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ABSTRACT
Accurate mass-loss rates and terminal velocities from massive stars winds are essential to obtain synthetic spectra from radiative
transfer calculations and to determine the evolutionary path of massive stars. From a theoretical point of view, analytical
expressions for the wind parameters and velocity profile would have many advantages over numerical calculations that solve
the complex non-linear set of hydrodynamic equations. In a previous work, we obtained an analytical description for the fast
wind regime. Now, we propose an approximate expression for the line-force in terms of new parameters and obtain a velocity
profile closed-form solution (in terms of the Lambert W function) for the δ-slow regime. Using this analytical velocity profile,
we were able to obtain the mass-loss rates based on the m-CAK theory. Moreover, we established a relation between this new
set of line-force parameters with the known stellar and m-CAK line-force parameters. To this purpose, we calculated a grid of
numerical hydrodynamical models and performed a multivariate multiple regression. The numerical and our descriptions lead
to good agreement between their values.

Key words: hydrodynamics – methods: analytical – stars: early-type – stars: mass-loss – stars: winds, outflows.

1 IN T RO D U C T I O N

The knowledge of stellar wind properties of massive stars is fun-
damental for understanding stellar evolution processes, different
evolutionary scenarios and enrichment of star’s nearby environments.

Accurate wind parameters (mass-loss rate and terminal velocity)
are crucial for the study of the wind properties of massive stars.
Insights into the physics of stellar winds are attained by studying
the effects of wind parameters on the emergent line spectrum and by
comparing the latter with observations. From a theoretical point of
view, this implies to solve highly non-linear equations in which the
radiation field and hydrodynamics are strongly coupled.

Winds of massive stars are driven by the transfer of momentum
from the radiation field to the plasma by scattering processes in the
spectral lines (Lucy & Solomon 1970). Currently, these winds are
best described by the m-CAK theory (Castor, Abbott & Klein 1975;
Friend & Abbott 1986; Pauldrach, Puls & Kudritzki 1986).

Generally, there are many approximations that reduce considerably
the complexity of the computation of the hydrodynamic and the
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NLTE radiative transfer solutions. One example is the extensive use
of a simple analytical approximation for the velocity field, the so-
called β-law, first proposed by Lamers & Rogerson (1978). A value of
β � 0.8−1.2, generally agrees very well with the m-CAK numerical
hydrodynamic solution (Lamers & Cassinelli 1999). This value of
β is determined empirically by fitting the observed line profile with
a synthetic one. This approximation has been proved to be very
effective and efficient to describe the winds of O- and early B-type
supergiants. However, in the case of late B- and A-type supergiants
there is a clear tendency towards higher values of β, even with
values larger than 3, leading to inconsistencies with respect to the
hydrodynamic theory (Stahl et al. 1991; Verdugo, Talavera & Gómez
de Castro 1999; Crowther, Lennon & Walborn 2006; Lefever, Puls &
Aerts 2007; Markova & Puls 2008; Searle et al. 2008; Haucke et al.
2018). Therefore, accurate analytical approximations of the m-CAK
hydrodynamic equations are indispensable to have a self-consistent
coupling between the hydrodynamics and multidimensional radiative
transfer problems in moving media.

For the case of the fast regime (standard m-CAK solution), this
issue was addressed by Villata (1992), Müller & Vink (2008), and
Araya, Curé & Cidale (2014). The aim of this work is to extend the
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procedure of Araya et al. (2014) to the δ-slow regime. The δ-slow
solution,1 found by Curé, Cidale & Granada (2011), is based on
the m-CAK theory that describes the wind velocity profile when the
ionization-related line-force parameter δ takes higher values than the
ones provided by the standard m-CAK solution (see, e.g. Lamers &
Cassinelli 1999, and references therein). High values of δ, even larger
than 1/3, which correspond to a wind with neutral hydrogen as a trace
element (Puls, Springmann & Lennon 2000), are expected in strong
ionization gradients (see also Kudritzki 2002). The δ-slow solution
is characterized by low terminal speeds (v∞) and might explain the
obtained values for late-B and A-type supergiants. This solution also
seems to fit quite well the observed anomalous correlation between
the terminal and escape velocities found in A supergiants, as well as
their corresponding wind momentum–luminosity relationship (Curé
et al. 2011).

With the purpose to have an approximate solution from the
hydrodynamic, Araya et al. (2014) developed an expression in terms
of the stellar and m-CAK line-force parameters (α, k, and δ) and
applied it to the fast regime. This expression, based on the works
of Müller & Vink (2008) and Villata (1992), describes the line
acceleration as function of the radial distance, allowing to solve
analytically the hydrodynamic stationary equation of motion. The
use of expressions for both radiation force and velocity profile as a
function of the line-force parameters can provide a clear view into
how the line-driven mechanism is related with the hydrodynamics.

On the other hand, it is important to obtain a simple representation
of the radiation force and the derived slow solutions under such
different ionization conditions. Therefore, a significant contribution
of this work consists in offering a quick way to generate an
analytical expression to estimate mass-loss rates for these alternative
wind regimes. There are currently no parametric expressions that
can be used for this purpose without the need to fully solve the
hydrodynamic equations.

This work is organized as follows. Section 2 presents briefly the
hydrodynamic equations for line-driven winds and the dimensionless
form of the equation of motion. In Section 3, the basic concepts
developed by Müller & Vink (2008) are recapitulated including their
line acceleration term as function of the radial distance. Then, this
line acceleration term is modified with the purpose to obtain a better
agreement with the δ-slow solution. In Section 4, a recipe to obtain
the line acceleration parameters (required by the line acceleration
term) is developed, based on a grid of hydrodynamic models and a
multivariate multiple regression. Then, an analytical expression for
the δ-slow solution is developed and compared with the numerical
models described in Section 5. In Section 6, we give our conclusions.
In addition, a recipe to derive the mass-loss rate based on our
expression is provided in the Appendix.

2 TH E S TA N DA R D H Y D RO DY NA M I C A L W I N D
M O D E L

The CAK theory for line-driven winds was originally developed
by Castor et al. (1975). This theory describes, for a point source,
a stationary, one-dimensional, non-rotating, isothermal, outflowing
wind with spherical symmetry. Adopting these assumptions, and
neglecting the effects of viscosity, heat conduction and magnetic
fields, the equations of mass conservation and radial momentum

1Previously, Curé (2004) found another type of slow solution for rapidly
rotating stars, called �-slow solution.

state:

4π r2 ρ v = Ṁ, (1)

and

v
dv

dr
= − 1

ρ

dp

dr
− G M∗(1 − �E)

r2
+ gline. (2)

Here, v is the fluid radial velocity, dv/dr = v
′

is the velocity
gradient and gline is the line acceleration. All other variables have
their standard meaning (for a detailed derivation and definitions of
variables, constants and functions, see Curé 2004).

The so-called m-CAK theory, which include the effects of rotation
and a disc-like source, was developed by Friend & Abbott (1986) and
Pauldrach et al. (1986), based on a general expression from Abbott
(1982) for the line force:

gline = C

r2
fFD(r, v, v′)

(
r2 v v′)α

(
nE11

W (r)

)δ

, (3)

where the coefficient C (eigenvalue) depends on the mass-loss rate Ṁ

and the line-force parameter k (see equation A5). W(r) is the dilution
factor, nE11 is the electron number density nE in units of 10−11 cm−3,
and fFD is the finite disc correction factor. The m-CAK line-force
parameters are: α, k, and δ.

The momentum equation (equation 2) can be expressed in a
dimensionless form (see e.g. Müller & Vink 2008; Araya et al. 2014)
as

v̂
dv̂

dr̂
= − v̂2

crit

r̂2
+ ĝline − 1

ρ

dρ

dr̂
, (4)

with r̂ = r/R∗, v̂ = v/a, and v̂crit = vesc/a
√

2. Here, R∗ is the stellar
radius, a is the isothermal sound speed, v̂crit is the dimensionless
rotational break-up velocity, and vesc is the escape velocity. The
dimensionless line acceleration reads

ĝline = R∗
a2

gline. (5)

Using equation (1) together with the equation of state for an ideal
gas (p = a2ρ), the dimensionless equation of motion is(

v̂ − 1

v̂

)
dv̂

dr̂
= − v̂2

crit

r̂2
+ 2

r̂
+ ĝline. (6)

In general, the calculation of the line acceleration involves the
coupling of hydrodynamics with the radiative transport in NLTE. A
very successful approach is to calculate the line acceleration using
the Sobolev approximation. The pioneering work of Castor et al.
(1975) laid the foundations of CAK theory and later improvements
(m-CAK). A further description was done by Feldmeier (1998)
who extended the CAK approach using a second order Sobolev
approximation, i.e., gline = gline(r, v, v

′
, v

′′
). However, in this work,

to obtain an analytical expression of the δ-slow solution, we will
use a radial dependence for the line acceleration following the
methodology used by Araya et al. (2014), i.e. gline = gline(r). This
approach allows to obtain an analytical expression for the velocity
field in terms of the Lambert W function (see Section 3).

3 LI NE ACCELERATI ON

In this section, we review the basic concepts developed by Müller &
Vink (2008, hereafter MV08) to derive, later on, a general analytical
expression for the velocity profile in the frame of the δ-slow radiation-
driven wind regime for massive stars. We demonstrate that this
expression enables to integrate the equation of motion (equation 6),
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leading to an analytical expression for the δ-slow wind velocity
profile.

3.1 The fast regime approximation

In the framework of m-CAK stellar wind theory, MV08 present a
mathematical expression for the line acceleration via a parametrized
description that depends only on the radial coordinate. Using Monte
Carlo multi-line radiative transfer calculations (de Koter, Heap &
Hubeny 1997; Vink, de Koter & Lamers 1999) and a velocity profile
from a β-law, these authors computed the line acceleration. Then,
the numerical line acceleration, which collects all the physically
motivated mathematical properties for the radiative line acceleration
term, is expressed by the following function:

ĝline
MV08(r̂) = ĝ0

r̂1+δ1

(
1 − r̂0

r̂ δ1

)γ

, (7)

where ĝ0, δ1, r̂0, and γ are the MV08 line acceleration parameters.
It is important to note that these parameters, lack of any physical
meaning, and besides, are not directly related to k, α, and δ parameters
from m-CAK theory.

Replacing equation (7) in equation (6), the dimensionless equa-
tions of motion are derived and a fully analytical velocity profile
is obtained (see MV08 for details about the methodology used to
obtain this solution) by means of the Lambert W-function (Corless
et al. 1993, 1996; Cranmer 2004).

The line acceleration expression given by MV08 (equation 7)
results in a good approximation for the m-CAK line force for
δ ≤ 0.2, but this expression fails for δ-slow solutions, when δ

� 0.25. Overall, this approximation gives a poor agreement with
respect to the numerical δ-slow solution (from m-CAK theory). The
numerical solutions are obtained from the stationary hydrodynamic
code HYDWIND (Curé 2004).

Araya et al. (2014) developed an analytical solution for the velocity
of the fast wind regime in terms of the stellar and m-CAK line-
force parameters combining the methodology from MV08 and the
line acceleration proposed by Villata (1992). Unfortunately, this
expression also fails when the line force parameter δ is higher
than about 0.3, because in this case a term from the proposed line
acceleration expression turns complex. From a mathematical point
of view, high values of δ would require high values of α in order
to obtain an expression with real values, but such kind of α values
would be totally unphysical.

3.2 The new δ-slow regime approximation

In view of the unsatisfactory results obtained when applying the
approximate description of the wind velocity for the δ-slow case, we
decided to modify the functional form of the line acceleration given
by MV08 in order to obtain a better description of the δ-slow wind.
Thus, our proposed line acceleration as follows:

ĝline
new(r̂) = ĝ0

r̂1+δ1

(
1 − 1

r̂ δ2

)γ

, (8)

where ĝ0, δ1, δ2, and γ are the new set of line acceleration parameters.
The new expression follows the same mathematical properties

as MV08’s but the inclusion of the δ2 parameter yields to a better
agreement with the numerical line acceleration from the m-CAK
model.

Based on this new definition for the radiation force, the new
dimensionless equation of motion reads:(

v̂ − 1

v̂

)
dv̂

dr̂
= − v̂2

crit

r̂2
+ 2

r̂
+ ĝ0

r̂1+δ1

(
1 − 1

r̂ δ2

)γ

. (9)

The same methodology developed by MV08 is employed to solve
the new equation of motion and the solution is given through the
Lambert W function,

v̂(r̂) = √−Wj (x(r̂)), (10)

with

x(r̂) = −
(

r̂c

r̂

)4

exp

[
−2 v̂2

crit

(
1

r̂
− 1

r̂c

)

−2
(
Iĝline (r̂) − Iĝline (r̂c)

) − 1
]
, (11)

where

Iĝline ≡
∫

ĝline(r̂)dr̂

= −
g0 r̂−δ1

2F1

[
−γ, δ1

δ2
, 1 + δ1

δ2
, r̂−δ2

]
δ1

, (12)

being 2F1 the Gauss hypergeometric function. Note that the constant
of integration vanishes due to the subtraction between the integrals
at r̂ and r̂c. The critical (or sonic) point, r̂c, is obtained numerically
making the RHS of equation (9) equal zero.

Finally, taking into account the numerical solution from HYDWIND

as reference, a good agreement is obtained with our expression
(equation 10) for the velocity profile.

4 LI NE ACCELERATI ON PARAMETERS

In Araya et al. (2014), a relationship between the MV08 line-force
parameters (ĝ0, δ1, r̂0, and γ ) and the stellar and m-CAK line-
force parameters was given. This relationship is an easy-to-use and
versatile method to compute the velocity profile analytically, because
both stellar and m-CAK line force parameters are already available
for a wide range of spectral types (see Abbott 1982; Pauldrach et al.
1986; Lamers & Cassinelli 1999; Noebauer & Sim 2015; Gormaz-
Matamala et al. 2019; Lattimer & Cranmer 2021).

To derive a similar relationship, now for the δ-slow regime,
we created a grid of m-CAK hydrodynamic models and develop
that relationship applying a multivariate multiple regression (MMR
Rencher & Christensen 2012; Mardia, Kent & Bibby 1979).

4.1 Grid of Hydrodynamic Models

We built a HYDWIND grid of stellar models for δ-slow solutions.
The grid points were selected to cover the region of the Teff–log g

diagram where the B- and A-type supergiants are located.
For each given pair of stellar parameters (Teff, log g), the stellar

radius was calculated from Mbol by means of the flux-weighted
gravity-luminosity relationship (Kudritzki, Bresolin & Przybilla
2003; Kudritzki et al. 2008), but in addition we added 20 values
for stellar radius (from 5 R
 to 100 R
 in steps of 5 R
). The surface
gravities comprise the range of log g = 2.7 down to about 90 per cent
of the Eddington limit, in steps of 0.15 dex. We considered 22
effective temperature grid points, ranging from 9000 to 19 500 K,
in steps of 500 K. These Teff and log g ranges were adopted to
describe mainly the wind of intermediate and late B supergiants.

The m-CAK line-force parameters used for each set of (Teff, log g)
values are given in Table 1. We considered only high values of δ in
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Table 1. Ranges of the m-CAK line-force parameters for the grid of models.

Parameter Range

α 0.45–0.69 (step size of 0.02)
k 0.05–1.00 (step size of 0.05)
δ 0.26–0.35 (step size of 0.01)

Figure 1. Location of the grid models in the Teff–log g plane. Blue and green
dots represent the non-converged and converged solutions, respectively. Red
solid lines represent the evolutionary tracks for stars of 7M
 to 60M
 without
rotation (Ekström et al. 2008), while the black lines correspond to the zero
age main-sequence (ZAMS) and the terminal age main-sequence (TAMS).

order to obtain δ-slow solutions.
Then, a huge combinations of parameters were executed in

HYDWIND, considering the standard boundary condition at the stellar
surface, for the optical depth, τ ∗ = 2/3. In addition, it is worth noting
that only some combinations of all parameters used in HYDWIND con-
verged to a physical stationary solution, i.e. we obtained 141 067 δ-
slow solutions from our initial set (about a 2 per cent of our initial
input). In the Teff–log g plane, see Fig. 1, we show in green dots all
converged models, whereas blue dots indicate that no δ-slow solution
was achieved for the given combination of parameters. Furthermore,
the number of converged δ-slow solutions, in the Teff–log g plane,
shows that most of the models are concentrated in the region of
log g ≥ 1.65, with a peak around Teff = 14 kK and log g = 2.4.
Also, few models converged with values of δ ≤ 0.28 and α ≥ 0.57.
This behaviour must be considered at the moment to define the limits
of our approximation for δ-slow solutions.

Finally, for each hydrodynamic model we fitted (Least Squares) the
m-CAK line acceleration (ĝline) with our proposed line acceleration
expression (equation 8) in order to obtain the corresponding new line
acceleration parameters (ĝ0, δ1, δ2, and γ ).

4.2 Multivariate multiple regression

To derive the relationship for the new line acceleration parameters
(ĝ0, δ1, δ2, and γ ) as function of stellar (Teff, log g, R∗/R
), and m-
CAK line-force parameters (k, α, δ), an MMR is applied to our grid
of models.

A multiple multivariate regression model is

Y = XB + Z, (13)

where Y is a n × p matrix of data in the p-dependent variables, X is
a n × (1 + q) matrix of regression: a first column of 1’s and in the
remaining columns the data of the q independent variables, B is a (1
+ q) × p matrix of parameters (the intercept and q parameters, one

Table 2. Coefficient of determination (R2) of the estimated models.

Model R2

ĝ0.27
0 0.9443

(δ1 + 1)5.3 0.6016
δ0.45

2 0.3408
(γ + 1)−3.56 0.7122

for each of the q independent variables), and Z is a n × p matrix of
measurement error.

The model is the same for each dependent variable (yi, i = 1, . . . ,
p), but with different coefficients (β ij, i = 0, . . . , p; j = 0, . . . , q),
i.e.

yi = βi0 + βi1 Teff + βi2 log g + βi3 R∗/R
 +
βi4 k + βi5 α + βi6 δ + z for i = 1, . . . , p, (14)

where z represents the measurement errors. Each row of Y repre-
sents an observation of each of the p measured response variable.
Additional assumptions in the model are that the expectation of Y
is given by E(Y) = XB or E(Z) = 0, and the covariance matrix of
the vectors in the rows of Y is �, that is, the columns in Y can
be correlated. Also, there is an assumption of normality about the
response variables that allows to perform the hypothesis testing in
regression.

For our problem, the dependent variables are ĝ0, δ1, δ2, and γ , and
the independent variables are Teff, log g, R∗/R
, k, α, and δ. The data
base has n = 141 067 records.

A data transformation is necessary to obtain a good fit of the
linear model. Thus, a Box–Cox transformation (Seber & Lee 2012)
is applied to each dependent variable. This application is performed
with the public domain software R Core Team (2013). The transfor-
mations are ĝ0 → ĝ0.27

0 , δ1 → (δ1 + 1)5.3, δ2 → δ0.45
2 , γ → (γ +

1)−3.56.
Finally, the estimated parameters are as follows:

ĝ0.27
0 = −4.548 − 1.890 × 10−4 Teff +

4.393 log g + 3.026 × 10−2R∗/R
 −
4.802 × 10−3 k + 3.781 α − 3.212 δ, (15)

(δ1 + 1)5.3 = −4.623 − 3.743 × 10−4 Teff +
1.489 × 101 log g + 1.148 × 10−1R∗/R
 +
2.415 k + 9.553 × 101 α − 1.320 × 102 δ, (16)

δ0.45
2 = 5.359 + 8.262 × 10−5 Teff −

1.327 log g − 8.327 × 10−3R∗/R
 +
2.181 × 10−1 k + 9.618 × 10−1 α − 2.296 δ (17)

and

(γ + 1)−3.56 = −1.031 + 7.254 × 10−6 Teff +
2.994 × 10−1 log g + 3.097 × 10−3R∗/R
 +
1.836 × 10−1 k − 4.828 × 10−1 α + 1.254 δ, (18)

with R2 values (proportion of variability of the dependent variable
explained by the regression) given in Table 2. Therefore, the regres-
sion explains almost all the variability of ĝ0.27

0 , a large amount of the
variability of (δ1 + 1)5.3 and (γ + 1)−3.56, and a minor proportion of
δ0.45

2 .
After fitting the MMR, the estimated values for each dependent

variable, ĝ0.27
0 , (δ1 + 1)5.3, δ0.45

2 , (γ + 1)−3.56, are obtained and later
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transformed into ĝ0, δ1, δ2, and γ through their respective inverse
functions.

This new relationship for the line acceleration parameters (ĝ0,
δ1, δ2, and γ ) as function of stellar and m-CAK line force pa-
rameters is valid only for δ-slow solutions, specifically for values
of δ between 0.29 and 0.35. Therefore, it cannot be compared or
used with others parametrizations obtained using an approximation
for the velocity profile of fast solution (see e.g. Muijres et al.
2012).

5 THE APPROX IMATIVE SOLUTION

Once we know the relationship (estimated model) between the line
acceleration parameters as a function of the stellar and m-CAK line-
force parameters, we can use equation (10) to obtain the velocity
profile of the δ-slow wind in terms of the Lambert W-function.

We point out that considering the number of converged models for
some values of α and δ, we limit our approximation to values of α

between 0.45 and 0.55, and values of δ between 0.29 and 0.35. In
addition, we could expect a lower precision for values of log g lower
than 1.65.

In the following of this section, we discuss the accuracy of the
terminal velocities and the derivation of mass-loss rates obtained
using this analytical treatment.

5.1 Terminal velocity

To measure the goodness of fit of the estimated model, the terminal
velocity obtained by HYDWIND is compared with our formulated
solution.

We consider two terminal velocity vectors: vH
∞ defined as the

terminal velocity calculated with HYDWIND (hereafter ‘true terminal
velocity’) and vA

∞ as the terminal velocity obtained from the our
solution at r̂ = r/R∗ = 100, i.e.

vA
∞ = a v̂A

∞ = a
√

−W−1(x(100)). (19)

The relative error of the estimated terminal velocity vA
∞ with respect

to the true terminal velocity is calculated by

Relative Error[ per cent] = 100 × |vH
∞ − vA

∞|
vH∞

, (20)

We obtain that the 0.90 quantile of the distribution of the relative
error are below 21 per cent, and the 0.95 quantile of them are below
27 per cent (q0.95 = 27.32).

5.2 Mass-loss rate

Although our solution is developed to obtain a wind velocity profile,
we can derive a recipe to obtain a mass-loss rate. This recipe is based
on the m-CAK theory, specifically the work of Curé (2004), where the
velocity profile is described by our proposed solution (equation 10).
The full procedure is explained in the Appendix.

Then, similar to the procedure performed for the terminal velocity,
we measure the goodness of fit of the estimated mass-loss rates of the
models by comparing the values (vector) calculated with HYDWIND,
ṀH, and the ones obtained with our solution, ṀA.

The relative error of the estimated mass-loss rate ṀA with
respect to the true mass-loss rate ṀH was calculated analogously
to the velocity error (equation 20). In comparison with the terminal
velocities, the mass-loss rates have slightly higher relative errors.
We observe that most of the data are below ∼ 63 per cent. The 0.90

quantile of the distribution of the relative error is below 39 per cent
and the 0.95 quantile is about 46 per cent (q0.95 = 46.40).

Finally, the recipe for the calculation of the estimated mass-loss
rate as a function of stellar and m-CAK line-force parameters (Teff,
log g, R∗/R
, k, α, and δ) is the following:

(i) Compute ĝ0, δ1, δ2, and γ from equations (15) through (18),
calculating their respective inverse functions.

(ii) Calculate v(r) from the analytical expression given in equa-
tion (10).

(iii) Obtain ṀA using v(r) from (ii) and its gradient in the m-CAK
theory (see Appendix A).

6 D I SCUSSI ON AND C ONCLUSI ONS

In the frame of the δ-slow wind regime, we have proposed a new
approximate expression for the line force based on the MV08
methodology. This new expression is a pure function of the radial
coordinate and depends on the following parameters: ĝ0, δ1, δ2,
and γ . With this line force we derived an analytical expressions
for the velocity profile, terminal velocity and a recipe for mass-
loss rate (based on m-CAK theory and our velocity approximation).
Furthermore, after generating a grid of hydrodynamic models, we
apply a multivariate multiple regression to obtain a relationship
among these new line-force parameters with the stellar (Teff, log g,
and R∗/R
) and m-CAK line-force parameters (α, k, and δ).

The m-CAK line force parameters should be in principle self-
consistently calculated coupling the hydrodynamics with the contri-
bution to the line acceleration from hundreds of thousand spectral
lines (Pauldrach 2003; Gormaz-Matamala et al. 2019; Lattimer &
Cranmer 2021; and references therein). This type of calculations has
not been performed for the δ-slow regime, so far. Nevertheless, based
on preliminary line-profile fittings, using the δ-slow solution, Cidale
et al. (2017) found that the value of α is in the same range as in the
fast regime, while k is a factor of 2–3 lower.

Notwithstanding we can perform a test of our solution using α

and k parameters from the fast regime. To this purpose, we consider
stellar and wind parameters from the work of Curé et al. (2011),
where they explore the influence of ionization changes throughout
the wind in the velocity profile for theoretical models of A-type
supergiant stars. Thus, we select the models that match our grid
extension (dismissing the region where δ ≤ 0.28 and α ≥ 0.57) in
order to compare it to our expression. In addition, with purpose to
test the full range of our work, we also consider the parameters from
models of Venero et al. (2016), where they perform a numerical
study of hydrodynamic solutions within the δ-slow domain, based
on fundamental parameters of typical B supergiants stars.

The stellar and wind parameters from the mentioned works are
listed in Table 3. This table also gives the values of the mass-loss
rate and terminal velocity obtained from our analytical solution
together with those values calculated from hydrodynamic results
(HYDWIND code). All hydrodynamic models are calculated without
stellar rotation.

The accuracy of our approach is reflected in the low relative
errors for the mass-loss rate and terminal velocity obtained from
our solution and the hydrodynamical code. For the terminal velocity,
we obtain a relative error mean and median of 15.6 per cent and
15 per cent, respectively. In the case of the mass-loss rate, a relative
error mean and median of 10.4 per cent and 7.8 per cent are obtained,
respectively.

The use of approximate expressions that describe closely the
hydrodynamics of stellar winds give the advantage of solving the
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Table 3. Comparison of the wind parameters obtained via the new analytical solutions (vA∞, ṀA) with hydrodynamic calculations from HYDWIND

(vH∞, ṀH). The models with prefix R and T are from Curé et al. (2011) and Venero et al. (2016), respectively.

Model Teff log g R∗ k α δ vH∞ vA∞ ṀH ṀA

(kK) (dex) (R
) (km s−1) (km s−1) (10−6 M
 yr−1) (10−6 M
 yr−1)

R01 11.0 2.0 70 0.37 0.49 0.29 210 188 0.0052 0.0048
R02 11.0 2.0 70 0.86 0.49 0.33 201 179 0.20 0.19
R05 11.0 2.0 60 0.86 0.49 0.34 185 148 0.15 0.16
R07 10.0 2.0 60 0.37 0.49 0.30 207 161 0.00051 0.00042
R08 10.0 2.0 60 0.86 0.49 0.33 187 155 0.017 0.017
R11 10.0 1.7 80 0.37 0.49 0.30 157 116 0.0092 0.0091
R12 10.0 1.7 80 0.86 0.49 0.34 152 106 0.52 0.61
R15 9.5 2.0 60 0.37 0.49 0.30 193 162 0.00015 0.00014
R16 9.5 2.0 60 0.86 0.49 0.33 136 157 0.0048 0.0047
R19 9.5 1.7 100 0.37 0.49 0.30 175 185 0.0038 0.0031
R20 9.5 1.7 100 0.86 0.49 0.34 168 178 0.15 0.11
R23 9.0 1.7 100 0.37 0.49 0.33 167 180 0.00025 0.00019
R24 9.0 1.7 100 0.86 0.49 0.33 171 179 0.047 0.037
T15a 15.0 2.11 52 0.32 0.50 0.30 200 158 0.90 0.92
T15b 15.0 2.11 52 0.32 0.50 0.33 191 150 0.84 0.92
T15c 15.0 2.11 52 0.32 0.50 0.35 186 144 0.78 1.00
T17a 17.0 2.24 56 0.34 0.50 0.30 236 202 6.1 6.2
T17b 17.0 2.24 56 0.34 0.50 0.33 225 192 7.5 8.0
T17c 17.0 2.24 56 0.34 0.50 0.35 220 186 9.0 10.0
T19a 19.0 2.50 40 0.32 0.50 0.30 270 233 2.8 2.7
T19b 19.0 2.50 40 0.32 0.50 0.33 257 222 3.3 3.3
T19c 19.0 2.50 40 0.32 0.50 0.35 251 216 3.8 4.1

radiative transfer problem for moving media in an easy way. In
particular, this new expression might properly describe the winds of
late B- and A-type supergiants, without considering a β-law with
high values (β � 3) that lack of any physical justification in the
frame of m-CAK fast solution.

The new expressions for the δ-slow solutions together with the
previously derived expression for the fast solutions (Araya et al.
2014) provide an easy-to-use procedure to calculate m-CAK wind
hydrodynamics.

Furthermore, it is important to remark that these expressions that
represent the hydrodynamics of the wind can be also applied to stellar
evolution codes, where mass-loss rates are necessary to estimate the
evolutionary phases of a star.

In future, we plan to consider the stellar rotation into our expres-
sions and, in addition, compare the synthetic line profiles calculated
from wind velocity profiles using a hydrodynamic code and our
solutions.
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Verdugo E., Talavera A., Gómez de Castro A. I., 1999, A&AS, 137, 351
Villata M., 1992, A&A, 257, 677
Vink J. S., de Koter A., Lamers H. J. G. L. M., 1999, A&A, 350, 181

A P P E N D I X : C A L C U L AT I O N O F TH E
MASS-LOSS RATE

The calculation of the mass-loss rate Ṁ is obtained through the m-
CAK theory, considering the general expression for the line force and
the study of Curé (2004). From this work, we can obtain the location
of the singular point and the mass-loss rate using the singularity
and regularity conditions (expressed with a set of new variables).
In our case, the variables related to velocity are obtained from our
proposed solution. It is important to note that this singular point
is the m-CAK one and not the critical point that can be obtained
from equation (9) that corresponds to the sonic point. The change of
variables introduced are as follows:

u = −R∗
r

, v̂ = v

a
, and v̂′ = dv̂

du
. (A1)

Considering these new variables, the equation of motion reads

F (u, v̂, v̂′) ≡
(

1 − 1

v̂2

)
v̂

dv̂

du
+ A + 2

u

−C ′ FC g(u) (v̂)−δ

(
v̂

dv̂

du

)α

= 0, (A2)

where

A = G M(1 − �)

a2R∗
= v2

esc

2a2
, (A3)

C ′ = C

(
ṀD

2π

10−11

a R2∗

)δ

(a2R∗)(α−1), (A4)

C = �GMk

(
4π

σE vth Ṁ

)α (
DṀ

2π

)δ

, (A5)

and

g(u) =
(

u2

1 − √
1 − u2

)δ

. (A6)

The constant D is defined as

D = (1 + ZHeYHe)

(1 + 4 YHe)

1

mp

, (A7)

where mp is the mass of the proton, YHe is the helium abundance
relative to hydrogen (nHe/nH), and ZHe is the number of free electrons
provided by helium.

To calculate the location of the singular point uc, and the eigen-
value, C

′
, it is necessary to satisfy simultaneously, the singularity

condition,

∂

∂v̂′ F (u, v̂, v̂′) = 0 , (A8)

and the regularity condition,

d

du
F (u, v̂, v̂′) = ∂F

∂u
+ ∂F

∂v̂
v̂′ = 0. (A9)

Now, utilizing the change of variables

Y = v̂ v̂′, and Z = v̂

v̂′ , (A10)

equations (A2), (A8), and (A9) are expressed, respectively, as

(
1 − 1

YZ

)
Y + A + 2

u
− C ′ f1(u,Z)g(u)Z−δ/2Yα−δ/2 = 0,(A11)

(
1 − 1

YZ

)
Y − C ′ f2(u,Z)g(u)Z−δ/2Yα−δ/2 = 0 (A12)

(
1 + 1

YZ

)
Y − 2Z

u2
− C ′ f3(u,Z)g(u)Z−δ/2Yα−δ/2 = 0. (A13)

See Curé (2004) for the definition of f1, f2, and f3. The set of
equations (A11) to (A13) are valid for all known solutions from
m-CAK theory.

Variables Y and Z are known from our proposed solution (equa-
tion 10). Now from equations (A12) and (A13), we can solve the
singular point location, u = uc. Note that uc � 0.1 to assure a δ-slow
solution (Curé et al. 2011).

Finally, the mass-loss rate is solved from the eigenvalue, C
′
, when

the singular point is replaced in equation (A2).
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