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ABSTRACT
We present a revised Spectral Adaptive Light Curve Template (SALT2) surface (SALT2-2021) for fitting the light curves of
Type Ia supernovae (SNe Ia), which incorporates new measurements of zero-point calibration offsets and Milky Way extinction.
The most notable change in the new surface occurs in the UV region. This new surface alters the distance measurements of
SNe Ia, which can be used to investigate the nature of dark energy by probing the expansion history of the Universe. Using
the revised SALT2 surface on public data from the first 3 yr of the Dark Energy Survey Supernova Program (combined with
an external low-z SNe Ia sample) and combining with cosmic microwave background constraints, we find a change in the dark
energy equation-of-state parameter, �w = 0.015 ± 0.004. This result highlights the continued importance of controlling and
reducing systematic uncertainties, particularly with the next generation of supernova analyses aiming to improve constraints on
dark energy properties.
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1 IN T RO D U C T I O N

Type Ia supernovae (SNe Ia) are important cosmological probes
that are used as distance estimators to help constrain the nature
of dark energy (see e.g. Howell 2011 for a review). SNe Ia are
standardisable candles, displaying an empirical relationship between
their peak luminosity, and their light-curve width (or ‘stretch’) and
colour (Pskovskii 1977; Phillips 1993; Riess, Press & Kirshner 1996;
Tripp 1998). This two-parameter luminosity correction is the most
common technique for standardising a set of SNe Ia. By fitting a light-
curve model to time-series photometry of SNe Ia we recover the SN
parameters (amplitude, stretch, and colour), and infer their distances.
The accuracy at which light curves can be modelled directly impacts
these distances, and moreover, cosmological constraints.

Spectral Adaptive Light Curve Template (SALT2; Guy et al. 2007)
is an empirical spectro-photometric model that is used in most
modern SN Ia analyses, including the SuperNova Legacy Survey 3 yr
analysis (SNLS; Conley et al. 2011), the Joint Light Curve Analysis
(JLA; Betoule et al. 2014), the Pantheon analysis (Scolnic et al.
2018), the Pan-STARRS1 analysis (PS1; Jones et al. 2018), and the
Dark Energy Survey 3 yr analysis (DES–SN3YR; Abbott et al. 2019).
The SALT2 model consists of two phase-dependent components and
a phase-independent colour law, an instance of which called the
SALT2 surface. The SALT2 surface is determined through a training
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process. The most recent surface is SALT2.4 (hereafter referred
to as SALT2-2014), which was produced for JLA, and is publicly
available.1 Since 2014 there has been a consensus in the literature
for using a revised Galactic dust extinction map, and there have also
been improvements in photometric calibrations of some SNe Ia. Dust
extinction and calibration are both key inputs to the SALT2 model
that will affect the resulting SALT2 surface.

The amount of extinction caused by dust in our Milky Way has
been revised by Schlafly et al. (2010) and Schlafly & Finkbeiner
(2011). They find an overprediction of reddening in the Schlegel,
Finkbeiner & Davis (1998) dust maps, and therefore recommend
a 14 per cent re-calibration of Milky Way extinction as a correction.
Changes in the amount of reddening caused by Milky Way dust affect
the colour of SNe Ia, which is an important parameter when fitting
SN Ia distances. This re-calibration was not applied to the SNe Ia
used to train SALT2-2014.

Using the PanSTARRS1 calibration covering 3/4 of the sky, the
flux zero-points of some of the SNe Ia used in the training of
SALT2-2014 have been updated by an average of 10 mmag (Scolnic
et al. 2015). The systematic uncertainty in cosmological parameters
arising from our imperfect knowledge of photometric systems and
their zero-points is significant. In the JLA, Pantheon, and DES–
SN3YR samples, this uncertainty contributes between a quarter and
two-thirds of the total systematic uncertainty (Betoule et al. 2014;
Scolnic et al. 2018; Brout et al. 2019b; Jones et al. 2019).

1http://supernovae.in2p3.fr/salt/doku.php
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These improvements in Galactic extinction and photometric cali-
bration are particularly important because statistical and systematic
uncertainties are comparable in SN Ia cosmology analyses (Suzuki
et al. 2012; Scolnic et al. 2014), and the current SALT2 surface has
been identified as a limiting factor. For example, the SALT2 model
uncertainty contributes σ sys

w = 0.009 in Brout et al. (2019b), 0.008
in Jones et al. (2018), and 0.023 in Jones et al. (2019). Current
SN Ia cosmology analyses and future surveys therefore require an
improved SALT2 surface to make the most of their high-quality data
and improve measurements of dark energy properties. Future surveys
that focus on producing a large SN sample from a single instrument
can also benefit from an updated SALT2 surface, as they will see the
effects of the new surface.

Here, we update the SALT2 surface using recent improvements in
calibration and Galactic extinction to produce a new surface, SALT2-
2021.2 When using SALT2-2021, the revised Galactic extinction map
and Supercal calibration adjustments should be applied to the data
used for light curve fitting. We include an overview of the SALT2
model, including the training and fitting processes (Section 2). We
then describe the specific changes made to produce the SALT2-
2021 surface (Section 3). We evaluate the impact of SALT2-2021 on
cosmological distance measurements using the DES–SN3YR sample
and simulations (Section 4), and discuss these results (Section 5).

2 SA LT2

2.1 Model description

SALT2 is an empirical SNe Ia model (Guy et al. 2005, 2007). The
model describes the spectro-photometric time evolution of a SN Ia,
and was built using both spectroscopic and photometric data from a
large set of nearby (z � 0.1) and distant (0.2 � z � 0.8) SNe Ia.

In SALT2, the spectral flux density for each SN Ia at a particular
phase (p) and wavelength (λ) is given as

fλ = x0 × [M0(p, λ) + x1M1(p, λ) + . . .]

× exp[cCL(λ)], (1)

where amplitude (x0), stretch (x1), and colour (c) are parameters
determined from a light curve fit for each SN Ia; M0 and M1 are
phase-dependent components of the SALT2 model; and CL is the
phase-independent SALT2 colour law. Specifically, M0 describes
the mean spectral energy distribution (SED) of a SN Ia, while M1

describes the first-order deviation around this SED.
The SALT2 model does not fully describe all the observed

SN Ia variability – the remaining variability (∼0.1 magnitudes) is
often labelled as ‘intrinsic scatter’. Scatter in the SN population
itself can have coherent and chromatic contributions. To simulate
distance biases, commonly used intrinsic scatter models are from
Kessler et al. (2013) – these models are based on Guy et al.
(2010; ∼75 per cent coherent contributions, ∼25 per cent chromatic
contributions), and Chotard et al. (2011; ∼25 per cent coherent con-
tributions, ∼75 per cent chromatic contributions). Currently, there is
no strong evidence favouring one model over the other.

To understand the origins of the scatter and to further improve SNe
Ia as standard candles, a number of studies have looked for and found
evidence for relationships between the properties of the SN and its
host galaxy. Relationships have been found between the luminosity
of a SN Ia and its host galaxy metallicity, morphological type, and

2Available from 10.5281/zenodo.4646495.

mass (Hamuy et al. 2000; Wang et al. 2006; Kelly et al. 2010; Sullivan
et al. 2010; Smith et al. 2020). Scolnic et al. (2020) use a different
approach and consider the properties of SN Ia ‘siblings’ (i.e. SNe Ia
that share the same parent galaxies) and find at least 50 per cent of
the intrinsic scatter of SNe Ia distance modulus residuals does not
originate from common host properties, albeit using a sample of only
eight pairs of SN Ia siblings. A similar study of two SNe Ia in the same
galaxy (NGC 3972) finds significant luminosity differences between
SNe Ia with similar light-curve shapes and colours, reaffirming that
the popular two-component parametrization (as in SALT2) does not
fully describe SNe Ia (Foley et al. 2020) without intrinsic scatter.

An additional complication from host galaxies is their dust
extinction (reddening) contribution. As it is difficult to disentangle
the effects of dust and the intrinsic relation between SN colour and
brightness (Nobili et al. 2003), contributions from both are implicitly
included in the colour (c) parameter and colour law (CL) of SALT2.

Alternatives to SALT2 have different approaches to light curve
modelling. We briefly outline some differences between SALT2 and
other common models. More in-depth comparisons between light
curve models can be found in the literature (e.g. Kessler et al. 2009b;
Bengochea 2013). We focus on SALT2 as it is publicly available and
is widely used in SN analyses (e.g. JLA, Pantheon, DES).

MLCS2K2 (Jha, Riess & Kirshner 2007) and SNooPy (Burns et al.
2011) attempt to explicitly separate reddening by dust from phase-
dependent intrinsic colour, whereas SALT2 combines both effects
into one colour parameter. SiFTO (Conley et al. 2008) performs
similar to SALT2, but differs with respect to SALT2 in the way colour
and stretch are treated (see Guy et al. 2010 for details). SUGAR
(Léget et al. 2019) has more parameters than SALT2, and derives a
colour law that is consistent with Milky Way extinction (whereas the
SALT2 colour law differs significantly from the reddening from dust
in the Milky Way).

2.2 Training

The progenitor and explosion mechanisms leading to SNe Ia are
areas of active research (Maoz, Mannucci & Nelemans 2014), and
theoretical models producing SN Ia spectra are not yet good enough
to be used for correcting SN Ia brightness. For these reasons,
models are empirically determined from a training sample of real
SN observations. The original SALT model (Guy et al. 2005) was
developed into the current SALT2 model (Guy et al. 2007). Two
widely used SALT2 surfaces have been released: SALT2.2, an SNLS
release (Guy et al. 2010); and SALT2.4, released as part of the JLA
of SNLS and SDSS-II SNe Ia (Betoule et al. 2014, here referred to
as SALT2-2014).

SALT2 is trained on a sample of photometric and spectroscopic
observations of both nearby and distant SNe Ia. Including spectral
data improves modelling of spectral features that are hard to access
using photometry alone, while including higher redshift SNe reduces
the dependence on the nearby SNe sample and provides better
constraints on the rest-frame ultraviolet regions of the spectrum
(Bengochea 2013). This training sample, along with information
on the instruments and magnitude systems, is passed to the snpca3

training program, as shown in Fig. 1. The output of snpca is a
SALT2 surface, i.e. an iteration of the SALT2 model. For a detailed
description of the training process, see Mosher et al. (2014).

3We use v2.3.22, which was kindly provided to us by Marc Betoule.
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Training
snpca

System Information
e.g. instruments, filters, 
magnitude systems...

System Information
e.g. instruments, filters, 
magnitude systems...

SALT2 Surface
average SED + variability,
colour law, uncertainty...

SALT2 Surface
average SED + variability,
colour law, uncertainty...

Training Sample
photometry + spectroscopy

SN Observation
photometry

Light-Curve Parameters
amplitude, stretch, colour...

Fitting
e.g. snfit

Figure 1. An illustration of the inputs and outputs of the SALT2 training and fitting processes. The training of the global SALT2 model produces a SALT2
‘surface’, which is used as an input for light curve fitting. The recovered light-curve parameters are therefore dependent on the SALT2 surface used. The surface
needs to be recomputed when the inputs, e.g. magnitude systems, are revised.

2.3 Fitting light curves, distances, and cosmology

A SALT2 surface is passed to a light curve fitting program to fit light
curves to photometric time-series observations of SNe. Available
fitting programs include snfit,4 SNANA,5 and SNCosmo.6 This fit
produces the most likely light curve parameters x0, x1, and c from
equation (1), together with their covariances. From here, distance
moduli (μ) are obtained using the Tripp equation (Tripp 1998):

μ = mB − M + αx1 − βc, (2)

where mB = −2.5log (x0), M represents the absolute magnitude of a
SN Ia with c = x1 = 0, and α and β are nuisance parameters rep-
resenting the slopes of the stretch-luminosity and colour–luminosity
relations. The nuisance parameters (α, β, M) can be determined
together with cosmological parameters (e.g. Guy et al. 2005; Betoule
et al. 2014), or in a separate step before the cosmological parameters
are fitted (e.g. SALT2mu, Marriner et al. 2011; BBC, Kessler &
Scolnic 2017).

Some modifications to the Tripp equation (in the form of an addi-
tional ‘mass-step’ term) have been used to account for the observed
correlation between SN brightness and host-galaxy properties, e.g.
Kelly et al. (2010), Sullivan et al. (2010). Following Brout et al.
(2019b), we include a mass-step correction (δμhost). We also include
a 5D bias-correction term from BBC (δμbias), which uses detailed
simulations to predict biases from selection effects. The modified
version of the Tripp equation used in this work is therefore

μ = mB − M + αx1 − βc − δμhost − δμbias. (3)

3 IM P ROV E M E N T S IN TH E N E W SU R FAC E
( S A LT 2 - 2 0 2 1 )

We have produced a new surface denoted SALT2-2021 that imple-
ments two important updates to the model inputs. The underlying
SALT2 model and code used to produce this surface are identical to

4http://supernovae.in2p3.fr/salt/doku.php
5http://snana.uchicago.edu/
6https://sncosmo.readthedocs.io/

that used for SALT2-2014, with the exception that we sample the
resulting surface more finely in wavelength.

3.1 Training sample

To compare our results with the previous SALT2-2014 surface
(Betoule et al. 2014), we use the same training sample of SNe.
This sample contains photometry and spectroscopy from 420 SNe Ia
from various surveys, listed in Table 1. All 420 SNe Ia in the training
sample have photometric data, but only 83 of those have spectral data.
The phase and wavelength coverage of this spectral data is shown in
Fig. 2. For more details on this training sample, see Betoule et al.
(2014).

Altering the set of SNe used in the training sample is beyond
the scope of this work, which focuses primarily on the effects of
modifying the Milky Way dust extinction and photometric zero-
points on the SALT2 surface. In future work, we will explore how
the SALT2 surface changes when we add more recent SN Ia data.

3.2 Re-Scaled Milky Way extinction

A reddening law predicts the amount of absorption versus wave-
length, relative to the absorption at a reference wavelength (typically
the effective wavelength of the Bessell B band). A dust map predicts
the reddening for the reference wavelength at any sky location.
Together, a dust map and reddening law predict the amount of
absorption at any wavelength, and any sky location.

When fitting a light curve, SALT2 uses the Cardelli, Clayton &
Mathis (1989) reddening law to correct SNe Ia photometry for Milky
Way extinction, with the colour excess E(B − V) calculated from the
Schlegel et al. (1998) dust maps.7 A 14 per cent re-calibration of the
Schlegel et al. (1998) dust map is prescribed in Schlafly et al. (2010)
and Schlafly & Finkbeiner (2011). Until now, this re-calibration had
not been applied to the SNe used to train SALT2. We implement this

7The SALT2 colour law derived during the training process includes con-
tributions from the intrinsic colour of an SN, as well as any host galaxy
extinction.

MNRAS 504, 4111–4122 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/504/3/4111/6225808 by guest on 18 April 2024

http://supernovae.in2p3.fr/salt/doku.php
http://snana.uchicago.edu/
https://sncosmo.readthedocs.io/


4114 G. Taylor et al.

Table 1. SNe Ia used in SALT2 training sample. Two SNe were observed by SDSS, CSP, and CfA3, and
four SNe were observed by both SDSS and CfA3 – giving a total of 420 unique SNe Ia in the training
sample.

Survey Number of SNe Redshift range

SDSS-II (Sako et al. 2018) 203 0.1 � z � 0.3
SNLS (Conley et al. 2011; Sullivan et al. 2011) 113 0.2 � z � 0.9
Calan/Tololo (Hamuy et al. 1996) 5 z � 0.1
CSP (Contreras et al. 2010) 2 z � 0.1
CfA1 (Riess et al. 1999) 8 z � 0.1
CfA2 (Jha et al. 2006) 14 z � 0.1
CfA3 (Hicken et al. 2009) 58 z � 0.1
Historical low z (Betoule et al. 2014 and references within) 25 z � 0.1

Figure 2. Wavelength coverage of the spectra used in the training sample, plotted as a function of phase.

re-calibration by adjusting the E(B − V) of all the SNe in the SALT2
training sample by a factor of 0.86, such that

E(B − V )new = 0.86 × E(B − V )old. (4)

The Schlafly & Finkbeiner (2011) dust maps are the most com-
monly used dust maps for supernova analyses (e.g. Burns et al. 2014;
Scolnic et al. 2015; Foley et al. 2016; Holoien et al. 2016; Dimitriadis
et al. 2018; Pierel et al. 2018; Scolnic et al. 2018; Kessler et al.
2019; Khetan et al. 2020; Mandel et al. 2020). Other dusts maps, for
example, the dust map derived using data from the Planck satellite
(Planck Collaboration XI 2014), differ slightly from the the map used
here. We evaluate the impact of the dust maps by training a version
of SALT2-2021 with Planck Collaboration XI (2014) dust maps
(instead of Schlafly & Finkbeiner 2011) and re-running the analysis
in Section 4. We find �w = 0.01 compared to the results using the
Schlafly & Finkbeiner (2011) map. This is a slightly smaller than the
shift in w from adopting the revised zero-points and the re-calibration
of the Schlafly & Finkbeiner (2011) dust maps.

3.3 Re-calibrated photometry

The SALT2-2014 surface is trained on SNe from a number of surveys
(Section 3.1) with little or no overlapping sky area, and thus the
calibration relies on a standard star system. The approach used
by these surveys to calibrate the flux scale is not homogeneous.

This introduces systematic errors that can be difficult to quantify,
and which propagate through to redshift-dependent distance biases
(resulting in a w bias).

‘Supercal’ (Scolnic et al. 2015) improves the relative calibration by
using tertiary standard stars in regions of survey overlap to determine
the zero-point offset between each system and the PS1 system, which
has a relative calibration uncertainty of <5 mmag (Schlafly et al.
2012; Chambers et al. 2016) – thus effectively re-calibrating each
system. The effect of this re-calibration was to shift w by 0.026 for a
combined sample that includes PS1, SNLS, and SDSS (Scolnic et al.
2015).

Until now, this re-calibration has only been applied to samples
fitted with the SALT2 model; however, the SALT2-2014 surface has
been trained without Supercal. We adjust the SALT2 training data to
include the supercalibrated zero-points and retrain SALT2, to ensure
consistent photometric calibration for future SN analyses. This re-
calibration affected 390 of 420 SNe Ia in the training sample – the
unaffected 30 SNe are from surveys that were not re-calibrated by
Supercal. The adopted zero-point offsets are in table 5 of Scolnic
et al. (2018).

3.4 Calibration uncertainties

In addition to the SALT2-2021 surface, we provide a suite of per-
turbed surfaces, where each perturbed surface has been trained with

MNRAS 504, 4111–4122 (2021)
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Figure 3. The derived colour law (CL) for the old (cyan, dashed) and new
(orange, solid) SALT2 surfaces, for a c = 0.1 SN Ia, where C̃L ≡ −cCL(λ)
(for the SALT2 colour laws). The white region is the wavelength range over
which the SALT2 colour law is fit, and the grey-shaded regions represent the
wavelength ranges in which the SALT2 colour law is linearly extrapolated
from the end points. Also plotted are common extinction laws from Cardelli
et al. 1989 (CCM) and Fitzpatrick 1999 (Fitz99), for E(B − V) = 0.1,
where C̃L ≡ A(λ) − A(B) for the extinction laws. Differences between the
SALT2-2021 and SALT2-2014 surfaces are shown in the lower panel.

a shift applied to one zero-point (0.01 mag) or 1 filter transmission
curve (1 nm). These perturbed surfaces span all instruments and filter
bands used in the training, and can be used to account for correlated
systematic uncertainties in the training and light-curve fitting (e.g.
see section 5.4 in B14). The perturbed surfaces are available online.8

3.5 Comparing SALT2-2021 and SALT2-2014

The SALT2-2021 colour law for a c = 0.1 SN Ia, plotted in Fig. 3,
agrees with the SALT2-2014 colour law for wavelengths above
∼4000 Å. Below ∼4000 Å, there is some deviation. The SALT2
colour law differs significantly from the Cardelli et al. (1989) and
Fitzpatrick (1999) colour laws (also plotted in Fig. 3), again, mainly
in the region below ∼4000 Å. This difference is long-known and
shows that there is an intrinsic component that has more impact in
the UV than dust.

The average spectral energy distribution of the revised SALT2-
2021 surface, plotted in Fig. 4, is in good agreement with the SALT2-
2014 surface between ∼3000 and 8000 Å. There is a difference of
a few per cent above ∼8000 Å, and much larger difference below
∼3000 Å, reaching 20 per cent in the UV part of the spectral energy
distribution. This region (∼2000 Å) is poorly sampled in the training
set for SALT2 (as shown in Fig. 2) and therefore poorly constrained.
These effects also correspond to the linearly-extrapolated region of
the SALT2 colour law (the shaded region of Fig. 3), where the
changes are greatest.

Fig. 5 shows the differences between the published SALT2-2014
surface, and various iterations of the new surface (trained with only
Milky Way extinction modified, with only the zero-points modified,
and with both modified). We are able to reproduce the original
SALT2-2014 surface to within 0.1 per cent, giving us confidence in
our training procedures (see Appendix A for details). The differences
in the final SALT2-2021 spectral energy distribution are the sum
of differences due to modifying the Milky Way extinction and
modifying the photometric zero-points.

810.5281/zenodo.4646495

Figure 4. The trained spectral energy distribution of SNe Ia (c = 0, x1 = 0)
for the old (cyan, dashed) and new (orange, solid) SALT2 surfaces. The lower
panel shows the difference in the average spectral energy distribution between
the old and new SALT2 surfaces at each wavelength, where �fλ( per cent) =
100 × fλ2021−fλ2014

fλ2021
.

Figure 5. The difference in the spectral energy distribution between the
SALT2-2014 surface, and: a reproduced version of SALT2-2014 for process
verification (cyan, Appendix A); a retrained surface with only re-scaled Milky
Way extinction applied (magenta, Section 3.2); a retrained surface with
only re-calibrated zero-points applied (yellow, Section 3.3); and the final
SALT2-2021 surface with Milky Way and zero-point adjustments applied
(orange). We are able to reproduce the original SALT2-2014 surface to within
0.1 per cent, whereas the new SALT2-2021 surface has fractional changes of
up to 20 per cent relative to SALT2-2014 (albeit at the low-flux ends of the
spectrum).

4 FI RST ANALYSI S WI TH SALT2 -2021

4.1 The DES–SN3YR sample

The Dark Energy Survey (DES; The Dark Energy Survey Collab-
oration 2005) is a multiprobe investigation into the nature of dark
energy, using DECam (Flaugher et al. 2015; Morganson et al. 2018)
on the 4 m Blanco telescope at the Cerro Tololo Inter-American
Observatory (CTIO). DES operated from 2013 to 2019 and collected
data for a 5000 deg2 wide-field survey, as well as a 27 deg2 dedicated
Dark Energy Survey Supernova Program (DES–SN; Bernstein et al.
2012). Over 30 000 transients were discovered with DES–SN, and
light curves were measured in griz bands over a roughly weekly
cadence (Kessler et al. 2015). A subset of these transients have
been identified as SNe Ia, via either photometric (∼3000 SNe from
0.01 ≤ z ≤ 1.2) or spectroscopic (∼500 SNe from 0.017 ≤ z ≤ 0.9)
classification (D’Andrea et al. 2018).

MNRAS 504, 4111–4122 (2021)
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Table 2. Parameters of the DES–SN3YR SNe that did not pass our cuts. Values are from the published DES–SN3YR data.

SN Sample x1 c mB z Cut at stage Cut for surface

1298893 DES − 2.23698 − 0.0279837 20.8162 0.1962 Light-curve fittinga SALT2-2021
1330031 DES 0.022023 − 0.128202 18.7782 0.104 Bias correctionsb SALT2-2014, SALT2-2021
1308884 DES − 1.42624 0.072173 19.0801 0.0772 Bias corrections SALT2-2014, SALT2-2021
2002G Low-z − 1.52225 0.2214 17.3307 0.03509 Bias corrections SALT2-2014, SALT2-2021

Notes. aOne object failed the light-curve fitting requirement −20 ≤ TRESTMIN ≤ 0.
bThree objects with no 5D bias corrections were rejected at the BBC stage. BBC was unable to determine bias correction because of
limited MC coverage in this region of z, c, x1.

The sample we analyse in this work is from the published set of
207 spectroscopically confirmed SNe Ia from the first 3 yr of the Dark
Energy Survey, combined with a selection of 122 low-redshift SNe Ia
(DES–SN3YR, Brout et al. 2019b), released as part of the Dark
Energy Survey’s Data Release I (Abbott et al. 2018)..9 The external
low redshift subset includes SNe Ia (0.01 < z < 0.1) from the
Harvard-Smithsonian Center for Astrophysics surveys (CfA3, CfA4;
Hicken et al. 2009, Hicken et al. 2012) and the Carnegie Supernova
Project (CSP; Contreras et al. 2010, Stritzinger et al. 2011).

Though we begin with the full sample of 329 SNe from the DES–
SN3YR sample, our results are subject to selection requirements
(cuts) applied in different stages of the analysis. After these cuts are
applied, we are left with 326 SNe using SALT2-2014, and 325 SNe
using SALT2-2021 (the discarded SNe are given in Table 2). The
difference in the number of SNe that pass cuts for each surface is due
to SN1298893. Fitting SN1298893 with SALT2-2021 changed the
recovered PEAKMJD value by +17 d, compared with using SALT2-
2014. This caused the recovered Trestmin value (time of earliest
observation used in fit, relative to PEAKMJD) to change from −6.6 to
+11 d – the fitting requires −20 ≤ TRESTMIN ≤ 0, so SN1298893
was cut from the SALT2-2021 data set, but not the SALT2-2014 data
set. In this case, there is a subtle fit instability originating from an
initial PEAKMJD estimate that is more than a week off the final
SALT2-2014 value. The SALT2-2014 analysis pushes the fit one
way, and the SALT2-2021 analysis pushes the fit in the opposite
direction, causing a catastrophic fit. This issue is inherent to the
light curve fitting process, not the SALT2 surfaces. Following the
DES–SN3YR analysis, a more robust pre-fit PEAKMJD estimate has
been developed that fixes this catastrophic fit. For this re-analysis,
however, we use the original DES–SN3YR fitting algorithms.

4.2 Analysis overview

We perform two analyses – one using SALT2-2014, and the other
using SALT2-2021 – to understand the impact of our new SALT2
surface on a cosmology analysis. Each analysis follows Brout et al.
(2019b), with the general outline as follows:

(i) We generate detailed simulations (Kessler et al. 2019) for bias
corrections.

(ii) We fit light curves from DES–SN3YR data and simulations.
(iii) A BBC fit applies 5D bias corrections, and fits for α, β, and

distance moduli (equation 3) averaged in 20 redshift bins.
(iv) We create a (statistical-only) covariance matrix for use in

cosmology fitting.
(v) Using binned distances from BBC, we fit a flat wCDM cos-

mology to measure 	m and w. We fit these cosmological parameters
using the DES–SN3YR data, combined with Planck Collaboration

9Available from https://des.ncsa.illinois.edu/releases/sn.

XIII (2016) cosmic microwave background (CMB) measurements.
We use the fitted cosmological parameters to calculate �w arising
from the change in SALT2 surface, i.e. �w ≡ w(SALT2-2021) −
w(SALT2-2014).

We perform the simulations, light-curve fitting, and bias cor-
rections using SNANA (Kessler et al. 2009a; Kessler et al. 2019),
a publicly available supernova analysis software package. The
cosmology fitting is performed with CosmoMC (Lewis & Bridle
2002). We run these programs inside the Pippin (Hinton & Brout
2020) pipeline for SN analyses.

4.3 Results

We fit light curves to the DES–SN3YR data and simulations using
each surface, and compare the resultant differences in fitted light
curve parameters (equation 3) in Figs 6(a)–(c). At this stage of the
analysis, bias corrections have not been applied to the fitted light-
curve parameters. We find a clear systematic shift in the distribution
of supernova colour represented as the βc component. SNe Ia have
bluer colours and are brighter when fitted by SALT2-2021, so the
change in absolute magnitude (Mavg) of −0.024 (Table 3) largely
compensates for this change in colour. There is a smaller shift in
the distribution of stretch represented as the αx1 component, most
noticeable (but still minor) at higher redshifts. A small systematic
shift in the fitted mB parameter is also shown. The overall fit
probability of the light curves tends to improve (i.e. increase) with
SALT2-2021, as shown in Fig. 7 – this effect is most significant in
the low-redshift subset.

We compute and apply 5D-bias corrections for distance moduli
using BBC, with each bias correction simulation generated from the
same SALT2 surface used in light-curve fitting. The fitted light-
curve parameter distributions for the DES–SN3YR data and the
bias correction simulations were compared, and matched well. The
recovered nuisance parameters α, β, σ int, and Mavg

10 are shown in
Table 3 – these change by < 1 per cent.

Fig. 6(d) shows μ before bias corrections are applied. There is a
notable shift in μ with the new surface, where the redshift dependence
is driven primarily by the changes in the recovered supernova
colour (Fig. 6c). There is a further redshift dependence in the bias
corrections, shown in Fig. 6(e; discussed further in Appendix B).
Overall the change in the bias correction is small compared to the
changes in colour and peak absolute magnitude. The total effect of
the SALT2-2021 surface on the DES–SN3YR distances is shown by
the bias-corrected μ values in Fig. 6(f).

Using CosmoMC results for both surfaces, we find �w = 0.015
(Fig. 8).

10From equation (3). M is calculated and applied for each redshift bin; we
report Mavg for convenience.
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(a) (b) (c)

(d) (e) (f)

Figure 6. Differences in fitted parameters between the old and new SALT2 surfaces, plotted versus redshift. Differences are given as, e.g. �μ = μ2021−μ2014.
The top row shows the (uncorrected) supernova parameters as they appear in equation (2): mB, α × stretch, and −β × colour. Together with M (where �Mavg

= −0.024, from Table 3, these sum to the (pre-bias corrected) distance modulus. The bottom row shows: pre-bias corrected �μ, the change in bias corrections
applied to μ, and �μ after bias corrections. Note that each term is plotted with its sign according to equation (2), so that the true impact on μ is shown in each
panel. Each SN in the fitted sample is plotted as a pink cross, with the binned averages plotted as the blue circles (nbins = 20). One outlier, SN 2007kh, is not
displayed.

Table 3. The recovered nuisance parameters for the DES–SN3YR sample
using the old and new surfaces.

Surface α β σ int Mavg

SALT2-2014 0.142 ± 0.009 2.99 ± 0.11 0.0979 29.979
SALT2-2021 0.141 ± 0.009 2.97 ± 0.11 0.0985 29.955

Figure 7. Differences in the FITPROB parameter between the old and
new SALT2 surfaces (�FITPROB = FITPROB2021 − FITPROB2014), plot-
ted versus redshift. The FITPROB parameter describes the light-curve fit
probability, from 0 to 1. Each SN in the fitted sample is plotted as a pink
cross, with the binned averages plotted as blue circles (nbins = 20). One
outlier at (0.012, 0.147) is not displayed.

Figure 8. Contour plot showing the difference in cosmology between the
old (blue) and new (orange) SALT2 surfaces. The individual contours for the
DES–SN3YR data (blue and orange dashed) and the CMB data (grey solid)
are also shown.
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Figure 9. Parameter distributions for DES–SN data (the red points) compared with simulated DES SNe Ia (the blue histograms). Simulation histograms are
scaled to match the size of the data. The error bars show the Poisson error in binned data.

Figure 10. Parameter distributions for low-z data (the red points) compared with simulated low-z SNe Ia (the blue histograms). Simulation histograms are
scaled to match the size of the data. The error bars show the Poisson error in binned data.

4.4 Simulating uncertainty in w-bias

To estimate the uncertainty in �w resulting from the change in
SALT2 surface, we re-run the analysis on 50 realistic DES–SN3YR-
like simulations. Comparisons of various parameter distributions
between the data and the simulations are shown in Figs 9 and 10, and
agree well. For convenience, we replace CosmoMC with a simpler
and faster cosmology fitting program in SNANA (wfit). wfit uses
a χ2 minimization to find w and 	m (assuming a wCDM model,
i.e. a flat universe with a constant w value and cold dark matter).
These parameters are constrained with priors based on the CMB
(Hinshaw et al. 2013), and fit with only the simulated SN Ia samples.
The w uncertainties produced fromwfit are compared to those from
CosmoMC (using a Planck prior) using DES–SN3YR data, and match
well (σwfit = 0.046; σCosmoMC = 0.037 − 0.046). To avoid biases,
the computed CMB prior uses the same cosmological parameters as
the SN simulations.

From analysing these 50 simulations, we obtain an root mean
square (RMS) (for �w) of 0.004. The �w values from the simu-
lations are broadly consistent with that recovered from the DES–
SN3YR data.

5 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we have demonstrated the impact of a revised SALT2
surface on the DES–SN3YR sample. While the overall impact of
SALT2-2021 will depend on the specific data sets and analysis

methods used, we see clear impacts from the revised surface for
the DES–SN3YR sample.

By reducing the Milky Way extinction by 14 per cent, the SNe
in the revised training sample have redder intrinsic colours and are
fainter, since the corrections are smaller. SALT2-2021 sees a slight
change in the average SED, most noticeably at the blue and red ends
of the wavelength range (Fig. 4), though these regions are not well
constrained in the SALT2 framework with the current training set
(Fig. 2). The colour law changes most significantly at the blue end
(Fig. 3). The mean B − V colour at B-band maximum is set to be zero
for the SNe used in the SALT2 training (Guy et al. 2010). Hence,
the colour of a SN will depend on the training sample used to derive
a SALT2 surface. This is the origin for the offset seen in Fig. 6(c).
On average, the positive residuals indicate that SALT2-2021 lowers
the value of c (colour) for SNe Ia in the data sample (i.e. the SNe
population becomes bluer).

This effect is largely compensated for by the change in absolute
magnitude with the new surface (i.e. the SNe population becomes
brighter). The impact of the new surface on the other light curve
parameters, x1 (stretch) and mB, is small.

These three parameters, along with bias corrections, all contribute
to the overall effect on the recovered distance moduli. The change
in distance moduli displays a clear redshift dependence, with higher
redshift SNe being more affected by the change in SALT2 surface.
This is driven mainly by the redshift dependence in the change in su-
pernova colour. A secondary contribution to the redshift dependence
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in μ arises from the bias corrections, which is discussed further
in Appendix B. The change in the measured distance moduli gives
�w = 0.015 ± 0.004 with the SALT2-2021 surface. The impact for
the DES–SN3YR sample is comparable to many of the systematic
uncertainties quoted in the DES–SN3YR analysis Brout et al. 2019b.
The impact of SALT2-2021 on other SNe analyses depends on the
sample used and the bias corrections applied.

We have produced a revised surface for the SN Ia model SALT2,
which should replace the previous surface for future SNe Ia light-
curve fitting. In addition, we provide a suite of linearly perturbed
SALT2 surfaces that can be used to estimate the effects of calibration
uncertainty in the new model. Further improvements with more
complete and high-quality data sets are still possible – in particular,
increasing the training sample to include more SNe, particularly in
the poorly sampled UV region. Training on the most extensive, high-
quality sample available could reduce statistical uncertainties in the
SALT2 model. Additionally, removing SNe that are not measured
on their natural systems (that is, the system in which they were
observed) could further reduce systematic uncertainties in the model.
The uncertainties in the SALT2 model have a significant enough
effect to be a critical aspect for future SN studies, particularly if they
are trying to constrain a time-variable w. In future work, we will
examine the systematic and statistical uncertainties of SALT2-2021,
and examine how these uncertainties can be reduced by incorporating
more modern SNe Ia data sets.
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APPENDIX A : PRO CESS VERIFICATION

As a check on our training process, we reproduce the most recent
surface, SALT2-2014(JLA), using snpca. This is shown in Fig. A1,
where our reproduced copy of the surface is denoted SALT2-
2014(T21).

Figure A1. The trained spectral energy distribution of a SN Ia (c = 0, x1

= 0) for the SALT2-2014(JLA) surface was reproduced with the accuracy
shown above (the two lines are directly overlaid). Our ability to reproduce
this surface gives us confidence in the training process.

As a further check, we refit the SN sample in the DES–SN3YR
data release11 (Brout et al. 2019a) using the same SALT2-2014(JLA)
version that they used.12 Differences in the light-curve parameters
(and resulting SN distances) between our results and the published
results are at the millimag level and are shown in Fig. A2. We have
not tracked down the reasons for the differences, but they are small
enough to have a negligible impact on the derived distances – note
the scale on the axes are an order of magnitude smaller than those
from the change in surface in Fig. 6. We therefore have confidence
that the training and fitting methods used for the SALT2-2021 surface
are consistent with the methods used in the JLA, and any differences
from SALT2-2021 are from the revised input data and not from our
implementation of the process.

11Available from https://des.ncsa.illinois.edu/releases/sn.
12Available from http://supernovae.in2p3.fr/salt/.
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(a) (b) (c)

Figure A2. Differences in fitted parameters between the published JLA surface and the JLA surface we trained, plotted versus redshift. Differences are given
as, e.g. �μ = μ2014(T21) − μ2014(JLA). Parameters are (from left to right): β × colour, α × stretch, and μ after bias corrections. Each SN in the fitted sample is
plotted as a pink cross, with the binned averages plotted as the blue circles (nbins=20). One �μ outlier is not shown.

APPENDIX B: A NA LY SING BIAS
C O R R E C T I O N S

The difference in the recovered (bias-corrected) distance moduli
for SALT2-2021 versus SALT2-2014 displays a noticeable redshift
dependence, where higher redshift SNe Ia are more affected by the
change in surface (Fig. 6f). Some of this redshift dependence comes
from the bias corrections applied (�δμbias, Fig. 6e). Here, we briefly
examine the reasons for this effect.

Fig. B1 shows the difference in the bias corrections applied for
parameters fitted using SALT2-2021 versus SALT2-2014. The mB
parameter bias correction displays the strongest redshift-dependent
trend, and looks to be the main contributor to the effect that we see in
Fig. 6(e). Interestingly, there is no obvious redshift-dependent trend
in the c bias corrections, though the fitted colour parameters from
the DES–SN3YR data show a clear redshift dependence (Fig. 6c).
We also note that the redshift-dependent shift in bias corrections
persists when performing 1D (rather than 5D) bias corrections on the
DES–SN3YR sample.

(a) (b) (c)

Figure B1. Differences in bias corrections of fitted parameters between the old and new SALT2 surfaces, plotted versus redshift. Differences are given as e.g.
�c = c2021 − c2014. Parameters are (from left to right): colour bias corrections, stretch bias corrections, and mB bias corrections. Each SN in the fitted sample
is plotted as a pink cross, with the binned averages plotted as blue circles (nbins = 20).
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We investigate the origins of this redshift-dependent change in bias
corrections (caused by the change in SALT2 surface from SALT2-
2014 to SALT2-2021) by looking at the bias corrections in the
DES–SN3YR data from other SALT2 surfaces. We create ‘hybrid’
surfaces that combine components (CL, M0, M1) from SALT2-2014
and SALT2-2021, to see if a particular component is responsible for
the effect. While the colour law appears to have the strongest effect
on the bias corrections, it does not fully explain the shift in bias
corrections, which is only seen when using all three SALT2-2021

components in a surface. We also examine the bias corrections when
fitting over a restricted wavelength range (4000–7000Å), and rule out
fitting data in the UV range as the cause of the redshift-dependent
�δμbias. Either the three SALT2-2021 components have some extra
effect when applied in combination, or there is some other, unknown
factor that is affecting the bias corrections.
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