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ABSTRACT
We have measured the scattering time-scale, τ , and the scattering spectral index, α, for 84 single-component pulsars. Observations
were carried out with the MeerKAT telescope as part of the Thousand-Pulsar-Array programme in the MeerTime project at
frequencies between 0.895 and 1.670 GHz. Our results give a distribution of values for α (defined in terms of τ and frequency
ν as τ ∝ ν−α) for which, upon fitting a Gaussian, we obtain a mean and standard deviation of 〈α〉 = 4.0 ± 0.6. This is due to
our identification of possible causes of inaccurate measurement of τ , which, if not filtered out of modelling results, tend to lead
to underestimation of α. The pulsars in our sample have large dispersion measures and are therefore likely to be distant. We
find that a model using an isotropic scatter broadening function is consistent with the data, likely due to the averaging effect of
multiple scattering screens along the line of sight. Our sample of scattering parameters provides a strong data set upon which
we can build to test more complex and time-dependent scattering phenomena, such as extreme scattering events.

Key words: scattering – pulsars: general – ISM: structure.

1 IN T RO D U C T I O N

A commonly observed signature of the effect of the interstellar
medium (ISM) upon the radio emission from pulsars is the scattering
of the radio flux. Regions of cold (<10, 000 K), dense plasma along
the line of sight, which can be approximated as one or multiple thin
screens, cause some of the radio flux arriving at the observer to be
delayed with respect to the direct line of sight. Observationally, this
results in a scattered pulse profile with a characteristic exponential
scattering tail (Cronyn 1970), which can be explained assuming
isotropic scattering screens, for which the scattering angles have
no preferred direction. Measurements of the scattering properties of
pulsars reveal information about the structure of the ISM and allow
us to disentangle these effects from the intrinsic properties of the
pulse shape.

In the context of isotropic scattering with an exponential transfer
function the key parameter is the scattering time-scale, τ . It is
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observed that τ evolves with frequency ν according to the power-law
relationship

τ ∝ ν−α, (1)

where α is the scattering spectral index. The simplest thin screen
scattering model predicts α = 4 (e.g. Cronyn 1970; Lang 1971),
while a medium exhibiting Kolmogorov turbulence would have a
value of 4.4 (e.g. Lee & Jokipii 1976; Rickett 1977). The simplified
spectrum of turbulence is described by a power law for wavenumbers
q, for values of q−1 that lie well within inner and outer fluctuation
scales (k−1

i and k−1
o respectively). This is written as Pne

(q) = C2
ne

q−β

(Rickett 1977), where C2
ne

is the proportionality constant, dependent
on the electron density. The fluctuation spectral index β cannot
exceed 4 (Romani, Narayan & Blandford 1986). It is related to
α by α = 2β/(β − 2), which leads to α = 4 being a theoretical
upper limit. Observationally however, lower values of α, i.e. flatter
spectra, are commonly seen (see for example Krishnakumar et al.
2019). A power-law break at low frequencies with the scattering
time-scale approaching frequency independence, accompanied by
a loss of flux, may be attributed to a truncated scattering screen
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(Cordes & Lazio 2001). Where q−1 drops below the inner scale
of the plasma turbulence, k−1

i , the power-law description of the
turbulence spectrum is no longer a valid simplification. Lewandowski
et al. (2013) and Lewandowski, Kowalińska & Kijak (2015a) write
that, for a single pulsar, this may lead to a flattening of α at lower
frequencies. The effect of this inner scale, which corresponds to the
shortest scale length in the scattering material, should also become
apparent in the scattered pulse shape, particularly at large delays in
the profile tail (Rickett et al. 2009). Furthermore, the exact shape of
the scattered profile will depend upon the degree of anisotropy in the
scattering material. Evidence of such anisotropy has been seen in the
parabolic arcs observed in the secondary spectra of scattered pulsar
observations (e.g. Stinebring et al. 2001; Walker et al. 2004) and
high-resolution mapping of the locations of scintils (Brisken et al.
2010; Pen et al. 2014). Geyer & Karastergiou (2016) showed that
fitting an isotropic model to simulated anisotropically scattered data
could lead to inferring smaller values of α.

In the literature, values of α are usually calculated by performing
a power-law fit to τ against frequency, where τ is measured through
one of two ways. In the cases where the scatter broadening is evident
in the pulse profile, we measure τ in the time domain. This is done
either through forward modelling (e.g. Geyer et al. 2017) or through
deconvolution analysis, such as the CLEAN algorithm (Högbom
1974; Bhat, Cordes & Chatterjee 2003). Scattering surveys that have
employed forward modelling, and are thus directly comparable to the
work presented here, are as follows: Cordes, Weisberg & Boriakoff
(1985), Löhmer et al. (2001), Löhmer et al. (2004), Kuzmin &
Losovsky (2007), Lewandowski et al. (2011), Lewandowski et al.
(2013), Lewandowski et al. (2015a), Lewandowski et al. (2015b),
Krishnakumar, Joshi & Manoharan (2017), Geyer et al. (2017),
and Krishnakumar et al. (2019). The CLEAN algorithm has been
employed by, for example, Bhat et al. (2004) and Kirsten et al.
(2019). A complementary technique is to infer τ from the scintillation
bandwidth δν (Cordes et al. 1985). This is generally done using the
equation 2πτδν = C1, where C1 is a factor with a value that depends
on the electron density wavenumber spectrum and distribution of
scattering material. When transforming observational values it is
usually set to C1 = 1, the solution for a thin screen, and other
values are presented in Cordes & Rickett (1998). This technique is
relevant for observations where τ is too small to be measured directly,
generally at higher frequencies. The inverse is also true: where τ is
large, δν will be too small to be measurable.

The scattering strength, which determines the choice of method-
ology used to measure τ and α, is expected to be correlated with
distance for a given pulsar, added to which is a further stochastic
element due to there generally being a small number of scattering
screens along the line of sight. Modelling the scattering material as a
power-law electron density spectrum with a Kolmogorov distribution
of irregularities, the relationship between scattering time-scale and
DM is expected to be τ ∝ C2

ne
ν−4.4 DM2.2 (Romani et al. 1986;

Cordes & Rickett 1998; Krishnakumar et al. 2015).
The new MeerKAT telescope (Bailes et al. 2020) provides high

sensitivity in the observing band 856–1712 MHz. The high-quality
pulse profiles and the broad bandwidth are suitable for a survey of
scattered pulsars where measurements of τ and α can be made using
a single instrumental set-up. This largely eliminates systematic errors
arising from measurements of τ made using multiple receivers and
backends at different frequencies. Our survey of scattered pulsars is
part of the work of the Thousand-Pulsar-Array (TPA) (Johnston et al.
2020). This is an observing project that is being carried out as part
of MeerTime, a large-scale project to observe known pulsars using
the MeerKAT telescope (Bailes et al. 2020).

The TPA programme will obtain an overview of the properties of
a large sample of the observed pulsar population. The structure of
this paper is as follows: Section 2 describes the observations and data
processing. Section 3 describes our new time domain methodology
to determine τ , which uses a Markov Chain Monte Carlo (MCMC)
fit. The results of the scattering analysis, both a table of measured
scattering parameters and a description of the distributions of these
parameters across the population of observed pulsars, are presented
in Section 4. We also describe how our observational constraints
affect the sample of pulsars for which we are able to accurately
measure scattering parameters, and we investigate how the level of
covariance between the parameters affects our modelling outcomes,
before discussing our results in the context of previous work in
Section 5. Conclusions are summarized in Section 6.

2 O BSERVATI ONS AND DATA

We selected 205 pulsars from the TPA programme with simple
profiles that resemble a single Gaussian component convolved with
an exponential function. We chose these by eye out of 1164 pulsars
observed up until 2020 June 1. The initial sample was deliberately
selected to be as broad as possible within these constraints, so that
the sample was not biased by visual selection. This allowed us to
investigate the limitations of our modelling choices, but required
us to discard at later stages those pulsars whose profiles were not
well modelled with single Gaussians modified by scattering tails.
The observing and data processing was carried out as described in
Johnston et al. (2020) and Serylak et al. (2020). The pulsars were
observed in fold mode over multiple epochs using MeerKAT at L
band. These observations were de-dispersed, cleaned of Radio Fre-
quency Interference (RFI) using COASTGUARD (Lazarus et al. 2016,
see ascl.net/2003.008) and time-integrated to a single Stokes I profile
per observation with a resolution of 1024 bins per pulse period P.
Observations from the early commissioning phase of the MeerKAT
telescope had only the band between 895 and 1670 MHz available out
of the ultimate full band of 856–1712 MHz. In order to make all our
observations directly comparable with each other, we therefore kept
the band between 895 and 1670 MHz, divided into eight sub-bands, in
the final data products. As originally shown by Geyer & Karastergiou
(2016),1 assuming a power-law relationship between scattering time-
scale and frequency, the appropriate frequency associated with a
given measurement of τ is given in terms of the centre frequency, fc,
and bandwidth, δf, of the profile as

fm = 10[log10(fc+δf /2)+log10(fc−δf /2)]/2. (2)

Where a pulsar has multiple good quality observations taken at
different epochs, we aligned and added these observations to produce
a single profile with increased signal-to-noise ratio (S/N). We did
this through the following method. Within the TPA-project, pulse
templates were obtained. Ephemerides were updated when the data
showed apparent deviations from the known ones. Employing these
ephemerides, we used TEMPO2 (Edwards, Hobbs & Manchester
2006; Hobbs, Edwards & Manchester 2006) and PSRCHIVE (van
Straten, Demorest & Osłowski 2012) to obtain phase shifts between
individual observations of a pulsar, which we used to align them in
phase before adding.

1Equations (5) and (6) in Geyer & Karastergiou (2016) have typos, with fm
and fc interchanged. As of 2021 February 4, this has been corrected in the
arXiv version of the paper, found at https://arxiv.org/pdf/1607.04994.pdf
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3 MODELLING SCATTERED PULSAR
PROFILES

3.1 Method

We modelled the scattered pulse profile as a single Gaussian
component representing the intrinsic emission, convolved with an
exponential scattering function. We assumed that the scattering mate-
rial took the form of a thin screen with isotropic scattering properties.
The temporal broadening function was therefore described in terms
of the scattering time-scale τ as

e−t/τ

τ
U (t), (3)

where the unit step function U(t) constrains the equation to time
t > 0 (Cordes & Lazio 2001). We fit for five components: the
amplitude (A), mean (μ) and standard deviation (σ ) of the Gaussian;
the scattering time-scale (τ ); and any DC offset of the profile baseline.
Early modelling also investigated the applicability of an extreme
anisotropic model, as given by equation (3) in Geyer et al. (2017).
However, since this was found to be generally less successful at
fitting the profiles than the isotropic model, we did not take this
further.

We fit each of the eight sub-bands per pulsar independently. We
used the train + DC method as described in Geyer & Karastergiou
(2016), updating the fitting process to sample the log-likelihood
function over parameter space using the MCMC algorithm EMCEE

(Foreman-Mackey et al. 2013). We imposed flat priors, with the only
constraint that the parameters had to be physical, in order to allow
the fit to converge freely. This meant we constrained A and τ to
be positive, and 0 < μ < 1024 and 0 < σ < 1024, where 1024 is
the number of bins across the pulse period. We ran the MCMC for
either 20 000 steps per frequency, or until the chain autocorrelation
time estimate was changing by less than 1 per cent and the chain
was longer than 100 times the autocorrelation time, whichever was
shorter. The large number of model fits that must be run necessitates
the upper limit on the number of steps, in order to complete the
modelling in a reasonable time frame. We implemented a burn-in
of 50 per cent, discarding the first half of the total number of chain
steps, i.e. 10 000 steps discarded if the MCMC has run for 20 000
steps. This large burn-in ensures that the results are not biased by the
initial conditions. We kept only those sub-bands for which the chains
converged on to a single set of parameters for the model. Cases for
which the chains failed to converge, or converged on two or more sets
of parameters simultaneously, were concluded to be unsuccessful and
excluded from the subsequent analysis. We calculated the best-fitting
parameters to be the 50th percentiles of the MCMC samples, with the
errors taken as the average of the differences between the 16th and
50th, and 50th and 84th percentiles, respectively. We made use of
GNU Parallel (Tange 2011) to run our modelling on multiple pulsars
simultaneously. Given the values of τ obtained through our MCMC
fit, we calculated α. Initial calculations of α were done with least
squares fitting of a power law to τ versus frequency. However, since
it was found that different least squares algorithms tended to produce
different answers, we decided instead to use a further MCMC to map
out the probability distribution and gain a better understanding of
convergence on the solution. We kept only those 142 pulsars which
had at least four channels for which the τ fit was successful, and
then also converged on a successful fit for α. The value of α and its
uncertainty we took from the same percentiles of the MCMC samples
as described above.

3.2 Applicability of methodology

When drawing conclusions on the properties of a population of
scattered pulsars, we require reliable measurements of the scattering
time-scale as a function of frequency. The first test is to check the
diagnostic output of our methodology showing τ as a function of
frequency and reject all 21 sources which showed no significant
evolution of τ across the band. Even though some pulsars matched
the selection criterion of a Gaussian profile convolved with an
exponential, they showed no frequency evolution consistent with
scattering. There is an expectation that time domain fits will break
down when τ is too small to measure. If the underlying profile is not
Gaussian in shape, this too will affect the fitting, particularly when τ

is small. In Appendix A, we show that attempting measurements of τ

when σ /τ ≥ 1 is likely to lead to inaccuracy, where σ is the standard
deviation of the Gaussian describing the intrinsic pulse profile. The
second test therefore is to inspect our results for τ and σ and reject 31
sources with unreliable measurements. We describe how we identify
this unreliability with an example in Section 4.2. A further two
pulsars (J1320−3512 and J1738−3211) we discarded due to the
model being visibly inaccurate at the leading edge of the profile. The
rising edges of the model and profile, respectively, did not overlap
for these profiles. PSR J1738−3211 has an asymmetric profile with
the trailing edge steeper than the rising edge, implying that it is not
scattered and should be discarded regardless. PSR J1320−3512 has
a leading edge that is shallower than the model leading edge. This
suggests either that the intrinsic profile shape is not well modelled
by a Gaussian, or that the scattering function for this pulsar might be
better described by a thick screen model (Williamson 1972; Kirsten
et al. 2019), which has a more gradual leading edge shape than the
thin screen model applied in this work. We rejected PSR J1655−3844
after closer inspection at high frequencies revealed it not to fit our
single-component criterion. Of the pulsars remaining, there are 15
for which we have rejected a section of the band, for reasons detailed
in Section 4.3 and Appendix B. The selection criterion of requiring
four successful fits for τ then removes a further three pulsars from the
sample. Having completed the processing of the modelling output as
described above, from our original sample of 205 pulsars we have a
final subset of 84 for which we have scattering fits in which we can
be confident, with at least four measured values of τ .

4 R ESULTS

Before presenting the results for our full set of pulsars, we show an
example of a successful fit, and cases where the results of the fit are
unreliable.

4.1 Modelling results: example PSR J1818−1422

Fig. 1 shows the eight observed pulse profiles of PSR J1818−1422
with the best-fitting model at each frequency overlaid. We show
how the parameters for the model at 0.94 GHz were obtained by
representing the MCMC chain as a corner plot in Fig. 2. Fig. 3 shows
the corner plot for the power-law fit of τ = Aν−α , which gives α =
3.787 ± 0.008. The figure shows that A and α are covariant, but that
α is nevertheless tightly constrained. The top subplot of Fig. 4 shows
how both τ and σ evolve with frequency for this pulsar, with the
power-law fit indicated with a straight line. In addition, the modelling
indicates intrinsic profile evolution, as σ increases with decreasing
frequency below ∼1 GHz, evolution comparable to that described
for many other pulsar observations (see for example Thorsett 1991).
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Figure 1. Profiles of PSR J1818−1422 at eight frequency channels across the observing band, plotted in grey, with the best-fitting scattering models overplotted
in black. The corrected frequency fm and scattering time-scale, τ , are shown on each profile. The profiles are ordered by increasing frequency, reading from left
to right and top to bottom.

4.2 Covariant model parameters: an example

We find that the results for several pulsars, particularly those that are
less strongly scattered, exhibit an interrelation between the measured
values of σ and τ that is not inherent to the pulsar and must
result from the fitting process. An example is PSR J1743−3153,
for which we show a plot of both τ and σ against frequency in the
middle subplot of Fig. 4. The decrease in τ with frequency seen

for the first three measurements is mirrored by an increase in σ .
The converse is then true for the next measurement: a drop in σ is
counteracted by an increase in τ . Similar mirroring behaviour can
also be seen in the measurements for the highest frequencies. This
suggests that the modelling process has a covariance in σ and τ :
multiple different pairings of these parameters all generate similarly
shaped profiles and are therefore indistinguishable. Each sub-band
is modelled individually, and the inaccuracy of model parameters
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Figure 2. Corner plot for the scatter modelling parameters of the lowest frequency (950 MHz) profile of PSR J1818−1422. In each 2D subplot the black points
indicate all of the sample values explored by the chains. On top of these points is plotted a 2D histogram and a contour plot to indicate the overall density
distribution. The five model parameters are the standard deviation σ , mean μ and amplitude A of the Gaussian, the scattering time-scale τ and any DC offset of
the pulse baseline from 0. We mark the 16th, 50th, and 84th percentiles on the marginalized histograms.

converged upon for a given sub-band is then only apparent when
compared to the results for the other sub-bands.

It seems likely that PSR J1743−3153 is scattered, but the mirroring
behaviour of σ and τ means we cannot trust the accuracy of the
parameter measurements. We therefore exclude this pulsar, and 32
more sources showing similar behaviour, as identified by visual
inspection of similar figures, from further analysis.

4.3 Power-law deviations and non-Gaussian pulse shapes

There are 15 pulsars which show a visible deviation from a single
power law at the higher frequencies, with τ larger than expected.

We hypothesize that this may be caused by the intrinsic profile,
and not the scatter broadening, being the dominant factor in the
overall pulse shape at high frequencies for these pulsars. As shown
in Appendix A, time domain fitting is unlikely to be accurate when
σ /τ ≥ 1 and the intrinsic profile dominates over the scattering time-
scale. It is logical that there is a subset of pulsars for which scattering
is measurable at lower frequencies, but the pulse shape is dominated
by the intrinsic profile at higher frequencies. If so, our assumption
of a single Gaussian component is insufficient to replicate the profile
shape, resulting in overestimates of τ . We address as an example
the case of PSR J1653−4249, for which τ and σ are plotted against
frequency in the bottom subplot of Fig. 4.
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Figure 3. Corner plot for the power-law fit parameters for scattering time-
scale τ against frequency ν, where τ = Aν−α , α is the spectral index we
wish to measure and A is the constant of proportionality. The corner plot is
formatted in the same way as that in Fig. 2.

It is possible to simulate this pulsar using a profile with an
additional weak trailing edge component. At high frequencies the
absence of scattering is compensated by the presence of the trailing
edge component, such that the measured values of τ do not continue
to decrease with increasing frequency (see Appendix B for details).
Although the simulation is very specific, it demonstrates that it is
possible to obtain such a result under these conditions and therefore
attributing the anomalous behaviour seen in the bottom subplot of
Fig. 4 to properties of the ISM requires caution.

In general, for this sample of 15 pulsars, we conclude that the
intrinsic profile shape is the dominant factor in determining pulse
shape at higher frequencies, rather than the scattering time-scale,
and that as a result any non-Gaussianity in the intrinsic profile
shape may be mis-modelled as contributing to the scattering tail. A
possible alternative method for modelling pulse profiles with intrinsic
shapes more complex than a Gaussian would be to apply the CLEAN

algorithm. However, this would require its own set of assumptions
and would result in modelling results that are not directly comparable
to the rest of the results presented in this paper. For these 15 pulsars
therefore, we kept only that frequency range where τ follows a power
law, selecting the values through visual inspection, and inferred α

from those.

4.4 Scattering parameters for 84 pulsars

We present the results of the modelling in Table 1. For each pulsar
we list the scattering time-scale τ at 1 GHz, along with α and
the corrected dispersion measure (DM) that we measure through
our calculation of the position of the intrinsic pulse profile at each
frequency. We also indicate which of the eight frequencies have
been used to calculate these values, indicating which channels were
excluded due either to failing to reach convergence on a solution, or
to deviating from a power law at high frequencies, as explained in
Section 4.3. We use our MCMC power-law fit τ = Aν−α to compute
τ at ν = 1 GHz. We do this by calculating the value of τ at 1 GHz

Figure 4. Log–log plots of scattering time-scale τ (crosses) and intrinsic
Gaussian standard deviation σ (dots) against frequency for three pulsars, with
the best-fitting power law plotted as a black line. Top: PSR J1818−1422, an
example of successful modelling. Middle: PSR J1743−3153, an example of
σ − τ mirroring; this pulsar and 32 similar sources are rejected from the
final sample. Bottom: PSR J1653−4249, an example of inaccurate modelling
at high frequencies. For this pulsar we use only the lowest five frequencies
to calculate the power-law relationship; similar rejection of high-frequency
model results is done for a further 14 pulsars.

associated with every pair of values of A and α explored by the
MCMC chain, and taking the 50th quantile of these values as τ and
the difference between the 16th and 84th quantiles for its error. We
discuss the origin of our corrections to the DMs of these scattered
pulsars, along with the relevance of using these corrected DMs, in
Section 5.2.

5 D ISCUSSION

5.1 The scattering spectral index distribution

Fig. 5 shows histograms of the distributions of α obtained for our
survey. We show the final filtered sample of 84 pulsars (hatched
histogram) and the 33 pulsars which were filtered out due to problems
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Table 1. Values for τ at 1 GHz, α, and DM for our filtered sample
of scattered pulsars. The values and their uncertainties are calculated as
described in the text. The DM is the value that best aligns the modelled
intrinsic profile at each frequency. We indicate which of the eight sub-bands
(ordered in increasing frequency) were used to generate these values with
ones, and those not included with zeros. The minimum allowed number
of sub-bands is 4. Reasons for exclusion of sub-bands (failure of model
convergence or deliberate exclusion) are explained in the text.

PSRJ Which τ at 1 GHz α DM
channels (ms) (cm−3pc)

J0646+0905 11110110 10.03 ± 0.03 3.46 ± 0.05 147.85 ± 0.07
J1055−6028 11110000 2.36 ± 0.08 4.5 ± 0.4 636.9 ± 0.1
J1112−6103 00111111 33 ± 3 3.8 ± 0.2 595.69 ± 0.09
J1114−6100 11101101 28.3 ± 0.1 3.14 ± 0.02 676.7 ± 0.1
J1138−6207 11111111 26 ± 2 3.8 ± 0.2 518.86 ± 0.05
J1305−6203 11110000 10.4 ± 0.2 3.1 ± 0.2 468.78 ± 0.05
J1316−6232 00001111 1099 ± 25 4.435 ± 0.003 966.4 ± 0.3
J1319−6105 11110000 7.05 ± 0.08 3.5 ± 0.1 440.6 ± 0.1
J1341−6220 11111111 23.5 ± 0.2 4.04 ± 0.02 718.26 ± 0.06
J1349−6130 11111100 6.4 ± 0.1 3.9 ± 0.1 283.87 ± 0.04
J1406−6121 00011111 48 ± 1 4.751 ± 0.004 537.29 ± 0.08
J1412−6145 11111111 19.9 ± 0.5 4.0 ± 0.1 512.48 ± 0.08
J1413−6141 11111111 42 ± 2 4.1 ± 0.1 667.60 ± 0.06
J1511−5835 11111100 23.3 ± 0.5 4.8 ± 0.2 329.4 ± 0.2
J1512−5759 11111111 7.14 ± 0.02 3.16 ± 0.01 626.90 ± 0.02
J1514−5925 00111111 16.7 ± 0.6 5.107 ± 0.005 192.51 ± 0.08
J1519−5734 01011101 118 ± 7 3.9 ± 0.2 654.7 ± 0.4
J1538−5551 11111111 22 ± 2 4.0 ± 0.2 602.67 ± 0.06
J1543−5459 11111111 36.2 ± 0.8 3.76 ± 0.08 344.99 ± 0.03
J1551−5310 11111111 131 ± 5 4.4 ± 0.1 485.8 ± 0.6
J1610−5006 11111000 124 ± 1 4.670 ± 0.002 410.0 ± 0.2
J1630−4719 11111110 5.71 ± 0.09 3.3 ± 0.2 487.2 ± 0.1
J1630−4733 11110000 340 ± 2 5.049 ± 0.001 509.3 ± 0.2
J1632−4621 11111110 16.85 ± 0.07 3.87 ± 0.03 559.83 ± 0.07
J1633−4453 11111111 19.59 ± 0.08 3.99 ± 0.02 472.22 ± 0.03
J1638−4608 01111011 17 ± 1 4.6 ± 0.2 422.45 ± 0.10
J1640−4715 11111111 56 ± 1 4.45 ± 0.08 581.0 ± 0.2
J1640−4951 11111111 14.4 ± 0.6 4.5 ± 0.3 407.4 ± 0.2
J1650−4341 00011111 66 ± 7 4.4 ± 0.3 672.8 ± 0.4
J1653−4249 11111000 20.9 ± 0.2 4.17 ± 0.05 415.36 ± 0.06
J1700−4422 11101100 75 ± 4 4.7 ± 0.5 404.9 ± 0.9
J1702−4128 11111111 25.5 ± 0.7 3.97 ± 0.08 365.75 ± 0.08
J1707−4053 11111011 95.2 ± 0.2 3.950 ± 0.007 351.78 ± 0.08
J1715−3859 11111111 228 ± 9 4.1 ± 0.1 806.2 ± 0.6
J1717−3425 11011010 19.82 ± 0.02 3.466 ± 0.007 583.46 ± 0.01
J1717−3737 11111111 35.7 ± 0.5 3.42 ± 0.06 522.70 ± 0.05
J1719−4006 11101000 5.10 ± 0.09 3.4 ± 0.2 386.12 ± 0.04
J1720−3659 11111111 12.6 ± 0.2 3.63 ± 0.07 378.97 ± 0.03
J1721−3532 11111111 113.4 ± 0.7 4.10 ± 0.02 493.0 ± 0.1
J1724−3149 11111000 40 ± 2 4.928 ± 0.007 400.8 ± 0.3
J1725−3546 11111110 50 ± 2 4.1 ± 0.1 738.3 ± 0.4
J1730−3350 11111111 21.0 ± 0.4 4.00 ± 0.05 260.40 ± 0.04
J1731−3123 11111111 15.1 ± 0.5 1.3 ± 0.1 354.5 ± 0.2
J1739−3131 11111111 68.2 ± 0.2 3.836 ± 0.009 596.9 ± 0.1
J1740−3052 11111000 12.1 ± 0.1 3.83 ± 0.10 738.80 ± 0.05
J1801−2304 01111000 547 ± 10 4.529 ± 0.003 1067.85 ± 0.10
J1811−1736 01111111 42 ± 1 3.24 ± 0.09 473.93 ± 0.04
J1812−1718 11111101 31.8 ± 0.2 3.95 ± 0.03 251.4 ± 0.1
J1812−1733 10101111 102 ± 1 3.40 ± 0.04 509.8 ± 0.1
J1816−1729 11111000 14.3 ± 0.1 4.47 ± 0.07 520.7 ± 0.2
J1818−1422 11111111 59.8 ± 0.2 3.787 ± 0.008 619.65 ± 0.07
J1818−1607 11111100 45.0 ± 0.5 4.41 ± 0.08 699.2 ± 0.8
J1819−1114 11111111 51 ± 2 4.4 ± 0.1 309.7 ± 0.2
J1819−1510 11111111 19.7 ± 0.4 3.99 ± 0.08 418.14 ± 0.04
J1820−1346 11111111 110.9 ± 0.5 3.81 ± 0.01 771.0 ± 0.2
J1822−1400 11111111 6.81 ± 0.09 3.31 ± 0.08 649.27 ± 0.04
J1824−1118 11111111 26.9 ± 0.2 3.77 ± 0.02 601.31 ± 0.06

Table 1 – continued

PSRJ Which τ at 1 GHz α DM
channels (ms) (cm−3pc)

J1824−1159 11111111 18.8 ± 0.3 3.28 ± 0.06 462.96 ± 0.09
J1824−1423 11111111 12.8 ± 0.3 4.2 ± 0.1 427.63 ± 0.08
J1825−1446 11111110 21 ± 1 4.0 ± 0.2 351.6 ± 0.1
J1832−1021 11111111 12.49 ± 0.07 4.05 ± 0.03 474.14 ± 0.03
J1833−0559 11111111 180 ± 6 3.78 ± 0.09 346.70 ± 0.10
J1834−0731 00101111 122 ± 9 3.9 ± 0.2 288.3 ± 0.4
J1835−0643 11111111 110 ± 3 3.77 ± 0.07 464.8 ± 0.1
J1837−0604 00011101 62 ± 6 5.01 ± 0.02 462 ± 10
J1839−0321 00111111 14 ± 2 5.0 ± 0.4 450.5 ± 0.1
J1839−0643 11111111 47.3 ± 0.7 4.19 ± 0.05 493.5 ± 0.2
J1840−0559 11111111 23.5 ± 0.4 3.85 ± 0.09 319.1 ± 0.1
J1841−0425 11111110 3.22 ± 0.03 3.29 ± 0.07 324.77 ± 0.02
J1842−0153 11111111 32.7 ± 0.3 3.92 ± 0.05 422.9 ± 0.1
J1844−0030 11111000 12.3 ± 0.3 4.1 ± 0.2 603.2 ± 0.1
J1844−0244 11101110 20.0 ± 0.4 3.31 ± 0.09 422.13 ± 0.06
J1844−0538 11111100 11.73 ± 0.07 4.07 ± 0.03 410.51 ± 0.04
J1846−0749 11111100 7.14 ± 0.06 3.62 ± 0.06 389.13 ± 0.02
J1850−0006 11111111 260 ± 7 4.2 ± 0.1 625 ± 2
J1850−0026 11111000 46.5 ± 0.6 4.946 ± 0.002 948.8 ± 0.2
J1852−0127 01111111 57 ± 3 3.6 ± 0.1 427.9 ± 0.2
J1853+0545 11111111 20.0 ± 0.3 3.13 ± 0.04 197.91 ± 0.03
J1857+0143 11111111 50 ± 2 4.0 ± 0.1 247.9 ± 0.1
J1857+0526 11111111 24.0 ± 0.6 3.78 ± 0.07 464.79 ± 0.05
J1859+0601 00011111 125 ± 26 4.4 ± 0.7 272.4 ± 0.5
J1913+1145 01111111 15.2 ± 0.7 3.9 ± 0.2 642.0 ± 0.2
J1916+0844 11111100 12.8 ± 0.1 4.14 ± 0.07 338.01 ± 0.07
J1928+1923 11111110 48.6 ± 0.5 3.94 ± 0.05 476.4 ± 0.2

Figure 5. Histograms of values of α. Top right (grey): previously published
values of α obtained through time domain scatter modelling. Middle right
(transparent, circle pattern): values of α for the pulsars rejected from our
sample due to evidence of inaccurate modelling. Bottom right (transparent,
hatched): histogram of α values for our successful sample of 84 pulsars. Left:
the same three histograms, now overlaid (and, for our observations, stacked)
for visual comparison.

in the modelling (histogram with circle pattern). These have primarily
been removed due to covariance between the values of τ and σ , as
described in Sections 3.2 and 4.2 and Appendix A, but this subset
also includes the two pulsars rejected due to the leading edge not
being correctly modelled (PSRs J1320−3512 and J1738−3211).
The removal of pulsars is done without reference to the value of
α obtained, so that we are not biased in favour of those pulsars
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with values of α close to what might be expected from theory.
The result of the filtering is that pulsars with small values of α are
largely removed from the sample, and those remaining show a near-
symmetric distribution. We have shown, in Section 4.3 and in the
appendices, that poor model fits have a tendency to overestimate τ ,
and that poor model fits are more likely for smaller vales of τ , which
are seen more often at higher frequencies. It is therefore expected
that poorly modelled pulsars will tend to underestimate α, and so
it is unsurprising that the majority of the poorly modelled pulsars
returned small values of α.

Fig. 5 also shows a histogram of the values of α found in the
literature for cases where pulsar profiles observed at ≥400 MHz
have been fitted with an isotropic time domain model (Cordes et al.
1985; Löhmer et al. 2001, 2004; Lewandowski et al. 2011, 2013;
Lewandowski et al. 2015a,b; Krishnakumar et al. 2017, 2019). The
histogram of literature values has been weighted so that it represents
the same total count of pulsars as those shown for this work. We
apply the ≥400 MHz cut because we observe different behaviour
in the scattering surveys at lower frequencies, which we discuss in
Section 5.3.

Comparing our distribution of α with that of previously published
values, we see that, when we include our poorly modelled pulsars,
the distributions are similar. The population of pulsars around 0 <

α < 3 shown in the published values has been filtered out from
our own distribution. Performing a Kolmogorov–Smirnov (KS) test
to compare our sample to that from the literature, we obtain the
following values. When we use just our final filtered sample in the
KS test, we obtain a KS statistic of 0.247 with a corresponding
p-value of 0.001. Adding in our poorly modelled pulsars as well
gives KS statistic 0.109 and p-value 0.335. This indicates that,
although our final filtered sample is clearly not drawn from the
same distribution as that of the combined literature values, when
we include our poorly modelled pulsars in our distribution, we
cannot reject the null hypothesis. Fitting a Gaussian to our filtered
distribution of α we find that it has a mean of 4.0 and a standard
deviation of 0.6. The theoretical values of both α = 4 and α = 4.4
fall within one standard deviation. Fig. 6 shows our measurements
of α plotted against τ 0/P, where τ 0 is τ measured for our lowest
observing frequency of 950 MHz. It is interesting to note that if we
split our population into sources where τ 0 is less or greater than
10 per cent of the period, we find a mean α value for each group of
3.7 ± 0.6 and 4.1 ± 0.4, respectively. For α = 4, a pulsar with τ 0/P
= 0.1 at the lowest frequency will have τ /P ∼ 0.01 at the highest
frequency. We have shown in Section 4.3 and in the appendices that
our methodology overestimates small values of τ . This suggests that
we measure systematically smaller values of α for such cases, which
is a limitation of the time domain methodology. Fig. 6 shows that the
sources for which τ 0/P < 0.1 are comprised of pulsars that we have
filtered out as being either poorly modelled (orange diagonal crosses),
or not scattered (blue vertical crosses), or they are not filtered out
(black points) and yet still show systematically lower values of α, as
described above.

We scaled the scattering time-scale by the period for the analysis
above because all of our observations have the same number of bins
across the pulse period (1024 bins). The number of bins containing
information about the profile shape will affect the accuracy of the
modelling, and a profile that takes up a smaller fraction of the pulse
period (smaller τ /P) will have fewer bins spanning the profile. It is
therefore the ratio τ /P < 0.1 that is important in terms of likelihood
of the model being able to correctly capture the scattering behaviour
of a given pulsar. However, the time resolution of the bins is also
relevant to consider. The larger a pulsar’s period, the lower the time

Figure 6. Plot of scattering spectral index α against scattering time-scale
at the lowest frequency channel of 950 MHz, τ 0, where τ 0 is scaled by
pulse period P. Blue vertical crosses: non-scattered pulsars rejected from
the final sample. Orange diagonal crosses: pulsars rejected due to evidence
of inaccurate modelling. Black points: final filtered sample of successfully
modelled scattered pulsars.

resolution of a single bin, meaning that less information is captured
in each bin. We find that the distribution of periods for the τ /P < 0.1
cases is shifted slightly towards longer periods than the distribution
for the τ /P > 0.1 cases, which reflects the time resolution limitation.

5.2 Correcting for dispersion

As part of our scatter modelling we identify the position of the
underlying Gaussian that describes the intrinsic profile in our model.
By fitting for a correction to the DM on these values, we obtain the
DM that best aligns the intrinsic pulse profile independent of the
effects of scattering. Our new values for the DMs of the pulsars in
our sample are presented in Table 1. An alternate approach would
be to simultaneously model the data in all sub-bands, which would
enable fitting for DM and the pulse scattering index. This approach
was taken in modelling the pulse profiles of fast radio bursts (FRBs)
in Qiu et al. (2020).

We show a histogram of the measured corrections to the DM in
Fig. 7. The majority of these are small and negative, as expected
(e.g. Geyer et al. 2017). The tail of large negative 	DM values is
partially attributable to the small subset of pulsars that are more
strongly scattered and therefore require larger corrections to the DM
to align intrinsic profiles. However, it also reflects the distribution of
periods in our pulsar sample. This can be understood as follows. We
can assume very roughly that pulsars have the same duty cycle. For
profiles at two discrete frequencies that are misaligned by an amount
on the order of the pulse width, the shift required to align the profiles
will be the same fraction of the pulse period. For pulsars with very
different periods, this shift will comprise different absolute lengths
of time; correspondingly the DM correction to perform this shift will
be larger for the pulsar with the larger period.

Since the choice of DM affects the profile shape within each sub-
band, a question arises as to whether correcting the DM would change
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Figure 7. Histogram of the values of 	DM calculated for our filtered
scattered pulsar sample, where 	DM is the difference between the original
DM used to dedisperse the pulsar, and the best-fitting DM generated by our
scattering model.

Figure 8. Plot of 	τ versus frequency for PSR J1630−4733, where 	τ

is the difference between the scattering time-scales calculated for the data
processed with the initial, visibly incorrect, DM, and when reprocessed with
the best-fitting DM produced by the scattering model.

the measurements of τ . We tested this on PSR J1630−4733, chosen
because its 	DM of 11.3 cm−3 pc results in the largest relative shift of
profiles at different frequencies in our sample set. PSR J1850−0006
has a larger absolute 	DM of −21.0 cm−3 pc, however, since its
period is also larger, the corresponding time shift between profiles
at different frequencies is a smaller fraction of the period and so
the relative misalignment of profiles is smaller. We identified the
magnitude of the DM correction required through scatter modelling,
then reprocessed the data with the new DM and then repeated the
scatter modelling. We compare the results for τ obtained before
and after the reprocessing in Fig. 8. The difference is largest at low

Table 2. Table of pulsars for which there have been previous measurements
of α. We list the values of α measured in this work and those values found
in the literature, with the appropriate citations. The reference codes in the
table correspond to the following papers: L2001 is Löhmer et al. (2001);
Lew2013 is Lewandowski et al. (2013); Lew2015b is Lewandowski et al.
(2015b).

PSRJ α α Reference
(This work) (Literature)

J1801−2304 4.529 ± 0.003 3.9 ± 0.4 L2001
4.92 ± 0.11 Lew2013
3.45 ± 0.09 Lew2015b

J1818−1422 3.787 ± 0.008 3.5 + 0.5 − 0.6 L2001
3.97 ± 0.12 Lew2013

J1820−1346 3.81 ± 0.01 3.3 + 0.7 − 0.5 L2001
J1822−1400 3.31 ± 0.08 4.1 + 0.7 − 1.2 L2001

3.96 ± 0.18 Lew2013
J1824−1118 3.77 ± 0.02 3.5 + 0.7 − 0.6 L2001
J1825−1446 4.0 ± 0.2 3.77 ± 0.24 Lew2013
J1835−0643 3.77 ± 0.07 4.37 ± 0.3 Lew2013
J1841−0425 3.29 ± 0.07 3.91 ± 0.14 Lew2013
J1857+0143 4.0 ± 0.1 4.69 Lew2013

frequencies, as expected. It is also uniformly negative, meaning that
the scattering time-scales in the uncorrected DM case are larger.
However, even for this pulsar, where the change in DM is most
extreme (shifting the top of the observing band with respect to the
bottom of the band by 6 per cent of the pulse period), the measured
values of τ are still equivalent to within 1σ in all but the third channel
(counting from lowest to highest frequency), and equivalent to within
3σ for all channels.

5.3 Scattering parameters in context

Cross-comparing our sample of pulsars with the literature, we find
nine pulsars in our sample that have previous measurements for α.
We list these measurements in Table 2. Some of these have been
measured multiple times, giving a total of 13 measurements of α to
compare to our results, found in Löhmer et al. (2001), Lewandowski
et al. (2013), and Lewandowski et al. (2015b). We note that six of the
seven estimates of α given in Lewandowski et al. (2013) are larger
than our corresponding estimates, while four of the five estimates
given in Löhmer et al. (2001) are smaller than ours. This suggests
that differing modelling approaches may tend to give systematic
differences in the resultant parameters estimated. Of the nine pulsars,
five have at least one measurement consistent with our own, to within
the uncertainties. The four that are entirely inconsistent are all found
in Lewandowski et al. (2013) and all have larger values of α quoted
there than those presented here.

Fig. 9 shows τ calculated at 1 GHz plotted against DM. The values
for the final sample we plot as black circles, and for comparison we
also plot those values obtained from pulsars subsequently determined
to be either not scattered or poorly modelled. The horizontal lines
mark the smallest and largest time resolutions for a single bin of
a pulse profile. Since all observations have 1024 bins across the
profile, these values correspond to 1/1024th of the smallest and
largest periods in the sample. We take the equation relating τ and
DM fit by Krishnakumar et al. (2015) at 327 MHz, scale it to 1 GHz
using our best-fitting α of 4.0 and plot it as a black line. We also
plot the scaled fits for ±σ about the mean, α = 3.4 and α = 4.6, as
dashed lines. The functional form of this equation is

τs = 3.6 × 10−6 DM2.2(1.0 + 0.00194DM2)(1000/327)−4.0, (4)
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Figure 9. Plot of scattering time-scale τ at 1 GHz versus DM. Black points:
the values for the final filtered sample. Black line: the best-fitting equation
identified by Krishnakumar et al. (2015), scaled to 1 GHz using our best-
fitting α of 4.0. Dashed lines: the same equation, now scaled using α =
4.0 ± 0.6. Pale grey crosses: pulsars rejected from the sample due either to
inaccurate modelling or the pulsars not being scattered. Horizontal dot-dash
lines: these mark the minimum and maximum time resolutions of a single bin
for the pulsar sample, where all observations had a resolution of 1024 bins
across the pulse period.

where τ has units of ms and DM has units cm−3 pc. We see from
Fig. 9 that the pulsars in our final sample have high DMs and that
they are clustered close to the best-fitting line of Krishnakumar
et al. (2015). There is some spread in the values, meaning that our
results are also compatible with previous fits in the literature made by
Ramachandran et al. (1997), Löhmer et al. (2004), Bhat et al. (2004),
and Lewandowski et al. (2015a). Since our sample is limited to a
narrow DM range, it is not possible to perform an equivalent model
fit for the τ–DM relationship using our own results. We note that our
results are not symmetrically distributed about the Krishnakumar
et al. (2015) model. This may be related to a difference in modelling
approach: whereas we model the intrinsic pulse profile as a Gaussian
without constraining its parameters, Krishnakumar et al. (2015) use
a high-frequency unscattered profile as the template for the intrinsic
pulse profile.

The choice of how to model the intrinsic pulse profile necessarily
affects the results for the measured scattering time-scales and spectral
indices. For example, the slower rise time of the thick screen
model may absorb the intrinsic pulse shape into its measurement, or
conversely the choice of a Gaussian intrinsic pulse may obscure evi-
dence for a thick screen scattering function. Another example is the
comparison of our scattering time-scale result for PSR J1316−6232
with the estimate published by Crawford, Manchester & Kaspi (2001)
of τ ∼ 150 ms at 1.35 GHz. Scaling our result to this frequency
gives a scattering time-scale almost twice as large. This difference
follows directly from the difference in modelling choices. Whereas,
Crawford et al. (2001) provide an estimate of the scattering time-
scale based only on the exponential decay of the profile intensity,
our model involves a convolution of that exponential decay with a
Gaussian representing the intrinsic profile shape. For this reason, we
caution against direct comparison of individual τ values measured
using different methods. A systematic shift of τ values caused by the
choice of method is likely to have less of an impact on α, provided

Figure 10. Plot of α versus DM. Black points: our sample of 84 pulsars.
Pale grey crosses: previously published values obtained through time domain
scatter modelling. Horizontal line: the mean value of α calculated from a
Gaussian fit to the distribution of our results.

all the values of τ used to calculate it were estimated using the
same method. Nevertheless, this example highlights the importance
of applying the same modelling approach to a large-scale sample of
pulsars, such as this one, in order to be able to compare the scattering
results for different pulsars.

Of the values of τ associated with poor modelling, there are several
at smaller DMs for which τ is larger than would be expected from
the Krishnakumar et al. (2015) model. This is easily explained based
on the results of our investigations into the causes of poor model
fits. It is expected that pulsars with smaller DMs will, in general,
be less strongly scattered. Our work shows that small scattering
time-scales are likely to be overestimated, particularly when the
time-scale size is similar to the width of the intrinsic pulse profile.
These poorly modelled pulsars also have τ estimates close to the
temporal resolutions of the pulsars. Indeed, some of these pulsars
were concluded not to be scattered at the observing band, which
takes the concept of small values of τ being overestimated to the
logical extreme. We caution therefore that there may be a wider
tendency to overestimate τ at the lower limits of both DM and τ

attainable at a given frequency.
This may go some way to explaining what we observe in Fig. 10,

which is a plot of α against DM for our values (black circles) and
those given in the literature as described in Section 5.1 and shown
in Fig. 5. Our best fit of α = 4.0, shown as a horizontal black line,
is consistent with the results for the literature. On calculating mean
α values for five bins across the DM range we saw no significant
evolution of α with DM, save for a slight increase in α at the
highest DM bin, encompassing the three points in Fig. 10 at around
1000 cm−3 pc). More data are required to determine whether this
increase is statistically significant. We also note that weighting the
averages by the uncertainties in α tends to favour higher values in
comparison to the unweighted averages. Inspecting the literature
values of α, we note a greater spread in the literature values at lower
DMs. As we have described, the overestimation of smaller values
of τ tends to lead to underestimation of α. The reduced strength of
scattering at lower DMs should cause this to have a greater effect at
low DMs, which is what we see in Fig. 10.
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There is a further consideration to which attention must be brought:
whereas our modelling explains the distributions of α and τ obtained
for pulsar observations at frequencies ≥ 400 MHz, other behaviour is
seen in the low-frequency studies performed by Kuzmin & Losovsky
(2007) and Geyer et al. (2017). Kuzmin & Losovsky (2007) identified
a τ–DM relation of τ = 60(DM/100)2.2 ms at 100 MHz, and Geyer
et al. (2017), whose results for τ also corresponded well to this
equation, measured a distribution of values of α that is systematically
shifted to lower values in comparison to ours. An explanation for this
may be that low-frequency pulsar observations are probing a different
scattering environment. One aspect of this is that lower frequency
pulsar emission probes a wider region of space than that at higher
frequencies since it is scattered more strongly, as shown in fig. 1 of
Cordes, Shannon & Stinebring (2016). Applying the same isotropic
model may therefore result in different measurements of α at different
frequencies, something not measurable for the frequency range of
the data presented here but meriting further exploration. A further
consideration is the effect of distance. Scattering analyses performed
at low frequencies focus on nearby pulsars, due to the extreme
scatter broadening that occurs in high DM pulsars. It is interesting
to consider the effect of anisotropy in this context. First, having
compared anisotropic model fits with the isotropic fits presented
in this paper and found them to be generally unsuccessful, we see
no evidence of anisotropic scattering in the sample presented in
this paper. Secondly, for nearby pulsars, it is likely that the pulsar
emission only passes through a single or a very small number of
screens, so that the scattering behaviour observed may bear hallmarks
of anisotropy. There is evidence of anisotropic scattering in low-
frequency surveys, e.g. Geyer et al. (2017), and using an isotropic
model to identify the scattering parameters where such anisotropy is
evident then results in underestimation of α, as described by Geyer
& Karastergiou (2016). This may be another factor contributing
to the smaller values of α at lower DMs seen in Fig. 10: pulsars
with smaller DMs are likely to be nearby and hence an anisotropic
model may be more appropriate. By contrast, the emission from our
high DM pulsars is likely to have passed through multiple scattering
screens, all of which may have different levels of anisotropy oriented
along different axes. The net scattering effect observed will therefore
approximate isotropy, as observed in our data.

6 C O N C L U S I O N S

As part of the TPA project we have identified 205 single-component
profiles that appear to be scattered, out of a total of 1164 pulsars
observed with the MeerKAT telescope. Of these we have obtained
good scattering model parameters, τ and α, for 84 pulsars, the largest
sample of scattering parameters observed with a single telescope
over a continuous bandwidth. Through this we have also obtained
estimates of these pulsars’ DMs. The preferred choice of DM depends
on the purpose for which dedispersion is being applied, and these
DMs may be used to obtain accurate alignment of intrinsic pulse
profiles for these pulsars, independent of scattering.

Our investigations have identified and highlighted a key cause
of inaccurate scatter modelling as covariance of model parameters
for the intrinsic pulse profile and the scattering time-scale. We have
investigated the regimes under which such covariance is likely to
cause problems and identified the effects of poor modelling as
a tendency to overestimate τ and underestimate α. Putting our
results into the context of previous work, we propose that high-
frequency, high-DM scattered pulsar observations are in general
well modelled by the simple assumption of isotropy. Our measured
average scattering spectral index, 〈α〉= 4.0 ± 0.6, agrees with both of

the simplest theoretical models, 4 (thin screen) or 4.4 (Kolmogorov
continuum), to within 1σ uncertainty. More complex cases, in
particular pulsars where anisotropic scattering is measurable, are
observable at lower frequencies, whereas the large distances to the
pulsars observable at our frequency band will result in an average
scattering effect that is net isotropic. Our results show no evidence of
flatter power laws at lower frequencies that might indicate a truncated
scattering screen or the effect of the inner scale.

This large body of measured scattering parameters provides a
strong basis from which small variations can be determined accu-
rately. For example, extreme scattering events (Walker 2007) could
be detected and studied by investigating how α varies in observations
of the same pulsars at different times. The software we developed to
perform the scattering analysis is called SCAMP-I (SCAtter Modelling
for Pulsars - I). It is suitable for time domain modelling of single-
component scattered pulse profiles and is available for use at
https://github.com/pulsarise/SCAMP-I
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A P P E N D I X A : TH E O R E T I C A L S O U R C E S O F
P O O R τ M O D E L L I N G

We looked to quantify theoretically the circumstances under which
we would expect τ–σ covariance or spectral flattening (as described
in Sections 4.2 and 4.3) to appear in our scatter modelling. We
consider the functional form of the model we apply – the convolution
of a Gaussian with an exponential decay – which is as follows:

I (t) = 1

2
exp

(
− t

τ
+ σ 2

2τ 2

)(
1 + erf

(
t√
2σ

− σ√
2τ

))
. (A1)

As σ tends to 0, this equation tends to pure exponential decay, as
expected. The extent to which σ is relevant to the shape of the

profile depends on the error function term x =
(

t√
2σ

− σ√
2τ

)
. For a

given ratio of σ /τ , the Gaussian part of the model will play a large
contribution in the overall model shape up to some time t0, after
which the exponential decay will dominate the pulse profile shape.
We define t0 as the time that, for a given ratio of σ and τ , gives x =
2. This is based on the shape of the error function, since at x = 2 the
functional form starts deviating strongly from erf(x) = 1.

In Fig. A1 we plot equation (A1), along with its constituent
Gaussian and exponential components, for four different values of
σ /τ . For each, we shade that part of the profile where t < t0. As
we can see in the figure, a small σ /τ results in small t0, so that
the majority of the pulse profile shape (t > t0) is dominated by
exponential decay and τ can be determined easily. If σ /τ is large,
then we may expect to see covariance between the measured values

Figure A1. Plots indicating how the Gaussian and exponential components
of our scattering model contribute to the overall model shape, and how that
changes with increasing σ /τ . Dashed line: the exponential decay function
described by equation (3). Dotted line: a Gaussian function. Solid line: the
convolution of these two, described by equation (A1). Grey vertical line: this
marks the phase point at which the combined model intensity (solid line)
drops to 10 per cent of its maximum. Grey shading: this indicates the region
where the Gaussian (dotted line) is contributing strongly to the overall profile
shape (solid line). The definition of a strong contribution is given in the text.
Each subplot shows the same set of functions: the changed curve shapes
results from the changed ratio of σ /τ , which is marked in the top right corner
of each subplot.

of σ and τ . Replacing our Gaussian model with a profile observed at
a high frequency, which is considered to be unaffected by scattering,
has previously been a common practice, however not accounting for
profile evolution brings its own inaccuracies.

We define the Gaussian contribution as too large when t0 coincides
with the point at which the total intensity has dropped to 10 per cent
of its peak. We mark the 10 per cent intensity point with a vertical
line in Fig A1. This means that the cut-off ratio of σ /τ for which the
underlying pulse profile shape interferes too much in the scattering
measurements to be able to reliably separate σ from τ , is σ /τ ∼ 1.

In Fig. A2, we show the histograms of values of σ /τ for two
groups of pulsars. For the pulsars for which we are confident of the
fit at all frequencies, we have calculated σ /τ at the highest observing
frequency, and plotted the values as a shaded grey histogram. For
the pulsars showing the spectral flattening behaviour, we have taken
σ /τ at the highest frequency for which the values are still following
power-law behaviour: we treat this as the cut-off point. The histogram
of these values is plotted in Fig. A2 as a stepped histogram. We see
that the majority of pulsars with no spectral flattening have σ /τ <

0.7, in accordance with our theoretical estimates that the parameters
can be measured accurately for smaller values of σ /τ . By contrast,
the histogram of cut-off values peaks at σ /τ ∼ 0.8, implying that
the flattening we see at higher frequencies is indeed due to the loss
of ability to separate the intrinsic profile shape from the exponential
scattering. Our theoretical estimate of σ /τ = 1 being the cut-off for
successful modelling is intended only to be indicative, since it takes
no account of the variety of signal-to-noise ratios or intrinsic profile
shapes of our observations. It is therefore unsurprising that we see
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Figure A2. Histograms of the ratios of measurement results σ /τ . Grey:
values for the highest frequency profile fits for the pulsars with a standard
power-law τ -frequency relationship. Transparent, black-edge: values for the
highest frequency profile fit that is still following the power-law relationship
for those pulsars exhibiting tau-flattening.

large spreads in both histograms in Fig. A2. In particular, the left-
hand side of the stepped histogram is consistent with explaining those
pulsars which, like PSR J1653−4249, may have extra components
that are altering the scattering behaviour of the pulsar in comparison
to what we might expect.

These results indicate the extent to which individual measurements
of τ of single profiles are vulnerable to many sources of bias and error.
Scattering properties of pulsars can only be characterized reliably in
cases where scattering measurements can be performed across large
frequency bands. Further, the scattering results for a single pulsar,
and the science that can be inferred from them, are best understood
in the wider context of all of the other pulsars observed and analysed
with the same method.

A P P E N D I X B: SI M U L AT I O N : H OW EX T R A
PROFILE COMPONENTS AFFECT
SCATTERING TIME-SCALE MEASUREMENT

We attempted to replicate the output of the scatter modelling
process of PSR J1653−4249 with simulated data, to test whether
the presence of a hidden second component in the pulse profile
could be responsible for the spectral flattening behaviour seen in this
pulsar’s modelling results. We simulated a pulse profile made up of
two Gaussian components: a large main component and a smaller,
narrow secondary component that sits to the right of the main peak.
On top of this, we introduced profile evolution: the width of the
main component decreases with increasing frequency according to
a power law plus constant relationship (Thorsett 1991), and the flux
spectral index of the secondary component is flatter than that of the
main one, reflecting what is commonly seen in observations. We
defined the scattering time-scale at the lowest frequency to be the
same as that measured for the data. We then applied a spectral index
of α = 4.4 to τ to obtain its value at other frequencies. We defined

Figure B1. Profiles for a simulation of a scattered double-component pulsar,
showing the lowest (top) and highest (bottom) frequency simulated profiles,
respectively. Solid line: the simulated profile. Dashed lines: the two noiseless
components that comprise the simulation. These are added together and then
noise is added to generate the simulated profile. The subplots are zoomed in
to show only the on-pulse region.

the height, width, and position the second component such that the
overall profile shapes of the simulation appear similar to those of
the real pulsar. Fig. B1 shows how the two components combine
to make the simulation profile shapes at the lowest and highest
frequencies.

Performing the MCMC fit on this simulation, we obtained results
for τ and σ that we compare to those of the data in Fig. B2. The
effect of the second component is as expected: its presence does little

Figure B2. Log–log plot of scattering time-scale τ and intrinsic Gaussian
standard deviation against frequency, similar to Fig. 4. Black: modelling
results for PSR J1653−4249, showing τ (crosses) and σ (points). Blue
triangles: modelling results for a simulated scattered double-component
pulsar, showing τ (upright) and σ (upside-down). Blue dashed lines: input
values of τ and σ used to generate the simulated pulse profiles.
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to alter the fit parameters at the low-frequency end, where they are
recovered well, but at higher frequencies we see a flattening off in the
spectral behaviour of both τ and σ that mimics what we witnessed in
our measurements for PSR J1653−4249. This lends credence to our
choice, for pulsars like PSR J1653−4249, to keep only those values

of τ where a power law is still being followed, and infer an α from
those.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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