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ABSTRACT
There are now 20 multidimensional core-collapse supernova (CCSN) simulations that explode.
However, these simulations have explosion energies that are a few times 1050 erg, not 1051

erg. In this manuscript, we compare the inferred explosion energies of these simulations and
observations of 40 SN IIP. Assuming a lognormal distribution, the mean explosion energy for
these observations is μobs = −0.23+0.08

−0.12 (log10(E/1051 erg)) and the width is σobs = 0.52+0.09
−0.08.

Only three CCSN codes have sufficient simulations to compare with observations: CHIMERA,
CoCoNuT-FMT, and FORNAX. Currently, FORNAX has the largest sample of simulations.
The two-dimensional FORNAX simulations show a correlation between explosion energy and
progenitor mass, ranging from linear to quadratic, Esim ∝ M1 − 2; this correlation is consistent
with inferences from observations. In addition, we infer the ratio of the observed-to-simulated
explosion energies, � = log10(Eobs/Esim). For the CHIMERA set, � = 0.25 ± 0.07; for
CoCoNuT-FMT, � = 0.49 ± 0.07; for FORNAX2D, � = 0.62 ± 0.06, and for FORNAX3D,
� = 0.85 ± 0.07. On average, the simulations are less energetic than inferred energies
from observations (� ≈ 0.6), but we also note that the variation among the simulations
[max(�) − min(�) ≈ 0.6] is as large as this average offset. This suggests that further
improvements to the simulations could resolve the discrepancy. Furthermore, both the
simulations and observations are heavily biased. In this preliminary comparison, we model
these biases, but to more reliably compare the explosion energies, we recommend strategies
to unbias both the simulations and observations.

Key words: methods: statistical – stars: massive – supernovae: general.

1 IN T RO D U C T I O N

A primary goal of core-collapse supernovae theory is to predict
which stars will explode, but for more than two decades, the more
pressing challenge has been to produce at least one successful explo-
sion in numerical simulations. Recent multidimensional simulations
are finally producing self-consistent explosions (Lentz et al. 2015;
Melson, Janka & Marek 2015a; Müller 2015; Bruenn et al. 2016;
Summa et al. 2016; Radice et al. 2017; O’Connor & Couch 2018;
Ott et al. 2018; Vartanyan et al. 2018; Burrows, Radice & Vartanyan
2019; Müller et al. 2019; Vartanyan et al. 2019). While there are still
only a handful of simulations with successful explosions, a trend is
already emerging; the explosion energies of simulations tend to be
less energetic than explosion energies inferred from observations. In
this manuscript, we quantify the discrepancy between simulations
and observations.

� E-mail: jwmurphy@fsu.edu

Over the last several decades, CCSN simulations have become
much more computationally expensive (requiring 10s of millions of
CPU-hours) but they also seem to be converging towards successful
explosions. Colgate & White (1966) was the first to suggest that
the change in gravitational energy due to core collapse could
power the supernova explosion; they also suggested that neutrinos
transfer this energy from the core to the mantle. However, more
detailed modelling indicates that the bounce shock quickly stalls
into an accretion shock due to electron capture and neutrino losses
but mostly due to nuclear disassociation (Hillebrandt & Mueller
1981; Mazurek 1982). Using one-dimensional neutrino radiation
hydrodynamic simulations, Wilson (1985) and Bethe & Wilson
(1985) suggested that neutrinos eventually relaunch the stalled
shock into an explosion. However, most modern one-dimensional
simulations do not explode. During the 1990s, two-dimensional
simulations using gray flux-limited diffusion hinted that convection
might aide the explosion when one-dimensional simulations failed
(Benz, Colgate & Herant 1994; Herant et al. 1994; Burrows,
Hayes & Fryxell 1995; Janka & Müller 1995). Murphy & Burrows
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(2008) investigated the conditions for explosion and found that
the neutrino luminosity required for explosion is 30 per cent less in
two-dimensional than one-dimensional. Mabanta & Murphy (2018)
derived the conditions for explosion with and without a convection
model. They found that the convection model does reduce the
explosion condition by 30 per cent in agreement with simulations,
and they found that a large part of the reduction is caused by
turbulent dissipation.

These investigations suggest a minimum set of requirements
for self-consistent core-collapse supernova simulations. General
relativity (GR) is likely important, so the code should employ GR
or at least a post Newtonian potential inspired by GR. Neutrino
transport should include the interactions for electron, mu, and tau
flavours, and it should be multi-angle and multi-energy. Finally,
the simulations should be multidimensional, preferably three-
dimensional, but two-dimensional simulations have shown similar
explosion conditions (Hanke et al. 2012) and energetics (Burrows
et al. 2019). Following is a list of publications that report explosive
simulations using codes with these minimum requirements: Lentz
et al. (2015), Müller (2015), Bruenn et al. (2016), Melson et al.
(2015a), Summa et al. (2016), Radice et al. (2017), O’Connor &
Couch (2018), Ott et al. (2018), Vartanyan et al. (2018), Müller
et al. (2019), Vartanyan et al. (2019), and Burrows et al. (2019). Of
these, the following publications report positive explosion energies
that begin to plateau in energy: Müller (2015), Bruenn et al. (2016),
Melson et al. (2015a), Radice et al. (2017), Vartanyan et al. (2018),
Müller et al. (2019), Vartanyan et al. (2019), and Burrows et al.
(2019). In general, the explosion energies reported range from 0.1
to 0.9 × 1051 erg.

Arnett (1980) suggested that one may infer explosion energies of
observed type IIP SNe (SN IIP) by modelling the light curve and
spectra of SN IIP. In general, the light-curve shape depends upon
four parameters: the explosion energy, ejecta mass, nickel mass, and
progenitor radius (Popov 1993; Kasen & Woosley 2009; Dessart &
Hillier 2019; Goldberg, Bildsten & Paxton 2019). On the other
hand, the light-curve shape of SN IIP is most readily described by
three parameters: the brightness during the plateau phase (usually
at 50 d), the duration of the plateau, and the brightness during
the co-decay tail. The later constrains the nickel mass. To close
the system of equations, investigators had assumed that measuring
the velocity during the plateau phase (at 50 d) could close the
system giving a unique solution (Pejcha & Prieto 2015). Under this
assumption, this investigation infers explosion energies for SN IIP
that range from 0.5 to 4.0 × 1051 erg. However, Dessart & Hillier
(2019) and Goldberg et al. (2019) note significant degeneracies;
in particular, Goldberg et al. (2019) emphasize that the observed
correlation between luminosity and velocity (Hamuy & Pinto 2002)
precludes using velocity as an extra constraint. Therefore, Goldberg
et al. (2019) recommend that another constraint for the progenitor
radius is required.

While there are few constraints on progenitor radii for observed
SN IIP, there are constraints on red supergiant (RSG) radii, the
progenitors of SN IIP. Fortunately, the distribution of radii for RSGs
is relatively narrow and provides a strong prior on the radii for the
SN IIP progenitors. Davies, Crowther & Beasor (2018) compile
the brightness and effective temperature of 581 RSGs in LMC and
SMC. The mean inferred radius of these RSGs is 500 R�, and most
RSGs have radii that are within a factor of 2 of this mean. In this
manuscript, we use this prior and infer the explosion energy of
SN IIP.

In this manuscript, we infer the observed explosion energies for
40 SN IIP and perform a preliminary comparison with multidi-

mensional simulations. In Section 2, we discuss the observations,
use the observed distribution of RSG radii as a prior and infer the
explosion energies from observations. In Section 3, we describe
the sample of multidimensional simulations. All of the simulations
show a trend towards an asymptotic explosion energy, but only a
few actually reach an asymptotic explosion energy. Therefore, in
Section 4, we propose a model for the asymptotic explosion energy
and infer an extrapolated explosion energy for each simulation.
Each set of simulations does not yet sample the full range of
progenitors that lead to SN IIP. Therefore, in Section 5, we assume
a model correlating explosion energy and progenitor mass, infer
the parameters of this model, and use the results to infer the full
distribution of simulation explosion energies. Then, we compare the
simulations and observations in Section 6 and infer the discrepancy
between them. Finally, in Section 7, we summarize and discuss how
to improve the inference by addressing biases in both simulations
and observations.

2 INFERRED EXPLOSI ON ENERGI ES FRO M
OBSERVATI ONS

To infer the explosion energies from observations, we use the fitting
formula, equation (22), of Goldberg et al. (2019):

Eexp = −0.728 + 2.148 log(L42) − 0.280 log(MNi)

+ 2.091 log(tp,2) − 1.632 log(R500), (1)

where L42 is the plateau luminosity at day 50 in units of 1042 erg
s−1, MNi is the nickel mass in M�, tp, 2 is the duration of the plateau
in units of 100 d, and R500 is the progenitor radius in units of 500
R�. For the light-curve parameters (L42, MNi, and tp, 2), we consider
two sources: Pejcha & Prieto (2015) and Müller et al. (2017b);
these two sources include 40 ‘nearby and well observed’ SN IIP.
Unfortunately, there are no progenitor radius constraints for the
entire set of SNe. To constrain the progenitor radii, we use the
radius distribution for RSGs as a prior.

In addition to reporting the light-curve parameters for 40 SN
IIP, Pejcha & Prieto (2015) and Müller et al. (2017b) also use
Bayesian inference to infer the explosion parameters, their asso-
ciated uncertainties, and covariances. These works represent the
most thorough analysis of the uncertainty and covariances for the
explosion parameters. However, since they assumed that the velocity
at 50 d would provide an additional constraint, we are unable to
use their inferred explosion parameters and uncertainties. Instead,
we use their light-curve parameters and equation (1) to infer the
explosion energy. Instead of calculating the full covariance matrix as
in Pejcha & Prieto (2015), we simply assume Gaussian, uncorrelated
errors and the standard error propagation.

To calculate the radii for RSGs, we use the luminosity and
effective temperature, Teff, of RSGs. Fig. 1 shows the Hertzsprung–
Russell (HR) diagram for cool, luminous stars in the Large and
Small Magellanic Clouds (LMC and SMC) (Davies et al. 2018).
The clump of stars near 4000 K are the RSGs. In general, the RSGs
for the LMC are cooler than the RSGs in the SMC; in particular, the
SMC RSGs have Teff < 4300 K, and the LMC RSGs have Teff <

4000 K. These temperatures correspond to spectral types later than
G7 for the SMC and K3 for the LMC. Using these Teff cuts, there
are 303 RSGs in SMC sample, and there are 278 RSGs in the LMC
sample for a total of 581 RSGs in the combined sample. It is likely
that the latest types are the progenitors of SN IIP (Davies & Beasor
2018); While the red colours of SN IIP progenitors are consistent
with this statement (Smartt 2015), the spectral types have yet to
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Figure 1. The HR diagram for cool, luminous stars in the LMC and the
SMC (Davies et al. 2018). The clump of stars near 4000 K are red supergiants
(RSGs). The typical radius for the RSGs is 500 R�, and the full range of
radii differs only by a factor of 4 (between 250 R� and 1000 R�). SMC
RSGs have effective temperatures, Teff, less than 4300 K, and the LMC
RSGs have Teff < 4000 k.

Figure 2. The radii for RSGs in LMC and SMC. On average, the SMC radii
are smaller than the LMC radii by about 0.2 dex. For the entire population,
the mean RSG radius is μ = 0.009 in units of log10(R/500 R�), and the
standard deviation is σ = 0.16. We use the combined distribution as a prior
in equation (1) when inferring the explosion energies of the 40 observed
SNe (Pejcha & Prieto 2015; Müller et al. 2017b).

be confirmed with observations. To construct the most conservative
prior for RSG radii, we consider all RSGs in both samples.

Fig. 2 shows the distributions of radii for the RSGs in the LMC,
SMC, and both. The distributions are log normal; the mean for all is
μ = 0.009 [in units of log10(R/500 R�)], and the standard deviation
is σ = 0.16. The mean for the SMC is around −0.1, while the mean
for the LMC is 0.1. This systematic difference in radii has an impact
on the inferred explosion energies via equation (1). Using the SMC
distribution as a prior would lead to explosion energies that are 0.3
dex larger compared to using the LMC distribution. To account for
both this systematic offset and the intrinsic variation in radii, we use
the combined distribution to represent the prior for RSG radii. Using
this distribution as a prior, we then use light-curve parameters from
Pejcha & Prieto (2015) and Müller et al. (2017b), and equation (1)
from Goldberg et al. (2019) to infer the explosion energies and
uncertainties. The inferred explosion energies and uncertainties are
in Table 1.

Table 1. Explosion energies inferred from SN IIP observations. ε is the
mode, and σ ε is the uncertainty. The light-curve data is from Pejcha &
Prieto (2015) and Müller et al. (2017b); for the progenitor radii, we use the
RSG distribution as a prior (Fig. 2), and we use the fitting formula from
Goldberg et al. (2019), equation (1).

Name ε = log10(Eobs/1051) σ ε

SN 1980K − 1.54 0.31
SN 1992H 1.05 0.33
SN 1995ad 0.81 0.37
SN 1996W 0.11 0.34
SN 1999em − 0.07 0.31
SN 2001dc − 1.80 0.34
SN 2002hh − 0.26 0.32
SN 2004A − 0.32 0.31
SN 2004dj − 0.69 0.32
SN 2004et − 0.04 0.31
SN 2005cs − 0.87 0.32
SN 2006bp 0.30 0.31
SN 2007od 1.37 0.31
SN 2008bk − 0.68 0.53
SN 2008in − 0.26 0.64
SN 2009bw 0.04 0.30
SN 2009dd − 0.58 0.40
SN 2009js 0.57 0.38
SN 2009N − 0.49 0.31
SN 2012A − 0.67 0.30
SN 2012aw 0.34 0.30
SN 1992ba − 0.16 0.48
SN 2002gw − 0.12 0.39
SN 2003B − 0.55 0.59
SN 2003bn − 0.28 0.35
SN 2003E − 0.20 0.40
SN 2003ef 0.27 0.39
SN 2003fb − 0.50 0.43
SN 2003hd − 0.26 0.35
SN 2003hn − 0.64 0.36
SN 2003ho − 1.09 0.34
SN 2003T − 0.48 0.33
SN 2009ib − 0.42 0.33
SN 2012ec − 0.23 0.31
SN 2013ab 0.11 0.43
SN 2013ej − 0.43 0.35
SN 2013fs − 0.35 0.33
SN 2014G − 0.50 0.34
ASSASSN-14gm − 0.06 0.35
ASSASSN-14ha − 0.53 0.38

Next, we infer the distribution of observed explosion energies by
modelling the mean (μobs) and width (σ obs) of the observations. For
a rough estimate, one may calculate the mean and variance of the
modes (second column in Table 1). However, when the uncertainties
in the observations are large, these estimates can easily be biased. In
particular, the observed variance in the distribution is a convolution
of the true width and the large uncertainties, so simply calculating
the variance of the observations will lead to an over estimation of the
width. Therefore, we use Bayesian inference to infer the distribution
of explosion energies.

The posterior distribution is

P (μobs, σobs|{εi, σε})

∝
∏

i

L(εi |σε,i , μobs, σobs)P (μobs)P (σobs) , (2)
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Figure 3. The posterior distribution for μobs and σ obs in log10(E/1051 erg).
We assume that the SN IIP explosion energies are drawn from a lognormal
distribution and infer the mean and width. The mean corresponds to an
energy of 6 × 1050 erg, the 1σ lower bound is 2 × 1050 erg, and the 1σ

upper bound is 2 × 1051 erg.

where P(μobs) and P(σ obs) are uniform priors. The likelihood for
each observation is

L(εi |σε,i , μobs, σobs)

= 1√
2π (σ 2

ε,i + σ 2
obs)2

e
−[εi−μobs]2/[2(σ 2

ε,i
+σ 2

obs)2]
. (3)

To infer this posterior distribution, we use the Markov Chain Monte
Carlo package EMCEE (Foreman-Mackey et al. 2013); Fig. 3 shows
the posterior distribution for the model parameters; the mode and the
68 per cent highest density intervals (HDI) are μobs = −0.23+0.08

−0.12

and σobs = 0.52+0.09
−0.08. The mean corresponds to an energy of 6 × 1050

erg, the 1σ lower bound is 2 × 1050 erg, and the 1σ upper bound is
2 × 1051 erg.

3 INFERRED EXPLOSION ENERGIES FRO M
CCSN SIMULATIONS

To simulate the core-collapse problem with some fidelity, CCSN
simulations must include the following physics: multidimensional
hydrodynamics, general relativity, dense nuclear equations of state
(EOS), weak interactions, nuclear reactions, and neutrino transport.
Codes that simulate all of these physics with any fidelity are
computationally expensive. For example, current three-dimensional
neutrino radiation hydrodynamics simulations require 10s of mil-
lions of CPU-hours; on 10 000 cores or more this requires months
of computational time for just one run. As a result most codes
make some approximations. Even the most advanced codes require
some approximations. For the purpose of this study, we only select
simulations that meet the following minimum approximations.
Gravity should include at least a pseudo GR spherical potential.
The neutrino transport should be a self-consistent approximation of
the Boltzmann equation. Two examples of such neutrino transport
are (1) solving the Boltzmann equation using discrete methods along
rays and (2) solving moment equations. The transport also should

be multispecies, multigroup, and multi-angle in its approximation.
The individual simulations should also show signs of approaching
a final explosion energy.

The codes that satisfy these technical requirements are
CHIMERA, CoCoNuT-FMT, FORNAX, PROMETHEUS-
VERTEX, Zelmani, FLASH, and the Kuroda, Takiwaki &
Kotake (2016) code. However, not all of these have simulations that
explode and asymptotically approach a final explosion energy. Only
simulations using CHIMERA, FORNAX, and CoCoNuT-FMT
satisfy all conditions. The following subsections briefly describe
each code and include references that include the simulation sets.

3.1 Codes and simulation sets included in this study

CHIMERA: The full code architecture and capabilities are pre-
sented in Bruenn et al. (2006), Messer et al. (2007, 2008), and
Bruenn et al. (2009, 2013, 2018). The hydrodynamics solver is
a dimensionally split, Lagrangian-plus-remap Newtonian scheme
with piecewise parabolic reconstruction. Self-gravity is computed
by a multipole expansion and the neutrino transport is computed
using ray-by-ray, with multigroup flux-limited diffusion (MGFLD)
as the transport solver. The simulations of Bruenn et al. (2016)
use the K = 220 MeV incompressibility version of the Lattimer &
Douglas Swesty (1991) EOS for densities ρ > 1011 g cm−3.

Using two-dimensional simulations, Bruenn et al. (2016) report
explosions of the 12, 15, 20, and 25 M� progenitors of (Woosley &
Heger 2007). Lentz et al. (2015) report the explosion of the 15 M�
progenitor in three-dimensional simulations. With only one three-
dimensional simulation, it is difficult to explore the trends and
systematics with mass, etc. Furthermore, the simulation ends after
440 ms past bounce and 140 ms past the initiation of positive
diagnostic explosion energies. The explosion energy does not start
to plateau, and thus our extrapolation model for late times would be
invalid in this case. Therefore, we restrict the CHIMERA sample to
the two-dimensional simulations of Bruenn et al. (2016).

CoCoNuT-FMT: The primary description of this code’s architec-
ture is in Müller (2015). The latest advancements for this code are
in Müller et al. (2019). The hydrodynamics solver for CoCoNuT-
FMT solves the general relativistic hydrodynamics in spherical
coordinates on a unsplit finite-volume mesh. Fluxes are calculated
using an HLLC Riemann solver, and the metric equations are
solved in the extended conformal flatness approximation with a
spherically symmetric metric. The neutrino transport is multigroup
and uses a variable Eddington factor closure and solves the
transport using ray-by-ray. The transport includes gravitational
redshift but neglects both velocity dependent terms and inelastic
scattering. However, there is a Doppler correction to the absorption
opacity.

In a three-dimensional simulation, Müller (2015) report the
explosion of the 11.2 M� progenitor of Woosley, Heger & Weaver
(2002); for this simulation, Müller (2015) employ the K = 220 MeV
version of the Lattimer & Douglas Swesty (1991) nuclear EOS.
Using Coconut-FMT and a 3D 18 M� initial progenitor to provide
perturbations, Müller et al. (2017a) produced a perturbation-aided
explosion. Most recently, Müller et al. (2019) produced several
explosions of progenitors with zero-age main-sequence (ZAMS)
masses between 9.6 M� and 12.5 M�. Since the Müller et al.
(2019) study probes a sufficiently high resolution of the mass space,
we choose the diagnostic energies from this set of simulations
for our examination. Since there is only one model that explores
perturbation-aided explosions, we do not include the results of
18 M� simulation (Müller et al. 2017a) in the final comparison
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with observations. However, in Section 7, we do discuss the
possible implications of perturbations on explosion energies in
simulations.

FORNAX: The technical details and capabilities of FORNAX are
presented in Skinner et al. (2018). In summary, this code solves both
hydrodynamics and radiation transport using explicit, finite-volume
Godunov schemes. For gravity, they use a multipole solver and
replace the monopole part of the potential with a post-Newtonian
approximation for GR. The transport algorithm is a multigroup,
two-moment closure scheme and uses the M1 moment closure for
the Eddington tensor. Both the hydro and transport components
calculate the fluxes between cells using approximate Riemann
solvers. Because the transport is explicit, the time-step is limited by
the speed of light across the zone. In general, the speed of sound
in the protoneutron star is 1/3 the speed of light, so calculating
the neutrino transport explicitly only increases the number of time-
steps by a factor of 3. The reductions in calculations for an explicit
transport solver versus an implicit solver more than compensate for
this increase in speed. In general, simulations involving FORNAX
use either the K = 220 MeV version of the Lattimer & Douglas
Swesty (1991) EOS or the SFHo EOS (Steiner, Hempel & Fischer
2013) dense nuclear equations of state.

There are four primary publications that report CCSN explosions
in FORNAX simulations. We divide them into two sets, two-
dimensional simulations, FORNAX2D, and three-dimensional sim-
ulations, FORNAX3D. Radice et al. (2017) explored explodability
of two-dimensional simulations for the following progenitors: n8.8,
u8.1, z9.6, 9.0, 10.0, 11.0. The numbers in these models represent
the zero-age main-sequence mass. All models use the K = 220 MeV
version of the Lattimer & Douglas Swesty (1991) EOS; they also
explode in both one-dimensional and two-dimensional simulations.
Vartanyan et al. (2018) simulated collapse of the 12, 13, 15, 16, 17,
19, 20, 21, and 25 M� progenitors (Woosley & Heger 2007). For
these simulations, they use the SFHo EOS (Steiner et al. 2013). They
reported explosions for the 16, 17, 19, and 20 M� progenitors, but
only the 16, 17, and 19 M� progenitors provide diagnostic explosion
energies that are greater than zero and approach an asymptotic
value. Vartanyan et al. (2019) simulated three-dimensional collapse
and explosion of the 16 M� progenitor. They find an explosion,
but this simulation has yet to reach positive diagnostic explosion
energies. More recently, Burrows et al. (2019) simulate the three-
dimensional explosions for the same 9, 10, 11, 12, and 13 M�
progenitors but using the SFHo EOS (Steiner et al. 2013). For the
progenitors that are simulated both in two and three dimensions,
the explosion time and diagnostic explosion energies are very
similar.

3.2 Codes and simulations not included in this study

PROMETHEUS-VERTEX: Melson et al. (2015a) describe the code
architecture for this code. The hydrodynamics algorithm is a finite-
volume Godunov scheme using Riemann solvers to calculate fluxes.
For gravity, the code solves the multipole expansion and replaces the
monopole with a pseudo potential that represents a post-Newtonian
approximation to GR. The neutrino transport solves the Boltzmann
equation on radial rays.

There are two three-dimensional explosions using Prometheus-
Vertex. Melson et al. (2015a) report the three-dimensional explosion
of a 9.6 M� star. In the same year, Melson et al. (2015b) report
the three-dimensional explosion of a 20 M� star. These represent
the first self-consistent three-dimensional explosions. However, the
latter is not what one would consider a fiducial simulation; it

explores strange-quark contributions to the neutrino–nucleon scat-
tering. The former does explode and begins to approach asymptotic
values at about 400 ms past bounce or 300 ms past the initiation
of explosion. The final reported explosion energy is 0.1 × 1051

erg, and the final rate of increase is about 1051 erg s−1. Summa
et al. (2016) simulated the explosion of 18 progenitors in two-
dimensional simulations. However, they only reported diagnostic
explosion energies for four of the progenitors, and these did
not reach asymptotic values in the explosion energy. With only
one simulation reaching the final phase of the explosion, it is
difficult to make any systematic conclusions about the performance
of Prometheus-Vertex simulations. Therefore, we do not include
Prometheus-Vortex results at this time.

FLASH: O’Connor & Couch (2018) include approximate GR
in FLASH, a finite-volume hydrodynamics code. The gravity
algorithm solves the Newtonian Poisson’s equation via a multipole
solver and replaces the monopole term with a post-Newtonian
pseudo-GR potential. The neutrino transport solves the two-moment
equations and uses the M1 closure. The transport is also multigroup,
includes velocity dependence and inelastic scattering.

Using FLASH, O’Connor & Couch (2018) simulated the collapse
of the 12, 15, 20, and 25 M� progenitors (Woosley & Heger 2007).
The 15, 20, and 25 M� runs exploded, reaching explosion energies
ranging from 0.15 to 0.25 × 1051 erg. However, none reach the
plateau phase in diagnostic explosion energy, so we are not able to
include these results in our comparison.

Zelmani: Roberts et al. (2016) present the code architec-
ture. Zelmani is a three-dimensional GR, multigroup radiation-
hydrodynamics code. The neutrino transport solves the two-moment
equations and uses an M1 closure. Zelmani also neglects velocity
dependence and inelastic scattering processes. Ott et al. (2018)
simulated the explosions of 12, 15, 20, 27, and 40 M� progenitor
models of Woosley & Heger (2007) and with the SFHo (Steiner et al.
2013) EOS. Though the fidelity of this code meets the requirements
of our analysis, the simulations terminated very shortly after
explosion, and so the explosion curves are far from their plateau
phase. Thus, we are not able to include these simulations in this
study.

Kuroda (2016): The code presented in Kuroda et al. (2016)
meets some of the technical requirements. The neutrino trans-
port is multigroup and is a two-moment scheme using the M1
closure. The code solves the GR field equations. They simulated
collapse of a 15 M� progenitor. However, this simulation did not
explode.

Codes Using IDSA: Some investigations use an approximation to
neutrino transport called isotropic diffusion source approximation
(IDSA) (Liebendörfer, Whitehouse & Fischer 2009). IDSA was
designed as a fast approximation to multidimensional neutrino
transport. In general, it transports energy and lepton number, and
while its speed enables innovative and systematic investigations,
the approximations within this scheme must be calibrated against
Boltzmann-transport based schemes. Since the IDSA is calibrated
against Boltzmann transport but is not a scheme directly derived
from Boltzmann transport, we do not include IDSA simulations
in our comparison. If future comparisons thoroughly validate the
IDSA scheme, then IDSA simulations would prove valuable tools
in rapidly and systematically exploring explosions. For example,
Nakamura et al. (2015) performed a large (101 simulations) sys-
tematic investigation of two-dimensional CCSN simulations. In
general, they found that most progenitors explode. Although, they
did not report the diagnostic explosion energies for most of these
simulations.
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Figure 4. Simulated explosion energies (Esim) versus time after bounce.
The thick solid lines represent the diagnostic explosion energies for
CHIMERA (blue), CoCoNuT-FMT (green), FORNAX2D (brown), and
FORNAX3D (yellow). Assuming that the growth of explosion energy is
dominated by neutrino power, we propose a simple extrapolation of the
explosion energy curve. See equation (5). The wide bands represent a
68 per cent confidence interval extrapolation. From this extrapolation we
infer an explosion energy after infinite time, E∞. The model appears to
be a good fit for nearly all simulations except the very underenergetic
model in the FORNAX3D set. That simulation corresponds to the 10.0 M�
progenitor and is likely still developing the explosion profile even after
750 ms.

4 EXTRAPOLATING SIMULATED EXPLOS I ON
ENERGIES TO LATE TIMES

The explosion energies in many of the multidimensional simulations
are still increasing when the simulations terminate. At the same time,
most appear to be approaching an asymptotic value. Therefore, at
best, the reported diagnostic explosion energies are a minimum.
Here, we note that the energy evolution for all simulations follows a
common functional form. We suggest a simple model for explosions
driven by neutrino heating. This model leads to a simple functional
form that is a good fit to the simulations. Here, we use this functional
form to extrapolate the explosion energy to infinite time, E∞.

Fig. 4 shows the diagnostic explosion energies in units of 1051

erg as a function of time after bounce. The solid lines represent
the results of multidimensional simulations, and the bands at the
end of each curve represents our extrapolation. Blue represents
CHIMERA simulations, green represents CoCoNuT-FMT, brown
represents FORNAX2D, and yellow represents FORNAX3D. All
curves rise and show signs of asymptotically approaching a finite
explosion energy, E∞. In a preliminary analysis, we considered
two functional forms: an exponential and a power law. These crude
initial comparisons suggest that the energy curves asymptote via a
power law and not an exponential. Using this crude analysis as a
guide, we now suggest a model for the explosion energy curve and
derive the functional form.

If neutrinos are primarily driving the explosion, then one might
expect the rate of growth of explosion energy to be roughly
proportional to the neutrino power.

dEexp

dt
≈ Lντ , (4)

where Lν is the neutrino luminosity and τ = ∫
ρκ dr is the op-

tical depth to neutrino absorption in the region of net neutrino

heating. κ is the neutrino absorption cross-section per unit mass,
κ ≈ σ /mp.

A few straightforward assumptions lead to a simple function for
Esim(t). First, during the explosion, we assume that the optical depth
is roughly τ ∼ κMgain/R

2
s , where Mgain is the mass in the gain region

and Rs is the shock radius. Making the simplest assumptions, we
assume that Lν and Mgain are roughly constant during the last stage
of explosion development. In addition, we assume that Rs = vst, and
that the shock velocity, vs is also constant. Integrating equation (4)
leads to the following functional form

Eexp(t) = E∞ − A

t
, (5)

Formally, A is proportional to LνκMgain/v
2
s , but we do not have

access to these values for all of the simulations. Therefore, in our
extrapolations, we fit only for two parameters, E∞ and A.

We use Bayesian inference to find the best-fitting values for E∞
and A. The posterior distribution for E∞ and A is

P (E∞, A, σ |{Esim,i

}
) ∝ L(Esim,i|E∞, A, σ )P (E∞)P (A)P (σ ).

(6)

It is unclear what the variance σ 2 is for the simulations. Therefore,
we include σ as an unknown nuisance parameter and simply
marginalize over all possible values to infer the posterior distribution
for E∞ and A, P(E∞, A). With little prior information about any of
these parameters, we choose uniform priors for P(E∞), P(A), and
P(σ ). To model the likelihood, we assume a Gaussian distribution
for each simulation data point:

L(
{
Esim,i

} |E∞,A) =
∏

i

Ni(Esim,i |Eexp(ti , E∞, A), σ ) , (7)

where

Ni(Esim,i |Eexp(ti , E∞, A), σ )

= 1√
2πσ

e−[Esim,i−Eexp(ti ,E∞,A)]2/[2σ 2] . (8)

The mean is the modelled explosion energy, Eexp(t) equation (5).
The unknowns to infer are the asymptotic explosion energy, E∞,
the parameter for the 1/t term, A, and the unknown variation within
each simulation, σ .

When inferring these parameters, we only fit the last half of
the energy curve. The primary assumptions of the evolution model
assume that Lν , Mgain, and vs are constant. If these assumptions
are appropriate at all, they are likely valid in the last part of the
explosion energy evolution. To perform these inferences, we use
Markov Chain Monte Carlo Bayesian inference package emcee
(Foreman-Mackey et al. 2013). The bands extrapolating the energy
curves in Fig. 4 show the resulting inferences. The width of the
band represents the 68 per cent highest density confidence interval
(HDI) for these fits.

Table 2 summarizes the set of simulation explosion energies. The
first row gives the progenitor as presented in the simulation papers.
Each progenitor name conveniently indicates the ZAMS mass in
M�. The second column reports the final explosion energy of the
simulation, Esim(tend). The third column presents the end of the
simulation in seconds after bounce, tend. Finally, column four shows
the mode of the extrapolated explosion energy, E∞.

The four panels in Fig. 5 compare E∞ with an estimate for
the observed explosion energies. The vertical lines indicate the
estimated simulation explosion energy. The height of the lines are
proportional to M−2.35, representing the initial mass distribution. In
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Simulated and observed explosion energies 647

Table 2. Explosion energies for two-dimensional and three-dimensional
CCSN simulations. The simulations for CHIMERA are two-dimensional,
CoCoNut-FMT are three-dimensional, FORNAX2D are two-dimensional,
and FORNAX3D are three-dimensional. The 18ProgConv model represents
the explosion of the 18 M� progenitor that includes pre-collapse perturba-
tions due to O-shell burning (Müller et al. 2017a). Since the initial conditions
are different from the other CoCoNuT-FMT simulations, we do not include
18ProgConv in the rest of the explosion energy analysis. However, we do
discuss the possible ramifications of progenitor convection in Section 7. See
the text for references and further discussion.

Progenitor Esim(tend) (1051 erg) tend (s) E∞ (1051 erg)

CHIMERA
12 0.31 0.97 0.34
15 0.88 0.81 1.03
20 0.38 0.84 0.50
25 0.70 0.73 0.93

CoCoNuT-FMT
11.2 0.13 0.77 0.16
s11.8 0.20 0.78 0.24
s12.5 0.16 0.90 0.19
z12 0.41 1.68 0.47
z9.6 0.13 0.12 0.18
18ProgConv 0.77 1.96 0.98

FORNAX2D
11.0 0.11 0.98 0.15
9.0 0.06 0.98 0.08
n8.8 0.18 0.51 0.19
u8.1 0.10 0.85 0.11
z9.6 0.12 0.58 0.13
16 0.16 1.13 0.21
17 0.29 0.90 0.39
19 0.24 0.52 0.39

FORNAX3D
9.0 0.10 0.91 0.11
10.0 0.03 0.62 0.04
11.0 0.09 0.44 0.12
12.0 0.09 0.54 0.12

other words, the height represents the fraction of stars that would
explode with that energy within the simulated set. The gray lines
in each represent the ‘marginalized’ inferred explosion energies
from observations (Pejcha & Prieto 2015). The term marginalized
is in quotes because without the original posterior distributions,
we performed a crude marginalization using fig. 2 from Pejcha &
Prieto (2015). The fraction f25 in each figure represents the fraction
of the IMF that each code has simulated from 7.4 to 25 M�. The
minimum corresponds to the minimum mass for CCSNe (Dı́az-
Rodrı́guez et al. 2018), the maximum corresponds to the maximum
mass for SN IIP (Smartt 2015; Davies & Beasor 2018). For further
discussion on these limits see Section 7.

Upon first glance, the CHIMERA set appears to be most con-
sistent with the observations, and the FORNAX sets are the least
consistent. However, the CHIMERA simulations mostly use the
highest mass progenitors. Below, we note a correlation between
explosion energy and progenitor mass for the FORNAX2D set.
Therefore, the CHIMERA results may actually represent the highest
explosion energies when a full range of progenitors are considered.
In other words, the range of progenitor masses simulated represents
a possible bias for each simulation set. Below, we model the
explosion energy as a function of progenitor mass to account for
this possible bias.

5 IN F E R R I N G T H E FU L L SI M U L AT I O N
EXPLOSI ON ENERGY D I STRI BUTI ON

The simulation sets have not yet sampled the whole range of
progenitors from 7.4 to 25 M�. Therefore, the explosion energies
in Table 2 represent a biased sample. For example, Fig. 6 plots E∞
(dots) versus progenitor mass. It is apparent that the CHIMERA
set includes mostly high-mass progenitors, the CoCoNuT-FMT set
includes mostly the middle, and the FORNAX2D set has simulated
a larger range. Note that the 18ProgConv model (green square)
is omitted in the analysis for CoCoNuT-FMT. In this section, we
infer a relationship between explosion energy and progenitor mass.
Then, we use this inference to infer the full distribution of explosion
energies between 7.4 and 25 M�.

The simplest assumption is that the explosion energy is propor-
tional to some power of the progenitor mass. In fact, Poznanski
(2013) suggest that Eexp ∝ M2 − 3. They noted that all plateau
durations are about the same. In addition, the observed luminosities
and velocities are correlated with a scaling of L ∝ v2 (Hamuy &
Pinto 2002). These two observations led Poznanski (2013) to sug-
gest a correlation between explosion energy and progenitor mass.
Using scaling relations, Poznanski (2013) suggest a correlation
of Eexp ∝ M3. Interpolating in light-curve models, they found
a slightly different correlation of Eexp ∝ M2. Using a different
approach Chugai & Utrobin (2014) found a similar conclusion.
They modelled the oxygen production of 11 SNe IIP and suggested
a correlation but did not give the specific scaling. More recently,
Pejcha & Prieto (2015) quantified this correlation using 19 SN
IIP light-curve models; they infer that the explosion energy is

proportional to a power of the ejecta mass, Eexp ∝ M
1.810.45

−0.34
ej .

Therefore, the most natural model to assume for the correlation
is

log(E∞/1051 erg) = β0 + β1 log(M/10 M�) . (9)

To infer the parameters, β0 and β1, we use EMCEE (Foreman-Mackey
et al. 2013) to infer the following posterior distribution

P (β0, β1, σ |{E∞,i}, {Mi})
∝

∏
i

L(E∞,i |Mi, β0, β1, σ )P (β0)P (β1)P (σ ) , (10)

where the likelihood for the simulated explosion energy E∞i
is

L(E∞,i |Mi, β0, β1, σ )

= 1√
2πσ

e−[log(E∞,i /B)−β0−β1 log(Mi/M�)]2/(2σ ) . (11)

The variation in the simulated energies, σ , is an unknown nuisance
parameter. The priors, P(β0), P(β1), and P(σ ), are all assumed to
be uniform.

Fig. 7 shows the posterior distribution for the FORNAX2D simu-
lation set. The marginalized parameters are β0 = −0.85 ± 0.06 and
β1 = 1.52+0.36

−0.48. The values are the modes, and the uncertainties are
the 68 per cent highest density intervals (HDI). For the CHIMERA,
CoCoNuT-FMT, and FORNAX3D simulation sets, there are far
too few simulations to adequately constrain the slope. Therefore,
we use the β1 distribution for FORNAX2D as the prior for the
other two sets. The marginalized parameters for CHIMERA are
β0 = −0.52+0.19

−0.22 and β1 = 1.45+0.40
−0.38; the marginalized parameters

for CoCoNuT-FMT are β0 = −0.73 ± 0.11 and β1 = 1.49+0.46
−0.35; the

marginalized parameters for FORNAX3D are β0 = −1.07 ± 0.17
and β1 = 1.56+0.36

−0.46. The inference for CoCoNuT-FMT does not
include the 18ProgConv model. The lines in Fig. 6 represent the
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648 J. W. Murphy, Q. Mabanta and J. C. Dolence

Figure 5. The probability density functions for Eobs and E∞. Eobs is an estimate for the marginalized observed explosion energy from Pejcha & Prieto (2015).
E∞ represents the extrapolated explosion energies for four simulation sets: CHIMERA represents the two-dimensional simulations of Bruenn et al. (2016);
CoCoNuT-FMT represents the three-dimensional simulations of Müller (2015), Müller et al. (2017a), and Müller et al. (2019); FORNAX2D represents the
two-dimensional simulations of Radice et al. (2017) and Vartanyan et al. (2018); FORNAX3D represents the three-dimensional simulations of Burrows et al.
(2019). The heights of E∞ represent a weighting due to the IMF. The inset and f25 represents the fraction of the IMF that the simulations have sampled between
7.4 and 25 M�. This range roughly represents the expected progenitors for SN IIP.

distribution of possible functions. For each MCMC sample of β0

and β1, we calculate E∞ as a function of M. Then, we calculate
the 68 per cent HDI for E∞. Within the confidence intervals, the
exponent ranges from linear to quadratic, E∞ ∝ M1–2.

Using observations, Pejcha & Prieto (2015) infer the relationship
between the explosion energy (Eexp in their manuscript) and the
ejecta mass Mej. Since the neutron star that is left behind is only
1.4 M�, and there is not much mass loss for the red supergiant
progenitors they consider, the ejecta mass is similar to the ZAMS

progenitor mass. They find that Eexp ∝ M
1.81+0.45

−0.34
ej , which is consis-

tent with our inference.
Next, we extrapolate to infer the explosion energy distribution

for the range of progenitor masses between 7.4 and 25 M�. The
posterior for the explosion energies is

P (E∞) =
∫

P (E∞|β0, β1, σ,M)

·P (β0, β1, σ ) · P (M) dMdβ0dβ1 , (12)

where P(β0, β1, σ ) is the posterior distribution, equation (10), for
the model parameters, and P(M) is the progenitor mass distribution.
For this study, we assume that P(M) ∝ M−2.35. To determine P(E∞),
we take a sample of (β0, β1, σ ) from MCMC posterior distribution,

draw a mass from the IMF distribution, P(M) ∝ M−2.35, and evaluate
E∞ using equation (9). The resulting distributions for each code are
in Fig. 8. On average, all simulations sets exhibit explosion energies
that are significantly lower than the observations. In the next section,
we quantify the difference between simulations and observations.

6 C O M PA R I N G O B S E RVAT I O N S W I T H
MULTI DI MENSI ONAL SI MULATI ONS

Since the average explosion energies of the simulations are lower
than the observations, we develop a model to infer the missing
explosion energy, � = log (Eobs/E∞). For compactness and read-
ability in the following equations, we define ε = log(E/1051 erg).
The posterior distribution for � is

P (�|{εobs,i})

∝
∏

i

∫
P (εobs,i |ε∞, �)P (ε∞|M)P (M)P (�) dε∞dM . (13)

We assume a uniform prior for �, P(�). This posterior distribution
represents a hierarchical Bayesian inference where ε∞ and M are
intermediate nuisance parameters. The portion of the likelihood that
is P (ε∞) = ∫

P (ε∞|M)P (M) dM has already been calculated and
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Figure 6. Extrapolated explosion energy for simulations versus progenitor mass. CCSN simulations are computationally expensive, and so there are few
simulations to compare to observations. SN IIP are expected to have progenitor masses between 7.4 and 25 M�. Therefore, we infer a function relating E∞ to
the progenitor mass. Later, we use this function to infer the distribution of simulated explosion energies between 7.4 and 25 M�. We fit a line in log space.
The region between the dashed lines represent the 68 per cent confidence interval for this slope. For all sets except FORNAX2D, there are too few simulations
to constrain the slope. The solid band represents the 68 per cent confidence interval when using the slope from the FORNAX2D set as a prior for the other
sets. The green square represents the 18ProgConv model of the CoCoNuT-FMT set, and since it is the only model that includes perturbations due to O-shell
burning, it is not included in the explosion energy versus mass fit.

is shown in Fig. 8. Since the distributions for P(ε∞) are essentially
Gaussian, we use the Gaussian approximation for P(ε∞). With this
approximation, the marginalization over the nuisance parameters in
equation (13) is analytic, and the likelihood is now given by

L(εobs,i |ε∞, �)

= 1√
2π (σ 2

obs + σ 2∞)
e

−[εobs,i−μ∞−�]2/[2(σ 2
obs,i+σ 2∞)]

, (14)

where μ∞ is the mode of P(ε∞), and σ∞ is the half width of the
68 per cent HDI.

Fig. 9 shows the inferred � distributions for the four simulation
sets. For CHIMERA, � = 0.25 ± 0.07; for CoCoNuT-FMT, � =
0.49 ± 0.07; for FORNAX2D � = 0.62 ± 0.06; for FORNAX3D
� = 0.85 ± 0.07. All three simulations set have more than
99.9 per cent of their distributions, P(�), greater than zero. Based
upon the models and assumptions in this manuscript, all three
simulation sets have explosion energies that are significantly smaller
than observations. In the best case (CHIMERA), the simulated
explosion energies are a factor 2 less energetic than the observed
energies. In the worst case (FORNAX3D), the simulated explosion
energies are a factor of 10 less energetic.

7 D I SCUSSI ON AND C ONCLUSI ONS

In general, we find that the explosion energies of multidimensional
simulations are significantly less energetic than the explosion
energies inferred from observations. For this comparison, we
require the CCSN simulations and codes to have the following
attributes; two- or three-dimensional, neutrino transport that is a
self-consistent approximation of Boltzmann transport equations,
transport is multi-angle and multispecies, general relativity or some
post-Newtonian approximation, and positive explosion energies,
approaching asymptotic values. The codes that satisfy these re-
quirements are CHIMERA, CoCoNuT-FMT, and FORNAX. For
the inferred observational explosion energies, we use the light-
curve parameters of 40 SN IIP (Pejcha & Prieto 2015; Müller
et al. 2017b) and the fitting formula of Goldberg et al. (2019).
Inferring the observed explosion parameters requires constraints on
the radius of the progenitor, which is rarely available for observed
SNe. To resolve this, we use the radii of 581 RSGs as a prior (Davies
et al. 2018) and infer the explosion energies of the 40 SN IIP. We
infer a mean observational explosion energy of μobs = −0.23+0.08

−0.12

in units of log10(Eobs/1051 erg); the width of the distribution is
σobs = 0.52+0.09

−0.08. To compare the observations and simulations,
we infer the ratio of observed-to-simulated explosion energies,
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Figure 7. Posterior distribution for the fitting parameters in explosion
energy as a function of progenitor mass. β0 is the explosion energy of a
10 M� progenitor, and β1 is the power-law slope. See equation (9) for
the definition of these parameters. This posterior distribution is for the
FORNAX2D simulation set.

Figure 8. Posterior distribution of simulated explosion energies for each
simulation set. This inference assumes that every progenitor between 7.4 and
25 M� explodes and that the explosion energy is a function of progenitor
mass as given by equation (9) and the fits in Figs 6 and 7.

� = log10(Eobs/E∞), where E∞ is our estimate of the simulation en-
ergy extrapolated to infinite time. For CHIMERA, � = 0.25 ± 0.07,
for CoCoNuT-FMT, � = 0.49 ± 0.07, for FORNAX2D, � =
0.62 ± 0.06, and for FORNAX3D, � = 0.85 ± 0.07. Overall,
all simulation sets are less energetic than the explosion energies
inferred from observations.

This result suggests a tension between the simulations and
observations. However, it does not yet rule out the standard neutrino
mechanism. Of the four simulation sets, the mean offset is �

≈ 0.6, but the range goes from 0.25 to 0.85, and the width of
this range is 0.6. In other words, the variance is of order the
average offset. Given this, it is plausible that future improvements
to the simulations might resolve the current discrepancy. Of all

Figure 9. Posterior distributions comparing observational and simulated
explosion energies. All three codes produce simulation energies that are
significantly lower than explosion energies inferred from observations. For
CHIMERA, � = 0.25 ± 0.07, for CoCoNuT-FMT � = 0.49 ± 0.07, for
FORNAX2D, � = 0.62 ± 0.06, and for FORNAX3D, � = 0.85 ± 0.07. The
mean � for all simulations is 0.6; the variation for the simulations ranges
from 0.25 to 0.85 (width of 0.6). The variation among the simulations is as
large as the mean offset. While there is a tension between the simulations
and observations, the large variation among simulations suggests that further
improvements to simulations could resolve this discrepancy.

the possible explosion mechanisms, the neutrino mechanism is
the only first-principles theory that produces predictions that can
be compared to observations. From this perspective, a factor of 4
tension could be viewed as a good first step in making quantitative
comparisons between theory and observations.

In this analysis, we identify several biases in the simulation sets.
Core-collapse simulations are computationally expensive, and few
of the results include large systematic studies of the full range of
progenitors. Furthermore, most simulations terminate well before
an asymptotic explosion energy.

To mitigate for these biases in the simulation sets, we model
the distribution of explosion energies from simulations. The FOR-
NAX2D results exhibit the largest sample, so we use their results to
infer an explosion energy versus progenitor mass relationship. Our
inference shows that E∞ ∝ M1–2; the simulation explosion energies
are proportional to progenitor mass with a power ranging from linear
to quadratic. To infer the simulation explosion energy after infinite
time, we fit a simple model, Esim(t) = E∞ − A/t, that is motivated
by a simple neutrino-powered explosion. Then, we assume that
all models between the 7.4 M� and 25 M� explode. This range
includes the minimum mass for CCSN explosions (Dı́az-Rodrı́guez
et al. 2018) and a rough estimate for the maximum progenitor for
SN IIP (Smartt 2015; Davies & Beasor 2018).

Better estimates for the simulated explosion energy distribution
will require more systematic explorations between 7.4 and 25 M�,
and better estimates will require simulations that terminate later.
Based upon our simple model, simulations must evolve roughly
0.5–2 s past the time of positive explosion energies to reach at least
90 per cent of the asymptotic explosion energy.

There are other potential biases in the simulations which are either
difficult to quantify in this study or have yet to be identified at all.
For example, resolution of the grid may impact whether CCSN sim-
ulations have converged. Recently, Melson & Janka (2019) explore
how resolution affects turbulence in simplified three-dimensional
CCSN simulations, but these explorations do not address how
resolution affects the explosion energies. A major difference among
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the codes is the treatment of neutrino transport. There are many
approximations and choices in the transport: ray-by-ray versus
multi-angle, energy groups, moments versus short characteristics,
moment closures, velocity-dependent terms, gravitational redshift,
scattering opacities, correlated opacities, etc. In fact, there are more
different choices in the neutrino transport treatment than there are
codes. Yet, it is unclear how these differences impact the explosion
energies.

Progenitor perturbations due to O-shell burning may be important
in reducing the tension between simulations and observations. The
majority of simulations that are available do not include progenitor
perturbations, but the one model that does, offers some tantalizing
clues. The 18ProgConv model of the CoCoNuT-FMT set has the
largest explosion energy of that set. If we include this one model,
then the discrepancy reported for CoCoNuT-FMT does not actually
change much. The lack of change is because this model has a
relatively high mass. The explosion energy versus progenitor mass
correlation already indicates that the higher masses explode with
higher energy. Including 18ProgConv in the fit only steepens the
dependence a little. In addition, the highest masses are more rare and
provide little weighting to the final explosion energy distribution.
So, this one perturbation-aided explosion does not change � for
CoCoNuT-FMT.

However, it is not clear what progenitor perturbations would
do for the lower mass progenitors. Müller et al. (2017a) report
a difference in explosion time depending upon the size of the
progenitor perturbations. They simulated three 18 M� progenitors
models: one with no O-shell perturbations, one with a convective
mach number of 0.04, and one with a convective mach number
of 0.1. The first did not explode by 650 ms after bounce, the
second exploded at around 500 ms, and the largest perturba-
tions exploded at 300 ms. They only show the inferred explo-
sion energy for the largest perturbations, so we do not have a
quantitative measure of how perturbations affect the explosion
energy. None the less, an earlier explosion might lead to higher
explosion energies. To test whether progenitor perturbations affect
the explosion energies, we recommend that simulators perform a
systematic study of progenitor perturbations for a wide range of
masses.

Throughout this manuscript, we are careful to note that the explo-
sion energies that represent the observations are not observations in
themselves, but are inferences based upon observations. As such,
the ‘observed’ explosion energies are also subject to biases.

A significant source of systematic uncertainty in modelling the
photospheric properties is the zero point in the fitting formulae.
Goldberg et al. (2019) summarize the zero points for several studies
(Popov 1993; Kasen & Woosley 2009; Sukhbold et al. 2016;
Goldberg et al. 2019); see the discussion just after equation (7)
in their manuscript. They find that the systematic uncertainty in the
luminosity zero points is about 0.09 in log base 10. This translates
to a systematic uncertainty in the log of the explosion energy
of 0.1. While this is not enough to completely account for the
discrepancy between the simulations and observations, it is of the
same order. In addition, Dessart & Hillier (2019) and Goldberg et al.
(2019) caution that there are significant degeneracies among the
explosion parameters: nickel mass, ejecta mass, explosion energy,
and progenitor radius. In fact, Goldberg et al. (2019) argue that
one other observational parameter besides MV, velocity, and tp is
required to break this significant degeneracy. In this manuscript,
we use the radii of RSGs as a prior, and while this provides some
constraints, having the progenitor’s radius would further constrain
the observed explosion energy.

Dessart & Hillier (2019) highlight another source of degeneracy
when inferring the initial progenitor mass from light curves. The
light curve of SN IIP depend mostly on the H-envelope mass
and is insensitive to the He-core mass. While the He-core mass
depends upon the initial progenitor mass, the H-envelope mass is
mostly sensitive to mass-loss prescriptions. Since the mass-loss
prescriptions are uncertain, this degeneracy presents a systematic
uncertainty when inferring the progenitor mass from light curves.

Another potential source of bias for the observational set is the
sample of SNe. At the moment, most modellers infer explosion
energies by modelling light curves of type IIP SNe. For this analysis,
we assume that all progenitors between 7.4 and 25 M� explode as
type IIP SNe. However, it is not clear what fraction of this mass
range corresponds to IIL or even Ib/Ic. The recent progenitor mass
inferences of 25 historic SNe (Williams et al. 2018) suggest that at
least some fraction of this range do correspond to these other SN
types. SN surveys suggest that SN IIP are only 48.2+5.7

−5.6 per cent
of all CCSNe (Smith et al. 2011). At the moment, it is not clear if
this fraction is a result of a mass dependence or binary evolution.
Whatever the case may be, there is a clear bias in the observed
explosion energies for a sub sample of CCSNe. One strategy to
mitigate against this potential source of bias would be to model the
explosion energies of all SN types within a volume-limited sample.
To do this, light-curve models must include the other SN types, not
just SN IIP.

In summary, we find that the explosion energies of multidimen-
sional CCSN simulations are significantly lower than the energies
inferred from observations. Depending upon the simulation set,
they are less energetic by a factor of 2–7. This suggests that either
something is missing in CCSN simulations or there are biases in
our comparison. We identify several sources of bias for both the
simulated and observed sets. In this preliminary analysis, we model
some of these biases, but we recommend several ways to reduce
the impact of these biases in the future. Given these biases, it is
probably premature to make any conclusions about the fidelity of
CCSN codes. Rather, the primary conclusion is that the current
simulation and observational sets are inconsistent, all suffer from
biases, and the path towards constraining CCSN theory requires
careful consideration of the biases in both.
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