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ABSTRACT
We use a 3D Monte Carlo radiative transfer code to study the polarimetric and photometric
variability from stationary corotating interaction regions (CIR) in the wind of massive stars.
Our CIRs are approximated by Archimedean spirals of higher (or lower) density formed in a
spherical wind originating from the star and we also made allowance for a bright Gaussian spot
at the base of the CIR. Comparing results from our code to previous analytical calculations
in the optically thin case, we find differences which we attribute mainly to a better estimation
of the total unpolarized flux reaching the observer. In the optically thick case, the differences
with the analytical calculations are much larger, as multiple scattering introduces additional
complexities including occultation effects. The addition of a Gaussian spot does not alter the
shape of the polarization curve significantly but does create a small excess in polarization. On
the other hand, the effect can be larger on the light curve and can become dominant over the
resulting CIR, depending on the spot parameters and density of the wind.

Key words: polarization – radiative transfer – methods: numerical – stars: winds, outflow –
stars: Wolf–Rayet.

1 IN T RO D U C T I O N

Radiation-driven winds are a defining feature of massive stars (Puls,
Vink & Najarro 2008). High mass-loss rates cause a significant
fraction of their envelope to be lost to the interstellar medium in
all phases of their evolution, which combined with their hot and
intense radiation flux, contributes to the enrichment, ionization,
and excitation of the gas and dust in the surrounding medium and
ultimately, to the evolution of the stellar populations in galaxies
(Kennicutt & Evans 2012; Langer 2012). It is well known that
these outflows are inhomogeneous on a small scale (e.g. Moffat
et al. 1988), but spectral line variability has revealed that, in some
cases, large-scale structures also form in the winds of these stars.
These large-scale structures were first discovered in the solar wind
and were later generalized to a broader context of stellar winds (e.g.
Mullan 1984). The most common evidence for the presence of these
large-scale asymmetries are the discrete absorption components
(DACs) that are observed in the absorption troughs of ultraviolet
(UV) P Cygni profiles of O stars (e.g. Howarth & Prinja 1989;
Kaper et al. 1996, 1999), which have been shown by Massa &
Prinja (2015) to originate at or very close to the stellar surface.
However, they are also revealed as large-amplitude variations in the
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strong optical emission lines of Wolf–Rayet (WR) stars (e.g. Morel,
St-Louis & Marchenko 1997; Morel et al. 1999; Chené & St-Louis
2010). These variations are found to be epoch-dependant, meaning
that the periodic changes are generally found at various epochs but
their characteristics can evolve.

Hydrodynamic simulations have shown that a perturbation at the
base of an optically thin wind, represented by a bright (or dim) spot
on the surface of the star, generates large-scale corotating structures
to form out of the interaction between high and low-velocity flows
as the star rotates, both in the 2D (Cranmer & Owocki 1996) and 3D
(Dessart 2004) cases. Brown et al. (2004) presented an analytical
model to deduce the kinematics of these structures, from optical
depth profiles obtained from spectroscopic observations. These
large spiral-like structures have been appropriately named ‘Coro-
tating Interaction regions’ or ’CIRs’. The epoch-dependant nature
of the above-mentioned periodic spectroscopic changes could then
be attributed to the dissipation and regeneration of the CIRs.

A major effort to study CIRs came from the IUE MEGA
campaign (Massa et al. 1995) in which different types of mas-
sive stars were monitored in UV spectroscopy; the WN5 star,
WR6 (St-Louis et al. 1995), the B0.5 Ib star, HD64760 (Prinja,
Massa & Fullerton 1995), and the O4I(f)n star, ζ Puppis (Howarth,
Prinja & Massa 1995). More recent efforts include characterizing
the wind structure of WR1 using spectropolarization (St-Louis
2013) as well as a detailed study of ζ Puppis from extensive
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time-dependant photometry and spectroscopy (Ramiaramanantsoa
et al. 2018).

In two previous publications, we have presented a simplified
analytical model for polarimetric variability from such CIRs by
describing them parametrically as a spiral-like density enhancement
in an otherwise unperturbed spherical wind. In Ignace, St-Louis &
Proulx-Giraldeau (2015), we developed the model, expanding on
Ignace, Hubrig & Schöller (2009), in the optically thin electron
scattering limit and allowing multiple CIRs to be placed on the
star, at arbitrary latitudes and azimuth. Our model polarization
curves present clear phase-dependant signatures for one or two
CIRs, but for multiple CIRs create more complex behaviours.
In St-Louis, Tremblay & Ignace (2018) we extend our model to
optically thick winds by accounting for multiple scattering using a
‘core-halo’ approach. This approach defines a pseudo-photosphere
beyond the radius of the star, above which the wind can be treated
as optically thin. This way, we treated this pseudo-photosphere
as the source from which the light emerges, while still having
treated the wind and the CIR as initiating from the actual stellar
radius. That model was then applied to polarimetric observations
obtained from the literature of the WR star WR6, well known
to show consistent periodic (P = 3.77 d) but epoch-dependant
photometric, polarimetric, and spectroscopic variability without
convincing evidence for the presence of a companion. A Levenberg–
Marquardt (LM) nonlinear least-squares minimization algorithm
was developed to fit 13 different data sets obtained over a time span
of about 5 yr (as well as two older data sets from 20 yr before). Two
CIRs were used, and a number of parameters related to the stellar
wind were adopted. The algorithm was able to fit all observations
with consistent stellar parameters and found a stellar inclination of
166◦ and an orientation of the stellar axis on the plane of the sky
of 63◦. In all cases, the CIRs were found to be located close to the
stellar equator and separated by approximately 90◦ in longitude.
Only their specific locations on the stellar surface were found to
differ from one epoch to the next.

In this paper, we expand upon these two papers using Monte
Carlo radiative transfer (MCRT). Section 2 describes the MCRT
model, and Section 3 presents validation tests to determine the
limit between the optically thin and optically thick cases, as well
as the number of photons required to obtain significant results. We
also present error estimates for different wind densities introduced
by varying the random number generator seed. In Section 4 we
compare our polarimetric calculations to those obtained both for
the optically thin (Ignace et al. 2015) and thick (St-Louis et al.
2018) limits. Finally, in Section 5 we present a parameter study
for polarization and light-curve calculations including a CIR and
an associated bright Gaussian spot. For these calculations, we have
used stellar parameters typical of Wolf–Rayet stars. We conclude
in Section 6.

2 TH E M O N T E C A R L O R A D I AT I V E
TRANSFER MODEL

The principle behind MCRT simulations is to follow a large number
of monochromatic energy packets, each containing an ensemble of
individual photons. So the packet, hereafter referred to as a ‘photon’
may be partially polarized. These packets are randomly emitted
from the stellar surface and travel through some medium, in our
case a hot stellar wind, until they escape the system. Collectively,
these photons represent the luminosity emitted by the star. The
scattering during radiation transport is determined by randomly
sampling the optical depth while the change in direction (and

polarization) of the packet is determined by randomly sampling
the Rayleigh phase function. Photons are followed until they leave
the envelope where they are placed into the appropriate latitude,
azimuth, and frequency bins. To improve our signal-to-noise ratio,
we have also implemented a source function sampling procedure.
This procedure samples every photon interaction, which measures
the scattering source function, and then emits virtual photons in the
direction of every individual viewpoint. The result is then weighted
by the probability of the virtual photon to scatter and subsequently
escape in that direction (often called photon peeling, e.g. Yusef-
Zadeh, Morris & White 1984; Whitney 2011).

Our goal with these Monte Carlo simulations was to study the
polarimetric and photometric changes caused by the presence of a
density perturbation representing the CIRs. We employed a 3D ap-
proach for the wind model by adopting a time-independent spherical
wind from a hot star, threaded by a CIR as a density perturbation in
the shape of a 3D Archimedean spiral. This simplified structure is
not quite equivalent to that predicted by hydrodynamic calculations
(e.g. Cranmer & Owocki 1996) but our goal with these initial
numerical models is to compare our results with our analytical
calculations. In future work, we intend to complexify the density and
velocity structures of our CIRs. Rotation was simulated by having
observers view the star from different azimuths along the same
‘inclination’ or latitude, which act as different rotation phases for
the star. As electron scattering is the dominant source of polarization
in hot stellar winds, we neglected all other types of scattering.
Since electron scattering is wavelength independent, we used a
monochromatic approach for the purposes of this paper.

2.1 Polarization

We used Stokes vectors to describe the polarization in our sim-
ulation, as defined by Chandrasekhar (1960). Stokes vectors are
separated into the four parameters I, Q, U, and V by (e.g. Whitney
2011):

S(θ, φ) = [I (θ, φ), Q(θ, φ), U (θ, φ), V (θ, φ)], (1)

where I describes the intensity of the incoming light, Q and U,
the linear polarization components and V, the circular polarization.
These components depend on the spherical coordinates θ and φ

in the star’s frame of reference, and therefore obviously differ
depending on the observer’s frame of reference. In our model,
V(θ , φ) is always 0 as we assume that there are no sources of
circular polarization in the wind. Photons emitted by the star have an
initial Stokes vector of (1,0,0,0) and travel a distance characterized
by a random optical depth of τ = −ln (1 − ε), where ε is a
random number between 0 and 1, which is chosen from a Poisson
distribution with unit mean. After travelling this distance, they
scatter and are given a new direction (θ

′
, φ

′
) using the Mueller and

phase function matrices which rotate the frame of reference from
the previous scattering frame to the next (e.g. Code & Whitney
1995). The resulting Stokes vector is expressed as

S = R(χ )L(i)S′, (2)

where S
′

is the previous Stokes vector. L(i) is the Mueller rotation
matrix for an angle i

L(i) =

⎡
⎢⎢⎢⎣

1 0 0 0

0 cos 2i sin 2i 0

0 − sin 2i cos 2i 0

0 0 0 1

⎤
⎥⎥⎥⎦ (3)
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and R is the Rayleigh phase function matrix for a scattering angle
χ , given by

R(χ ) =

⎡
⎢⎢⎢⎣

cos2 χ + 1 cos2 χ − 1 0 0

cos2 χ − 1 cos2 χ + 1 0 0

0 0 2 cos χ 0

0 0 0 2 cos χ

⎤
⎥⎥⎥⎦. (4)

Once the photon has escaped from the wind, the Stokes vector
reference direction is realigned to the stellar rotation axis, from
which we binned the photons into the appropriate observer bins
depending on the inclination. Once the simulation is finished, the
final Stokes vector is normalized by the total flux for each bin so
that

q = Q/I,

u = U/I .
(5)

We then correct for the rotation angle of the stellar axis on the plane
of the sky ψ by rotating the final Stokes vectors using L(ψ).

2.2 Wind and grid properties

Our spherical wind was described by a 3D adaptive mesh spherical
grid in (r, θ , φ), with each cell containing information on the density
within it. The density depends on a number of input parameters, as
well as on the cell’s distance from the star and whether or not a CIR
crosses its path. Following our analytical approach, the density of
the wind itself is given by

ρwind = n0μemH

wr̃2
, (6)

where n0 is the number density scaling factor given by

n0 = Ṁ/μemH

4πR2∗v∞
, (7)

μe, the mean molecular weight per free electron, mH, the mass
of a hydrogen atom, r̃ , the radial distance from the centre of the
star normalized to the stellar hydrostatic radius R∗, and w(r̃) is the
normalized velocity of the wind at a location r̃ given by

w(r̃) = v(r̃)

v∞
= 1 − (1 − w0)

r̃
, (8)

where w0 = v0/v∞, with v0 being the velocity at the base of the wind
and v∞, the terminal velocity of the wind. Note that for simplicity,
we adopted a standard beta velocity law with an exponent of 1,
which is why this exponent does not appear explicitly in the above
equation. The number density scaling factor is related to the optical
depth parameter τ 0 by

τ0 = n0R∗σT , (9)

where σ T is the Thomson scattering cross-section. We defined grid
cells to become radially larger further out in the wind due to the
fact that the density varies as 1/r2. However, we have added an
extra layer of fine structure for the grid cells containing the CIR in
the form of sub-grids for these particular cells. That way, we can
resolve the CIR with a much better precision. For our simulations,
the coarse grid contains 43 r cells (going from R∗ to 100R∗), 18 θ

cells, and 24 φ cells. The fine grid for the cells containing a sub-grid
have an extra set of (r, θ , φ) cells depending on the CIR half-opening
angle β0 and the winding rate of the CIR, which is characterized by
the ratio of the rotation and wind terminal velocities, vrot/v∞. The
star itself contains 1 r cell and the same number of θ and φ cells as
the wind.

Each CIR that crosses the centre point of a grid cell increments
its density. The density in a given cell in our grid is therefore given
by

ρcell = ρwind

(
1 +

∑
CIRs

η

)
, (10)

where η is the density contrast with respect to the spherical wind in
a CIR crossing the centre point of the cell given by

η = nCIR − nwind

nwind
, (11)

with nCIR the number density in the CIR and nwind that of the
spherical wind. η = 0 for a spherical wind. Note that we have
adopted the approach, described in Ignace et al. (2015), in which
the CIR shape is determined from the radial streamline flow in the
rotating frame of reference of the star, corresponding to a spiral
pattern as seen by an observer. The centre position φs of this spiral
is defined by

φs = φ0 − vrot

v∞
sin(θCIR)

[
r̃ − 1 + (1 − w0) ln

(
r̃ − 1 + w0

w0

)]
,

(12)

where φ0 is the azimuth of the CIR at the base of the wind, θCIR is
the colatitude of the CIR, and vrot is the equatorial rotation speed of
the star.

Note that we characterize the amount of winding of our CIRs
with the winding radius defined by

r0 = v∞
2π/P

= v∞
vrot

R∗, (13)

P being the period of rotation. This parametrization defines the de-
gree of curvature of the spiral. Higher values of v∞/vrot correspond
to less curved CIRs.

2.3 Spot model

Our model has the option to add Gaussian spots at the base of the
CIRs. The luminosity contribution of a spot at a given point on the
surface of our star is given by

Lspot = Ae−β/σ 2
, (14)

where

β = cos−1 (n̂ · n̂CIR) , (15)

A is the intensity of the spot relative to the star, n̂ is the unit surface
vector at a given location on the star, n̂CIR is that of the centre of the
base of the CIR related to the spot and

σ = β0/(ln 2)1/2 (16)

with β0 the half width at half-maximum of the spot, which also
corresponds to the half-opening angle of the CIR. The luminosity
of a given point on the surface of the star is then given by the
sum of the contributions from each spot plus the contribution from
the base photosphere. This gives a luminosity map of the whole
star, which in turn provides the probability per surface area for
a photon to be emitted at this position, normalized by the total
luminosity.

2.4 Input parameters

Our model requires several input parameters to describe both the
spherical wind and the CIRs that we define below. First, there are a
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number of stellar and wind parameters:

(i) Nphot, the number of photons in the Monte Carlo simulation,
(ii) R∗, the stellar radius,
(iii) vrot, the equatorial rotation speed,
(iv) τ 0, the optical depth scaling factor (see equation 9),
(v) v0, the speed of the wind at its base,
(vi) v∞, the terminal velocity of the wind.

There are also a number of CIR input parameters:

(i) NCIR, the number of CIRs,
(ii) φ0, the azimuth of a given CIR,
(iii) θCIR, the colatitude of a given CIR,
(iv) β0, the CIR half-opening angle,
(v) η, the density contrast of the CIR (see equation 11),
(vi) Lspot/Lphot, the ratio of the luminosity of the spot at the base

of the CIR to the stellar luminosity.

We also require a number of parameters associated with the
different viewpoints, such as their total number, the inclination and
azimuth relative to the star of each individual viewpoint. To simulate
rotation, we take data from a series of viewpoints at the same
inclination but different azimuths. These act as different rotation
phases of the star.

Unless stated otherwise we have adopted these parameters that
are thought to be appropriate for the star WR6:

(i) R∗ = 2.65R� (Hamann, Gräfener & Liermann 2006),
(ii) v0 = 57 km s−1 (obtained by assuming v(r) = v∞

(
1 − bR∗

r

)
with b = 0.97),

(iii) v∞ = 1900 km s−1 (see St-Louis et al. 1995).

As for default CIR parameters, unless it is explicitly mentioned,
CIRs always have:

(i) η = 1,
(ii) θCIR = 90◦ and φ0 = 0◦,
(iii) β0 = 15◦.

Also note that Lspot/Lphot = 1, unless explicitly noted that spots
were used in the model.

One last input parameter we must set is the seed, a number which
initializes a sequence of (pseudo) random numbers that the MCRT
code uses. This is useful to reproduce simulations for debugging
purposes, but it can also be useful to vary for estimating statistical
error, which is what we do in Section 3.3.

3 MODEL VA LIDATION

To verify the validity of our model, we have performed tests
described in this section. First, we determine the transition between
an optically thin and thick wind. Secondly, we explore how
polarization values change as a function of the total number of
photons. Finally we characterize the effect of the chosen seed for
our MCRT simulations.

3.1 Optical thickness

To demarcate thin and thick limits, we carried out a series of linearity
tests to determine how q and u behave as τ 0 increases. The linear
polarization for various values of a CIR’s ‘winding’ radius, r0,
defined in equation (13) were calculated for different inclinations
of the stellar rotation axis. Our assumption is that a departure from
linearity indicates that multiple scattering effects due to optical
depth start to become significant. For these tests, we calculated
only the linear polarization for a single viewpoint at (θ , φ) = (0, 0)

Figure 1. Linear polarization as a function of τ 0 for an edge-on (top row)
and pole-on view (middle row) for one CIR located in the stellar equator for
various values of the winding radius from 5 to 100R∗. In the bottom row, we
present the linear polarization for an essentially straight CIR (r0/R∗ = 100)
from different viewing angles. The solid lines represent a linear fit of the
first few values showing up to what point the change in polarization remains
linear.

and determined how it varies with τ 0 and r0/R∗. In Fig. 1 we present
the calculated q and u values as filled symbols for the edge-on (top)
and pole-on (middle) views when the winding radius is varied from
r0/R∗ = 5 to r0/R∗ = 100, the latter corresponding to an essentially
straight CIR. For technical reasons (the reference direction of the
observed Stokes vectors is the projection of the stellar rotation axis
on the plane of the sky, which is undefined for i = 0), we cannot
strictly use i = 0◦ so our pole-on calculations are in reality for i =
1◦. In the bottom panels, we present the polarization for r0/R∗ =
100 as viewed from different inclinations. To determine where the
linear polarization starts to deviate for a linear behaviour, we fitted
a straight line to the first few values at small τ 0. The fits appear
as solid lines. From this figure, we conclude that departures from
a linear behaviour begin roughly around τ 0 = 0.03, although for
some of the curves a non-linear behaviour only begins for higher
values of τ 0. Note that the total electron-scattering optical depth
integrated along the line-of-sight to the observer is given by

τe =
∫ ∞

R∗
ne(r)σT dr, (17)

with ne(r) = ρwind(r)/μemH. Using equation (6), this can be
expressed as

τe = n0σTR2
∗

∫ ∞

R∗

1

wr2
dr = τ0R∗

∫ ∞

R∗

1

wr2
dr, (18)

which results in

τe = τ0

b
ln

(
1

1 − b

)
. (19)
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Figure 2. Polarization contribution from a spherical wind for runs with
different numbers of photons in our simulation. We have also included our
calculations of the polarization from a spherical wind with a CIR with τ 0 =
0.1 for comparison.

For our adopted value of b = 0.97, this yields τ e = 3.6 τ 0. In order
to encompass as much as possible all different winding radii and
inclinations, we have adopted τ 0 = 0.03 as our optically thin limit;
anything higher will be considered as an optically thick calculation.
This limit corresponds to τ e of the order of 0.1, a value much
smaller than the value usually considered to be the optically thick
limit, i.e. τ e ≈ 1. Note that the above results are for a density contrast
in the CIR of η = 1.

3.2 Photon numbers

For a spherical wind, the polarization should be zero. In Fig. 2, we
present our calculated polarization as a function of phase (left-hand
panels) and in the q − u plane (right-hand panels) for a spherical
wind only, with an intermediate optical depth of τ 0 = 0.1 for a
pole-on (top) and edge-on (bottom) view using different numbers
of photons for each run, from 1 × 106 photons to 1 × 109 photons.
For comparison, we also present the polarization from a CIR at the
equator with r0 = 100R∗ for both viewing angles when using the
highest number of photons.

To minimize the random noise while minimizing the numerical
error associated with the spherical wind, as well as the compu-
tation time, the number of photons used in the simulation needs
to be optimized. From Fig. 2, with only a million photons, a
residual polarization for our spherical wind of about 0.03 per cent
is obtained. As the number of photons is increased, the residual
polarization gradually decreases. Finally, very little difference is
apparent between simulations with Nphot = 1 × 108 and Nphot =
1 × 109 for both the pole-on and edge-on views. We therefore
decided to use Nphot = 1 × 108 for all simulations presented in
this work. We also notice qualitative differences in the shape of the
pole-on and edge-on q-u noise curves. Indeed, a wind that is viewed
nearly pole-on leads to a circular pattern in this q-u plane, while a
wind viewed edge-on does not show such a clear pattern. Instead, the
polarization values seem to be aligned along a preferred axis in the q-
u plane. This behaviour is readily explained by our source function
sampling algorithm. Each emitted photon and photon interaction

Figure 3. Pole-on and edge-on polarization values as a function of phase
for a CIR with r0 = 5R∗ located at the equator for different values of τ 0

from 0.01 to 3.0. The error bars represent the standard deviation from the
mean given by running the same simulation with 20 different seeds.

emits a virtual photon in the direction of each viewpoint weighted
by the probability it has to scatter towards them. This results in
a correlation between viewpoints due to each of them receiving
the same virtual photons (more precisely, source function sample
events), which are simply weighted differently. For this particular
case (τ = 0.1) the residual polarization of the spherical wind for
1 × 108 photons is of the order of 0.003 per cent for both pole-on
and edge-on views, which is essentially negligible compared to that
of a CIR.

3.3 Statistical error from seed values

To determine an approximate numerical error bar for the calculated
values from our simulations, we performed a series of simulations
with identical input parameters, but for different initial seeds for
both the pole-on and edge-on view for one equatorial CIR with a
winding radius of r0 = 5R∗ for different values of τ 0. For each
τ 0 value, we performed 20 simulations and calculated the mean
polarization and the standard deviation. Fig. 3 shows our calculated
mean polarization values and associated standard deviations as a
function of phase for different values of τ 0. In the top panel we
show a pole-on view for τ 0 from 0.01 to 3 while in the bottom
panel we show an edge-on view from τ 0 = 0.01 to 0.3. Note
that computations with large values of τ 0 are very expensive in
computing time. Therefore, for those cases, we only calculated the
polarization values for a small number of phases for the pole-on
view. As expected, both the polarization and its standard deviation
generally increases with the number of scatterings, characterized
by larger values of τ 0.

To show the behaviour between the standard deviation, σ p, and τ 0

we use the pole-on case for which the polarization is nearly constant
with phase. In Fig. 4, we plot the relative error, defined by the mean
of the ratio between the standard deviation and the polarization at
each phase as a function of τ 0 for the pole-on view. The vertical error
bars in this plot were calculated using error propagation. The error
on the mean value of the polarization, P, was set to σ p/N, where N
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Figure 4. Mean relative errors a function of τ 0 for the different curves in
the top graph of Fig. 3.

is the number of simulations (in this case, N = 20), while the error
on σ p was set by calculating the confidence interval for the variance
at the 95 per cent level, assuming a normal distribution. The latter
uncertainty dominates over the error on the mean of the polarization
leading to asymmetric error bars. The behaviour of the relative error
as a function of τ 0 can be explained roughly as follows. Assuming
that the relative error can be drawn from a Poisson distribution, it
should be inversely proportional to the square root of the number
of photons that scatter at least once given by

δp

p
∝ 1√

Nphot(1 − e−τ0 )
. (20)

If we carry out N such calculations, the standard deviation of the
mean should be proportional to 1/

√
N and therefore the measured

error should vary as

δp

p
∝ 1√

N · Nphot(1 − e−τ0 )
. (21)

At small τ 0, δp/p should therefore be proportional to 1
N ·Nphotτ0

which
seems to be compatible with what we observe. At large τ 0, δp/p
should be constant and again this seems to be compatible with what
we observe. In Fig. 5 we plot the mean of the standard deviations
as a function of τ 0 for the edge-on view. Note that the scatter on δp

is higher at larger τ 0, which is simply due to the error bars being
dependent on phase, as we can see in the bottom graph of Fig. 3.
However the mean standard deviation on the points still seems to
rise as we go to denser winds.

4 C O M PA R I S O N W I T H T H E A NA LY T I C A L
RE SULTS

4.1 Optically thin

In Ignace et al. (2015), we presented analytical calculations for
the periodic polarization variability from CIRs embedded in an
otherwise spherical wind for the optically thin case. In our second
paper (St-Louis et al. 2018) we applied a similar approach to

Figure 5. Mean of the standard deviations for the different curves in the
bottom graph of Fig. 3 as a function of τ 0.

optically thick winds. For our MCRT calculations, in order to
differentiate between the effects of the CIRs and that of the wind, we
proceeded in two steps. First, we only included CIRs by imposing
that the density in the grid cells not associated with them was 0. As
a second step, we used a non-zero density for the spherical wind
and added the density to that of the CIRs.

In Fig. 6, we present a series of polarization intensity images
(P =

√
Q2 + U 2) for the case of an equatorial CIR only (no wind)

and for a value of τ 0 = 0.03, which corresponds to the limit of
an optically thin case. The four columns correspond to different
rotational phases. Phase 0 is for the base of the CIR facing the
observer and phase 0.5 is for when it is behind the star. The first four
rows are for a CIR with a modest winding radius of r0/R∗ = 5 and
for an inclination of the stellar axis of respectively i = 1◦ (nearly
pole-on), i = 30◦, i = 60◦, and i = 90◦ (edge-on). The last row
present the edge-on view of an almost straight CIR (r0/R∗ = 100).
The polarization intensity images are proportional to the density of
the gas and therefore in addition to showing the distribution of the
polarization, they also provide a map of the density structure of the
CIR. We have added a circle to the maps to indicate the size of the
stellar disc.

4.1.1 CIRs only

In this section we compare our Monte Carlo polarization calcula-
tions with the results from our analytical model, first in the optically
thin case and then in the optically thick limit. Our goal is to confront
both approaches to verify if they agree and to bring to light any
differences there may be.

We first discuss our results when assuming that only the grid
cells containing the CIR have a density incremented by equation
(10) and that all other cells have a nil density. Note that we retain
the same contrast for the CIRs with the wind. This way we will
be able to compare the cases with and without a spherical wind.
In Fig. 7, we show a comparison between analytical (curves) and
MCRT (symbols) calculations for one CIR with r0 = 5R∗ placed
at different latitudes (θCIR from 20◦ to 80◦). In the top panels, we
show p normalized by τ 0 as a function of phase and q versus u for
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Monte Carlo simulations of CIRs in winds 2879

Figure 6. Polarization intensity images for one CIR placed at the stellar equator with τ 0 = 0.03. Each column corresponds to a different rotation phase, with
phase 0 being the CIR footprint facing the observer. The first four rows are for r0/R∗ = 5 with the stellar inclination varying from i = 1◦ to i = 90◦ and the last
r0/R∗ = 100. The circle shows the position of the stellar disc.

an inclination of 30◦ and in the bottom panels, the same plots for
an inclination of 60◦.

We note the close similarities between the analytical and the
Monte Carlo model. The curve is either single or double peaked,
depending if the CIR is viewed in a more stationary manner by a
given viewpoint. However, there still are some small differences
that are larger than the numerical error, discussed in Section 3.3. In
general, the MCRT values are below the analytical ones with the
largest deviations at phases near 0.5 when the CIR is located behind
the star. Strangely, there does not seem to be a coherent pattern in the
deviations as a function of θCIR with the best agreement for θCIR =
20◦ and θCIR = 80◦ and the worst for θCIR = 40◦. This behaviour is
most likely specific to this particular viewing configuration.

4.1.2 CIR with wind

Even though the net contribution from the spherical wind should in
principle be zero, we have carried out the Monte Carlo simulations

with a non-zero density for the wind. We present our results in
Fig. 8, superimposed on the same analytical curves as in Fig. 7. One
can see immediately that the differences are much more pronounced
than for the case without a wind. Although the general form of the
curves are the same, the polarization is attenuated for all phases and
maybe even slightly shifted (see for example i = 60◦, θCIR = 40◦).
Once again the largest differences are for phases near 0.5.

4.1.3 What causes the differences?

Part of the difference might be explained in the way our polar-
ization values are normalized in equation (5). For the analytical
calculations, since the scattering in the envelope is expected to
be small compared to the direct star light, the total intensity was
assumed to be that coming directly from the star, i.e. I = I∗.
For the Monte Carlo calculations, all scattering contribution as
well as the pre- and post-scattering attenuation are included by
default since each photon run in the simulation contributes to I.
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2880 D. Carlos-Leblanc et al.

Figure 7. Comparison between our MCRT linear polarization values
(shapes) and those from the analytical model (lines) when only a CIR with
r0 = 5R∗ is included, meaning that the wind density is set to 0. We vary
the CIR latitude θCIR as we did in Ignace et al. (2015) and present results
for an inclination of i = 30◦ for the top row and i = 60◦ for the bottom
row. Calculations are carried out for τ 0 = 0.03. Filled circles (black) are for
θCIR = 20◦, triangles (red) for θCIR = 40◦, squares (green) for θCIR = 60◦
and diamonds (blue) for θCIR = 80◦.

Figure 8. Comparison between our MCRT linear polarization values
(shapes) and those from the analytical model (lines) when both the CIR
with r0 = 5R∗ and the wind are included. We vary the CIR latitude θCIR as
we did in Ignace et al. (2015) and we present results for an inclination of i =
30◦ for the top row and i = 60◦ for the bottom row. Calculations are carried
out for τ 0 = 0.03. The symbols and colours are as in Fig. 7.

In this interpretation, the differences are so much larger when we
include the spherical wind because there are simply many more
scatterings.

To attempt to verify this hypothesis we ran simulations where
the polarization bins were normalized by the flux of the escaping
stellar photons I∗ only, instead of the total number of photons. In

Figure 9. Comparison between a polarization normalization by stellar
escaping photons only and a normalization by all photons, for a wind with
τ 0 = 0.03 and a CIR with r0/R∗ = 5 in the pole-on view. Note that we still
find a small difference with the analytical results, even with the different
normalization. However the resulting polarization curve is much closer to
the analytical results.

Fig. 9, we compare the analytical values for a pole-on view of a
equatorial CIR with r0 = 5R∗ (blue curve) embedded in an optically
thin wind with τ 0 = 0.03 as well as the Monte Carlo results when
our polarization values are normalized using all photons (black
curve) or only the photons escaping directly from the star (green
curve). Although the difference is not compensated for completely,
the resulting polarization is definitely much closer to the analytical
results, with a deviation of only about 7 per cent between the two
curves, as opposed to a difference of about 20 per cent between our
original result and the analytical calculation. Note that this simple
test does not remove the pre- and post-scattering attenuation terms
which still contributes to the Monte Carlo value but obviously not
to the analytical one.

4.2 Optically thick

In this section we compare our numerical calculations with the
analytical ones presented in St-Louis et al. (2018), which treats
optically thick winds in an approximate way using a ‘core-halo’
approach. Since we already noted significant differences between
the MCRT and the optically thin analytical calculations, we elected
to adopt the simplest possible configuration. Therefore the calcu-
lations presented in this section are for an essentially straight CIR
(r0 = 100R∗) placed at the stellar equator and we consider only the
pole-on and edge-on views. In Fig. 10 we compare analytical (solid
curves) and MCRT (symbols) results for three different values of
τ 0 : for an optically thin wind (τ 0 = 0.03), for a moderate optical
depth (τ 0 = 0.5), and a strongly optically thick wind (τ 0 = 2.0).
The top row shows the total linear polarization p (left), and Stokes
parameter q (right) as a function of phase for the pole-on view while
the bottom row shows these same parameters for an edge-on view.
For the optically thin calculations (black curve and circles), the
difference between the MCRT and analytical values are the same
order of magnitude as those shown in Figs 7 and 8. For the pole-
on view, for example, the difference in p is around 0.008 per cent.
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Monte Carlo simulations of CIRs in winds 2881

Figure 10. Comparison between our MCRT linear polarization values
(shapes) and those from the analytical solution (lines) for a wind con-
taining a straight CIR with r0 = 100R∗ at different τ 0. Top row has
a pole-on view, i = 1◦, and the bottom row has an edge-on view,
i = 90◦.

Note that unlike in the optically thin case, here we do not normalize
our polarization values by τ 0 because in the optically thick cases,
the polarization does not scale linearly with τ 0, as can readily be
seen. The differences between the analytical and MCRT models are
considerable for both optically thick cases.

For the pole-on view, the amplitude of the q MCRT polarization
curves and the phase-independant values of p are wildly different
from the analytical values, with deviations of about 0.55 per cent
for the τ 0 = 0.5 curve (blue) and about 0.70 per cent for the τ 0 =
2.0 curve ( red). The relative attenuation of the red curve compared
to the blue curve in the MCRT calculations is also much larger than
in the analytical model. Finally, the shift between the blue and red
curves in the statistical approach is much more pronounced than it
is in the analytical one, reaching an amount of almost 0.1 in phase,
compared to a 0.01 change in phase in the analytical case. The
general trend is that, as the wind becomes increasingly optically
thick, the differences between the MCRT and analytical models
increase. These differences reach extremely large values.

The q versus phase curve for the pole-on view presents an
additional intriguing characteristic. Indeed, as τ 0 becomes larger,
the maximum of the curve gradually shifts from the value of φ =
0.25 expected analytically to phases that are increasingly larger. For
the edge-on case, the q curve also presents this shift in its maximum
but in addition, two dips to negative q values appear on either side
of phase 0 (CIR between the star and the observer). The u curve
(not shown here) shows values all close to 0, as expected, as the
polarization vector is horizontal on the plane of the sky. These two
dips are not predicted by our analytical model and renders p curves
(
√

q2 + u2) complex looking.

4.3 Interpretation

The behaviour exhibited in these optically thick MCRT simulations
are complex and the difference with the analytical calculations are
large. In this section, we will present our interpretation of these
results for both the pole-on and the edge-on views.

Figure 11. 24R∗ by 24R∗ linear polarization map (p) observed from the
pole from a star with a spherical wind containing an essentially straight
CIR (r0 = 100R∗) for τ 0 = 2.0, at phase 0.25. Isophotes have been drawn,
representing surfaces of constant polarization.

4.3.1 Pole-on view

Fig. 11 shows a linear polarization image of a spherical wind and
CIR at phase 0.25 viewed from the pole. Superposed on the images
are lines of various colours corresponding to isocontours on a linear
scale. Moving radially from the centre of the star, the polarization
rises, reaches a maximum (region in white) and decreases again.
This is a well-known behaviour for extended atmospheres of early-
type stars (e.g. Brown & McLean 1977; Cassinelli, Nordsieck &
Murison 1987). As with the analytical model, we see that the
CIR causes an excess in polarization throughout most of the wind,
except in the interior near the maximum wind polarization. For the
analytical calculations and our optically thin model this produces a
double-wave q curve with maxima at positive values at phases 0.25
and 0.75 and minima at negative values at phases 0 and 0.5 (see
Fig. 10). However, in the optically thick cases, there is a deficit in the
region where the polarization peaks at the location of the CIR. This
can readily be seen as a break in the dark blue isocontour. This deficit
introduces an important new contribution to the polarization of the
wind as it breaks the previously axisymmetric polarization of the
wind. The resulting curve has maxima at positive q values at phase
0 and 0.5 and minima at negative q values at phases 0 and 0.25. Both
contributions (CIR and deficit) therefore vary in antiphase, which
greatly reduces the amplitude of the resulting polarization.

There is one final ingredient that explains the apparent gradual
shift in the q curve with increasing τ 0 that is seen in Fig. 10. As can
be seen in Fig. 11, even though our chosen CIR is essentially straight
(r0 = 100R∗), a slight curvature is still present. This can be readily
seen by measuring the position of the centre of the CIR on the
yellow and red isophotes. While the centre of the deficit in the wind
at r = 1.7R∗ is on the horizontal, the centre of the yellow isophote
at the position of the CIR is clearly below and the centre of the CIR
on the red isophote is even lower. This will produce a q polarization
curve that is slightly shifted from the one from an optically thin
wind. As the wind becomes increasingly thick, the CIR will emerge
at higher and higher radii shifting the curve accordingly to higher
phases. When the two polarization contributions are added (deficit
plus slightly curved CIR) we obtain a curve with a greatly reduced
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2882 D. Carlos-Leblanc et al.

Figure 12. 2D sketch of an observer (eye) viewing the star (centre circle)
with a wind and CIR (2d cone) from an edge-on point of view at phase
φ = 0.1. The max polarization band in the wind is represented by the region
between two disconnected and partially filled circles. The red or lighter band
represents the region occulted by the CIR while the black or darker band
represents the region occulted by the star. Note that the CIR is not centred
on the opening due to its curvature, which is approximated in this sketch by
a slightly displaced CIR.

amplitude with maxima that gradually shift towards higher phases
as the optical thickness of the wind increases, as seen in Fig. 10.

4.3.2 Edge-on view

For the edge-on view, there is an extra level of complexity because
there are now occultation effects. In the bottom right panel of Fig. 10,
two dips to negative values can be seen in the q polarization curve,
on either side of phase 0 for optically thick calculations (τ 0 = 0.5
and τ 0 = 2.0). As the optical thickness of the wind increases, the
dips become deeper and they gradually move away from phase 0.
The q values remain positive in the other parts of the curve. Our
interpretation of these dips is that we are seeing the occultation of
sections of the wind polarization by the dense CIR on either side of
phase 0.

In Fig. 12 we present a 2D sketch of an edge-on view of the
wind and CIR at a phase around φ = 0.1. It can be seen that a
large fraction of the wind polarization in the horizontal direction is
occulted by the optically thick CIR. As a consequence, the balance
between the horizontal and vertical components, previously leading
to a nil polarization, is now broken and produces a net vertical
polarization, i.e. negative q values. This leads to the two dips in the
q curve. These two negative dips are superposed on a curve that is
identical to the one that can be seen for the pole-on view and plotted
in the top right panel of Fig. 10. Indeed, the contributions from the
spherical wind are the same whether they are viewed pole-on or
edge-on.

The effects of the curvature are also visible in this edge-on view.
At τ 0 = 0.5, the CIR emerges closer to the star than at τ 0 = 2.0.
Therefore at φ = 0, the polarization reaches almost 0 for the τ 0 =
0.5 case as the dominant part of the CIR is then symmetrical in our
line of sight, which is not quite the case for the τ 0 = 2.0 case. The
curvature also manifest itself through the slight asymmetry of the
two dips around phase 0, and the two peaks around phase 0.5. The
slight curvature inward when the CIR is at phase 0.25 will scatter
more photons into the line of sight than the outward curvature at
0.75 would. This also implies that at phase 0.1 more photons will
be scattered out of the line of sight than at phase 0.9.

5 G AU SSIAN SPOT MODELS

In this section, we present MCRT calculations of the polarization,
now including the total light intensity of a spherical wind and a

CIR along with a stellar spot on the surface of the star at the
footpoint of the CIR. Different spot models have been studied for a
variety of star types, for example, in Al-Malki (1992), whose model
generated small variations in polarization due to asymmetries in the
photosphere. Here a Gaussian spot model will be used.

5.1 MCRT models including spots on the stellar surface

Here we present results of MCRT models for a spherical wind
spanning three values of τ 0; and optically thin wind (0.01), a
moderately thick wind (0.1), and a thick wind (1.0). We also include
a CIR with r0 = 100R∗ and a density contrast of η = 1 at the stellar
equator. Finally, we include a spot on the surface of the star, at the
base of the CIR with the same angular extent as the CIR. We will
vary the opening angle of the spot and CIR and the intensity of the
spot with respect to the rest of the star.

5.1.1 The effect on the polarization curves

In Fig. 13, we present q polarization curves for an edge-on view
for three configurations. First, in the top for a spherical wind with
only a spot at the surface of the star (no CIR). In the middle panels,
we show a spherical wind with a CIR only (no spot). Finally in the
bottom panels, we show results for the combination of a spot and
a CIR. We also vary the spot and CIR parameters to get a better
idea of their effect. In each plot, the black curve is a spot with a
luminosity contrast of 1.2 and a half-opening angle of 15◦. The blue
curve is for the same opening angle but a luminosity contrast of 1.5.
Finally, the red curve is for a spot with a 1.2 luminosity contrast but
for a wider spot with β0 = 30◦.

The effects on the q polarization curves of the CIR only are as
discussed in the previous section. Here in addition, we can see that
increasing the opening angle increases the amplitude of the curve
and the depth of the eclipses of the wind and can be explained within
the framework of our interpretation.

The effects on the polarization of a spot are illustrated in the top
panels. First note that the amplitude of polarization is a factor of
∼10 smaller than in the case of a CIR only. Secondly, as expected,
for an optically thin or modestly thick wind, the effect of increasing
the brightness ratio of the opening angle is to increase the amplitude
of the curve. This curve has two maxima per cycle, one at 0.25 and
the other at 0.75 when the scattering angle is 90◦ and two minima
at q = 0 when the spot is in the line of sight of the observer at phase
0 (forward scattering) or behind the star (occulted). The behaviour
for the optically thick wind seems more complex. When the spot is
in front of the star at φ = 0, the q polarization can either be positive
if its contrast is higher (1.5) or negative if it is lower (1.2). When
the spot is behind the star at φ = 0.5, the q polarization is either 0
for a brighter spot (1.5) or negative for a lower luminosity contrast
(1.2). This can be accounted for mainly by numerical noise, as the
errors on the polarization values at τ 0 = 1 in Fig. 15 are quite large
(∼0.03) at this scale. As for the CIR, the amplitudes for the optically
thick case at phase 0.25 and 0.75 are not quite equal. This can most
likely be explained by the fact that the CIR is slightly curved, even
for r0/R∗ = 100 and the leading and tailing edges then cause an
asymmetry in the polarization (see Section 4.3.2).

In the bottom panels, we present the combined effects of the
spot and CIR. the most important conclusion is that the effect of
the spot on the polarization is similar in nature as that of the CIR
(excluding the eclipse effects) but that they are of much smaller
amplitude. Therefore, they do not affect significantly the shape of
the polarization curves.
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Monte Carlo simulations of CIRs in winds 2883

Figure 13. Contributions to the q polarization from the Gaussian spot (top row), the CIR (middle row), and both combined (bottom row) for three different τ 0;
τ 0 = 0.01 (left column), τ 0 = 0.1 (centre column), and τ 0 = 1.0 (right column). Three different combinations of spot luminosity Lspot/Lphot and spot opening
angular radius β0 were used. Note that the scale on the first row is different to the two other rows in order to see more clearly the amplitude of variation of
intensity caused by the spot.

5.1.2 The effect on the light-curves

In Fig. 14, we present light-curves associated with the polarization
curves presented in Fig. 13. For the spot only, the curves are very
much as expected with an increasing amplitude, when the spot is
brighter and when it has a bigger surface. As the wind becomes
thicker, the amplitude becomes smaller and smaller and the eclipse
becomes less sharp. This is because as τ 0 increases, light from
the spot is diffused outwards, making the spot larger and blurrier.
For the CIR only, the behaviour is also as expected. When the
CIR is in front at phase 0, it eclipses part of the star creating
a dip. Of course, if the CIR is wider, the eclipse is also wider
but also deeper. At phases 0.25 and 0.75, it scatters the light into
the line of sight, generating excess light. For a wider CIR, these
excesses are stronger. Finally, when the CIR is behind the star, it
is totally invisible and the relative flux is unaffected (=1.0) for
thin and moderately thick winds. For thick winds, some flux seems

to reach the observer (>1.0) indicating that when it emerges, the
CIR is slightly larger than the stellar photosphere. As for the relative
amplitudes between the effects of the spot and that of the CIR, when
the wind is thin (0.01) the spot dominates, but when the wind is thick
(1.0) the CIR dominates. This is true even for moderately thick
winds (0.1).

5.2 MCRT CIR polarization curves for a range of densities

In Fig. 15, we present polarization curves for a wind with an
essentially straight equatorial CIR (r0/R∗ = 100) in a pole-on (top
row) and edge-on (bottom row) view for p (left-hand column) and
q (right-hand column) as a function of phase for different values
of τ 0. For these models, we have also added a Gaussian spot with
Lspot/Lphot = 1.2. Here 1.5 phase cycles are shown to make the
shape of the curve more clear. For the pole-on view, we can see that
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2884 D. Carlos-Leblanc et al.

Figure 14. Contributions to the intensity from the Gaussian spot (top row), the CIR (middle row), and both combined (bottom row) for three different values
of τ 0; τ 0 = 0.01 (left column), τ 0 = 0.1 (centre column), and τ 0 = 1.0 (right column). Three different combinations of spot luminosity Lspot/Lphot and spot
opening angle β0 were used. Note that the scale on the first row is different to the two other rows in order to see more clearly the amplitude of variation of
intensity caused by the spot.

the total linear polarization, p, increases with τ 0 until it reaches a
maximum value of ∼ 0.25 per cent at τ 0 = 0.3−0.5. Above this
value, increasing τ 0 gradually decreases the value of p until it
reaches a value of ∼0.15 at τ 0 = 2.0. Our calculation at τ 0 =
3.0 gives a very similar polarization value. These effects can also
be seen in the amplitude of the q curves shown in the top right
panel (the u curves are in antiphase with the q curves). In addition
to these variations in the amplitude of the q curve with τ 0, we
can also see the gradual shift in the maxima of the curves, already
described in Section 4.3.1. This shift begins to become significant
after τ 0 = 0.5, approximately when the maximum in p is reached.
This is consistent with our interpretation that at a certain value of τ 0

(0.3–0.5) the optical depth in the CIR becomes important enough
to break the symmetry of the wind polarization, hereby generating
a new linear polarization source that varies in antiphase with the
polarization curve generated by the CIR itself. As τ 0 increases,

the CIR emerges at larger and larger distances from the star and
because even with r0/R∗ = 100 it still presents a slight curvature,
the polarization curve from the CIR becomes gradually shifted to
higher phases as τ 0 increases.

For the edge-on view, we can see the gradual appearance of the
double dips caused by the eclipse of the wind by the CIR on either
side of phase 0, also starting around τ 0 = 0.3. These dips become
deeper and wider as τ 0 increases as the wind polarization becomes
larger and the CIR occults a larger and larger fraction of the wind
polarization.

One interesting thing to note here is that, in the edge-on view, we
can see at what τ 0 the two peaks in the polarization curve around
phase 0 start appearing, in this case around τ 0 = 0.3. With increasing
density the peaks become higher.

As for the pole-on view, we can see that at in between τ 0 =
0.3 and τ 0 = 0.5, the polarization peaks reach a maximum and
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Monte Carlo simulations of CIRs in winds 2885

Figure 15. Polarization values p and q as a function of phase of a spherical
wind with a single, essentially straight CIR (r0 = 100R∗) located at the
equator for different values of τ 0 from 0.01 to 3.0, with a spot included
for a pole-on view i = 1◦ (top row) and an edge-on view i = 90◦ (bottom
row). Note that our τ 0 = 3.0 simulation has half the amount of phase points,
making the curve a bit less resolved.

start decreasing. There also seems to be slight phase shifting in q
becoming most noticeable around τ 0 = 1.0. Note that the decrease
in polarization seems to have stopped in between τ 0 = 2.0 and τ 0 =
3.0, since the amplitude has stayed the same; however the shifting
in q still continues.

In view of the fact that the polarization curves we obtain using
MCRT for CIRs in a spherical wind are quite different from those
obtained using analytical models, the fits of the observations of the
WR star WR6 presented in St-Louis et al. (2018) need to be re-done.
The fact that our MCRT curves have a much smaller amplitude and,
depending on the optical depth of the wind, have peaks that are
shifted compared to those obtained with the analytical models will
certainly result in different output parameters, such as the density
contrast or the opening angle of the CIR and perhaps even in a
different orientation of the stellar axis with respect to our line-of-
sight.

However, performing such new fits is beyond the scope of this
paper. First, we will need to calculate a grid of MCRT models by
varying the many parameters of our model. Calculations, particu-
larly at higher values of τ 0 are very expensive in computing time.
Then, we would need to adjust the model curves to the observations
using a robust fitting method such as, for example, a Monte Carlo
Markov Chain technique such as the one used in the EMCEE package.
We intend to pursue such fits in an upcoming paper.

5.3 MCRT light curves for a range of densities

Our MCRT calculations also include monochromatic light curves
for scattering of star light from both the wind and CIR. Total
intensities include light from the star and scattered light, I =
1 corresponding to the intensity from stellar light only. In this
section, we present results showing how these vary for various
wind densities.

In Fig. 16, we illustrate how the light curves evolve as a function
of τ 0 for a spherical wind containing a single straight CIR (r0 =

Figure 16. Intensity values as a function of phase of a spherical wind with
a single straight CIR (r0 = 100R∗) located at the equator for different values
of τ 0 from 0.01 to 3.0, with a spot included for a pole-on view i = 1◦ (left)
and an edge-on view i = 90◦ (right). Note the scale for the pole-on intensity
is different from the edge-on intensity to highlight the difference between
the different curves.

Figure 17. Pole-on (top graph) and edge-on (bottom graph) intensity values
as a function of phase for a spherical wind containing a single CIR with r0 =
5R∗ located at the equator for different values of τ 0 from 0.01 to 3.0 for
the pole-on view and from 0.01 to 0.3 for the edge-on view, with a spot
included. The error bars represent the standard deviation given by running
the same simulation with 20 different seeds.

100R∗) at the equator with a spot on the surface of the star for
pole-on (left) and edge-on (right) views. As expected, the pole-
on case yields relatively constant values of I with an increase in
amplitude for higher values of τ 0. The slight systematic variations
at this scale are due to the slight inclination (∼1◦). The edge-on
case shows curves with the same characteristics as those presented
in Section 5.1.2, where the CIR contribution becomes gradually
more important as τ 0 increases. For low τ 0 values, we can see a
broad contribution from scattered light centred on phase 0 for this
essentially straight CIR. As τ 0 increases, this excess becomes more
and more reduced by the narrow dip generated by the eclipse of the
wind of the star by the CIR. Around phases 0.25 and 0.75 however,
as the CIR exits the line of sight of the star, we notice two bumps
in the light curve, indicating an excess of photons scattered into the
line of sight.

Fig. 17 presents the light curves from a slightly curved CIR (r0 =
5R∗) instead of a straight one, for different values of τ 0 for a pole-on
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view (top) and edge-on view (bottom). For these curves, we have
repeated the calculation 20 times and present the mean values in
the figure. The error bars correspond to the standard deviation of
these means. It can readily be seen that these intensity error bars are
much smaller than their polarization counterparts in Fig. 3, as the
errors are in general of the order of 0.0001.

6 C O N C L U S I O N S

In this paper, we have shown that the results from our Monte Carlo
statistical approach for treating CIRs differ significantly from the
analytical models. While the Monte Carlo model fits relatively
well with the optically thin results of Ignace et al. (2015), only
with some minor differences when we do not include the spherical
wind with the CIR, the polarization becomes much more attenuated
compared to the analytical model when we do include the wind in
the Monte Carlo simulations. We interpret this as indicating that
the scattered light and/or the pre- and post-scattering attenuation
have a much more important impact than previously envisaged on
the polarization with a decrease of about ∼ 20 per cent. When we
compare our results with those of St-Louis et al. (2018) for the
optically thick limit, the differences become even more important,
as multiple scattering adds complexity to the polarization curves.
First, the scattering of the photons by the CIR towards the line of site
at phases 0.25 and 0.75 for an edge-on view is increasingly reduced
as the optical depth becomes higher because of the eclipse by the
CIR of the polarized spherical wind on either side of phase 0 (CIR
in front). Secondly, because of multiple scattering, the optically
thick CIR introduces a deficit in the region of maximum wind
polarization, yielding a polarization contribution almost completely
in antiphase with the polarization generated by the CIR further out
in the wind where the density is smaller. These two contributions
in almost complete antiphase greatly reduce the amplitude of the
resulting polarization. Of course, the fits to observations presented
in our previous paper using analytical curves need to be revisited
and will certainly yield different stellar and CIR parameters.

Adding spots on the surface of the star at the base of the CIRs
has a small effect on the polarization curve, where a slight excess
can be observed. However in the total light curves, three cases can
be distinguished depending on the spot parameters and the optical
thickness of the wind: The first is when the spot dominates in the
optically thin limit, the second is when the CIR dominates in the
strongly optically thick limit, and the last is when both contributions
are significant, in the moderately optically thick limit.

Although this statistical model presented in this paper is relatively
simple, we believe it provides a base on which we will be able to
build upon. In the future we plan to treat more complex wind and
CIR geometries and kinematic structures such as those that result
from hydrodynamical simulations.
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