Courant time to values ∼0.14 (see
justification in Section 2.7).

3https://youtu.be/b3MMyDCPY60
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Figure 9. The translating star benchmark test with the star moving at Mach 5.2 × 10−2 (with respect to the diffuse medium). We plot various physical quantities
of interest over time. Time is in units of TF, the fundamental pulsation period.

In Figs 10(b)–(d), we see that the velocity error, ambient x-
momentum, and mass in sphere retain their values to a precision that
is comparable to that of the polytrope moving at intermediate speed
(Section 3.6.2). The best simulation is the high-resolution unigrid
with θ = 0.5 (yellow line), something that is also true but to a lesser
extent for the other two velocity tests.

Click on the link4 to view a movie of the high velocity translating
star.

3.7 Star rotating in the grid

Here, we simulate a rotating star in equilibrium with OCTO-TIGER

and FLASH. Its rotation profiles, �(r), should remain flat whether
the simulation is run in the inertial frame or in a rotating frame of
reference, over a certain amount of time.

We constructed an equilibrium profile of a rotating polytrope
using the self-consistent field (SCF) method that will be described in
Section 4.1. We then interpolated the profile in the OCTO-TIGER and

4https://youtu.be/rZiLMJ6Cxc4

FLASH grids using the same method. The fast-spinning star has an
oblate shape with a ratio of 2/3 between polar and equatorial radii.
The angular velocity is 0.52 in code units (0.0023 and 0.19 rad s−1

for the MS and the WD models, respectively), and the rotational
period is ≈12 code units (45 min and 32.3 s for the MS and the WD
models, respectively).

We carry out simulations in the inertial frame (both with OCTO-
TIGER and FLASH) and in the rotating frame (only with OCTO-TIGER).
For each of these frames of reference, we carry out six simulations
with the same combinations of resolution, θ parameter, and EoS as
done for the stationary star in Section 3.5.

In Figs 11(a) and (b), we plot the familiar evolution of the core
density scaled to the initial value. With an exception of the FLASH

simulation that has a declining trend, reaching 85 per cent of its initial
values over 25 rotation periods, all the OCTO-TIGER simulations retain
the initial core density value within 5 per cent with no noticeable
difference between rotating and inertial frame. In Fig. 11(c), we
plot the diffusion of the stellar mass out of the original boundary
in the inertial frame. Once again FLASH performs worse with a loss
of 0.5 per cent of the mass over 25 rotation periods, but most of
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Figure 10. The translating star benchmark test with the star moving at Mach 5.2 (with respect to the diffuse medium). We plot various physical quantities of
interest over time. Time is in units of TF, the fundamental pulsation period.

the OCTO-TIGER profiles are a close second with the polytropic EoS
simulation performing distinctly better. Comparing this with panel
(d) we see how all OCTO-TIGER simulations perform much better in
the rotating frame, losing at most 0.05 per cent of the mass. Similarly,
Fig. 11(e) shows that in the inertial frame, the high-density inner star
diffuses out moving to twice its original radius. The polytropic EoS
simulation is by far the best, with FLASH also performing well. In
this case the rotating frame, panel (f), does not perform a great deal
better than the inertial frame.

The acid test is the evolution of the rotation profile. All simulations
in the inertial frame (Fig. 11g) do not retain a flat profile (with
the notable exception of the polytropic EoS one), while those in
the rotating frame (Fig. 11 h) systematically do. However, in the
inertial frame, by the end of the simulations, the spin of the gas
that has diffused out of the original volume is distinctly less for all
simulations than in the rotating frame. The FLASH simulation (in
the inertial frame) does not retain a flat profile, but it has the least
diffusion of gas out of the boundary of the sphere of all simulations.

Finally, in Fig. 12 we show the degree of conservation we achieve
in the OCTO-TIGER simulations. This highlights the importance of

including the angular momentum correction (AMC) of the gravity
solver for the conservation of energy (upper panels) as outlined
in Section 3. In the lower panels, we plot the deviation from
angular momentum conservation �Jz/J

0
z , where �Jz = Jz (t) − J 0

z ,
and Jz(t) = ∫

V(xsy − ysx)dV and J 0
z are the z-angular momentum

inside the simulation domain, and the initial z-angular momentum,
respectively, and where sx and sy are the x and y components
of the inertial momenta, respectively. As we do not take into
account outflows, we can compare between OCTO-TIGER and FLASH,
showing OCTO-TIGER outperforms FLASH in ideal gas simulations.
Additionally, by comparing between simulations with outflow (blue
circles) and reflect (grey downward pointing triangles) boundary
conditions, we find that outflows only very slightly affect angular
momentum conservation. Overall, the AMR simulation conserves
angular momentum the best, and simulations that include AMC
conserve angular momentum better than the simulation without this
correction.

In conclusion, this test gives an excellent idea of the type of
numerical diffusion we can expect. The rotating frame outperforms
the inertial frame, and the polytropic EoS seems to be doing best
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Figure 11. The rotating star test with �0 = 0.52 code units (0.0023 and 0.19 rad s−1 for the MS and the WD models, respectively). Several quantities are
compared. The vertical lines in panels (g) and (h) are the maximum distance of high-density gas at the end of the simulation (rightmost values of the curves in
panels e and f, respectively).
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Figure 12. The rotating star test with �0 = 0.52 code units (0.0023 and 0.19 rad/s for the MS and the WD models, respectively). Conservation of energy and
angular momentum. All simulations used an ideal gas EoS except the simulation shown in purple squares, which used a polytropic EoS.

in almost all cases. FLASH performs the worst except in retaining a
stable high-density sphere inside the star and it can also be seen that
a higher gravity accuracy (θ = 0.35) improves the performance.

Click on the link5 to view a movie of the rotating star in the rotating
frame.

4 BINARY MERGER BETWEEN TWO
POLY TROPES WITH A MASS R ATIO OF 0 .5

Here, we present the results of two binary merger simulations per-
formed in the rotating frame, starting from identical initial conditions,
but differing in the adopted EoS. The donor star is half the mass of
the accretor and initially fills its Roche lobe. Both stellar spins are
synchronized to the orbital frequency. In the first simulation, the two
stars are constructed using the same polytropic EoS (ε1 = ε2 = 1),
with polytropic index n = 3

2 . In the second simulation, we use an

5https://youtu.be/7ZrxGJW2J Y

ideal gas EoS (with dual energy parameters ε1 = 0.001 and ε2 = 0.1
from equations 11 and 13).

Dominic check all numbers pertaining resolution, grid, and
scaling: We are motivated to model such a system for two reasons.
First, by appropriate choice of units, this system approximates a
binary consisting of two low-mass WDs. We have set the unit
conversion factors so that the accretor has a mass of 0.6 M
,
the donor a mass of 0.3 M
 (1 code mass unit is 1 solar mass).
The computational domain is 40 code length units on a side, or
1.7 × 1011 cm (1 length units is 4.36 × 109 cm). With this scaling,
the separation between the two stars is 6 × 10−2 R
, and the period
is 2.7 min. The second reason is that a similar system was modelled
by Motl et al. (2017) providing us with a comparison simulation as
a further verification of OCTO-TIGER.

We use nine levels of refinement, with the highest level having a
grid spacing of 4.2 × 107 cm. The accretor is 50 cells across along its
longest axis (the spinning stars have slightly larger equatorial than
polar radii) and the donor is 79 cells.

Following Motl et al. (2017), we initially drive the stars into
deep contact by systematically removing angular momentum. This
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is accomplished by adding source terms to the evolution equations
for the x and y components of the momentum (equation 2),

Ssx ,driving = − y

x2 + y2

(
xuy − yux

)
fdriving

Ssy ,driving = + x

x2 + y2

(
xuy − yux

)
fdriving (46)

where x and y are the x and y components of the position vector x,
ux and uy are the x and y component of the inertial frame velocity,
u, and fdriving is the driving rate in units of inverse time. This has the
effect of reducing the z-angular momentum component of a given
cell at a logarithmic rate of fdriving. It does not affect the cylindrical
radial or z linear momenta. Similarly to what was done by Motl et al.
(2017), we drive the system together at a rate of 1 per cent per orbit
for the first 2.7 orbits.

4.1 The initial stellar model

The initial conditions for our binary simulations were produced
using our own variant of the SCF method (Hachisu 1986a,b; Even &
Tohline 2009; Kadam et al. 2016). Given a barotropic EoS, p = p(ρ),
the SCF method allows one to construct an equilibrium model of a
binary system with synchronously rotating stars. OCTO-TIGER’s SCF
can be used to construct systems with a polytropic or bi-polytropic
EoS or a cold WD EoS. The user selects the masses of each star
and the Roche lobe filling factor for the donor. When each star has a
different EoS, the Roche lobe filling factor for the accretor must also
be specified. Here, we document OCTO-TIGER’s SCF as it pertains to
the construction of the initial conditions for the binary models in this
paper. These models use the same structural polytropic EoS for each
star. One of the models is evolved with the same polytropic EoS, and
the other with an ideal gas EoS.

The effective potential is defined as

φeff = φ − 1

2
�orbr

2, (47)

where φ is the gravitational potential, �orb is the rotational frequency
of the binary, and r is the distance to the axis of rotation. Using
the effective potential, the hydrostatic equilibrium equation in the
rotating frame can be written

1

ρ
p + φeff = 0. (48)

For the EoS, we use:

ppoly = Kρ1+ 1
n , (49)

where K is the polytropic constant and n is the polytropic index.
Combining equations (48) and (49) and integrating we arrive at:

K (1 + n) ρ
1
n + φeff = C1|2, (50)

where the constant on the RHS is either C1 for the primary, accreting
star or C2 for the secondary, donor star. While in general the
polytropic constant, K, may be different for each star, in this paper,
they are the same.

The SCF solves for the initial conditions iteratively. The user
selects the mass of each star, the polytropic index, the initial
separation, and the Roche filling factor of the donor. (Note that
while the user specifies the initial separation, it is the orbital angular
momentum that is held constant.) The Roche filling factor is defined
as

f = φedge − φC

φL1 − φC

, (51)

where φedge is the effective potential at the edge of the donor, φC is
the effective potential at the centre of mass of the donor, and φL1 is
the effective potential at L1, the first Lagrange point.

For the initial iteration, we place two polytropic stars in the grid
at the desired separation and small enough that they are within their
respective Roche lobes. The gravity solver is also called before the
iterations begin. For each iteration, we: (1) multiply the densities of
each star by a constant factor for each star, such that the result yields
the desired mass of each star; (2) advect the entire grid such that the
centre of mass lies at the centre of coordinates; (3) set the new value
for �orb using

�orb → J0,orb(M1 + M2)

M1M2a2
, (52)

where J0,orb is the initial orbital angular momentum, M1 and M2 are
the fixed masses of the accretor and donor, and a is the orbital
separation for the current iteration; (4) compute the integration
constants C1 and C2,

C1 = K (1 + n) ρ
1
n

1 + φ1, (53)

and

C2 = (1 − f ) φC + f φL1, (54)

where ρ1 is the maximum density of the accretor and φ1 is the
effective potential at the centre of the accretor; (5) compute a new
value for K,

K = C2φ2

(n + 1) ρ
1
n

2

, (55)

where ρ2 is the density at the centre of the donor, and φ2 is the
effective potential at the centre of the donor (φ2 = φC); (6) compute
a new density value at each point on the grid using

ρ =
(

φeff − C1|2
K (n + 1)

)n

, (56)

for the accretor or donor region as appropriate; and (7) solve for the
potential and repeat the process from step (1).

4.2 Simulation results

In each model, mass transfer begins within the first couple of
orbits. The transfer rate grows and the donor is tidally disrupted
at approximately 21.2P0 for the polytropic and 19.6P0 for the ideal
gas model. Here, P0 is the initial orbital period, which is the same
for each model. The merged remnant is then evolved for a couple of
additional P0.

In Fig. 13, we show various images at t = 11.7P0 for the polytropic
simulation and t = 12.6P0 for the ideal gas simulation. Panels (a)
and (b) show density slices in the equatorial plane for the two
EoS choices. OCTO-TIGER is able to track the material that was
originally part of the donor, and the donor mass fraction is displayed
in panels (c) and (d). The polytropic model clearly exhibits the
same polygonal resonances at high mass transfer rates that were
first reported in D’Souza et al. (2006) and were later confirmed in
the SPH simulations reported in Motl et al. (2017). As in Motl et al.
(2017), these resonance patterns do not appear in the ideal gas model
because the accretion structure is thicker due to shock heating. In
Figs 13(e) and (f), we show a density cut at the same times, showing
that while the ideal gas EoS simulation produces L2 and L3 outflow,
the polytropic EoS simulation only shows a hint of L2 outflow by
that time. The level of detail clearly visible near L1 is consistent with
the Roche geometry.

MNRAS 504, 5345–5382 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/504/4/5345/6219861 by guest on 18 April 2024



5368 D. C. Marcello et al.

Figure 13. Snapshots from our q = 0.5 simulations with a polytropic EoS (left column, at time 11.7 × P0, where P0 is the initial orbital period) or an ideal gas
simulation (right column, at time 12.6 × P0). The box size is 11 × 109 cm in all cases. The density scale is logarithmic and runs from 1.5 to 1.5 × 106 g cm−3.

Figs 14(a) and (b) are from earlier in the evolution at approximately
t = 7P0 in each model. The resonance patterns in the polytropic model
progress from pentagonal shaped, to box shaped, to triangular shaped
(clearly seen in in Fig. 14a). Figs 14(c) and (d) show the system as
tidal disruption is occurring. As the donor is disrupted, significant

mass flows through the L2 Lagrange point, resulting in the ‘tails’
seen in the figure.

The images in Fig. 15 are taken from two orbits after tidal dis-
ruption and merger has occurred. Panels (a) and (b) show equatorial
density slices, while panels (c) and (d) show the donor fraction. The
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OCTO-TIGER: a new, HPX-powered, hydro code 5369

Figure 14. Density slices on the orbital plane for our q = 0.5 simulations with a polytropic EoS (left column) or an ideal gas EoS (right column). The box size
is 11 × 109 cm (top row) or 16 × 109 cm (bottom row). The density scale is logarithmic and runs from 1.5 to 1.5 × 106 g cm−3. The snapshots are taken at
times 7.3 (a), 6.7 (b), 21.2 (c), and 19.6 × P0 (d). See Table 1 for description.

triangular shaped resonance pattern is still evident near the core in the
polytropic model. In the ideal gas model, there is still a remnant of
the donor above and just to the left of centre. The bottom images are
shown with a larger spatial and density range to reveal the large-scale
low-density structures that form from the merger.

4.2.1 Simulation diagnostics

In order to measure the simulated properties of each star in the binary,
we must first establish how to locate the stellar surface of each
star. OCTO-TIGER accomplishes this iteratively. For each iteration,
OCTO-TIGER updates the centres of mass of each star and the orbital
frequency. Summations are done over the grid cells within the regions
defined for each star, and indices i, j, and k referring to grid cells are
implied on the RHS of the next two equations. We thus define the
centres of mass of each star as

x1|2 =
∑1|2

ρ x �x3

M1|2
. (57)

The velocity of the centre of mass of each star is

u1|2 =
∑1|2

ρu�x3

M1|2
. (58)

Given x1|2 and u1|2, we define the orbital angular frequency as

�orb = [(x1 − x2) × (u1 − u2)]

|x1 − x2|2 · ez, (59)

where ez is the unit vector in the z direction, out of the orbital plane.
For the first iteration, we compute the centres of mass and orbital

frequency based on an initial guess for the bounding surface of each
star. OCTO-TIGER evolves the original accretor and original donor
mass densities as passive scalars, allowing it to track donor material
within the accretor. We use the volumes defined by these densities to
seed the first iteration, with cells containing majority accretor (donor)
material flagged for the accretor (donor).

With the stellar volumes defined, we can then calculate the centres
of mass and orbital frequency. Beginning with the second iteration
(out of a total of five), we use the acceleration from the effective
potential to find the regions of each star. This acceleration is

geff = g + r�2
orb, (60)

where r is the radial vector distance to the axis of rotation. We define
the quantities

q1|2 = geff · x − x1|2
|x − x1|2| . (61)
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Figure 15. Slices on the orbital plane for our q = 0.5 simulations with a poytropic EoS (left column) or an ideal gas EoS (right column). The box size is
20 × 109 cm (top two rows; top row: logarithmic density scale with range 1.5–1.6 × 106 g cm−3) or 200 × 109 cm (bottom row; logarithmic density scale with
range 1.5 × 10−3 to 1.6 × 106 g cm−3). The snapshots are taken at times 25.0 (a, c, e), and 23.2 × P0 (b, d, f). See Table 1 for description.

If min(q1, 0) < min(q2, 0), the cell belongs to the accretor. If min(q1,
0) > min(q2, 0), the cell belongs to the donor. For the case where
q1 ≥ 0 and q2 ≥ 0, the cell is in neither star. This definition by
itself may miss some cells in the centres of each star where the

effective gravitational force is not guaranteed to point towards the
centre of mass. For this reason, any material within a certain critical
radius of the centre of mass of a star is included as part of that star
regardless of the values of q1|2. This critical radius is 1

4 RL,1|2, where
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Figure 16. Diagnostic plots from the q = 0.5 polytropic and ideal gas
simulations. Orbital separation is given as a function of the initial value.

RL, 1|2 is the Roche lobe radius of each star taken from the point mass
approximation.

With the stellar volumes defined, we can measure the properties
of each star. The mass of each star is thus defined as

M1|2 =
1|2∑

ρ�x3. (62)

The orbital separation is

a = |x2 − x1| . (63)

We show the separation of each model in Fig. 16. Once the driving
phase is over, the orbital separation of the two simulations increases
with time up until the final merger. This shows the donor does
not plunge into the accretor but instead is tidally disrupted (e.g.
Figs 14c and d). The matter from the disrupted donor then falls on
to the accretor. Our diagnostic plots that measure properties of the
individual stars do not extend to this phase because there is no longer
a clearly defined donor.

Computing the time rate of change of the two stars’ masses, Ṁ1|2,
requires filtering out high frequency noise, here defined as anything
greater than ( 1

2 �orb). The regions defining each star change with
time and can vary slightly from one time-step to the next. The high
frequency part of this signal needs to be filtered out to measure a
meaningful Ṁ1|2. We apply a windowed sinc filter using an exact
Blackman window with frequencies of 1

2 �orb,0 and 3
20 �orb,0. We

apply this filter to M1|2 and then compute the time-derivatives with
nearest neighbours by a first-order discrete scheme.

In Fig. 17 (top left panel), we show the donor mass-loss rate,
normalized to the donor’s mass. The time derivative is in units of
initial orbital periods. The donor initially loses less than 1 per cent
per orbit, increasing to ∼1 per cent, and then ramping up towards
the time when the donor is tidally shredded. In Fig. 17 (top right
panel), we show the amount of mass that is no longer a part of either
star. The two star system loses only a small fraction of the donor’s
mass throughout most of the evolution. This can be mass unbound
from the system or mass in a common envelope, but still bound to
the system. The ideal gas model loses mass at a higher rate. This is
because the accreted gas is shock heated and therefore has higher
pressure. It builds up a thicker layer around the accretor, and some
of this gas is able to escape.

In Fig. 17 (bottom panels), we plot the mass that is outside the
surface of either stars, and the mass that is unbound from the system.
Unbound mass is that for which the inertial frame kinetic energy
density exceeds the inertial frame potential energy. Further from the
system centre of mass, where most of the unbound material is likely

to be located, this indicator is more reliable than using rotating frame
quantities. Most of the mass remains bound. In the case of the ideal
gas model, about 10 per cent of the mass leaves the stellar boundaries,
but only about 1 per cent of the mass actually becomes unbound from
the system. In the case of the polytropic model, these figures are even
lower due to lack of shock heating.

The orbital angular momentum is

Jorb = M1M2

M1 + M2
�orba

2. (64)

We show Jorb for both models in the top left panel of Fig. 18 as a func-
tion of the initial orbital angular momentum (1.5 × 1051 g m2 s−1).
As expected, both simulations lose orbital angular momentum
throughout their evolution.

Each star has a spin angular momentum

J1|2 =
1|2∑

ρ
(
x − x1|2

) × (
u − u1|2

)
�x3, (65)

and an angular frequency assuming rigid body rotation

�1|2 = J1|2∑1|2
ρ
∣∣(R − R1|2

)∣∣2
�x3

, (66)

where R1|2 is the projection of x1|2 on the xy-plane. We show J1|2 in
the middle right and lower right panels of Fig. 18. In each model,
the accretor gains angular momentum from the donor. We show �1|2
along with �orb in Fig. 18.

The gravitational torques exerted on each star are

T1|2 =
1|2∑

(x − x1|2) × ρg. (67)

The gravitational torque exerted on the orbit is

Torb = x1 ×
1∑

ρg + x2 ×
2∑

ρg. (68)

The z-component of Torb plays an important role in whether or not
the binary survives mass transfer. This represents the rate at which
the tidal interaction can restore the orbital angular momentum lost
to mass transfer (Figs 19a–c).

D’Souza et al. (2006) give an expression relating the time rate
of change of the separation to systematic sources of orbital angular
momentum, gravitational torque, and the mass transfer rate. This is

ȧ

2a
=

(
J̇

Jorb

)
sys

+ Tz,orb − Ṁ2

M2

(
1 − q −

√
(1 + q)rh

)
. (69)

The first term on the RHS,
(

J̇
Jorb

)
sys

, is due to systematic changes

in orbital angular momentum due to losses through L2. In addition,
there is a loss of orbital angular momentum during the first 2.7 orbits
because of our artificial driving that needs to be accounted for when
using this expression. The second term represents the contribution
due to the gravitational torque on the orbit. The final term includes,
rh, the effective ‘circularization’ radius. This is the radius from
the accretor’s centre of mass, which has the same specific angular
momentum as the material at the L1 Lagrange point, normalized
to the orbital separation. While the first part of the final term,
Ṁ2
M2

(1 − q), accounts for the change in orbital angular momentum
due to the transfer of mass from one star to the other, the second part,
Ṁ2
M2

(−√
(1 + q)rh

)
, accounts for the orbital angular momentum that

is converted to spin angular momentum in the accretor.
Frank et al. (2002) provide an analytical approximation to rh,

rh,analytic = (1 + q)
(
0.500 − 0.227 log10 q

)4
. (70)
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5372 D. C. Marcello et al.

Figure 17. Diagnostic plots from the q = 0.5 polytropic and ideal gas simulations. Upper left: donor mass-loss rate; upper right: mass-loss rate from the both
stars (M = M1 + M2, M0 is the initial mass of the system); lower left: mass outside the boundary of the two stars; lower right: mass unbound from the binary.

Figure 18. Diagnostic plots from the q = 0.5 polytropic and ideal gas simulations. Top left: the orbital angular momentum; top middle: the accretor angular
momentum; top right: the donor angular momentum. All angular momenta are normalized to the initial value of the orbital angular momentum. Bottom left: the
orbital frequency; bottom middle: the spin frequency of the accretor; bottom right: the spin frequency of the donor. All frequencies are normalized to the orbital
frequency at t = 0.

A more accurate expression that includes the torquing of the stream
of accreting gas by the donor is that of Verbunt & Rappaport (1988).
However, for the current purpouse the expression in equation (70)
is sufficiently accurate. The orbital separation, angular momentum
driving rate, gravitational torque on the orbit, the mass transfer rate,
and mass ratio are all known or can be calculated from the data set,
allowing us to compute a value for rh using equation (69). We show

this quantity compared with rh, analytic for the polytropic model, in the
bottom right panel of Fig. 19. In the beginning the value of rh varies
wildly. This is during the initial period of angular momentum driving.
For the majority of the run, rh is slightly less than rh, analytic, indicating
the spin angular momentum actually transferred to the accretor is
slightly less than predicted by the analytical theory. Towards the end,
the computationally derived rh begins to exceed the analytical value
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OCTO-TIGER: a new, HPX-powered, hydro code 5373

Figure 19. Diagnostic plots from the q = 0.5 polytropic and ideal gas simulations. Top left: the gravitational torque on the accretor; top right: the gravitational
torque on the donor; bottom left: the gravitational torque on the orbit; bottom right: the circularization radius for the polytropic simulation calculated using
equation (69) and for the analytical approximation using equation (70).

rh, analytic. This is because angular momentum is now flowing through
the L2 point, making equation (69) no longer valid.

The internal, kinetic, and potential energies of the stars are

EI,1|2 =
1|2∑

ρε, (71)

EK,1|2 =
1|2∑ 1

2
ρu2, (72)

and

�1|2 =
1|2∑ 1

2
ρ�, (73)

respectively. Here, the internal energy density, ρε, is obtained from
the dual energy formalism. We show these energies in Fig. 20. The
donor loses internal and kinetic energy to the accretor. Although the
ideal gas model includes shock heating, since the energy of the shock-
heated material around the accretor is very small compared to the
total internal energy of the star, shock heating makes little apparent
difference in the plots of total internal energy. As the accretor gains
mass, its gravitational well deepens as its potential energy is lowered.
The opposite is true of the accretor.

Grid based codes are subject to centre of mass drift, both physical,
from the flow of matter out of the grid (which, by the end of
the simulations, is 2.0 × 1029 and 1.0 × 1028 g for the ideal gas
and polytropic EoS, respectively), and numerical. The latter effect
is greatly reduced by using a gravity solver that conserves linear
momentum, as OCTO-TIGER does. There are still numerical viscosity
effects that can push matter one way or another. In addition, the
SCF code does not render initial conditions with the centre of mass
perfectly at the coordinate centre. Fig. 21 (top left panel) shows the
magnitude of cylindrical radial location of the system’s centre of

mass,

|Rcom| =
√

x2
com + y2

com (74)

in length units normalized to the finest cell width.
As discussed in Section 2.1, OCTO-TIGER evolves the angular

momentum (equation 7) for the purposes of obtaining the error in the
angular momentum conservation. The evolved angular momenta,
l, can be compared with the angular momenta obtained from the
evolved linear momenta, x × ρu, (equation 2) to obtain the error. We
define the global angular momentum conservation violation error,
lerr, as

lerr =
V∑

(li − xi × ρiui) , (75)

where the i index refers to a given computational cell and the
summation is over the entire computational domain. We show this
value over time in Fig. 21 (top right panel). In Fig. 21, bottom left
panel, we plot the total angular momentum non-conservation in the
computational domain, scaled to the initial total angular momentum.
Here, we see that the polytropic EoS conserves momentum to
approximately 1 per cent over the entire simulation, while for the
ideal gas EoS this is considerably worse at 7 per cent (the initial
drop in angular momentum in the right-hand panel is due to the
artificial driving phase and should be ignored). The reason for the
difference is that the ideal gas EoS simulation expands more due to
shock heating moving gas into the outskirts of the domain where
lower resolution dominates with a worse performance of angular
momentum conservation. Poorly resolved, sharp momentum density
gradients, such as those seen in the outskirts of the simulations (see
Fig. 15, bottom panels, where we plot density slices) will always
disfavour good conservation.

In Fig. 21, bottom right panel, we show the energy conservation.
The value in the y-axis is scaled to the energy after the driving, at
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5374 D. C. Marcello et al.

Figure 20. Diagnostic plots from the q = 0.5 polytropic and ideal gas simulations. Top left: the accretor’s internal energy; top middle: the accretor’s kinetic
energy; top right: the accretor’s potential energy. Bottom left: the donor’s internal energy; bottom middle: the donor’s kinetic energy; bottom right: the donor’s
potential energy. All energies are normalized to the absolute value of the total potential energy at t = 0.

Figure 21. Diagnostic plots from the q = 0.5 polytropic and ideal gas simulations. Top left: the location of the system centre of mass (equation 74) in units of
the finest grid cell; top right: the relative angular momentum error (equation 75); bottom left: the total angular momentum loss from the computational domain
(the initial decrease corresponds to the angular momentum that is artificially subtracted from the system during the driving phase); bottom right: the total energy
conservation error of the system (the values before x = 2.7 orbits are meaningless because of the driving).

2.7 orbits. Hence data points before x = 2.7 are not meaningful.
After that x value, however, we see that the energy conservation
is excellent, going from 10−14 to 10−11 for the ideal gas EoS, or to
10−5 for the polytropic EoS.

Without doubt, the polytropic EoS simulation is superior in
general, because the ideal gas EoS with more heating results is an
inflated gas distribution, a higher rate of mass transfer from donor
to accretor, and any quantities that derive from that, such as angular
momentum transfer or the speed of the merger are also affected.
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OCTO-TIGER: a new, HPX-powered, hydro code 5375

Table 5. Computational infrastructure used in this work. QB2 is Louisiana’s Optical Network Infrastructure’s QueenBee2; BR3 is the University of Indiana
BigRed3, while Gadi is the Australian National Computational Infrastructure peak machine.

Cluster CPU Memory Interconnect # nodes # of cores

QB2 2 × 10 Intel E5-2680v2 Xeon processors (+ 2 GPUs)a 64 GB 56 Gb/sec (FDR) InfiniBand 504 10 800
BR3 2 × 12 Intel Xeon Processort E5-2690 v3 64 GB Cray Aries 930 22 464
Gadi 2 × 24 core Intel Xenon Scalable ‘Cascade Lake’ 190 GB 200 Gb/sec (HDR) InfiniBand 3024 145 152

aThe GPUs are NVIDIA Tesla K20; NVIDIA-SMI 450.51.05, driver version: 450.51.05, CUDA version: 11.0 with 6GB of memory per device.

Table 6. Software dependences of OCTO-TIGER (version 0.8). Note that we used a customized version
of Vc. Note that we used the pre-compiled MPI version on the cluster and therefore have some variation
there. If the gcc compiler was recent enough to compile HPX and OCTO-TIGER, we used the pre-compiled
version on the cluster.

Software QB2 BR3 Gadi

HPX 1.4 1.4 1.4
VC 1.4.1 1.4.1 1.4.1
BOOST 1.69/1.68 1.68 1.72
HWLOC 1.11.1 1.11.12 1.11.12
JEMALLOC 5.1.0 5.1.0 5.1.0
GCC 8.3/7.4 8.3 8.3
HDF5 1.12/1.8 1.8.12 1.8.12
SILO 4.10.2 4.10.2 4.10.2
CMAKE 3.13 3.13.2 3.16.2
CUDA 10.2 – –
MPI MVAPICH2 2.3.2/ OPEN-MPI 4.0 CRAY-MPICH 7.7.10 INTEL-MPI 2019.8.254

These simulations were run on 400 cores over 20 nodes, of
QueenBee2 (see Section 5) and took approximately 200 h of wall-
clock time, or just over 8 d for a total modest cost of approximately
80 000 CPU-hours. They have between 2 and 8 million cells. If the
scaling test in Section 5 are consulted, we would conclude that a
doubling of the number of cores would reduce the wall-clock time
between 40 and 60 per cent, while any further increase of the number
of cores would not be particularly advantageous.

Naturally, this run could be repeated with substantially larger res-
olution (and larger number of cores), likely leading to an expansion
of discovery space. However, increasing resolution with the aim
of determining convergence is not straightforward because it is not
clear what quantities can be reasonably expected to converge. An
increase in resolution automatically lowers the mass transfer rate
in the early interaction and lengthens the pre-merger time beyond
what can be simulated (see for instance Motl et al. (2017) who
compared a 4-million cell WD merger cell simulation to a 47-million
cell one, or Reichardt et al. (2019) who compared the early mass
transfer before a common envelope interaction between a ∼100 000
SPH particle simulation to one with 1.3 million particles). What
quantities, then, should we expect to converge to a given value with
increasing resolution? It is possible that, for example, the increase
in mass transfer rate over one orbital period, measured at a specific
initial separation may be a quantity that is expected to converge. The
determination of how to measure the accuracy of simulation results
of this level of complexity is an urgent, on-going area of research.

Click on the link6 to view a movie of the q = 0.5 ideal gas
simulation.

Click on the link7 to view a movie of the q = 0.5 polytropic EoS
simulation.

6https://www.youtube.com/watch?v = 0JD5E7DUImw
7https://www.youtube.com/watch?v = MfArAQPPHss

5 C O D E PE R F O R M A N C E A N D S C A L I N G

In this section, we present a series of scaling tests to demonstrate
the performance of OCTO-TIGER and we make comparisons with
equivalent tests carried out with FLASH. In order to compare the
two codes, we set the CFL coefficient to be the same in both (ηCFL =
0.4).

We carried out two types of scaling tests. The first one was per-
formed by executing a number of time-steps (Nsteps) in the simulation
of a stationary star. The second test included a binary system of stars
and was designed to stimulate some level of regridding. Tests were
performed on three supercomputers, BigRed3 (BR3), QueenBee2
(QB2), and Gadi, with variable resolutions (1283, 2563, 5123, and
10243) and variable values of θ (0.35 and 0.5), the gravity resolution
parameter. We describe the supercomputer hardware in Table 5. The
code and its dependences’ versions used with the three sets of scaling
runs are reported in Table 6.

In Figs 22 and 23, we present two measures of code speed:
the computational time per time-step and the wall-clock time per
time-step. We show this including and excluding the initialization
time, regridding time, and the time to write out the output. While
the computational time is a feature of the code, the time to write
out the output is a feature of the machine and file system used
and can therefore vary among otherwise similar computers. These
quantities are a measure of the strong scaling properties of OCTO-
TIGER. We also show the number of time-steps (Nsteps) times the
number of cells (Ncells) processed per second, which measures the
amount of work that the cores have available to do. If we had
perfect scaling, these curves should be horizontal, indicating the
cores have sufficient work, but they tend instead to curve downwards
as the addition of more cores results in cores not having sufficient
work to do. The reason why the curves tilt downwards is also the
introduction of additional overheads, such as message sending, due
to the addition of nodes. Note that above a certain high number of
cores, each core has computational work of only several subgrids,
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5376 D. C. Marcello et al.

Figure 22. Scaling test carried out on the pulsating polytrope problem of a small size. QB2 refers to QueenBee2, BR3 refers to the BigRed3. The simulations
contain 1283 ≈ 2M cells or 163 = 4096 subgrids. The short horizontal segments mark the 0.5 efficiency.

in which case the communication between cores dominates the
performance, and the scaling of the computational time becomes flat
as well.

The values used for the figures are reported in Tables 7–9,
organized by computer. In brackets, next to the values used for the
plots, we calculate the ‘speedup’ (Sn = (tN/t ′

N )/(N ′
core/Ncore), where

tN and t ′
N are the time-step lengths for runs that use Ncore and N ′

core

cores, respectively). These efficiencies are calculated with respect to
the run that uses an entire node in each machine (48 cores on Gadi,
20 cores on QB2 and 24 cores on BR3), when available or with the
run with the least number of cores (Ncores), when not. On the RHS

panels of Figs 22 and 23, we mark the value of 0.5 efficiency by short
horizontal segments over plotted on each curve.

In the tables, we have reported on the total time also known as
wall-clock time, which includes the initialization, regridding, and the
writing to disc part of the computation. If we had reported only the
computational time, the efficiencies would increase.

We start by comparing the code performance for different values
of the gravity solver parameter θ . This comparison was made with
OCTO-TIGER with 2 million (solid lines) and 17 million cells (dashed
lines) using BR3, QB2, QB2 + GPUs, and Gadi (red, blue, black,
and magenta lines, respectively, Fig. 22). As expected, the smaller
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OCTO-TIGER: a new, HPX-powered, hydro code 5377

Figure 23. Scaling test carried out on the pulsating polytrope problem of big sizes. QB2 refers to QueenBee2, BR3 refers to the BigRed3. The simulations
contain 2563 (17M), 5123 (134M), and 10243 (1B) cells or 4096, 32 768, 262 144 subgrids, respectively. One subgrids per core of the 17M cells simulations
(top axis on left-hand panels) is 8 subgrids per core of the 134M cells, and 64 subgrids per core of the 1B cells simulations. The short horizontal segments mark
the 0.5 efficiency.

the value of θ (the more precise the gravity solver solution) the
longer the simulations take. At 2 million cells, the QB2 tests show
an increase in the computational time by increasing the number of
cores between 1280 and 2560, while this is less pronounced for the
other two computers. This is due to a node-communication problem.
The θ = 0.35 simulations are doing more communication between

subgrids and hence nodes. The use of CPU + GPU improves the
wall-clock time, but also displays the upturn. This behaviour is less
pronounced for tests with more than 17 million cells (Fig. 23).

Next we compare the total time taken for the test for any code
on any machine. For the 2 and 17-million cell simulations, the Gadi
simulations are the fastest, although we note that for a range of core
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5378 D. C. Marcello et al.

Table 7. Wall-clock time per time-step in seconds for different scaling tests carried out on Gadi. In parenthesis, we report the speedup of a
given calculation with respect to the calculation that uses one node (48 cores), interpreted as the fractional reduction of the time-step compared
to the fractional increase in core count.

Code OCTO-TIGER OCTO-TIGER FLASH OCTO-TIGER OCTO-TIGER OCTO-TIGER OCTO-TIGER OCTO-TIGERa

Ncells 2M 2M 17M 17M 17M 134M 1000M 40M
θ 0.5 0.35 – 0.5 0.35 0.35 0.35 0.34

Ncores

4 27.7 35.0 – – – – – –
8 15.3 19.7 – – – – – –
16 9.06 10.5 – 72.1 94.7 – – –
24 6.45 8.26 – 57.7 77.1 – – –
48 5.83 (–) 6.58 (–) – 58.7 (–) 83.5 (–) – – –
96 3.32 (88

per cent)
3.74 (88
per cent)

– 27.6 (125
per cent)

33.3 (125
per cent)

– – –

192 1.87 (78
per cent)

2.10 (78
per cent)

10.7 (–) 13.7 (126
per cent)

16.6 (125
per cent)

165 (–) – –

384 1.47 (50
per cent)

1.36 (60
per cent)

5.64 (95
per cent)

7.48 (117
per cent)

8.90 (117
per cent)

81.8 (101
per cent)

– 30.1 (–)

768 1.08 (34
per cent)

1.09 (38
per cent)

3.13 (85
per cent)

4.47 (99
per cent)

5.27 (99
per cent)

45.3 (91
per cent)

– 15.3 (98
per cent)

1024 – – 2.57 (78
per cent)

– – – – –

1536 0.951 (19
per cent)

0.988 (21
per cent)

– 2.60 (86
per cent)

3.03 (86
per cent)

23.0 (90
per cent)

– 8.37 (90
per cent)

3072 0.955 (10
per cent)

1.03 (10
per cent)

– 1.71 (72
per cent)

1.80 (72
per cent)

13.6 (75
per cent)

– 4.77 (79
per cent)

6144 – – – – 1.20 (55
per cent)

8.36 (62
per cent)

77.7 (–) 2.78 (68
per cent)

12 288 – – – – 0.915 (36
per cent)

4.47 (58
per cent)

38.0 (102
per cent)

1.88 (50
per cent)

20 736 – – – – 0.829 (23
per cent)

3.20 (48
per cent)

25.3 (91
per cent)

1.40 (40
per cent)

41 472 – – – – 0.745 (13
per cent)

2.24 (34
per cent)

17.1 (67
per cent)

1.19 (23
per cent)

82 944 – – – – – 1.97 (19
per cent)

10.6 (54
per cent)

–

aTest using a binary simulation with q = 0.5.

number between ∼30 and ∼300 it is the QB2 with GPU that is the
fastest. This is particularly evident at 17 million cells, looking at the
work per core per time plots (Fig. 23, RHS panels). Whether runs
with GPUs are faster depends on whether the run is dominated by
computation or by communication. GPU are computationally faster,
but Gadi has a 4-time faster network communication than any other
network used in this paper. Further information on OCTO-TIGER runs
with GPUs can be found in Daiß et al. (2019b), and will be the subject
of future papers.

We now come to the actual scaling properties. For the 2-million cell
simulations, the efficiency of increasing the number of cores drops
once we move past 1536 cores: on Gadi from 768 to 1546 to 3072
cores the efficiency drops from 34, to 19 to 10 per cent. This is similar
on QB2 and BR3 (note that on QB2 we are comparing slightly differ-
ent number of cores: 640, 1280, and 2560). At 17 million cells, the
same three steps show efficiencies of 99, 86, and 72 per cent on Gadi,
while for the other computers, they are markedly smaller, with, for in-
stance, 47, 37, 26 per cent on BR3, and slightly better but similar val-
ues for QB2, making the runs on Gadi the fastest and most scalable.

Using GPUs with the 2- and 17-million cell simulations reduces
the time per step between a factor of 1.5 and 2; the scalability of
the hybrid CPU + GPU runs is slightly inferior to those of the pure
CPU runs for the 2-million cell simulations, for which processors
have less work to do, but almost identical to the non-GPU runs for
the 17-million cell simulations.

Next, we look at scalability versus problem size by comparing
runs with 2, 17, 134 million and 1 billion cells on Gadi. Looking at
the efficiencies when increasing the number of cores between 1536
and 3072, we find 10, 72, and 75 per cent for 2, 17, and 134 million
cells, respectively, which would imply that increasing the size of the
problem from 17 to 134 million has not afforded us a much improved
scaling. On the other hand, going from 6144 to 12 736 to 20 735 to
41 472 cores and finally to 82 944 cores, the efficiencies improve
markedly upon doubling the number of cores for the 1 billion cell
run compared to the 17-million cell run. In fact, it is remarkable
that our 1 billion cell run is still scaling very well once we move to
∼80 000 cores, giving hope that we can carry out very high resolution
simulations with reasonable wall-clock times (though the actual cost
of the simulation in terms of CPU-hours would remain very high).

The scalability properties of FLASH were tested on QB2 at 2-
and 17-million cell resolutions. They are very comparable to those
of OCTO-TIGER. The computational time per step is intermediate
between the θ = 0.35 and 0.5, but tends to be longer than even the
more accurate θ = 0.35 OCTO-TIGER simulations when using a higher
number of cores.

An additional scaling test was carried out using the first 30 time-
steps of a binary interaction simulation similar to that of Section 4.
The tests were to determine code scalability in view of AMR regrid-
ding. We performed a series of simulations on QB2, with increasing
resolution by virtue of adding additional levels of refinement, see
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Table 8. Wall-clock time per time-step in seconds for different scaling tests carried out on one stationary polytrope on QueenBee2. In parenthesis, we report
the speedup of a given calculation with respect to the calculation that uses one node (20 cores), interpreted as the fractional reduction of the time-step compared
to the fractional increase in core count.

Code FLASH OCTO OCTO OCTO OCTO FLASH OCTO OCTO OCTO OCTO

Ncells 2M 2M 2M 2M 2M 17M 17M 17M 17M 17M
θ – 0.5 0.35 0.5 0.35 – 0.5 0.35 0.5 0.35
GPUs – – – � � – – – � �

Ncores

2 – 88.7 144 – – – – – – –
4 55.1 47.6 78.1 33.7 37.7 – 388 637 272 308
8 30.5 27.4 43.6 20.6 24.9 – 231 356 175 207
16 16.7 15.1 23.4 12.2 16.0 – 131 193 107 132
20 13.5 (–) 12.7(–) 19.1 (–) 10.7 (–) 14.0 (–) 128 (–) 100 (–) 152 (–) 83.9 (–) 106 (–)
40 7.54 (90

per cent)
6.80 (93
per cent)

10.3 (93
per cent)

5.61 (95
per cent)

7.89 (89
per cent)

67.9 (94
per cent)

50.8 (98
per cent)

79.2 (96
per cent)

42.6 (99
per cent)

54.7 (97
per cent)

80 4.19 (81
per cent)

3.70 (86
per cent)

5.67 (84
per cent)

3.05 (87
per cent)

4.21 (83
per cent)

36.6 (87
per cent)

25.6 (98
per cent)

39.2 (97
per cent)

21.0 (100
per cent)

27.9 (95
per cent)

160 2.28 (74
per cent)

2.26 (70
per cent)

3.37 (71
per cent)

1.85 (72
per cent)

2.48 (71
per cent)

19.0 (84
per cent)

13.8 (90
per cent)

21.2 (90
per cent)

11.6 (91
per cent)

15.2 (87
per cent)

320 1.42 (59
per cent)

1.62 (49
per cent)

2.30 (52
per cent)

1.41 (47
per cent)

1.63 (54
per cent)

10.1 (79
per cent)

8.39 (75
per cent)

12.6 (75
per cent)

7.11 (74
per cent)

8.98 (74
per cent)

640 1.15 (37
per cent)

1.23 (32
per cent)

1.66 (36
per cent)

1.14 (29
per cent)

1.20 (37
per cent)

5.51 (73
per cent)

5.28 (59
per cent)

7.87 (60
per cent)

4.48 (59
per cent)

5.49 (60
per cent)

1280 1.19 (18
per cent)

1.01 (20
per cent)

1.26 (24
per cent)

0.975 (17
per cent)

1.04 (21
per cent)

3.66 (55
per cent)

3.40 (46
per cent)

4.99 (48
per cent)

2.93 (45
per cent)

3.48 (48
per cent)

2560 2.46 (4
per cent)

1.05 (9
per cent)

2.40 (6
per cent)

1.00 (8
per cent)

2.03 (5
per cent)

3.54 (28
per cent)

2.58 (30
per cent)

3.57 (33
per cent)

2.36 (28
per cent)

2.63 (32
per cent)

Table 9. Wall-clock time per time-step in seconds for different scaling tests carried out on one stationary polytrope on
BigRed3. In parenthesis, we report the speedup of a given calculation with respect to the calculation that uses one node
(24 cores), interpreted as the fractional reduction of the time-step compared to the fractional increase in core count.

Code OCTO-TIGER OCTO-TIGER OCTO-TIGER OCTO-TIGER

Ncells 2M 2M 17M 17M
θ 0.5 0.35 0.5 0.35

Ncores

1 122 165 987 1390
2 62.7 84.8 521 694
4 34.3 46.5 2938 382
8 19.5 25.2 177 219
16 11.7 15.0 107 132
24 8.57 (–) 11.0 (–) 86.11 (–) 101 (–)
48 6.01 (71 per cent) 7.48 (74 per cent) 49.4 (87 per cent) 57.5 (88 per cent)
96 3.81 (56 per cent) 4.72 (58 per cent) 26.6 (81 per cent) 30.7 (82 per cent)
192 2.36 (45 per cent) 2.81 (49 per cent) 13.8 (79 per cent) 17.0 (74 per cent)
384 1.69 (32 per cent) 2.03 (34 per cent) 9.25 (58 per cent) 10.7 (59 per cent)
768 1.15 (23 per cent) 1.38 (25 per cent) 5.77 (47 per cent) 6.61 (48 per cent)
1536 0.834 (16 per cent) 0.980 (18 per cent) 3.60 (37 per cent) 4.21 (38 per cent)
3072 0.785 (9 per cent) 0.872 (10 per cent) 2.59 (26 per cent) 3.07 (26 per cent)

Table 10 and Fig. 24. The code performance is aligned with that we
have observed for the static polytrope on the same computer cluster
(Table 8), although a side by side comparison is not possible in virtue
because the number of cells was not exactly the same.

We finally carried out a last scaling test, where 12 regridding events
took place in 100 time-stpes, and where we started the simulation
from an intermediate stage of the q = 0.5 simulation in order to trigger
substantial regridding (Table 7, last column). This scaling runs were
carried out on Gadi. Although the number of AMR boundaries varied
by ≈30 per cent in these runs, the scaling was similar to a uniform
grid with no regridding taking place (see red dotted triangle line
in Fig. 23 and the last column in Table 7). We conclude that our
regridding scheme scales well to high number of cores.

6 SU M M A RY A N D C O N C L U S I O N S

We have presented a thorough suite of benchmark tests and a
comprehensive and detailed description of the AMR hydrodynamics
code OCTO-TIGER. Although OCTO-TIGER has been used in tandem
with other codes in previous publications in astrophysics (Kadam
et al. 2016; Staff et al. 2018) as well as in computer science (e.g.
Pfander et al. 2018; Daiß et al. 2019; Heller et al. 2019), there has
never been an actual ‘method paper’.

OCTO-TIGER joins a small suite of codes specifically designed to
study the merger of WD stars while also modelling the earlier, pre-
merger phase. OCTO-TIGER is designed to be a scalable, accurate
code that is able to exploit CPU and GPU computer architectures.
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Table 10. Wall-clock time per time-step in seconds for different scaling tests carried out on QueenBee2 on a binary interaction simulation similar to the one of
Section 4. In parenthesis, we report the speedup of a given calculation with respect to the calculation that uses one node (20 cores), except for the 45 million cell
run, which is given with respect to the smallest number of cores tested (80 cores).

Code OCTO-TIGER OCTO-TIGER OCTO-TIGER OCTO-TIGER OCTO-TIGER

Ncells 0.51M 1.5M 3.0M 10.5M 45M
θ 0.34 0.34 0.34 0.34 0.34

Ncores

20 6.73 18.3 34.18 103 –
40 3.98 (85 per cent) 9.89 (92 per cent) 18.1 (95 per cent) 53.1 (97 per cent) –
80 2.50 (67 per cent) 5.53 (83 per cent) 9.76 (88 per cent) 27.4 (94 per cent) 128
160 1.86 (45 per cent) 3.47 (66 per cent) 5.67 (76 per cent) 15.0 (86 per cent) 65.1 (98 per cent)
320 1.53 (27 per cent) 2.50 (46 per cent) 3.93 (54 per cent) 9.04 (71 per cent) 37.9 (84 per cent)
640 1.31 (16 per cent) 1.91 (30 per cent) 2.77 (30 per cent) 5.83 (55 per cent) 21.4 (75 per cent)
1280 1.19 (9 per cent) 1.56 (18 per cent) 2.11 (25 per cent) 4.02 (40 per cent) 12.6 (63 per cent)

Figure 24. Scaling results for the first 30 time-steps of a binary simulation on LONI’s QB2. The left-hand panel shows the total wall-clock time per time-step
as a function of core count, while the right-hand panel shows the total throughput per core in terms of NcellsNtime-steps/(twallclockNcores).

It is currently optimized to model stellar mergers for similar-sized
stars that can be modelled using a star setup via a barotropic EoS,
although for the evolution one can choose among a number of
analytical EoS options. It does not currently include nuclear reactions
such as for example the code CASTRO (Katz et al. 2016). OCTO-
TIGER’s gravity accuracy outperforms FLASH, with overall smaller
residuals in the constant density sphere test (Section 3.4), although
the comparison may not be with exactly the same parameters. The
static and translating polytrope tests also show OCTO-TIGER’s superior
conservation of the peak density and overall mass of the structure,
as well as the centre of mass position and overall velocity (for the
translating polytropes; Sections 3.5 and 3.6).

In the rotating polytrope test, simulations in the rotating frame
distinctly outperform those calculated in the inertial frame, although
even in the inertial frame the polytrope retains its mass, position, and
radius to excellent precision. OCTO-TIGER demonstrates a superior
conservation of angular momentum and energy in this test, although
the hydrodynamics is not well exercised in single grid tests where
there is little gas motion (Section 3.7).

We have carried out scaling tests using a static polytrope, where the
entire grid is fully refined with resolutions from 2 million to 1 billion
cells. We have used three different computer clusters, two university-
based mid-tier computers, QueenBee2 (Louisiana State University)

and BigRed3 (Indiana University) and one peak facility, Gadi, at
the Australian Government’s National Computational Infrastructure
Centre. Strong scaling properties of the code are excellent up to
∼ 82 000, the largest number of cores tested, but only for the largest
problems of 1 billion cells. With smaller problems of 134 million
cells, performance improvement is obtained up to a maximum of
∼20 000 cores (after which the speedup is modest). For the 17 million
cell test, similar to the number used in the binary simulation in
Section 4, the optimum number of cores is ∼6000.

We have also carried out somewhat limited scaling tests of a binary
problem using QueenBee2 and Gadi to measure the performance
when regridding takes place and found that the scaling properties of
the code are similar to those assessed using the stationary polytrope
with no AMR regridding.

While the emphasis in this paper is not OCTO-TIGER’s ability to
use mixed CPU–GPU architectures, we have carried out a small test
that showed that the use of 2 GPU units per node improves the step
time by a factor of 1.5–2. Given the increased emphasis on the use of
GPUs for this type of computation (see references in Section 2.10),
we will further address this capability in future work.

Finally, we have used OCTO-TIGER to carry out intermediate
resolution WD merger simulations with an ideal gas and a polytropic
EoS and compared the results to a similar simulations carried out
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by Motl et al. (2017) using two different codes, the grid code
FLOWER, and the SPH code SNSPH (Fryer, Rockefeller & Warren
2006). The total run time of this 2–8 million cell simulation was
approximately 8 d and it used 80 000 CPU-hours on 400 cores of the
computer cluster QueenBee2. By comparison, the high-resolution
cylindrical simulation in Motl et al. (2017), with an approximately
similar resolution, ran for over a year. Because of the relatively small
wall-clock times achieved by OCTO-TIGER thanks to its excellent
scalability, higher resolution runs are possible.

Our improvements to OCTO-TIGER include (i) applying high
resolution only to the binary through AMR (ii) exploiting the
more favourable Courant condition from Cartesian coordinates while
maintaining acceptable conservation, and (iii) leveraging a parallel
framework that enables simulations on a very large number of
computing elements. We have effectively reduced the wall-clock time
for a merger simulation to complete from over a year to essentially
one day. These developments enable a wide variety of numerical
experiments that would not be possible or conclusive if run only at
lower resolution.

An interesting question is how to best exploit resolution improve-
ments. We know from Motl et al. (2017) that simply increasing the
resolution will lower the initial mass transfer rate and greatly increase
the early, pre-merger phase of the simulation. This would extend
enormously the pre-merger time, making the simulation impossibly
long. Under such circumstances, we would be forced to increase the
artificial angular momentum extraction (the driving) to speed up the
simulation to a time when the mass transfer rate is high enough that
the merger takes place. As such, the mass transfer rate and the pre-
merger time-scale cannot be measured with this type of simulation.
On the other hand, there are other parameters of interest that would
benefit from higher resolution. An example is the actual structure of
the flow during the low-mass transfer rate time, or the details of the
flow at or after the time of merger, including the determination of
dredged-up elements.

In future papers, we will implement a number of additions. First,
we will experiment with increasing the photospheric resolution,
while at the same time implementing a radiation transport algorithm.
With this the immediate aim is to model the light signature,
something that would greatly benefit from sufficient resolution at
the photosphere as thoroughly explained by Galaviz et al. (2017).
After that, the following improvement will be to use model stars
imported from 1D stellar structure simulations, instead of being
constructed using barotropic solutions, and that can use a tabulated
EoS. A follow-up study is already underway to simulate a q = 0.1
binary that mimics the V1309 Sco system – this would be only the
second simulation of this system, after the 100 000 SPH particle
hydrodynamic simulation of Nandez et al. (2014), and a q = 0.7 WD
binary thought to be a typical progenitor system for the R Coronae
Borealis stars (e.g. Clayton et al. 2011).
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DATA AVAI LABI LI TY

The source code of OCTO-TIGER (Marcello et al. 2021) is available on
GitHub8 released under the Boost Software License Version 1. The
build scripts to build OCTO-TIGER and its dependences are available on
GitHub9 as well. The input files to run the OCTO-TIGER simulations
are available on Zenodo (Marcello et al. 2020). Table 6 lists the
software version used on the different clusters. Note that we used
the pre-compiled MPI version on the cluster and therefore have some
variation there. If the gcc compiler was recent enough to compile HPX

and OCTO-TIGER, we used the pre-compiled version on the cluster.
For movies of the simulations and download of selected simulation

data, see our YouTube channel.10
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