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ABSTRACT
We investigate the spatial distribution of Ly α-emitting galaxies (LAEs) at z ≈ 2.67, selected
from the NOAO Deep Wide-Field Survey, using two-point statistics and topological diagnostics
adopted from network science. We measure the clustering length, r0 ≈ 4 h−1 Mpc, and the bias,
bLAE = 2.2+0.2

−0.1. Fitting the clustering with halo occupation distribution (HOD) models results
in two disparate possibilities: (1) where the fraction of central galaxies is <1 per cent in haloes
of mass >1012 M� and (2) where the fraction is ≈20 per cent. We refer to these two scenarios
as the ‘Dusty Core Scenario’ for Model#1, since most of the central galaxies in massive haloes
are dead in Ly α emission, and the ‘Pristine Core Scenario’ for Model#2, since the central
galaxies are bright in Ly α emission. Traditional two-point statistics cannot distinguish between
these disparate models given the current data sets. To overcome this degeneracy, we generate
mock catalogues for each HOD model using a high-resolution N-body simulation and adopt a
network statistics approach, which provides excellent topological diagnostics for galaxy point
distributions. We find three topological anomalies from the spatial distribution of observed
LAEs, which are not reproduced by the HOD mocks. We find that Model#2 matches better all
network statistics than Model#1, suggesting that the central galaxies in >1012 h−1 M� haloes
at z ≈ 2.67 need to be less dusty to be bright as LAEs, potentially implying some replenishing
channels of pristine gas such as the cold mode accretion.

Key words: methods: data analysis – galaxies: evolution – galaxies: formation – large-scale
structure of Universe.

1 IN T RO D U C T I O N

The modern cosmology is founded on the cosmological principle
that the Universe is homogeneous and isotropic. The remarkably
isotropic cosmic microwave background (CMB; Planck Collabo-
ration XVI 2014) strongly supports this cosmological axiom and
implies, further, the existence of an inflationary phase in the early
Universe, which explains why the Universe is so homogeneous and

� E-mail: shong@kias.re.kr

isotropic within the observable horizon (Starobinsky 1982; Bardeen,
Steinhardt & Turner 1983).

In contrast, the observed distribution of galaxies looks neither
homogeneous nor isotropic. The gap between the remarkably uni-
form early Universe and the richly structured galaxy distribution
reflects the complex connections between the cosmic matter dis-
tribution and observed galaxy point distribution and emphasizes
the importance of identifying useful methodologies to quantify the
inhomogeneous features in galaxy point distributions.

Statistics of n-point correlations have been major tools for quanti-
fying the spatial distribution of galaxies and have found the critical
feature of baryon acoustic oscillations, used for constraining the
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expansion rates of the Universe (Eisenstein, Hu & Tegmark 1998;
Seo & Eisenstein 2003; Cole et al. 2005; Eisenstein et al. 2005).
Moreover, each galaxy population has its own spatial clustering
property (i.e. its own bias from the cosmic dark matter distribu-
tion), which can be used for testing theories of galaxy formation
and evolution (e.g., Seljak 2000; Berlind & Weinberg 2002; Ouchi
et al. 2010; Orsi & Angulo 2018).

As alternatives to the successful n-point statistics, various topo-
logical diagnostics have been introduced, such as Betti numbers,
Minkowski functionals, and genus (Gott, Weinberg & Melott 1987;
Eriksen et al. 2004; van de Weygaert et al. 2013; Pranav et al. 2017).
To identify voids and filaments, various methods have been adopted
from other fields of science, including minimum-spanning trees, wa-
tersheds, Morse theory, wavelets, and smoothed Hessian matrices
(e.g. Barrow, Bhavsar & Sonoda 1985; Sheth et al. 2003; Martı́nez
et al. 2005; Aragón-Calvo et al. 2007; Colberg 2007; Sousbie et al.
2008; Bond, Strauss & Cen 2010; Cautun, van de Weygaert & Jones
2013). While these topological diagnostics have provided important
insights into the nature of structure in the Universe, this wide but
heterogeneous range of applied methodologies reflects how difficult
it is to find a consistent and comprehensive framework for quanti-
fying and measuring the topology of the Universe, in contrast to the
successful n-point statistics.

To explore a new way to quantify cosmic topologies, Hong &
Dey (2015; hereafter HD15) applied the analysis tools developed
for the study of complex networks (e.g. Albert & Barabási 2002;
Newman 2010) to the study of the large-scale galaxy distribution.
The basic idea is to generate a graph (i.e. network) composed of
vertices (nodes) and edges (links) from a galaxy distribution and
then measure network quantities used in graph theory.

In this paper, we investigate the spatial distribution of Ly α emit-
ters (LAEs) at z ≈ 2.67, selected from the Boötes field of the
NOAO Deep Wide-Field Survey, utilizing statistics of both two-
point correlation and network topology. In Section 2, we describe
our observed LAE sample. In Section 3, we present the two-point
statistics of our LAE sample and related halo properties from the
analyses of halo occupation distributions (HODs). In Section 4, we
present the network statistics and related topological features. We
summarize and discuss our findings in Section 5. We adopt the AB
system for all magnitudes (Gunn & Oke 1975) and the cosmolog-
ical parameters from Planck Collaboration XVI (2014), using the
built-in pre-sets of Planck13 from ASTROPY (Astropy Collabora-
tion 2013): �m = 0.307, H0 = 67.8, and the flat Universe. The
halo catalogues from the Small MultiDark Planck simulation are
also consistent with Planck13 parameters (Klypin et al. 2014). We
define h ≡ h100 ≡ H0/(100 km s−1 Mpc−1). In this cosmology, the
physical scale is 8.15 kpc arcsec−1 at z = 2.67.

2 O B S E RVAT I O N S A N D R E D U C T I O N S

We have carried out an intermediate band survey of a ≈1 square
degree area in the Boötes field of the NOAO Deep Wide Field Survey
(Jannuzi & Dey 1999) aimed at selecting LAEs at 2.55 � z � 2.8.
We used the IA445 filter with the SuprimeCam imaging camera
on the Subaru telescope to map four contiguous fields (Prescott
et al. 2008). The four open squares in the top panel of Fig. 1 show
the coverage of our survey, and the complex shapes painted in
grey represent the observing mask. The bottom panel of Fig. 1
shows filter transmission curves for the BW and IA445 filters. Using
SEXTRACTOR (Bertin & Arnouts 1996), we identify 242 678 objects
in this observing field. The details of the photometric data can be
found in Prescott et al. (2008) and Dey et al. (2016).
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Figure 1. The top panel shows our survey area. The photometric masks are
shown in grey. The open squares represent the four pointings of the Sub-
aru/SuprimeCam imaging using the IA445 filter. The open circles represent
the fields of view of seven configurations of MMT/Hectospec observations.
We trim the margins around the SuprimeCam fields by taking the box of
RA (α = 218.9◦ − 217.55◦) and Decl. (δ = 32.95◦ − 33.85◦). The bottom
panel shows the filter transmissions of the IA445 and BW filters, including all
effects from atmosphere, telescope, and optics. We choose photometric LAE
candidates using the colour of these two filters. The observed comoving vol-
ume covered by the intermediate band survey is 82 × 66 × 187 h−3Mpc3.

2.1 Candidate selection

We define a sample of LAEs at z ≈ 2.67 using the following pho-
tometric criteria:

{IA445 < 26} ∩ {(IA445 − BW ) ≤ −0.5}
∩ {(IA445 − BW ) ≤ 4

9
(26 − IA445) − 0.9}

∩ {(BW − R) ≤ 0.8}. (1)

The bottom left-hand panel of Fig. 2 shows the colour–magnitude
diagram of IA445 − BW versus IA445, for 10 000 randomly selected
sources (grey points) from the total 242 678. The red solid lines
represent our colour selection described in equation (1). The first
two terms in equation (1) represent magnitude and colour limits. The
last term of BW − R colour rejects low-redshift interlopers. From
this photometric colour selection, we extract 1957 LAE candidates,
hereafter referred to as ‘pLAE’. We show the spatial distribution of
this pLAE sample, using black dots, in the top panel of Fig. 2.

2.2 Spectroscopic redshifts

We observed 635 candidates from the total 1957 pLAE sample using
Hectospec, a multi-object spectrograph on the MMT telescope; the
details of the spectroscopic data can be found in Hong et al. (2014).
The seven large open circles in the top panel of Fig. 1 show our
7 MMT/Hectospec pointings. Within our redshift selection box,
z = 2.55–2.80, we confirmed 415 spectroscopic LAEs from the
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Figure 2. The top panel shows the spatial distribution of 1957 photometric sample pLAEs (black dots), 635 spectroscopically observed targets (blue open
circles), and 434 redshift detections (green filled diamonds). The big (red) asterisks represent the three Ly α blobs (LABs) found in our survey field. The bottom
left-hand panel shows the colour–magnitude distribution, IA445 − BW versus IA445, for our source catalogue (grey dots; 104 objects are plotted from the total
242 678 objects) and colour selection criteria for the pLAEs (red solid lines). The same symbols of black dots, blue open circles, and filled diamonds are used
for representing the same kinds of objects shown in the top panel. The bottom right-hand panel shows the histogram of 434 redshifts (green bars) and the filter
transmission curve for IA445 (grey dashed curve). The two vertical dashed lines represent the redshifts z = 2.55 and 2.80, respectively, and three red solid
vertical lines indicate the redshifts of three LABs discovered in our study.

observed 635 pLAE candidates (i.e. a success rate of 65 per cent).
We refer to this spectroscopically confirmed subset as ‘zLAE’. Ex-
trapolating the success rate to the remaining photometric LAE sam-
ple using binomial trials, we expect a total sample of 1274 ± 17
zLAEs out of the 1957 pLAE sample.

The bottom right-hand panel in Fig. 2 shows the histogram of
redshift detections for zLAEs (green bars) and the filter transmis-
sion curve for IA445 (grey dashed curve). The two vertical dashed

lines represent the lower and upper redshift cutoffs, z = 2.55 and
2.80, respectively, and the three red solid vertical lines indicate the
redshifts of three Ly α blobs (LABs) discovered in our study. The
top panel shows the spatial distributions of 635 spectroscopically
observed targets (blue open circles) and 415 zLAE objects (green
filled diamonds). The three red asterisks represent the locations
of LABs, where their redshifts are z = 2.680, 2.656, and 2.584,
respectively, in the order of increasing declination.
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Figure 3. The measured angular correlation functions for pLAEs (black
open squares; top) and zLAEs (green solid circles; bottom), obtained using
the LS estimator. The error bars are calculated from bootstrap resampling
and represented by vertical lines. In the bottom panel, we also add the angular
correlation function of pLAEs using grey open squares for comparison with
zLAEs. Though the uncertainty of zLAEs is large, both angular correlation
functions are consistent, which implies that the final LAE sample with
complete spectroscopic redshifts will not be much different from the zLAE
and pLAE.

3 STATISTICS O F TWO -POINT
C O R R E L AT I O N S

In this section, we investigate the spatial distribution of LAEs using
two-point correlation functions by following the conventional clus-
tering studies (e.g. Seljak 2000; Berlind & Weinberg 2002; Roche
et al. 2002; Hamana et al. 2004; Zehavi et al. 2004; Zheng et al.
2005; Lee et al. 2006, Gawiser et al. 2007; Kovač et al. 2007; Lee
et al. 2009; Ouchi et al. 2010; Geach et al. 2012).

3.1 Angular correlation function ω(θ )

We measure angular two-point correlation functions for the zLAE
and pLAE samples using the estimator suggested by Landy & Szalay
(1993; hereafter, the LS estimator),

ωLS(θ ) = DD − 2DR + RR

RR
, (2)

where DD is the pair count of the observed sample, RR of a random
sample, and DR between the observed and random samples, within
the angular bin (θ − δθ /2, θ + δθ /2). Since this estimator has been
widely used, we only provide a brief description of this method.
The details can be found in the papers cited above.

Fig. 3 shows the measured angular correlation functions using
the LS estimator for pLAEs (black open squares; top) and zLAEs
(green solid circles; bottom). The error bars are calculated from
bootstrap resampling (Ouchi et al. 2010). In the bottom panel, we
also add the angular correlation function of pLAEs using grey open
squares for comparison with zLAEs. The uncertainty of zLAEs is

larger due to the small sample size. In particular, the small-scale
clustering at <20 arcsec is determined by a small number of close
pairs. The green ‘x’ mark represents the two-point statistic when we
remove the three LAEs from zLAEs near the largest LAB, LABd05,
where we oversample in spectroscopy for investigating the environ-
mental effect between the LAB and LAEs. Overall, though the
uncertainty of zLAEs is large, the two angular correlation functions
are consistent with each other.

The angular correlation function of the LAEs shows an inflection
point at scales of 20 arcsec, corresponding to a comoving scale of
0.41 h−1 Mpc. This distinct feature is predicted by halo occupation
models, where it results from the transition from multiple galaxies
occupying common haloes to each galaxy occupying a single halo.

The LS estimator, wLS(θ ), in equation (2), is a normalized quan-
tity of its true angular correlation, ω(θ ), as

1 + ωLS(θ ) = 1 + ω(θ )

1 + ω�

, (3)

ω� ≡ 1

�2

∫
d�1d�2ω(θ ), (4)

where ω� is called the ‘integral constant’ (hereafter, IC). To retrieve
the true angular correlation, ω(θ ), from our measured LS estimator,
ωLS(θ ), we need a method to correct this integral constant, ω�. To
estimate this IC, we rewrite equations (3) and (4) in more practical
forms as

ωLS(θ ) = ω(θ ) − ω�

1 + ω�

, (5)

ω� ≈
∑

RR ω(θ )∑
RR

, (6)

where equation (5) is rewritten from equation (3) and equation (6)
is a Monte Carlo integration of equation (4) using the same random
pairs, RR, in equation (2) (Roche et al. 2002).

3.2 Interpretations from single power-law correlation
functions

3.2.1 Integral constraint and self-consistent fit

Unfortunately, we cannot solve equations (5) and (6), since ω(θ )
and ω� are coupled, and it is the LS estimator, ωLS(θ ), that we can
actually measure from the galaxy distribution, not ω(θ ). We can
resolve this coupling issue if we have some specific constraints on
ω(θ ).

Conventionally, ω(θ ) has been assumed to follow a single power
law. In this case, we can solve the coupled equations as follows.
First, we write down the equations as

ω(θ ) = Aω θ−β, (7)

ω� ≈
∑

RR Aω θ−β∑
RR

. (8)

If the two parameters Aω and β are mathematically separable, equa-
tion (8) can be rewritten as

ω� ≈ Aω R�(β), (9)

R�(β) ≡
∑

RR θ−β∑
RR

, (10)
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Figure 4. The single power-law fits for pLAEs (top) and zLAEs (bottom) using the non-linear self-consistent fit in equation (11) (left) and the fixed β values
with βfix = 0.8 (middle) and βfix = 0.6 (right). The results are summarized in Table 1.

where we refer to R�(β) as the ‘random pair function’ (RPF).
Defying the simple definition of RPF, there is a delicate divergence
issue, which is described in Appendix A. The final result on the
divergence is that the RPF, R�(β), is well defined for 0 ≤ β < 1. In
this valid β range, the coupled equations can be rewritten as

ωLS(θ ) = θ−β − R�(β)

A−1
ω + R�(β)

. (11)

Consequently, the problem of integral constraint is reduced to a
self-consistent non-linear fit with the two parameters (A−1

ω , β).

3.2.2 Best-fitting parameters and real-space correlation lengths

Fig. 4 shows the results of best-fitting parameters for θ > 20 arcsec,
based on the assumption of a single power-law correlation. The left-
hand panels show the best-fitting parameters for pLAEs and zLAEs,
using equation (11) with the RPFs. Instead of the conventional
fiducial value of β = 0.8, our non-linear fits predict the slope near
β = 0.6. Hence, we also perform two other fits by fixing the slopes,
βfix = 0.8 (middle panels) and βfix = 0.6 (right-hand panels).

When the power-law shape of the angular correlation function,
ω(θ ) = Aωθ−β , is known, we can also find its real-space cluster-
ing, ξ (r) = (r/r0)−γ , using the Limber equation (Peebles 1980;
Efstathiou et al. 1991),

β = γ − 1, (12)

Aω = Cr
γ

0

∫ ∞

0
F (z)D1−γ

θ (z)N (z)2g(z)dz

×
[∫ ∞

0
N (z)dz

]−2

, (13)

where Dθ (z) is the angular diameter distance, F(z) is the redshift

Table 1. Single power-law fits.

Sample Aω β IC r0

(at 1 arcsec) h−1 Mpc

pLAE 4.35+4.74
−1.49 0.63 ± 0.12 0.0459 4.1+2.3

−0.9

9.09+0.91
−0.76 0.8 (fix) 0.0282 4.1+0.2

−0.2

3.85+0.32
−0.27 0.6 (fix) 0.0499 4.1+0.2

−0.2

zLAE 2.70+∞
−1.79

a 0.56 ± 0.48 0.0493 3.6+∞
−1.8

7.14+3.97
−1.88 0.8 (fix) 0.0259 3.6+1.0

−0.6

3.13+1.64
−0.78 0.6 (fix) 0.0444 3.6+1.1

−0.6

aSince equation (11) is only valid for Aω ≥ 0 and 0 ≤ β < 1, the negative
range in A−1

ω = 0.37 ± 0.72 is not mathematically meaningful. Hence, we
take the upper bound of Aω as infinity.

dependence of ξ (r), N(z) is the redshift selection function from the
zLAE sample, and

g(z) = H0

c

[
(1 + z)2(1 + �Mz + ��[(1 + z)−2 − 1])1/2

]
, (14)

C = √
π

�[(γ − 1)/2]

�(γ /2)
. (15)

We summarize the best-fitting parameters and related clustering
lengths in Table 1. Overall, the parameter ranges of Aω and β are
quite large, while the predictions of r0 are relatively consistent as
r0 ≈ 4 h−1 Mpc. The large uncertainties on Aω and β arise from
uncertainties in the power-law slope, which in turn are affected by a
power law being a poor representation of the observed angular cor-
relation function (cf. the inflection point at 20 arcsec). As presented
in Table 1, power-law fits with shallower or steeper slopes (i.e. β =
0.6, 0.8), result in smaller or larger clustering amplitudes [i.e. Aω ≈
4–9, at the consistent result of ξ (r = 4 h−1 Mpc) = 1].
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Figure 5. The clustering length, r0, versus survey area for previous studies at similar redshifts. Overall, the Boötes LAEs show a comparable or slightly larger
clustering amplitude, compared to the previous results.

The measured clustering length, r0 ≈ 4 h−1 Mpc, of the Boötes
LAEs at z = 2.67 is comparable to that derived for LAEs at z =
2.1 (Guaita et al. 2010), H α emitters at z = 2.23 (Geach et al.
2012), and the LBGs at z ≈ 3 (Adelberger et al. 2005; Lee et al.
2006), and relatively larger than the LAEs from Gawiser et al.
(2007) and Ouchi et al. (2010) at z = 3.1. We summarize these
comparisons in Fig. 5. Overall, the Boötes LAEs show a similar
or slightly larger clustering amplitude, compared to the previous
studies.

3.3 Interpretations from mean halo occupation functions

In the previous section, we have assumed that the galaxy cor-
relation function follows a single power law and measured the
amplitude and slope by fits to the LAE pair distribution. His-
torically, this single-power-law assumption arises from two ob-
servations: (1) Low-redshift galaxies indeed show single power-
law clusterings in many cases and (2) when a survey vol-
ume is small, clustering measurements at small scales are quite
uncertain.

In the current paradigm of hierarchical galaxy formation and
evolution, observed galaxy clustering (or, galaxy power spec-
tra in k-space) can be reproduced analytically by using HODs
(e.g. Seljak 2000; Berlind & Weinberg 2002; Hamana et al. 2004;
Zehavi et al. 2004; Zheng et al. 2005, Lee et al. 2006; Kovač et al.
2007; Lee et al. 2009; Ouchi et al. 2010; Geach et al. 2012). In
this HOD formulation, galaxy clustering is generally scale depen-
dent, deviated from single power laws, due to the non-linear bias in
galaxy formation.

Although this analytic HOD formulation is advantageous to eas-
ily reproduce observed galaxy clustering analytically, along with
intrinsic scale-dependent features, it relies on the assumption that
the mean halo occupation only depends on the halo mass and
is valid when averaged over all haloes. Effects other than halo
mass are generally ignored in the HOD formulation. Since we find
many 1011 M� haloes in clusters, filaments, and outskirts around
voids, it is not likely that all galaxies form in the same way in
such different topological environments (HD15; de Regt et al.
2018).

3.3.1 Halo occupation function

In this paper, we adopt the HOD from Geach et al. (2012), used for
H α emitters at z = 2.23. We refer the reader to Appendix B for
details regarding this choice. The Geach et al. HOD is defined as

follows:

Nc(M) = FB
c

(
1 − FA

c

)
exp

[
− log(M/Mc)2

2σ 2
log M

]

+ FA
c

[
1 + erf

(
log(M/Mc)

σlog M

)]
, (16)

Ns(M) = Fs

[
1 + erf

(
log(M/M1)

δlog M

)](
M

M1

)α

, (17)

Ng(M) = Nc(M) + Ns(M), (18)

where Nc(M) represents the central distribution as a function of halo
mass M, Ns(M) the satellite distribution, and Ng(M) the total galaxy
counts, for a given halo mass, M. The central distribution is written
using two terms: a Gaussian component centred at halo mass Mc

with the width of σ log M and a smoothed step-function component
using an error function with the smoothed length of δlog M. FA

c

and FB
c represent the duty cycle of central LAEs. The satellite

distribution is written using the conventional power-law component
with a tunable satellite’s duty cycle, Fs. Overall, the adopted HOD
follows the conventional description of step-function centrals and
power-law satellites, with additional flexibility in functional degrees
of freedom.

When considering the complexity of halo occupations for
emission-line galaxies, we need to allow more flexible HODs for
LAEs than typical galaxies, selected by broad-band photometry,
traced by the longer-lasting and more consistent emitting source,
stars. However, overflexible models inevitably overfit the data;
hence, they cause degeneracy in possible interpretations. In the
context of statistical learning, this is an inevitable trade-off between
the flexibility and interpretability of a parametric model (James
et al. 2013). Since we do not have definitive constraints on the HOD
for LAEs, we will use the HOD from Geach et al. and accept all
non-rejected HOD models as possible scenarios. In Appendix B, we
present results from the conventional three parameters’ HOD (e.g.,
Zehavi et al. 2005) and discuss more about this trade-off issue.

Given the HOD Ng(M), we derive the galaxy number density, ng,
using the halo mass function, n(M),

ng =
∫

Ng(M)n(M)dM. (19)

If we have a redshift selection function, N(z), as shown in Fig. 2, then
we can take an effective average, 〈ng〉, over the selection function
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as

〈ng〉 =
∫

ng(z)N (z)(dV /dz)dz∫
N (z)(dV /dz)dz

. (20)

We measure 〈ng〉 = 2.50 ± 0.05 × 10−4 h3 Mpc−3 from the
1274 ± 17 LAEs, extrapolated using the current yield fraction
65 per cent from 1957 LAE candidates, based on the binomial tri-
als. We use the PYTHON package HALOMOD (Murray, Power &
Robotham 2013) for HOD calculations with the cosmological pa-
rameters from Planck13 in ASTROPY and adopt the halo mass func-
tion from Tinker et al. (2008).

3.3.2 The best-fitting parameters: inverse correction of integral
constant

Our adopted HOD has eight parameters,
Mc, M1, α, FA

c , FB
c , Fs, σlog M , and δlog M. Generally, the smoothing

scales of step-function terms, σ log M and δlog M, are not as critical
to the shape of the resulting angular correlation function as α, M1,
and Mc. This means that α, M1, and Mc are well constrained by
the angular correlation measurement, whereas the others are not.
Bayesian samplings can provide quantitative information about
how well the observed angular correlation function can constrain
each parameter, by studying the posterior probability density
function (PDF) as shown in Fig. 6.

Among the eight parameters, we first fix one of the least impor-
tant parameters δlog M ≡ 1, which controls the width of the error
function in equation (17). Since σ log M is used in both Gaussian
and error functions in equation (B6), we do not fix this param-
eter to allow the Gaussian width to vary. From the density nor-
malization of equation (20), Mc can be determined using 〈ng〉 =
0.0025 h3 Mpc−3. Therefore, our final HOD has the six free param-
eters, M1, α, FA

c , FB
c , Fs, σlog M .

As we have pointed out in Section 3.1, the IC can be determined
only by its true angular correlation function. For single power-law
correlations, we can resolve this IC problem using the non-linear fit
with the RPF in equation (11).

In the HOD formulation, we can resolve this issue using the in-
verse correction of the integral constraint as follows. First, we have
a well-defined model prediction of the angular correlation function,
ωHOD(θ ), from a given HOD. Since this is a true angular correla-
tion function, not degraded by survey volume, we can calculate its
corresponding IC, ω�, directly from ωHOD(θ ):

ω� ≈
∑

RR ωHOD(θ )∑
RR

. (21)

From ω�, we define a new inverse HOD angular correlation func-
tion, ω̃HOD(θ ), as

ω̃HOD(θ ) ≡ ωHOD(θ ) − ω�

1 + ω�

. (22)

This inversely corrected HOD function, ω̃HOD(θ ), is now directly
comparable to the observed LS estimator, ωLS(θ ). Therefore, we
can write down the correct χ2 as

χ2(M1, α, FA
c , FB

c , Fs, σlog M ) =
∑

i

[ωLS(θi) − ω̃HOD(θi)]
2

σ 2
LS(θi)

, (23)

where θ i represents each angular bin and σ 2
LS the bootstrap sam-

pling variance of the LS estimator. Finally, we define the likelihood
function as

lnL = −1

2
χ2. (24)

3.3.3 Results: degeneracy in two–point statistics

We use two different methods to obtain best-fitting HOD param-
eters, (1) one from χ2 minimization, referred to as Model#1, and
(2) the other from a Bayesian posterior probability density func-
tion, referred to as Model#2, obtained using the Markov chain
Monte Carlo (MCMC) sampler EMCEE (Foreman-Mackey et al.
2013).

Fig. 6 shows the result of the posterior PDF, obtained using
the MCMC sampler EMCEE. We put 120 walkers in total (i.e. 20
walkers for each parameter) and iterate 950 steps. We discard the
early 450 steps as burn-in and take 500 steps to retrieve the pos-
terior PDF. This 6D posterior PDF is visualized in contours (2D
marginalized probabilities) and histograms (1D marginalized prob-
abilities). The median value and ±1σ errors for each parameter
from the 1D marginalized histograms are listed in Table 2. Since
the marginalized distributions for Fs and σ log M are flat and bimodal,
respectively, it is not informative to present the medians and errors
for these parameters. To interpret the posterior PDF, log10M1 is the
only parameter well constrained by the angular correlation func-
tion. The others are marginally (or poorly) constrained. This is not
a surprising result when considering the relatively large number
of free parameters compared to the conventional three parameters’
HOD. Though there are many other statistics such as Minkowski
functionals, genus, percolation threshold, and higher order correla-
tion functions, the current HOD formulation only fits the abundance
and two-point statistic of observed populations. Hence, the degen-
eracy in HOD models is inevitable if the number of free parameters
exceeds the constraining power of the abundance and two-point
correlation, i.e. if the HOD function is overflexible.

The posterior PDF provides a better statistical interpretation for
the best-fitting model than other methods such as maximum likeli-
hood or least chi-square. However, since the least chi-square method
is widely used, we also compute it, hence Model#1, using the
Nelder–Mead method implemented in the PYTHON/SCIPY package.
From various initial positions, we obtain the consistent output of
Model#1. However, we cannot reject the possibility that Model#1 is
derived from a local minimum. We take, therefore, Model#1 as one
of many possible selections, statistically allowed within the poste-
rior PDF. The blue points and dotted lines in Fig. 6 represent the
location of Model#1 in the parameter space. Though this location is
less likely in the posterior PDF, this location in the parameter space
is not ruled out by the MCMC approach.

From the 2D contours in Fig. 6, we select a more likely po-
sition, Model#2, represented by the red points and solid lines. A
major difference between Model#1 and Model#2 comes from the
parameter σ log M, which shows the bimodal histogram. Model#1 is
selected from the minor bump, while Model#2 is selected from the
major bump. These Bayesian selections contrast with the different
reduced chi-square values, χ2/ν = 0.51 for Model#1 and χ2/ν = 1.2
for Model#2. Model#1 is a preferred choice, therefore, in the least
chi-square method, whereas it is Model#2 in the Bayesian method.
The issue is that neither model is rejected by the tests in abun-
dance and two-point statistic, though their HODs are significantly
different.

Fig. 7 shows the angular two-point correlation functions (left)
and HODs (right) for Model#1 (blue) and Model#2 (red). The dot-
ted grey line represents the angular dark matter correlation function
(Takahashi et al. 2012) and we measure the bias, bLAE = 2.2+0.2

−0.1,
at scales larger than 10 arcsec. This is slightly larger than, but still
consistent with, the bias found by previous works (b ≈ 1.5–2.0;
Gawiser et al. 2007; Guaita et al. 2010; Ouchi et al. 2010, Lee
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2pt correlation and graph topology for LAEs 3957

Figure 6. The posterior probability density function from the Markov chain Monte Carlo run. This 6D posterior probability density function is visualized in
contours (2D marginalized probabilities) and histograms (1D marginalized probabilities). The blue points and dashed lines represent the parameters selected
from the least chi-square method (Model#1) and the red points and solid lines those selected from the posterior probability function (Model#2). The parameters
are summarized in Table 2.

Table 2. The parameters of halo occupation functions.

Name log10M1 α FA
c FB

c Fs σ log M

Model#1a 13.13 0.74 2.9 × 10−3 0.93 0.99 9.7 × 10−2

Model#2b 12.97 0.79 0.11 0.35 0.84 0.63
Posterior PDFc 12.95+0.26

−0.29 0.94+0.69
−0.56 0.14+0.21

−0.09 0.43+0.34
−0.27 flat bimodal

aFrom the density normalization, log10Mc = 11.59 for Model#1.
bFrom the density normalization, log10Mc = 12.40 for Model#2.
cWe present the median value for each parameter with ±1σ errors from the posterior PDF, shown in Fig. 6. Since
the marginalized distributions for Fs and σ log M are flat and bimodal, respectively, it is not informative to present the
medians and errors for these parameters.
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Figure 7. The two-point correlation functions (left) and halo occupation distributions (HODs; right) for Model#1 (blue) and Model#2 (red). The dotted grey
line represents the angular dark matter correlation function (Takahashi et al. 2012). In the left-hand panel, each dashed line represents the true two-point
function from each HOD model without any effect of survey volume size and each solid line the inversely corrected two-point function using our inverse
integral constraint method. In the right-hand panel, the dashed, dotted, and solid lines represent the expected number distributions of central galaxies, satellite
galaxies, and the total, respectively. The two models, Model#1 and Model#2, show very different HODs, but both predict similar two-point correlation functions,
matching the observed clustering in the accuracy of practical studies; or, at least, both are not statistically rejected in the test of two-point statistics.

et al. 2014). In the left-hand panel, each dashed line represents
the two-point function from each HOD model without the effect
of survey volume size and each solid line the inversely corrected
two-point function using our inverse integral constraint method.
After this inverse correction, the observed clustering points from
the LS estimator (black solid circles with error bars) can be di-
rectly comparable to the solid line; i.e. we can use the LS es-
timator as a direct observable without any further correction. In
the right-hand panel, the dashed, dotted, and solid lines repre-
sent the expected number of central, satellite, and total galaxies,
respectively.

In this figure, Model#1 and Model#2 show very different HODs,
especially in the central galaxy populations. For Model#1, the cen-
tral LAEs are mostly occupied in a very narrow halo mass range,
centred at log10Mc = 11.6 with the Gaussian width of σ log M = 0.097.
At its peak, the occupation fraction, <Ng >, reaches 93 per cent.
This drops rapidly as the halo mass increases or decreases from this
peak halo mass. For massive haloes over 1012 h−1 M�, the central
LAE occupations become less than 0.3 per cent. Therefore, most
of the LAEs found in these massive haloes should be satellites in
this Model#1 scenario; hence, we refer to this as, namely, the ‘Dead
Core Scenario’ or ‘Dusty Core Scenario’. The lack of central LAEs
at halo masses > 1012–13 in Model#1 may imply that the central
galaxies in these haloes do not produce much Ly α emission, either
because they are more rapidly quenched or that they are dustier on
average, hence dead or dusty cores.

On the other hand, for Model#2, the central LAEs are distributed
over a broad range of halo masses, centred at log10Mc = 12.40
with the Gaussian width of σ log M = 0.63. At this Gaussian peak,
the occupation fraction is 31 per cent, which is much lower than
the dominant 93 per cent from the Dead Core Scenario. For mas-
sive haloes, even larger than 1013 h−1 M�, the central occupation
fractions are above 20 per cent in Model#2. We refer to this as the
‘Active Core Scenario’ or ‘Pristine Core Scenario’, suggesting that
the central galaxies in massive haloes are still less contaminated by
dust, actively emitting Ly α photons, unlike the dead or dusty cores
from Model#1.

Consequently, Model#1 and Model#2 suggest very different sce-
narios about the formation and evolution of LAEs at z ≈ 2.67. We
cannot discern which scenario is more reliable for the observed
LAEs at z ≈ 2.67. To resolve this issue, we need to resort to higher
order correlations, which in turn are limited by the sample statistics.

4 STAT I S T I C S O F N E T WO R K TO P O L O G Y

In the previous section we have presented measurements of the
two-point correlation function and abundance of LAEs. The mea-
surements are fitted by two HOD models which predict the same
abundance and two-point correlation within the uncertainties. How-
ever, their HODs are very different, especially in the central galaxy
populations. This is an evident degeneracy in the two-point statis-
tics.

In this section, we use network science tools to investigate the
topological structures of the observed LAEs (Observed LAEs) and
compare these with the topologies generated by the two best-fitting
HOD models (Model#1 and Model#2) and random spatial distri-
butions (Random Model). From the statistics of network topology,
we show that both Model#1 and Model#2 fail to explain the spatial
distribution of observed LAEs; hence, the topological structures of
observed LAEs are different from the HOD models’ predictions.
This indicates that the assumption of constant halo occupation for
all haloes of a given mass is too simple to be applicable, at least to
LAEs.

4.1 Generating networks from galaxy point distributions

We generate 60 mocks for each HOD model by populating LAEs
using the halo catalogue from the Small MultiDark Planck simu-
lation (Klypin et al. 2014) and projecting them on the sky mask,
shown in Fig. 1. Central galaxies are randomly placed in parent
haloes given by the HOD. Likewise, satellite galaxies are placed in
their subhaloes to match the target occupation. Note that our cata-
logue allows for satellites to be placed in parent haloes that may or
may not host a central galaxy.

A single mock catalogue matches the area of the survey. The
depth is given by the IA445 filter transmission curve, which defines
a redshift and comoving distance range where the Ly α line falls
inside the filter. Then, multiple mock catalogues are extracted from
the simulation volume with no overlapping. The different number
of galaxies and clustering in each of the mocks is thus a result of
cosmic variance.

For observed LAEs, we have measured the redshifts of 635 can-
didates from the total 1957 pLAEs. For the rest of the 1322 photo-
metric candidates, since the current yield fraction is 65 per cent,
we generate a binomial ensemble with 300 realizations for
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Figure 8. The histogram of the number of galaxies, Ngalaxy, for each model,
composed of 60 mocks: Observed LAEs (red), Random Model (grey),
Model#1 (green), and Model#2 (blue). The cosmic variances of Model#1
and Model#2 are much larger than the binomial variances of Observed LAEs
and the Random Model. Naively, due to this dominance of cosmic variance,
we may expect that the network statistics from Observed LAEs are fully
embedded within the cosmic variances of the HOD mocks.

considering the incompleteness of our spectroscopic follow-up.
This ensemble size is large enough to show asymptotic behaviours
in graph statistics, i.e. no quantitative differences in graph statistics
by taking larger ensemble sizes. In Section 4.2, we will present the
details about this binomial convergence. Finally, as a basic compar-
ison set, we generate 60 random point distributions as the Random
Model.

From each spatial distribution, we build a network using the con-
ventional friends-of-friends (FOF) recipe (Huchra & Geller 1982;
HD15; Hong et al. 2016) for a given linking length l, where the
adjacency matrix is defined as

Aij =
{

1 if rij ≤ l,

0 otherwise,
(25)

where rij is the distance between the two vertices (i.e., galaxies) i
and j. This binary matrix quantitatively represents the network con-
nectivities of the FOF recipe. Many important network measures are
derived from this matrix. Interested readers are directed to Newman
(2003), Dorogovtsev, Goltsev & Mendes (2008), and Barthélemy
(2011) for further information.

Fig. 8 shows the histogram of the number of galaxies, Ngalaxy,
for each model composed of 60 mocks; Observed LAEs (red),
Random Model (grey), Model#1 (green), and Model#2 (blue). For
a proper comparison, we take 60 binomial samples from the total
300 realizations for this histogram, though there is no qualitative
difference in abundance statistics between 60 and 300 binomial
realizations. The variances of Ngalaxy for Model#1 and Model#1
are due to cosmic density fluctuations, confined by the size of the
survey volume. Observed LAEs are shown at a range of possible
abundances estimated using the known photometric uncertainties
and spectroscopic completeness, which suggest an LAE abundance
in the field of 1274 ± 17. Finally, the variance for the Random
Model is Poissonian, a comparable random reference to the other
models.

The cosmic variances of Model#1 and Model#2 are much larger
than the binomial variances of Observed LAEs and the Random
Model. We, therefore, expect the network properties of the observed
LAEs to be contained within the range exhibited by the HOD mocks.

4.2 Results: implications from network statistics

For various angular linking lengths from 0 to 200 arcsec, we build
a series of FOF networks for each spatial distribution. Then, for
each network, we measure eight network quantities: diameter, giant
component fraction, average clustering coefficient (average CC),
transitivity, edge density, size of the largest clique, betweenness
centralization, and degree centralization. We present the definitions
of these eight quantities in a separate section, Appendix C, so as
not to distract the reader from the main thread of this paper.

Figs 10 and 11 show the results of network statistics for the
Observed LAEs, Model#1, Model#2, and the Random Model,
as a function of the linking lengths. Among 60 realizations for
each model (300 realizations for the Observed LAEs), we remove
5 per cent outliers from both top and bottom regions. Therefore,
each coloured region represents 90 per cent of its statistical distri-
bution. For the Observed LAEs, as a likely position for the case
of complete spectroscopic selection, we plot the median position,
using the red solid line.

To test the reliability of binomial sampling for handling the in-
complete spectroscopic survey, we measure transitivity values for
various numbers of binomial sampling. Fig. 12 shows the transi-
tivities versus the number of binomial samples, NBS, at the link-
ing length of 70 arcsec for the Observed LAEs (red shaded area).
Notably, the transitivities show asymptotic behaviours for NBS ≥
300, hence no further variations for larger sampling sizes. Even for
NBS = 60, there is no qualitative difference from the case of NBS =
300. We think that this is because the randomness of the bino-
mial sampling affects the graph statistics severely and directly. As
shown in Fig. 8, the variance of abundances for the Observed LAEs
is quite smaller than the HOD mocks. However, the variances of
graph statistics for the Observed LAEs are not much different from
the HOD mocks even for tens of binomial realizations as shown
in Fig. 12. Hence, though there are 21322 kinds of binary permuta-
tions (detected or non-detected LAEs) for unexplored photometric
candidates, the random selections by binomial sampling shuffle the
outputs quite enough to show the asymptotic statistical behaviours
in graph measurements for NBS ≥ 300. We note that this argument is
only valid when the best guess of complete spectroscopic survey is
to extrapolate the current yield to the rest of the unexplored photo-
metric candidates. We assume that this extrapolation is a practically
reasonable approach with the currently available pieces of limited
information.

From the results of network statistics, we obtain the four main
implications below.

4.2.1 Both HOD models fail to explain the graph topology of
observed LAEs

In Fig. 10, we find that the comparison of network measures com-
puted from the observed data with those computed from the mocks
results in the following three main differences: (i) the transitivity
curve of the observed data shows a ‘feature’ at a scale of ≈70 arcsec
(1.4 h−1 Mpc comoving) that is not present in the mocks, and which
is not observed in the average CC (hereafter, we refer to this anoma-
lous feature as TR70); (ii) the average CC curve of the observed data
at scales >170 arcsec (3.4 h−1 Mpc comoving) is lower than that
computed for the mocks (hereafter, CC170); and (iii) the observed
edge density curve at scales >100 arcsec is not reproduced by the
mocks (hereafter, ED100). Roughly, the average CC and transitivity
are biased and unbiased triangle densities, respectively. Fig. 9 shows
a schema demonstrating the meanings of these triangular statistics.

MNRAS 483, 3950–3970 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/483/3/3950/5222664 by guest on 20 April 2024



3960 S. Hong et al.

Figure 9. The graph schema demonstrating the meanings of transitivity and
average clustering coefficient (Average CC). In this graph, we can find 5
triplets (i.e., 5 ∨ configurations), 3 from the ‘ABC’ triangle and the other 2
from the ‘Y’ shape, connected from the vertex ‘D’ with the pivot centre ‘C’.
Among these 5 triplets, 3 of them on the ‘ABC’ triangle are closed. Hence,
the transitivity of this graph is 3

5 . The clustering coefficient is a transitivity-
like quantity, but assigned to each vertex. For example, the vertex ‘C’ has
three neighbours, ‘A’, ‘B’, and ‘D’; hence, 3 ∨ configurations, centred on
‘C’. In general, for a vertex with k neighbours, k(k−1)

2 triplet combinations
exist. Since only ‘A’ and ‘B’ vertices are connected among the three triplets,
the clustering coefficient for ‘C’ is 1

3 . Similarly, 1 is the clustering coefficient
for each of ‘A’ and ‘B’. For a vertex with k < 2 neighbours, we cannot define
a clustering coefficient since the denominator is zero. In this case, to the
vertex, we can assign (1) 0 or (2) not-a-number (NaN). For the former, the
vertex ‘D’ is counted when averaging all clustering coefficients, resulting
in the Average CC = 7

12 , while, for the latter, ‘D’ is excluded, the Average
CC = 7

9 . In this paper, we choose the latter definition to assign NaNs to all
vertices with k < 2 neighbours.

Edge density is a connection (or, friendship) density, dividing the
number of edges by the total number of pair-wise combinations. We
discuss each of these anomalies in more detail below.

TR70 is the most conspicuous anomaly in the eight panels of
Fig. 10. Near 70 arcsec, the transitivity of observed LAEs is much
higher than the predictions of HOD mocks. The boundaries of the
shaded regions shown for the models and observed LAEs represent
the 5 per cent outliers. Hence, there is <0.25 per cent (5 per cent ×
5 per cent) chance that this observed feature can be reproduced
by Model#1, or over 99.75 per cent chance to reject Model#1 . In
addition, this TR70 feature is not likely to be a result of the image
mask, since it is not seen in the transitivity curves constructed from
the mocks, to which the same mask is applied.

The angular scale of 70 arcsec corresponding to 1.4 h−1 Mpc in
the comoving scale is smaller than the typical scales for proto-
clusters (Chiang, Overzier & Gebhardt 2013; Orsi et al. 2016), but
still larger than most of the single halo scales. Hence, the tran-
sitivity excess at this intermediate scale suggests a strong inter-
galactic interaction in the formation of LAEs in this field. We
explore this strong environmental effect in more detail in a sep-
arate section with the additional network statistics of clique and
centralization.

For linking lengths greater than 170 arcsec, the average CCs of
the Observed LAEs are lower than the Model#1 predictions. The
average CC is biased to the majority’s CC value, while the tran-
sitivity is a network-wise unbiased triangle density. In our Boötes
LAEs, field LAEs are the majority, since group LAEs are rare.
Small neighbours of field LAEs, hence, dominate the average CC
statistic.

Unlike the feature TR70 seen in the transitivity curve, the average
CC measurement does not show a significant anomaly at a scale

of 70 arcsec. This suggests that the TR70 anomaly is not likely
to be caused by the majority of field LAEs but instead by the
LAEs in group environments, which are a minority of the observed
population. Near 70 arcsec, therefore, the HOD mocks seem to
reproduce the triangular configurations for field LAEs, the majority,
but fail when including the minority, group LAEs. In other words,
something interesting happens in group LAEs near 70 arcsec, which
cannot be reproduced by the HOD formulation.

In contrast, the transitivity measure is consistent with the HOD
prediction at scales >170 arcsec, whereas the average CC is not.
This indicates that the observed LAEs and HOD mocks are con-
sistent in the network-wise triangle densities at >170 arcsec, but
the HOD mocks overpredict the average CC values at these scales.
Namely, the observed field LAEs are less triangular than the HOD
mocks in the local clustering configurations at >170 arcsec. It is
not straightforward to determine which topological configuration
causes this feature. One possible interpretation is that the observed
field LAEs have more obtuse angles in triple configurations (i.e.
∨) than the HOD mocks. These more obtuse configurations can
decrease the local CCs. As a trade-off, the observed LAEs in group
environments need to have more triangular configurations, since
the transitivity still needs to be consistent with the HOD mocks at
>170 arcsec. Hence, our possible interpretation of CC170 is that
the real observed LAEs are less triangular with more obtuse angles
in spatial alignments of the field environments but more triangular
in the group environments than the HOD mocks; more strained and
stretched in field LAEs and more balled and compact in group LAEs
than the HOD mocks.

For the edge density measurements, the HOD mocks overpredict
the number of edges at most scales. Along with TR70, this is addi-
tional evidence that the HOD mocks fail to reproduce the topology
of observed LAEs. The difference in edge densities is more visible
for >100 arcsec. Hence, we refer to this anomaly as ED100. Since
edge is a basic structure, many factors can affect this count of con-
nections. The less triangular configuration in field LAEs, mentioned
above for interpreting CC170, can be one of such factors to lower
the edge density than the HOD mocks.

In Fig. 11, Model#2 seems to match the network statistics better
than Model#1, but the three major anomalies are still not resolved
by Model#2. Therefore, both HOD models fail to explain the real
graph topology of observed LAEs. When considering the simplicity
of mean halo theory, the HOD mocks explain relatively well the
overall topological features of observed LAEs, only failing at certain
scales. In contrast, the random point distribution fails at most scales
in most statistics.

Overall, the anomalies found in the network statistics suggest that
the HOD mocks fail in the topological tests of network statistics; or,
if the HOD formulation is right, the Boötes LAEs are a very special
outlier in the cosmic variance, showing very abnormal environmen-
tal effects. We note that we have only shown the failures of two
specific HOD models in graph statistics. This could be suggestive
evidence that the current HOD formulation needs to be improved
for explaining (especially) the populations depending on environ-
ments strongly, but not definitive evidence to deny the whole HOD
framework.

4.2.2 The Boötes LAEs are not a good filament/wall tracer

In Figs 10 and 11, the eight panels can be divided into two groups:
(1) diameter, giant component fraction, betweenness centralization,
and (2) average CC, transitivity, edge density, size of the largest
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Figure 10. The network measurements for Model#1 (green), observed LAEs (red), and random point distributions (grey): diameter (top-left), giant component
fraction (top-middle), transitivity (top-right), average clustering coefficient (middle-left), edge density (centre), size of the largest clique (middle-right),
betweenness centralization (bottom-left), closeness centralization (bottom-middle), and degree centralization (bottom-right). See the text for details.

clique. The network measures in the first group show no significant
statistical differences between the observed LAE sample and the
other models. In contrast, the second group of measures do show
differences, as described in the previous section. We note that the
first group reflects the global pathway structures while the second
group reflects the local configurations as their definitions indicate,
described in Appendix C.

The observed LAEs and HOD mocks are different in the local
topology from random networks, while, in the global topology, the
HOD mocks seems to even overwhelm the random networks in

variance. The latter point seems confusing, especially considering
the results of our previous study (Hong et al. 2016), which demon-
strates that simulated galaxies and Lévy flights show very different
topology not only locally but also globally.

This may be due to the transient property of LAEs, having
a specific duty cycle. For the work of Hong et al. (2016), we
selected all simulated galaxies with stellar masses greater than
108 M�, hence more likely to trace underlying filamentary struc-
tures than transient LAEs. The HOD recipe of probabilistic oc-
cupations on dark matter haloes also can add more stochas-
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Figure 11. The same as Fig. 10 for Model#2 (blue), observed LAEs (red), and random point distributions (grey). The four blue solid triangles indicate the
regions of improved statistics by Model#2. The major difference between Model#2 and Model#1 is the higher fraction of central galaxy occupation in massive
haloes (see Fig. 7).

tic fluctuation to the mock LAEs. Analysing the 2D projection
of the large-scale distribution also dilutes and distorts the sig-
nal (the data analysed in Hong et al. 2016 used the full 3D
distribution).

Consequently, though the observed and mock LAEs show many
distinct local features, the global large-scale structures such as fila-
ments and walls are not well characterized in the 2D projection of
the LAE distribution and will require the complete redshift distri-
bution for proper analyses.

4.2.3 Strong environmental effect on the formation and evolution
of LAEs

In this section, we investigate which topological configuration may
be responsible for TR70. There are many graph structures, which
can increase transitivity. One of them is a clique. As explained in
Appendix C and shown in Fig. C2, a clique is a complete subgraph,
and galaxy groups and clusters form cliques in galaxy FOF net-
works. Therefore, the abnormal excess in triangular configurations,
TR70, can be related to clique statistics.
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Figure 12. The transitivity measurements versus the number of binomial samples, NBS, at the linking length of 70 arcsec, for Observed LAEs (red shaded
area), hence a test of the convergence of the binomial sampling about the anomaly ‘TR70’. The central thick line represents the 50 percentile (median) and
the others the 5 and 95 percentiles. The red shaded range at NBS = 300 (dotted black vertical line) is what is shown at 70 arcsec in Fig. 10. For comparison,
we also plot the ranges of transitivities for Model#1 (green) and the Random Model (grey) at 70 arcsec with the same colours shown in Fig. 10. For NBS ≥
300, the transitivity measurements show saturated asymptotic behaviours. Even for NBS = 60, no qualitative differences can be found from the larger sampling
sizes for NBS ≥ 300.

To test this idea, we measure the size of the largest clique,1 shown
in the right-hand panels of the third row in Figs 10 and 11. The ex-
cess of the largest clique size is also found at 70 arcsec, though its
statistical significance is not as strong as TR70. The second, third,
and next largest cliques also contribute to the transitivity, though
they are not traced by this measurement. Hence, this suggests that
TR70 is due to the larger clique sizes in the observed LAEs than
in the HOD mocks. The median of the HOD mocks predicts that
7 LAEs should inhabit the largest clique; the observed distribu-
tion shows 10, suggesting that scale sizes of 1.4 h−1 Mpc contain
∼43 per cent more LAEs than predicted by the mocks. TR70 may
therefore indicate a strong environmental effect on the formation
and evolution of LAEs at z ≈ 2.67, exerted within the scale of
1.4 h−1 comoving Mpc (at least for the LAEs within this data set).

If we find a clique excess at a certain scale, we can also expect
some related feature in centralization measurements. Fig. C3 in
Appendix C shows the three graph schemata, ring, star, and clique,
with 7 vertices. These schemata demonstrate that a star graph be-
comes a clique when we double the linking length. We refer to this
as star–clique transition in spatial FOF networks. In more complex
real-world networks, the transition may not be as clearly visible
as Fig. C3 demonstrates. However, the transitional feature can be
detected statistically in the centralization measurements at the half
scale of the clique feature. The bottom right-hand panels in Figs 10
and 11 show the centralization measurements of degree centrality.
Both the degree centralization and largest clique size curves show
similar ‘knee’ features at scales of 40 and 70 arcsec, respectively. In
contrast, the HOD mocks only show featureless linear trends. This
indicates that the Boötes LAEs have statistically more star-like con-
figurations at 40 arcsec and the larger size of the largest clique at
70 arcsec than the HOD mocks, implying the star–clique transition
in the network of Boötes LAEs.

1Many network algorithms related to cliques need long computation times,
and some of them are NP-complete. Hence, in this paper, we measure one
of the basic clique measurements, the size of the largest clique (a.k.a. clique
number), for which some efficient algorithms are known.

We have found two interesting clues of the star and clique con-
figurations at 40 and 70 arcsec, respectively. Though not as strong
as TR70, these two features imply that TR70 is due to the larger
clique sizes of observed LAEs than the HOD mocks, which in turn
may suggest an environmental factor in the formation and evolution
of LAEs at z ≈ 2.67.

4.2.4 Model#2 is marginally preferred over Model#1

Finally, we compare the differences between Model#1 and
Model#2. In all eight measurements, Model#2 shows better matches
with the observed LAEs than Model#1, though no special improve-
ments can be found for explaining the three anomalies, CC170,
TR70, and ED100, for Model#2 either. The major improvements of
Model#2 from Model#1 are marked using the solid blue triangles
in Fig. 11. The local statistics of average CC, transitivity, size of the
largest clique, and degree centralization are larger in Model#2 than
in Model#1 due to the higher fraction of central galaxy occupation,
which we have referred to as the ‘Pristine Core Scenario’. These in-
creased local statistics fit better the topology of the observed LAEs.

Hence, the network statistics prefer Model#2 of the ‘Pristine Core
Scenario’ that, at z ≈ 2.67, the central galaxies in massive haloes,
>1012 h−1 M�, still need to be less dusty to emit Ly α photons,
potentially due to some replenishing channels of pristine gas such
as the cold mode accretion (e.g. Kereš et al. 2005; Dekel & Birnboim
2006; Kereš et al. 2009).

5 SUMMARY AND DI SCUSSI ON

We have investigated the spatial distribution of LAEs at z ≈ 2.67, us-
ing the two-point correlation function and network statistics. From
single power-law fits, we measure the correlation length, r0 = 4 h−1

Mpc, and bias, bLAE = 2.2+0.2
−0.1, consistent with previous studies of

LAEs at similar redshifts. The power-law slopes are more uncer-
tain and less consistent than the measured correlation lengths due
to the clearly visible inflection point in the observed correlation
function at small scales, i.e. where the one-halo term of subhalo
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statistics dominates. To obtain more accurate two-point statistics at
these small scales reflecting the halo substructure, we need a larger
survey volume containing better statistics on the small-scale sepa-
rations (i.e. at <10′′). Many current and future surveys will provide
more accurate small-scale statistics so that we can investigate the
scale-dependent features in two-point statistics beyond the single
power-law interpretations.

From the HOD analysis, we have obtained two disparate, but
degenerate, models, Model#1 and Model#2, which suggest differ-
ent scenarios for the central galaxies for > 1012 h−1 M� haloes at
z ≈ 2.67. This degeneracy is a byproduct of the inevitable trade-
off between the flexibility and interpretability of the parametric
model, since the six fitting parameters of our HOD function lead to
an overfit to the observed angular clustering, caused by overflexi-
ble functional shapes. The LAE phenomenon may be a short-lived
phase of galaxies, and it is possible that the HOD for this population
of emission-line galaxies needs to be more flexible than the mod-
els used to fit more continuum-luminous populations. Due to the
trade-off between flexibility and interpretability, we need to accept
all non-rejected HOD models as possible scenarios.

From the measurements of network statistics, we have found
three distinct anomalies, TR70, ED100, and CC170, none of which
are reproduced by the mocks constructed from the HOD models.
The most conspicuous anomaly is TR70, which is a feature in the
transitivity curve at a scale of 70 arcsec (1.42 h−1 comoving Mpc).
From the additional measurements of the size of largest clique and
degree centralization, we argue that TR70 reflects a strong envi-
ronmental effect on forming LAEs within the diameter of 1.42 h−1

Mpc in the comoving scale and 570 kpc in the physical scale at
z ≈ 2.67. The ongoing and future spectroscopic surveys of LAEs,
such as Hobby-Eberly Telescope Dark Energy Experiment (HET-
DEX; Hill et al. 2008), can provide definitive data sets for nailing
down whether this environmental effect really exists and provide
the redshift evolution of this transitivity peak.

Model#2 works better for matching the graph topology of ob-
served LAEs than Model#1, especially the statistics of average CC,
transitivity, size of the largest cliques, and degree centralization at
small scales, <70 arcsec. This suggests that the central halo occu-
pation fraction of LAEs for massive haloes should be large enough
for generating more triangular and clique-like structures than the
Dusty Core Scenario, Model#1, predicts. Hence, at z ≈ 2.67, the
central galaxies in > 1012h−1 M� haloes need to be still less dusty
to be bright enough in Ly α emission as LAEs, potentially due to
some replenishing channels of pristine gas such as the cold mode
accretion, along with appropriate geometrical vents, configured for
unleashing Ly α photons from the star-forming cores.

Statistics of network topology are more specialized in quantifying
topological textures, while n-point statistics are more specialized
in quantifying geometric configurations. Although there are many
reliable estimators of two- and three-point statistics for discrete
observables, i.e. galaxy point distributions, n-point functions are
intrinsically defined based on continuous observables, i.e. scalar
fields such as cosmic density contrast and CMB temperature map.

On the other hand, network statistics are inherently defined for
quantifying discrete observables. Hence, at least in this perspective,
graph analyses are more relevant for the investigation of spatial
distributions of galaxies than n-point measurements. However, the
inevitable weaknesses of bias and shot noise in galaxy distribution
can affect graph statistics more directly than n-point statistics, since
a couple of points can change the global pathways in a galaxy
network. We need, therefore, an ensemble of the discrete data to

properly estimate how much such discrete impediments affect the
overall graph measurements.

These two kinds of statistics are complementary, since they quan-
tify the galaxy point distribution from different perspectives. We can
achieve unprecedentedly comprehensive views on galaxy distribu-
tions by measuring both the graph topology and n-point statistics,
to precisely reveal evasive features of the matter distribution in the
Universe.
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A P P E N D I X A : EM P I R I C A L R A N D O M PA I R
F U N C T I O N S

Here, we describe the details about the divergence of random pair
functions (RPFs) and present their numerical forms, mentioned in
Section 3.2.1. First, we recall the definition of RPF:

R�(β) ≡
∑

RR θ−β∑
RR

, (A1)

where RR is random pairs used for the LS estimator. From the
definition, we can find two basic properties of the RPF: (1) For
a given β, the RPF only depends on the random set, RR, and
(2) for β = 0, R�(β = 0) = 1. The first property indicates that
the RPF depends only on the geometric shape of the survey vol-
ume, like the geometric form factor of the LS estimator. The sec-
ond property guarantees that the RPF is, at least, well defined
at β = 0. For other β values, it depends on the divergence of
the integral sum,

∫ ∞
0 θ−βdθ , whether the RPF is well defined or

not.
The integral sum of

∫ ∞
0 θ−βdθ is divided into three categories

according to the values of β. For 0 ≤ β < 1, the tail sum of∫ ∞
1 θ−βdθ diverges, while its local sum of

∫ 1
0 θ−βdθ is finite. We

refer to this as ‘large-scale divergence’. Conversely, for 1 < β, the
local sum diverges, while the tail sum is finite. We refer to this as
‘small-scale divergence’. For β = 1, the sum diverges logarithmi-
cally on both small and large scales. Generally, since observational
surveys cover finite portions of the sky, RPFs are well-defined func-
tions for 0 ≤ β < 1; i.e., the sums in RPF are always finite real
numbers.

Fig. A1 shows the two random sets for pLAEs and zLAEs (top
panels) and their corresponding RPFs (bottom panels). The grey
cross points show the RPFs for 10 different random sets and we fit
them, in the range of 0 ≤ β < 1, to obtain their numerical forms
using cubic polynomials;

log10 Rp(β) = −3.20β + 0.066β2 + 0.057β3 + O(β4) for pLAE,

(A2)

log10 Rz(β) = −3.14β + 0.069β2 + 0.047β3 + O(β4) for zLAE.

(A3)

The constant terms in equations (A2) and (A3) are zero due to the
boundary condition, R�(β = 0) = 1. We can find that the dominant
terms are the first-order terms. The other higher order terms, β2, β3,
, are minor and well truncated within 0 ≤ β < 1.

For 1 < β, the higher order terms, β2, β3, , are divergent, rather
than truncated. And a small fraction of very close pairs (i.e. θ
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Figure A1. The random sets for pLAEs (top-left) and zLAEs (top-right), and the corresponding RPFs, as defined in equation (10), for pLAEs (bottom-left)
and for zLAEs (bottom-right). For 0 ≤ β < 1, the self-consistent fit in equation (11) is well defined mathematically.

< <1) dominates the total sum in RPF. Hence, the RPF values
become very unstable (having extreme variance) for random sets
due to the ‘small-scale divergence’. Therefore, the self-consistent
fit in equation (11),

ωLS(θ ) = θ−β − R�(β)

A−1
ω + R�(β)

,

is not valid for 1 < β. Fortunately, the fiducial value for β in most
practical cases is near 0.8, and hence within 0 ≤β < 1. Equation (11)
is, therefore, applicable in most cases.

APPENDIX B: PHYSICAL RELEVANCE
VERSUS STATISTICAL INTERPRETABILITY
IN PARAMETRIC MODELS

In this section, we discuss which halo occupation distribution reli-
ably represents the halo occupation of Boötes LAEs. We start with
one of the most commonly used HODs,

Nc(M) =
{

0 if M < Mc,

1 if M ≥ Mc,
(B1)

Ns(M) =
(

M

M1

)α

, (B2)

where Nc(M) represents central galaxy distribution and Ns(M) satel-
lite galaxy distribution for a given halo mass, M (e.g. Zehavi et al.
2005; hereafter, we refer to this HOD as ZehaviHOD).

Fig. B1 shows the two-point function (left) and HOD (right) for a
ZehaviHOD, where we choose its model parameters from the pos-
terior probability function shown in Fig. B2, obtained using MCMC
sampling. All results shown in Figs B1 and B2 are rough estimates,
since the current outputs are already unlikely, log M1 = 17.7+1.6

−1.6

and α = 0.31+0.18
−0.08, indicating that the ZehaviHOD is not physically

relevant for describing emission-line galaxies. For example, the
current ZehaviHOD predicts that the small haloes with masses of
<1012 M� do not host LAEs at their centres; if any, they should
be satellites. For massive haloes, even if they host dust obscured
galaxies at their centres, they should be detected in Ly α emission.

The duty cycle of LAEs is one of the main reasons why the
ZehaviHOD fails to be a relevant model. Unlike red dwarf stars
serve as lifelong emission sources for galaxy, Ly α emission is only
lit up for a short period of time. Hence, the halo occupation fraction
should be allowed to be smaller than one. We write down a new
HOD using duty cycles as

Nc(M) =
{

0 if M < Mc,

Fc if M ≥ Mc,
(B3)
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Figure B1. The two-point correlation functions (left) for observed LAEs (dots with error bars) and the ZehaviHOD (lines; Zehavi et al. 2005) and halo
occupation distribution (HODs; right) for the ZehaviHOD. On the left-hand panel, the dashed line represents the true two-point function from the HOD model
without any effect of survey volume size and the solid line the inversely corrected two-point function using our inverse integral constraint method. On the
right-hand panel, the dashed line represents the average number of central galaxies, the dotted line of satellite galaxies, and the solid line of total galaxies. The
HOD parameters for this model are log M1 = 18.9 and α = 0.24, selected from the posterior probability function, shown in Fig. B2, with the estimates of
log M1 = 17.7+1.6

−1.6 and α = 0.31+0.18
−0.08.

Figure B2. The posterior probability function from the MCMC run for
the ZehaviHOD, visualized in contours (2D marginalized probabilities)
and histograms (1D marginalized probabilities). We put 40 walkers (hence
20 for each parameter) and run 700 steps. We discard the early 180
steps as burn-in and take 520 steps to retrieve the posterior probabil-
ity function. The median values with ±1σ errors for parameters are
log M1 = 17.7+1.6

−1.6 and α = 0.31+0.18
−0.08. The (blue) lines and point repre-

sent the location of our parameter choice of log M1 = 18.9 and α =
0.24, where we demonstrate its two-point correlation function and HOD
in Fig. B1.

Ns(M) = Fs

(
M

M1

)α

, (B4)

where Fc is a duty cycle for central LAEs and Fs for satellite
LAEs. By adding these two new parameters, we can achieve more
physically relevant predictions to the halo occupation of LAEs.
However, as a trade-off, we can lose statistical interpretability due

to coupled parameters; moreover, there exists a potential degeneracy
in model fits.

For example, the prediction of α ≈ 0.3 from the ZehaviHOD is
quite smaller than a fiducial value, α = 1. This is because the one-
halo term is determined by centre–satellite and satellite–satellite
pair counts. Since the central occupation fraction is always equal to
one for massive haloes in the ZehaviHOD, the number of satellites
should be suppressed by taking unphysically high log M1 ≈ 17
and low α to match the observed small-scale clustering. If we take
a small Fc, we can have more parametric freedom to increase the
number of satellites, while still fixing the total pair counts of center–
satellite and satellite–satellite. Hence, by adding duty cycles to our
new HOD, we can achieve more physically relevant predictions of
log M1 and α.

However, as a trade-off, we have a coupled factor, FsM
−α
1 , for

the satellite occupation in equation (B4). Though fixing this factor
a constant, there are internal degenerate degrees of freedom among
{Fs, M1, α}. In addition, {Fc} is coupled with the satellite occu-
pation parameters {Fs, M1, α}, which determines the number of
center–satellite pairs, affecting small-scale clustering significantly.

Therefore, we can obtain a better HOD model by increasing its
flexibility of functional form. However, we lose the model’s inter-
pretability due to explicit and implicit couplings among parameters
and potentially the degeneracy increases in parameter estimates. If
the duty cycle of LAEs is inevitably required for physical relevance,
its related trade-offs are intrinsically ineluctable.

Before taking equations (B3) and (B4) as our final HOD choice,
we need to consider one more factor, the environmental effect
on populating central LAEs. The question is whether it is phys-
ically relevant to populate the same fraction of LAEs at centres
for different haloes in various environments; e.g., 1011 M� haloes
mostly populated in field regions and 1013 M� in dense regions.
In a practical aspect, we need to decide whether it is necessary
to add another set of parameters to the LAE’s HOD for imple-
menting such mass-dependent occupations. Unlike the duty cycle,
this could be arguably optional for physical relevance, when con-
sidering the caveats of additional trade-offs caused by the new
parameters.
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For our sample, we have a conspicuous inflection point near
20 arcsec, which implies that the substructures of massive haloes,
determining the small-scale clustering, should be more accurately
treated to properly explain the inflected feature. Therefore, we as-
sign two different fractions of central occupations for the haloes
as

Nc(M) =
⎧⎨
⎩

0 if M < Mc,

FB
c if Mc ≤ M ≤ Mθ,

FA
c if Mθ < M,

(B5)

where FA
c and FB

c are central occupation fractions, split by a mass
threshold Mθ . Using this equation, we can assign different cen-
tral occupations, e.g., to 1011 and 1013 M� haloes. As trade-offs,
we have an explicit coupling among {FA

c , FB
c , Mθ } and an im-

plicit dependence between {FA
c , FB

c ,Mθ } and {Fs, M1, α}. Despite
the issues of poor interpretability and potential degeneracy, we ar-
gue that the central occupations of LAEs for 1011 and 1013 M�
haloes should be different at z ≈ 2.67. To conclude, by imple-
menting the two physical factors of (1) duty cycles and (2) mass-
dependent central occupations, our choice of physically relevant
HOD for LAEs is equations (B4) and (B5) with the six parameters
{FA

c , FB
c , Fs, Mθ , α,M1}.

In the literature, Geach et al. (2012) already implemented the two
physical factors as

Nc(M) = FB
c (1 − FA

c ) exp

[
− log(M/Mc)2

2σ 2
log M

]

+ FA
c

[
1 + erf

(
log(M/Mc)

σlog M

)]
, (B6)

Ns(M) = Fs

[
1 + erf

(
log(M/M1)

δlog M

)](
M

M1

)α

. (B7)

where the main difference from equations (B4) and (B5) is
a smoother mass dependence using Gaussian distribution with
one additional parameter, δlog M. When fixing δlog M ≡ 1, the
parameter set of Geach et al. is {FA

c , FB
c , Fs, σlog M, α,M1}, while

{FA
c , FB

c , Fs, Mθ , α,M1} is that of equations (B4) and (B5). There-
fore, we adopt the HOD from Geach et al. for the Boötes LAEs for
physical relevance considering the two factors of duty cycles and
mass-dependent central occupations. Due to the inevitable trade-
offs of poor interpretability and potential degeneracy, we accept all
non-rejected HOD models as possible scenarios.

A P P E N D I X C : D E F I N I T I O N S O F N E T WO R K
QUANTITIES

All graph quantities presented in this section are commonly used in
network science. Interested readers are referred to Newman (2003),
Dorogovtsev, Goltsev & Mendes (2008), and Barthélemy (2011)
for further details.

The average clustering coefficient (average CC) is an average of
all local clustering coefficients. The local clustering coefficient Ci

for a vertex i is defined as

Ci = number of pairs of neighbours for i that are connected

number of pairs of neighbours for i
. (C1)

In social networks, the local clustering coefficient measures whether
an individual’s two friends know each other. The denominator in
equation (C1) is the number of total pair combinations of the in-
dividual’s friends. The numerator is the number of friended pairs,
hence triangular friendships when including the central individual.

Figure C1. A schematic figure illustrating the meanings of transitivity,
diameter, and betweenness centrality.

Figure C2. A schematic figure showing 3-, 4-, and 5-cliques, where we re-
fer to a complete subgraph with k vertices as k-clique. Inside of the 5-clique,
we can find many 3- and 4- subcliques. Generally, we can extend a clique by
adding neighbours, until there is no more extendable clique configuration.
This kind of unextendable clique is referred to as maximal clique. Since
galaxy groups and clusters form cliques in galaxy FOF networks, statis-
tics of maximal cliques are quite interesting and important information for
investigating the formation and evolution of galaxy groups and clusters.

The local clustering coefficient, therefore, is roughly a triangle den-
sity for each vertex. The average of this vertex-wise triangle density
is the average CC for a network.

Transitivity is a different version of triangle density from the
average CC, defined as:

Transitivity = 3 × number of triangles

number of connected triples
. (C2)

The top graph schema in Fig. C1 illustrates the meaning of transitiv-
ity. The ‘∨’ configuration, connected by solid lines, is a connected
triple. Transitivity is the fraction of whether the other side, drawn
by a dotted line, is connected or not. Since a triangle contains three
connected triples, transitivity is normalized to 1 as the average CC.
Transitivity is often referred to as a global clustering coefficient,
since equation (C2) is a network-wise measurement while equa-
tion (C1) is a vertex-wise measurement. Hence, we need to mea-
sure transitivity for a true unbiased triangle density for a network.
The average CC is biased to the majority’s CC value in the vertex
population due to the averaging process. Therefore, transitivity and
average CC are similar, but not exactly the same.

A clique is a complete subgraph. Fig. C2 show cliques with
3,4, and 5 vertices; hereafter, we refer to a clique with k vertices
as k-clique. Inside of the 5-clique, we can find many 3- and 4-
subcliques. Generally, we can extend a clique by adding neighbours,
until there is no more extendable clique configuration. This kind of
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Figure C3. A schematic figure showing Ring (left), Star (middle), and Clique (right) graphs with 7 vertices. The number on each vertex represents the number
of neighbours (i.e. degree), and centralization and transitivity values are shown at the bottom for each graph. It is interesting that, in our FOF recipe for
generating networks, a star graph becomes a clique when the linking length is doubled; hereafter, we refer to this as star–clique transition. Figs 10 and 11
provide some potential evidence of this star–clique transition.

unextendable clique is referred to as maximal clique. Since galaxy
groups and clusters form cliques in galaxy FOF networks, statistics
of maximal cliques are quite interesting and important information
for investigating the formation and evolution of galaxy groups and
clusters. We find the largest maximal clique and measure its size
from each network.

The diameter is the largest path length of shortest pathways from
all pairs in a network. The path length is defined as the number
of steps to reach from a certain vertex, i, to another, j. Hence,
the pathways of minimum path length are the shortest pathways
between the vertices, i and j; generally, there can be multiple shortest
pathways between a pair in an unweighted network. The bottom
graph schema in Fig. C1 illustrates the shortest pathways between
the i and j vertices. There are three shortest pathways with the path
length of 3. And there is one detour with the path length of 5.
Therefore, the shortest path length between i and j is 3. We measure
these shortest path lengths for all possible pairs in a network and,
then, take the maximum value. This largest path length is defined
as the diameter of the network.

Centrality is a value assigned to each vertex, as an indicator for
quantifying which vertex is more important in a certain topological
perspective. For example, degree centrality is the number of neigh-
bours for each vertex. In social networks, this is a measure of the
importance of a given individual in the network; the most influen-
tial individual is the one with the most ‘friends’, i.e. the one with
the highest degree value. A better centrality can be defined if the
current centrality cannot reflect the concerned topological feature
well. Google’s PageRank is designed to prioritize the importance of
World-Wide Web (WWW) documents. This centrality works better
to rank WWW documents than the simple degree centrality (Page
et al. 1999).

The betweenness centrality is a measure of which vertex is most
frequently used when commuting back and forth between all pairs;
hence, the congested spots during rush hours have high betweenness
centralities in a road network. Mathematically, this betweenness, xi

for the i-th vertex, is defined as

xi =
∑

st

ni
st

gst

, (C3)

where gst is the number of shortest paths between the vertices s and
t and ni

st is the number of these that pass through the vertex i. If gst is
zero, we assign ni

st /gst = 0. In the bottom graph schema of Fig. C1,
there are 3 shortest pathways between i and j. By the definition of

betweenness in equation (C3), we add +1/3 to all vertices on each
shortest pathway. Then, +2/3 is assigned to red vertices and +1/3
is assigned to blue vertices by the pair of i and j. We cumulate
all of these betweenness values from all pairs to obtain the final
betweenness centrality. Generally, this betweenness can be used to
identify which spot is the most congested area in a road network or
which person is the most influential broker connecting two isolated
communities. In galaxy FOF networks, betweenness can be used as
a filament tracer (HD15).

Like the local clustering coefficient, betweenness and degree
are vertex-wise measurements. As we average out local clustering
coefficients to an average CC, we can measure the averages of
betweenness and degree. However, for centralities, there is another
way of reducing the vertex-wise values, referred to as centralization,
that quantify how close a network is to a star graph, the most
centralized graph structure. There are a couple of ways to define
centralization. In this paper, we follow Freeman’s formula,

Centralization =

n∑
i=1

[Cmax − Ci]

(n − 1)(n − 2)
, (C4)

where Ci is a centrality value for a vertex i and Cmax the maximum
value of centrality. Fig. C3 shows Ring (left), Star (middle), and
Clique (right) graphs with 7 vertices. The number on each vertex
represents the number of neighbours (i.e. degree centrality), and
the corresponding degree centralization and transitivity values are
shown at the bottom of each graph. This demonstrates well how we
can quantitatively discern the different kinds of network configura-
tions using centralization and transitivity. In galaxy FOF networks,
there is an interesting connection between star and clique that a star
graph becomes a clique when we double the linking length from
where a star graph forms. We refer to this as star–clique transition.
If we find some anomaly in clique statistics, we may expect some
related abnormal feature in centralization statistics at the half-scale
from where we find the clique anomaly.

The giant component is the largest connected subgraph in a net-
work. The giant components are trivial for the two extreme linking
lengths in a galaxy FOF network. For a small linking length that
isolates all individual galaxies, the size of the giant component is
trivially 1. In the opposite case of a very large linking length form-
ing a complete graph, the giant component size is equal to the total
number of vertices (galaxies). Hence, the ratio of the size of the
giant component to the total number of vertices is a fraction that in-
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creases from 0 to 1 monotonically as the linking length grows from
zero. This growth rate of the giant component fraction depends
on topology, especially aligned bridging structures like filaments,
which connect vertices more efficiently than featureless random
scatters. In this case, the fraction of giant component grows faster
through the bridges to reach 1 at a smaller linking length than in the
case of networks without such topological shortcuts.

Finally, the edge density is the number of edges divided by the
total number of possible pairs, n(n − 1)/2, to be normalized to 1.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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