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ABSTRACT

In the last years, Astroinformatics has become a well-defined paradigm for many fields
of Astronomy. In this work, we demonstrate the potential of a multidisciplinary approach
to identify globular clusters (GCs) in the Fornax cluster of galaxies taking advantage of
multiband photometry produced by the VLT Survey Telescope using automatic self-adaptive
methodologies. The data analysed in this work consist of deep, multiband, partially overlapping
images centred on the core of the Fornax cluster. In this work, we use a Neural Gas model, a
pure clustering machine learning methodology, to approach the GC detection, while a novel
feature selection method (PLAB) is exploited to perform the parameter space analysis and
optimization. We demonstrate that the use of an Astroinformatics-based methodology is able
to provide GC samples that are comparable, in terms of purity and completeness with those
obtained using single-band HST data and two approaches based, respectively, on a morpho-
photometric and a Principal Component Analysis using the same data discussed in this work.

Key words: methods: data analysis—globular clusters: general —galaxies: elliptical and
lenticular, cD.

to combine data obtained at different wavelengths and epochs by

1 INTRODUCTION . . . . .
different instruments. Astronomy, in fact, is going to enter the

In modern observational Astronomy, the amount of data collected
by an instrument in a single day is often more than enough to
keep occupied an entire community of scientists for long time;
LSST, for instance, will produce 20 trillion bytes of raw data per
night.! These huge data sets are further enlarged by the possibility
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big data era not only for the sheer size of its data, but also for
the high dimensionality and complexity of the parameter spaces
(PSs) to be explored. These spaces are composed by a variable
mixture of photometry, spectroscopy, structural and morphological
features, depending on the specific context of the problem under
investigation. A complexity that allows, on the one hand, to answer
long-standing questions with higher accuracy and, on the other
hand, to address completely new and more difficult problems.
In such scenario a new paradigm is required, mostly based on
a multidisciplinary approach, through a virtuous integration of
Astrophysics, Data Science, and Informatics. A symbiosis that is at
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the very heart of the relatively new discipline of Astroinformatics,
or Knowledge Discovery in astrophysical data (Borne et al. 2009;
Brescia et al. 2013; Feigelson & Hilbe 2014; Brescia et al. 2018).
Astroinformatics, however, is just a label which summarizes the
emerging awareness that complex problems can be tackled only
by heterogeneous groups of experts, and that multidisciplinary
approach is not a presumptuous ambition, but rather an unavoidable
and precious quality. In the last decade, in many different fields, it
has been clearly demonstrated that the emulation of the mechanisms
underlying natural intelligence, if translated into efficient algorithms
and supplied to super computers, is fully and rapidly able to analyse,
correlate, and extract huge amounts of heterogeneous information
(Brescia et al. 2018; Baron 2019).

When dealing with high dimensionality PSs, it appears evident
the crucial importance of an optimal choice of the PS (i.e. feature
selection, hereafter FS) adopted to represent the data to be explored
in the context of a specific problem.

The selection of an optimal set of features strictly depends on
the concept of feature importance, based on the quantification of its
relevance.

Formally, the importance of a feature is the relevance of its
informative contribution to the solution of a learning problem. There
is plenty of FS solutions proposed in literature (Guyon & Elisseeff
2003), such as Principal Component Analysis (PCA; Jolliffe 2002),
filter techniques (Gheyas & Smith 2010), wrapper (Kohavi & John
1997), and embedded methods (Lal et al. 2006), among which a
typical example is the Random Forest (RF) model (Breiman 2001).
These methods are basically oriented to find the smallest (best) PS
able to solve a given problem (Jain & Zongker 1997; Guyon et al.
2006; Hastie, Tibshirani & Friedman 2009).

Such multidisciplinary paradigms have been concretely followed
in this work by exploiting automatic self-adaptive methodologies
(e.g. FS and the two machine learning (ML) paradigms, respectively,
supervised and unsupervised learning; Russell & Norvig 2010) with
the main goal of identifying globular clusters (hereafter GCs) in the
Fornax cluster of galaxies.

GCs represent an important category of widely studied astro-
nomical sources. Since GCs harbour a wide variety of stellar types
of the same age, each single GC acts as a stellar laboratory,
suitable to observe and analyse the formation, behaviour, and
evolution of stellar systems concentrated within just ~10 parsec.
As a population, on a galactic scale, they trace the dynamics, the
kinematics, and the chemistry of their host galaxy, behaving like a
sort of a footprint left by the galactic evolution (Brodie & Strader
2006; Ashman & Zepf 2008).

Itis now well established that GC can be split in populations (e.g.
Geisler & Forte 1990; Zepf, Ashman & Geisler 1995; Brodie &
Strader 2006; Pota et al. 2013): (i) a red, metal-rich, spatially
concentrated sub-population and (ii) a blue, metal-poor, spatially
extended sub-population.

The data analysed in this work consist of deep, multiband images,
partially overlapped, centred on the core of the Fornax cluster. The
extracted catalogue is composed by several thousands of sources,
each one characterized by a large set of features (i.e. parameters),
such as luminosity, colours, and morphological information, for a
total of more than 60 features. Given the high number of dimensions
involved, the difficulty to disentangle different types of objects
(e.g. foreground stars, background galaxies, and GCs), together
with the fact that spectroscopic confirmation was available only
for a quite limited number of sources, it was decided to tackle
the task of recognizing and classifying GCs (against a variety
of background and foreground sources) by investigating both the

PS optimization and the classification capabilities of specific ML
methods.

The work has therefore focused on the Growing Neural Gas
model (GNG; Martinetz & Schulten 1991; Martinetz, Berkovich &
Schulten 1993; Fritzke 1994), a pure clustering category of ML
methods, together with a novel FS method, named ®LAB (Brescia
et al. 2019). In order to compare the performance of the Neural
Gas-based model, a Multi-Layer Perceptron with Quasi-Newton
approach (MLPQNA; Byrd, Nocedal & Schnabel 1994; Bortoletti
et al. 2003; Brescia et al. 2012; Cavuoti et al. 2012) and a K-
means (Bishop 2006) have been used as a test benchmark. While,
in order to evaluate the FS performances, GNG and RF (Breiman
2001) methods have been compared on several data sets. To evaluate
the accuracy and in particular the efficiency in identifying secure
GC candidates, a direct comparison of these methods has been
performed with other techniques as well as with very promising
results obtained with other types of ML methods applied on single-
band HST data of NGC 1399, the giant elliptical galaxy at the
centre of the Fornax cluster. An important corollary aspect of
this work was, in fact, to evaluate the level of accuracy in GC
classification within two different contexts: multiband ground-
based data and the single-band high spatial resolution data obtained
from space.

The paper is structured as follows: In Section 2, we describe
the data used in this work. In Section 3, we present the methods
employed for the experiments. In Section 4, we describe and discuss
the experiment results. Section 5 is dedicated to a comparison with
similar ML experiments performed on HST data and with other
approaches. In Section 6, we estimate the density maps of the
GCs spatial distribution as further validation method. Finally, in
Section 7, we draw our conclusions.

2 DATA

The data used in this work cover the central region of the Fornax
cluster and were obtained with the OmegaCam (Kuijken 2011)
camera, installed on the VLT Survey Telescope (VST; Schipani
et al. 2012) as part of the Fornax Deep Survey (FDS; Iodice et al.
2016, Peletier et al., in plreparation).2 The images were obtained
through 76 exposures of 150s in the u band, 54 s in the g and r
bands, and 35 s in the i band, reaching a S/N ~10 at, respectively,
23.8, 24.8, 24.3, 23.3 magnitudes in the u, g, r, i (D’ Abrusco et al.
2016). The average seeing was 1.17 arcsec &= 0.08 arcsec in the g
band and 0.87 arcsec £+ 0.07 arcsec in the r band (1 and i bands
show similar variations over the observed field).

The catalogue,? extracted using SEXTRACTOR (Bertin & Arnouts
1996), consists of 94 067 sources whose right ascension (RA) and
declination (Dec.) are inside the celestial square of limits ~[54.02,
55.38] x [ — 34.91, —36.03] (measured in degrees). The catalogue
does not contain the same number of sources in each band, due to the
different depth of observations in different filters: there are 15095
sources in the u band, 73 497 sources in g band, 72 385 in r band, and
49207 in i band. For each band and for each source SEXTRACTOR

2FDS is an ESO joint program, based on two Guaranteed Time Observation
surveys, FOCUS (PI. R. Peletier) and VEGAS (P.I. E. Iodice; Capaccioli
et al. 2015), having as main goal the study of the whole Fornax cluster out
to the its viral radius.

3The catalogues for the full FDS survey will be presented in a forthcoming
paper (Cantiello et al., in preparation). Here, we adopted the catalogues used
in D’ Abrusco et al. (2016) and Cantiello et al. (2018b).
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was used to derive the following information (Bertin & Arnouts
1996):

(i) the automatic aperture magnitudes with error (MAG_AUTO),
i.e. an estimation of the total magnitude;

(ii) the fixed aperture magnitudes (MAG_APER): an estimation
of the flux above the background within different circular apertures
(4, 6, 8, 16, and 32 pixels, respectively), with the related errors;

(iii) the peak surface brightness above background (MU_MAX);

(iv) the average full width at half-maximum (FWHM) of the
image assuming a Gaussian core (FWHM_IMAGE). Itis the average,
due to the various overlaps, by considering the small variations
among the fields;

(v) the semimajor and semiminor axes lengths (A_-WORLD,
B_WORLD) with the errors;

(vi) the position angle between the major axis and the x-axis of
the image (THETA_WORLD);

(vii) the ratio between the semimajor and semiminor axes lengths
(ELONGATION);

(viii) the fraction-of-light radii. It measures the radius of the
circle centred on the barycentre that encloses about half of the total
flux (FLUX_RADIUS);

(ix) Kron apertures (KRON_RADIUS), within 2.5 X
FLUX_RADIUS;

(x) The Petrosian apertures (PETRO_RADIUS), i.e. the apertures
defined by the Petrosian radius, i.e. the radius limit of the ratio
between the local surface brightness and the mean interior surface
brightness of the source.

By adding colours (¢—g, g—r, and r—i) and by excluding the two
larger apertures to minimize contamination from nearby sources
and to limit the magnitude errors induced by the background
contamination, the final PS consists of 64 features: 16 magnitudes,
36 photometric parameters, and 12 colours.

To build the knowledge base (KB) needed for the training of the
ML network, we used a set of spectroscopically confirmed sources
obtained by combining the catalogues from Pota et al. (2018),
consisting of newly confirmed GCs and previous data sets from
Wittmann et al. (2016), which is mostly based on Schuberth et al.
(2010). In addition, the foreground stars were provided by Pota et al.
(2018) and the background galaxies by D’ Ago et al. (in preparation).
The sky distribution of the various objects is illustrated in Fig. 1 for
both the spectroscopically confirmed objects and the unclassified
sources.

Since these catalogues were derived with different instruments
and methodologies, we applied our in-house cross-matching method
(Riccio et al. 2017) between GCs and galaxies and the FDS
catalogue, imposing a matching tolerance of 0.25 arcsec. Stars were
not cross-matched because they are already available in the FDS
catalogue.

After the cross-matching procedure, 1627 sources were labelled:
706 GCs, 464 foreground stars, and 457 background galaxies.
However, not all these labelled objects turned out to be suitable to
construct the KB, due to the presence of missing data (i.e. missing
values in some feature columns). In particular, the missing data
for the 1627 cross-matched sources were (#) 509 (31.3 percent),
(g) 6 (0.4 percent), (r) 8 (0.5 percent), (i) 5 (0.3 per cent). While
the missing data for the whole catalogue (94067 sources) were
(u) 78971 (84.0 percent), (g) 20531 (21.8 percent), (r) 21637
(23.0 per cent), (i) 44 822 (47.6 per cent).

Most of these missing data are in the u band (i.e. the less deep).
However, in this case, missing information is mostly due to the sen-
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Figure 1. Distribution of spectroscopically sources: GCs (blue), foreground
stars (red), background galaxies (yellow), and bright Fornax cluster galaxies
(black diamonds).

sibility limit of the instrument, rather than to the presence of holes
in the data distributions, causing an intrinsic difficulty to test any
imputation method. In fact, although there are numerous imputing
techniques (Poulos & Valle 2016; Yoon, Jordon & van der Schaar
2018; Zhang, Xie & Xing 2018; Camino, Hammerschmidt & State
2019), able to predict missing values within the sample features,
the prediction of feature values outside the training distribution is a
more tricky and complex problem, beyond the goals of this work.
We excluded all of them from the final sample due to the known
negative impact of such missing information on the performances
of ML models (Batista & Monard 2003; Marlin 2008; Parker 2010;
Brescia et al. 2019). We did not introduce any further error-based
cuts in order to avoid any additional reduction of the KB.

3 THE METHODS

In this work, we make use of an optimized implementation of the
GNG network (Fritzke 1995) obtained using the Theano program-
ming environment (The Theano Development Team et al. 2016), and
anovel FS method, ®LAB, to optimize the PS. Moreover, we briefly
introduce the three methods used as test benchmark. Such models
are described in the following sections. For all these networks, the
hyperparameters have been set by following a heuristic pruning
process.

3.1 Growing Neural Gas

The GNG model was introduced in Fritzke (1994) as a variant
of the Neural Gas algorithm (Martinetz & Schulten 1991), which
combines the Competitive Hebbian Learning (Martinetz et al. 1993)
with a vector quantization technique, to achieve a learning that
retains the topology of the data set. This is an important property,
since the vector quantization introduces an order relationship
between the data PS and the internal architecture of the network.
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In fact, Vector quantization techniques (Martinetz et al. 1993),
encode a data manifold, e.g. V € R™, using a finite set of reference
vectors w = wi...wy, w; € R", i = 1...N. Every data vector
v € V is described by the best matching unit (BMU), i.e. the
neural unit whose reference vector w;,) minimizes the distortion
error d(v, wjy)). This procedure divides the manifold V into a
number of subregions: V; = {v e V : ||v —w;|| < [|lv— w/||Vj},
called Voronoi polyhedra (Montoro & Abascal 1993), within which
each data vector v is described by the corresponding reference
vector w;. The BMU and the second-BMU develop a connection
that, if not energized again during learning, tends to decay and then
to be removed (Fritzke 1994). The GNG network is characterized
by a variable number of neurons during the learning phase: new
units are added to an initially small number of units through the
estimation of a statistical local measure obtained during the previous
adaptation steps, while isolated units are removed. The insertion
mechanism has to be able to find the location in the PS where to
introduce a new neuron, in order to reduce the reconstruction error.
In other words, the insertion mechanism finds subregions of the data
manifold whose reconstruction is more complex, i.e. the subregions
characterized by a relatively high density.

Each neuron has an attribute defined as the local error E;,
whose value is updated at each iteration only for the BMU ij:
AE;, = ||lw;, — v||?, where v is the extracted input vector. After
a certain number of iterations, E; represents a local reconstruction
error for the neural unit i. Units characterized by high values of
E; are associated with large Voronoi polyhedra, and these regions
require better sampling to be correctly reconstructed.

The adaptation rule is applied only for the BMU i, and for its
topological neighbours:

Awio =€y -(v— wi(])7
Aw; =€, - (v—w;) Vj € Neighbours(ip). (D)

The advantage of this method is that the learning is completely
determined by the input data, i.e. it is not necessary to superimpose
a structure to the network as, for instance, the expected number
of clusters. The downside is the single input extraction at each
iteration, which leads to an extra computational cost on large data
set. For this reason we optimized the GNG implementation using
Theano (The Theano Development Team et al. 2016), an open
source PYTHON library allowing an efficient computation of tensor
mathematical expressions and an easy exploitation of the Graphical
Processing Unit (GPU). Furthermore, we revised the adaptation
rule of equation (1), by introducing a gradient descent method with
respect to the cost function, represented by the quantization error:

AW = —nVy (QE),

1 14
ngmz > llvw—will, )

i=1 neBMU;

where we have assumed that: v,, is the nth input vector mapped by
the BMU i whose reference vector is w;, V is the data manifold
composed by |V| records, p is the number of BMUs. Finally, we
added also a batch extraction criteria, i.e. at each iteration a subset
of sources has been extracted from the data, whose dimension is
between 1 (equivalent to the original case) and the full data set.

3.2 ®PhiLAB: a novel feature selection method

We recently investigated the possibility to find a PS optimization
method able to cope with the all-relevant FS requirements and to
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infer knowledge within the data-driven analysis domain, hence
particularly suitable for astrophysical problems. The designed
method is called PLAB (PhiLAB, Parameter handling investigation
LABoratory), which aims at identifying the exact PS, by solving
the so-called all-relevant FS problem (Brescia et al. 2019; Delli
Veneri et al. 2019). The method is a hybrid approach, including
properties of both wrappers and embedded FS categories (Tangaro
et al. 2015). It is, in fact, based on two joined concepts: shadow
features (Kursa & Rudnicki 2010) and Naive LASSO statistics
(Least Absolute Shrinkage and Selection, (Hastie, Tibshirani &
Friedman 2001; Tibshirani 2013; Hara & Maehara 2016; Hara &
Maehara 2017), by using the RF (Breiman, Last & Rice 2003) as
feature importance computing engine. By joining the two concepts,
PLAB is able to determine a threshold to filter the most relevant
candidate features and to refine the final selection by determining
the additional weak relevant features through an L, — norm
regularization of a ridge regression (Tikhonov 1998), retaining only
the non-zero features representing the optimal solution.

3.3 Benchmark methods

In order to compare the classification capability of the GNG and to
explore the features selection performed by ®LAB, we used three
methods, described in the following. Having the possibility to use
both supervised and unsupervised models, we tried also to perform
a comparison between the two categories, by taking into account
that, although supervised paradigm is generally preferred whenever
a KB is available, we were particularly interested to evaluate
the performances of the GNG model in a complex astrophysical
problem.

(1) MLPQNA: It is a very robust supervised ML model, as it
has been already demonstrated by its capability to achieve high
performances on a variety of astrophysical problems (Cavuoti et al.
2012, 2015; Brescia et al. 2012; Brescia & Longo 2013). For
this reason we have chosen this model as upper limit benchmark
method. Its architecture is similar to an MLP (Bishop 2006), with
a Quasi-Newton algorithm used as optimizer furthermore it makes
use of the known L-BFGS algorithm (Limited memory; Broyden
Fletcher Goldfarb Shanno, Byrd et al. 1994). This network has been
applied as test benchmark of GNG performances (results shown
in Section 4.2). The network is composed by two hidden layers,
respectively with 2N + 1 and N — 1 neural units, where N is
the number of input dimensions (i.e. the number of features). The
neuron activation function is a hyperbolic tangent. Furthermore, the
network weight updating is based on the L2-norm regularization
term (Bishop 2006), with a decay factor of 0.01.

(i) RF: It is a widely known supervised ML ensemble method
that uses a random subset of features to build a collection of decision
trees (Breiman 2001). The method is characterized by an intrinsic
absence of training overfitting (i.e. excess of training data fitting
with consequent poor fitting of blind test data). RF has been applied
in order to verify the sensitivity of GNG to noisy and redundant
data parameters and to investigate regarding the efficiency of ®Lab
to individuate the best set of features. The results are shown in
Appendix A and discussed in Section 4.1. The method has been
trained with 500 trees, the gini index is used in order to evaluate the
quality of the split (Breiman 2001), while the maximum number
of features, required to search the best split, coincides with the
involved number of parameters. Furthermore, the minimum number
of samples necessary to split a node has been set equal to 2 and no
limit was imposed to the depth of the tree growth.

MNRAS 490, 4080-4106 (2019)
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(iii) K-means: It is a clustering method able to partition the
data set into K clusters, minimizing the distortion measure. At
the end of the training phase the data set has been divided into
K Voronoi polyhedra (Montoro & Abascal 1993). Such method
provides a benchmark lower limit: although the model is able to
perform a vector quantization process, it is necessary to overimpose
a structure on the data, i.e. the number of cluster is not automatically
determined. Thus, in order to compare the unsupervised networks,
we trained the model by setting K to the number of clusters found
by the GNG. Finally, the expectation maximization (EM) algorithm
was used to train the model.

4 EXPERIMENTS

We generated two different data sets to train our models, one
including the u# band and the second excluding it. This partition
was imposed by the fact that in FDS the « band is much shallower
than the others (among the ~94000 sources in the catalogue,
only 15 per cent of the objects were detected in u band, against
higher percentages for g, r, and i bands, respectively, 78 per cent,
77 per cent, and 53 per cent). The resulting data sets can be sum-
marized as it follows: (a) ugri data set with 1113 objects, of
which 357 are GCs, 416 galaxies, and 340 stars; (b) gri data
set with 1618 objects, including 699 GCs, 457 galaxies, and 462
stars. For both data sets we performed three different classification
experiments:

(i) a 3-class problem, i.e. stars, GCs, and galaxies (named as
3CLASS);

(ii) a 2-class problem by grouping in the same class stars and
galaxies against GCs (named as GCALL);

(iii) a 2-class problem, namely stars versus GCs (named as
GCSTAR).

Hence, we performed a total of six experiments. Due to the
limited amount of labelled samples available (i.e. sources with a
known spectroscopic classification), a canonical splitting of the
KB into training (~ 80 per cent) and blind test set (~ 20 per cent)
could not be applied. In order to circumvent this problem and
to balance the samples for each class during the learning phase,
the training-test experiments involved an approach based on the
stratified k-fold cross-validation (Hastie et al. 2009; Kohavi 1995):
the KB is split into five non-overlapping subsets. In this way, by
iteratively taking each time four of these subsets as training set,
and using the fifth as blind test set, an overall blind test on the
entire KB available can be performed. As it was already mentioned,
in order to perform the optimal choice of the PS, we applied
the method ®LAB, by identifying a proper subset of features
for each of the six experiments. We use an RF method, together
with the GNG, to analyse the selection achieved by ®LAB: we
measured the model performances by varying the PS (see the next
section).

The statistical estimators used to measure both the FS and
classification performances are (i) the average efficiency (AE),
the ratio between the number of correctly classified objects and
the total number of objects, averaged over all involved classes;
(i) the purity (pur, also called precision), i.e. the ratio between
the number of correctly classified objects of a class and the
total number of objects classified in that class (the dual of the
contamination); (iii) the completeness (compl, also called recall),
i.e. the ratio between the number of correctly classified objects of
a class and the total amount of objects of that class; (iv) the F1
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score (F1), defined as two times the ratio between the product of
purity and completeness and their sum, for each class (Stehman
1997).

4.1 Feature selection

In order to analyse and optimize the PS suitable for classification
purposes, the six data sets were first processed by ®LAB. In this
work, our main interest was to obtain the most simplified PS able
to predict a good classification on new objects (i.e. outside the data
used for training + test) based on the training on the full data set
available. That is why, along the reported experiments, we took in
consideration the results of FS applied always to the whole data set.
As an example, the feature importance related to the ugri-GCALL
case is shown in Fig. 2, where the PS is partitioned into a rejected
set of features (considered to be irrelevant in terms of information
contribution) and a retained set of all relevant features, composed
by both best and weakly relevant features.

The results of the six FS experiments are summarized in Table A1
(Appendix A) for both the selected and the rejected subsets of
features. By analysing such results, the FWHM, FLUX_RADIUS,
and colours appear relevant in all the six classification experiments
(these three sets of features, with respect to the involved set
of relevant features, have an informative contribution ranging
in 9-31 per cent, 4-24 per cent, and 12-26 per cent, respectively),
thus confirming the higher relevance of the colours over magnitudes,
as well as the intrinsic importance of FWHM and FLUX_RADIUS,
indispensable to disentangle the extended objects from foreground
point-like sources and the unresolved GCs. Concerning the FWHM,
its informative contribution remains high, although being averaged
to take into account small variations among the FDS fields. The fea-
tures MU_MAX, achieving a large informative contribution (ranging
in 5-18 per cent), mark a slight difference between the experiments
that include galaxies and those in which only the GC/star separation
is required.

Moving from the ugri type to gri and from the 3CLASS ex-
periments to GCSTAR, there is a flattening of the informative
contribution among the features, mainly due to the exclusion of the
u band and by grouping together stars and galaxies, thus increasing
the complexity of the classification problem.

Regarding the removed parameters: THETA features have a negli-
gible informative contribution; KRON_RADIUS carries a very weak
contribution (the sum over all the involved filters does not reach
1 per cent of the whole informative contribution). The improvement
due to the ELONGATION features is always much smaller than the
information shared by the SEMI-AXIS features (sometimes about
one order of magnitude). Although it may appear as a bit surprising
that the elongation does not show a particular relevance, this can
be due to the information already carried by the semi-axes that are
an absolute quantity depending on the shape and distance of the
object and its extension. In particular, the combination of the semi-
axes and extension (e.g. FLUX_RADIUS) may embed the elongation
information.

The information carried by the PETRO_RADIUS oscillates
among the experiments and its informative contribution disunifor-
mity is mostly due to i band. Thus, according to the all-relevant
FS approach, this feature has not been rejected. From all these
considerations, the resulting optimized PS extracted for the six
classification experiments consists of 49 features (listed in upper
Table Al in Appendix A).

In order to verify that the PS extracted by ®LAB, is the best
suitable set of representative features for the GC classification, we
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Figure 2. Example of FS results for the experiment 2-class ugri (GCs versus stars + galaxies). The red line is the shadow feature noise threshold, defining
the separation between best and weakly relevant features. The rejected features are in red, while the top relevant features are in blue. Table A1, in Appendix A,
reports the feature importance values estimated by ®LAB for all the six experiments. Feature 9 (i-band PETRO_RADIUS) and feature 24 (g-band MAG_APERG),
although under the shadow feature noise threshold, have not been considered as rejected, because retained as weak relevant after the application of the LASSO

statistics (see Section 3.2 for details).

performed a test, based on the following training + test classification
experiments, involving all six data sets:

(1) BEST PS: using the optimized PS, composed by the 49 features
extracted by the FS method, hence representing the best solution to
the all-relevant FS problem;

(i) FULL PS: by using the full PS, composed by all 64 features
available;

(iii) MIXED PS: by altering the BEST PS, replacing a group of
15 randomly selected features with the 15 rejected features;

(iv) BEST + REJECTED PS: by replacing the 15 least relevant
features of the BEST PS with the 15 rejected features.

In all these tests, for each of the six data sets involved, the
same training and test sets have been used, as well as the same
configuration setup for the model GNG, in order to avoid any
spurious effect on the classification statistics induced by the change
of internal model parameters and by the data used for training and
test. The resulting PSs are summarized in Table A2, while the related
GNG performances are reported in Table A4, showing that

(1) the selected set of features (named as BEST) allows the GNG
to achieve high performances, reaching an increase of 50 per cent
in terms of AE, i.e. the GNG trained on the BEST data set always
reaches better scores in terms of statistical estimators, whereas the
performance degradation is due only to the removal of the u band
(~ 8 per cent in terms of AE), although always remaining well
above the other PSs;

(ii) the separation between GCs and notGCs (star and galaxies)
appears to be the least complex problem for the GNG (showing an
increase of the AE between ~ 3 per cent and ~ 45 per cent);

(iii) concerning the other PSs (FULL, MIXED, BEST + RE-
JECTED), the additional information carried by a greater number

of sources (gri) predominates on the information represented by the
u band (ugri) only in the GCALL experiments (separation between
GCs and notGCs), gaining up to 10 per cent in terms of AE. This
trend is reversed when the classification involves the separation of
the stars and galaxies (3CLASS and GCs versus stars): in these cases
there is a greater dependence on the absence of the u band rather than
on the number of sources (with differences of AE < 9 per cent). The
only exception occurs in the most complete and complex case, i.e.
the ugri 3CLASS with FULL PS, where the amount of objects has
a greater impact (with < 7 per cent gain in terms of AE).

This analysis seems to support the idea that GNG is particularly
sensitive to noisy or redundant features and, in order to verify this
hypothesis, we repeated the same training/test process (i.e. the same
data set for the same experiments) replacing the GNG with an RF
method (Breiman 2001).

The RF method, by generating a random ensemble of decision
trees, is very robust to parameter variations. The results are shown
in A6, from which

(i) in all cases, RFs trained on the data set BEST achieve the
highest scores, showing an increasing of < 8 per cent in terms
of AE;

(ii) concerning the 3CLASS and GCALL problem, the u band
improves the AE (< 8 per cent) but, without this additional pho-
tometric information, BEST is always more robust than others
(< 6 per cent);

(iii) the MIXED data set is always the worst PS, with a decrease
larger than 5 per cent in terms of AE;

(iv) in the GCSTAR case, the u band seems to loose partially its
positive role (with an AE decreasing of ~ 2 per cent) and, without
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Figure 3. Misclassified sources plotted on colour—colour diagrams related to the ugri data set (left top panel, g—r versus u—g and left bottom g—i versus
u—r) and related to the gri data set (right top panel, r—i versus g—r, right bottom panel, r—i versus g—i), together with the spectroscopic set. In all figures
train GCs are plotted with blue dots, train stars with red dots, and train galaxies with orange dots. The incorrect predictions made by GNG are plotted with
open circles, while MLPQNA misclassified sources are plotted with open squares. For both of them the incorrect classifications are coloured in red, blue, and

orange, respectively, for sources predicted as stars, GCs, and galaxies.

the u band, the data set FULL is quite often more robust than the
others (< 3 per cent);

(v) Purity is almost stable in all PSs, while completeness presents
large fluctuations (the largest purity deviation is ~ 2 per cent,
whereas the largest completeness is ~ 7 per cent).

(vi) it appears that the absence of galaxies in the sample (i.e.
GCSTAR cases) makes the experiments less sensitive to the presence
of the u-band data (showing a decrease of AE of 0.5 per cent,
i.e. the results show fluctuations around a mean value). While the
presence of the u band affects more significantly the classification
capability in presence of galaxies, making the BEST case the
most powerful data set. The role of the u band can be derived
from Figs 3 and 5, according to what was widely discussed in
Munoz et al. (2014), where the authors showed (see, for instance,
their figs 13 and 16) how the bluer spectral energy distribution of
star-forming galaxies and passive galaxies at moderate redshift is
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well identified in the colour—colour diagrams. The u band, in this
case based only on optical colours, shows much less discriminant
power for GCs and stars, becoming more relevant in identifying
galaxies.

Given these premises, in order to explore the impact of the u band
on the classification, we performed two further experiments: (i) a
data set extracted from the ugri set without the u band, named as
gri* and (ii) by using only the features related to the u band. Such
test has the role to disentangle the u-band contribution from the
effect carried by the increase of the samples. Results are shown in
Table AS (in Appendix A), from which we conclude that

(i) the use of the single u-band information still allows the
separation among classes with a slight decrease of AE for both
GNG (< 2 per cent) and RF (~ 3 per cent);
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(ii) concerning the gri data set the average efficiency reduction
appears higher if compared to the ugri data set (= 5 per cent);

(iii) RF performances significantly decrease with respect to the
results achieved in the case where all the available samples are used
(rising up an AE difference of ~ 10 per cent in the same cases),
showing the known dependence of ML methods from the training
dimension (Brescia et al. 2013).

Hence, the experiments performed by the two models confirm:
(i) the strong dependence of GNG on the structure of the PSs and
thus support the need for a robust method of features selection, (ii)
the capability of ®LAB to identify the set of relevant features, (iii)
the high impact of the u band on the classification capability for
both models.

4.2 GC classification

As introduced in Section 3.3 the GC classification experiments have
been performed by comparing the GNG model with MLPQNA and
K-means. For the latter model the performances have been reported
in Table A3 and represent a lower limit for the GNG. In terms
of average efficiency, the GNG shows better results, gaining from
1.0 per cent to 6.6 per cent. For this reason we focused more on the
comparison between MLPQNA and GNG. The classification results
on the blind test sets, obtained by GNG and MLPQNA using the k-
fold technique for the six data sets, are summarized in Table 1.
In Fig. Al, the ROC curves (receiver operating characteristic;
Hanley & McNeil 1982) have been reported to study the purity-
completeness trade-off. In order to compare the results, it is
important to remark that the unsupervised model (GNG) does not
take into account the knowledge of the source labels during the
learning, entrusting the weights adaptation to the minimization of
the quantization error, while the supervised model (MLPQNA)
uses labels to guide learning, allowing also the identification of
the minimum with a very high efficiency (Brescia et al. 2012).
Therefore, in principle, some performance differences are expected.

In order to identify the GCs, the most interesting measure is the
purity, i.e. the fraction of true GCs within the set of objects that are
classified by the method as GCs (Brescia et al. 2012), although we
are interested to find the best trade-off with completeness, as usual
in any classification scheme but crucial in astrophysical problems
(D’Isanto et al. 2016).

Concerning the ugri data set, both models show comparable
performances in terms of trade-off between purity and completeness
of the order of 80-95 per cent (see Table 1). However, in order to
explore the classification differences between the two methods, we
counted the number of times a model exceeds the other for more than
3 per cent in terms of statistical measurements. Concerning the ugri
data set, MLPQNA overcomes the GNG results in the GCSTAR ex-
periment (showing an average improvement of ~ 5 per cent), while
GNG performs better than MLPQNA in the GCALL experiment
(where the GNG average increase is ~ 3 per cent). Regarding the
3CLASS experiments, both methods show very similar efficiency
(in fact, the MLPQNA average increase is less than 0.4 per cent).
Furthermore, GNG seems to identify GCs better than other classes
(showing an average improvement of ~ 2 per cent in the case of
the ugri experiments), while MLPQNA shows a greater detecting
capability for stars and galaxies (with respect to which the average
gain related to ugri experiments is ~ 3 per cent).

The scenario is different for the gri data sets, where MLPQNA
outperforms GNG, by disentangling the source classes with very
few losses (by reaching a purity and a completeness on GCs

4087

Table 1. Classification results in terms of statistical estimators: average
efficiency (AE), purity (pur), completeness (compl), and Fl-score (F1) for
both ugri and gri data set types and for both GNG and MLPQNA models.
Top table reports the results for the 3CLASS experiment, middle table for
the 2-class experiment between GCs and notGCs (stars + galaxies), and
bottom table shows the results concerning the 2-class experiment between
GCs and stars. Regarding the ugri data set case, GNG and MLPQNA
have similar performances, although MLPQNA shows an optimal trade-
off between purity and completeness; while in the case of gri data set the
GNG cannot reach MLPQNA performance, particularly in the 3-class and
stars versus GCs cases. All these experiments are performed using the BEST
PS. The values higher than 90 per cent are marked in bold.

3CLASS ugri gri
Estimator (per cent) GNG MLPQNA GNG MLPQNA
AE 86.5 88.2 79.4 88.8
pur STAR 85.8 84.8 71.9 85.6
compl STAR 80.3 85.6 66.9 82.0
F1 STAR 83.0 85.2 69.3 83.8
pur GCs 80.0 83.2 78.2 87.2
compl GCs 90.8 83.2 79.6 89.4
F1 GCs 85.1 83.2 78.9 88.3
pur GAL 92.5 95.4 88.3 94.5
compl GAL 95.4 94.7 92.1 94.7
F1 GAL 93.9 95.0 90.2 94.6
GCs versus ALL ugri gri
Estimator (per cent) GNG MLPQNA GNG MLPQNA
AE 88.7 87.1 84.0 88.4
pur notGC 85.1 91.2 81.3 90.1
compl notGC 88.0 89.6 85.5 89.4
F1 notGC 86.5 90.5 83.4 89.8
pur GCs 91.3 78.9 86.2 86.3
compl GCs 89.1 81.8 82.1 87.1

F1 GCs 90.2 80.3 84.2 86.7
GCs versus STARs ugri gri
Estimator (per cent) GNG MLPQNA GNG MLPQNA
AE 86.8 90.3 78.2 87.9
pur STAR 87.0 84.3 71.3 81.8
compl STAR 83.2 80.7 84.9 83.2
F1 STAR 85.1 82.5 81.1 82.5
pur GCs 91.6 92.6 79.7 91.2
compl GCs 80.3 94.1 70.3 90.4
F1 GCs 85.6 93.3 75.0 90.8

higher than 86 per cent), although without the # band. Only in the
2CLASS experiment GCs versus ALL the GNG network achieves
similar (although minor) performances. In this case, the AE dif-
ference between model classification capabilities is ~ 4 per cent,
whereas in 3CLASS and GCSTAR experiments the differences are
~ 10 per cent and ~ 8 per cent, respectively.

By comparing the results between the GCSTAR and the other
experiments, it appears that the exclusion of galaxies from the train
set makes both models more efficient to identify the GCs, although
both methods are able to identify galaxies with a good trade-off
between purity and completeness (2 92 per cent in the ugri case,
= 88 per cent for the gri experiment). This behaviour appears more
pronounced for the MLPQNA.

The GNG performance gaps between ugri and gri data set can
be visually deduced also from the ROC curves (Fig. A1) studying

MNRAS 490, 4080-4106 (2019)
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Table 2. Intersection between predictions performed by GNG and
MLPQNA for both ugri and gri data set types. Further, in order to disentangle
the influence on performances due to the amount of samples in the train set,
we evaluate the intersection between the predictions performed on the gri
data set using only the ugri indices (i.e. gri features with ugri samples),
named as gri*. Top table refers to the 3CLASS experiment, middle table to
the GCALL experiment, while bottom table to the GCSTAR experiment. Row
commons reports the intersection between predictions regardless of whether
they are correct or not. Row corrected specifies the common objects correctly
classified. The values are expressed: (i) as percentage with respect to whole
set (third and fifth columns) and (ii) as percentage with respect to the number
of objects in the corresponding class (fourth and sixth columns).

3CLASS
ugri (percent)  gri (percent)  gri* (per cent)

Commons STAR 853 788 808 673 789 721

GCs 79.8 82.4 67.6
GAL 95.2 92.1 92.0
Corrected STAR 80.1 759 750 630 756 77.6
GCs 71.1 74.4 58.0
GAL 91.3 88.2 88.9
GCALL

ugri (percent)  gri (percent)  gri* (per cent)
Commons notGCs 86.0 88.3 82.2 81.1 83.0 85.6

GCs 82.6 83.4 78.7
Corrected notGCs 80.6 84.6 77.0 77.1 77.0 81.9
GCs 75.7 77.1 71.1

GCSTAR

ugri (percent)  gri (percent)  gri* (percent)
Commons STAR 903 786 800 704 80.6 828
GCs 95.0 86.2 74.7

Corrected STAR 847 743 731 660 723 778
GCs 88.8 71.8 66.7

the trend of the area under the curve (AUC), which represents the
probability that a classifier correctly predicts the membership of a
sample, although the ‘positive’ probability thresholds are higher
than the ‘negative’ ranks (Fawcett 2006). Concerning the GC
classification, the AUCs gain up to 9.9 per cent by moving from
gri to ugri data set; the best result is obtained by the GCALL-
ugri experiments (93 per cent and 94 per cent, respectively, for
GCs and notGCs). The performances drop down for the GCSTAR-
gri experiment (AUC ~ 80 per cent for both classes), where the
photometric similarity between sources and the lack of information
makes the GNG less performing.

In Table 2, we distinguish the commonalities between GNG and
MLPQNA referred to their predictions and corrected ones. Such
analysis was computed for all the six kinds of experiments and
evaluated on a PS composed by the gri features, but restricting the
data samples only to the objects available in the ugri case (named as
gri*). Again, the underlying idea is to disentangle the contribution
of features from the increasing of sample size in the train set. As
expected, from the estimated performances (see Table 1), the largest
sets of common predictions are related to the ugri experiments (80—
90 per cent). As previously discussed, the inclusion of galaxies in
the training set reduces the capabilities of both methods to detect
GCs (a 5 percent drop in term of commonalities). Concerning
the gri* case, there is a negligible reduction in terms of global
common classification fraction (i.e. regarding all the involved source
types), but the fraction of identified (and correctly identified) GCs is
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considerably decreased (up to 20 per cent). In order to understand
the origin of the misclassified objects, we plot on colour—colour
diagrams the spectroscopic sources together with the incorrect
predictions with respect to all classes of objects, for both ugri and
gri training sets, shown in Fig. 3. The incorrect sources could be due
to the photometric similarity between the sources, for instance GCs
and stars, accentuated when the « band is removed. However, given
the high number of dimensions involved, the diagrams describe a
small portion of the whole space of features (each one of them
represents less than the 5 per cent of total information contribution,
estimated as sum of the feature importances related to the involved
colours). Thus, we used our model ECODOPS* (Efficient Coverage
of Data On Parameter Space), a PYTHON-based system wrap-
ping a high-dimensions data visualization technique: t-distributed
Stochastic Neighbor Embedding (tSNE; van der Maaten & Hinton
2008; Van Der Maaten 2014). Our tSNE implementation is based
on the object imported from the library sklearn (Pedregosa et al.
2011).

Such method, already applied in other astrophysical contexts
(Nakoneczny et al. 2019), guarantees the preservation of the
significant structures of the high-dimensional data visualized in
a low-dimensional map. Therefore, it converts similarities between
data points to joint probabilities and tries to minimize the Kullback—
Leibler (Kullback & Leibler 1951) divergence between the embed-
ding space and the high-dimensional data. In this way, the tSNE
maps the multidimensional data to a lower dimensional space and
attempts to find patterns in the data by identifying observed clusters
based on similarity of data points with multiple features. However,
after this process, the input features are no longer identifiable, and
any inference based only on the output of the method cannot be
done. Hence, it must be considered as mainly a data exploration and
visualization technique. The resulting 2D representation is obtained
as a bunch of data points scattered on a 2D space (Fig. 4), where
the underlined concept is that two close data points in the 2D space
have similar properties in the high-dimensional space.

The embedding maps, illustrated in Fig. 4 for both ugri and
gri sets, together with the misclassified objects, show the great
separability between the class types when the information carried by
the u band is added to the train set. Most of the incorrect predictions
are located in the border regions, particularly in the ugri case (left-
hand panel in Fig. 4), while other false predictions are surrounded
by contaminants. The embedded space shows a correspondence
to the colour—colour plane: the similarity between stars and GCs
is still noticeable, although their separation is larger than in any
other feature combinations, i.e. the whole ensemble of features
computed by PLAB maximizes the separation capabilities of both
methods.

4.3 Photometric search for new GCs in Fornax core

It is now crucial to verify the capability of GNG to identify GCs
by testing it against a set of unlabelLed sources (hereafter, run
process). This should allow not only to analyse the performances of
the classifiers, but also to provide an additional set of GCs, suitable
for advances in the astrophysical studies of the GC population and
their connection with host galaxies.

As preliminary step, the fainter sources are excluded from the
data set, by applying the cuts summarized in Table 3, due to their
low S/N ratio and in order to cut unclassified data at the same

“http://dame.dsf.unina.it/ecodops.html
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Figure 4. Bi-dimensional projection performed by ECODOPS of the ugri (left-hand panel) and gri (right-hand panel) train set together with the misclassified
sources predicted by GNG (open circles) and MLPQNA (open squares). In both figures, GCs (spectroscopic and predicted) are in blue, stars (spectroscopic
and predicted) are in red, and galaxies (spectroscopic and predicted) are in orange.

Table 3. Magnitude and magnitude error cuts adopted for the run data set,
for the u, g, r, and i bands, deduced from error trends.

Magnitudes u-band g-band r-band i-band
AUTO 23.7 23.0 23.0
APER4 25.2 25.0 24.6
APERG 24.2 24.1 23.6
APERS 24.3 23.6 23.0
Errors u-band g-band r-band i-band
AUTO 0.18 0.040 0.040 0.050
APER4 0.04 0.050 0.050 0.070
APERG 0.05 0.035 0.034 0.055
APERS 0.18 0.033 0.030 0.050

limit of the KB. The u-band magnitudes were excluded from the
cut, since the training and the run magnitude distributions share the
same range of values. Moreover, cuts on magnitude errors have been
applied on all the available bands, in order to limit the presence of
noisy sources (Table 3). Furthermore, samples affected by missing
data were excluded from the catalogue. At the end of this selection
process, two data sets have been produced, one including the u band,
the other excluding it, in a similar way to what was done for the
KB data. The ugri data set consists of 5562 sources (~ 45 per cent
of the available run set), while the gri data set counts 6884 sources
(~ 17 per cent of the available run set).

We have performed the run process with the GNG whose
learning had involved all the three source types, i.e. galaxies,
stars, and GCs. Thus, the GNG models trained with the GCSTAR
have been excluded from the run process. Indeed the run set is
composed by all sources detectable from the instrument, so, when
a galaxy is presented to this network, the model tries to assign
a label to the source, i.e. star or GC, making a mistake in both
cases. The purpose of the GCSTAR experiments is to test the
effectiveness of the network to photometrically disentangle GCs
from stars, which is the most complex among the proposed prob-
lems, due to the morphological and photometric similarity of both
source types.

Table4. Common predictions among the GNG trained networks performed
on the unlabelLed sources for the four data set experiments involving the
three class types: upper rows refer to 3CLASS experiments, while bottom
rows refers to GCALL experiments.

3CLASS COMMON  Percent GCs Stars Galaxies
ugri 5115 92.0 522 2022 2571
gri 5861 85.1 425 2601 2835
GCALL COMMON  Percent GCs notGC

ugri 5228 94.0 472 4756

gri 6437 93.5 790 5647

Since a leave-k-out approach has been adopted, we used the
five available trained networks to analyse the GNG performance
fluctuations. Table 4 shows the results of the intersection between
the different results produced by the GNG in terms of common
predictions among stars, GCs, and galaxies sources: as expected
from the blind test performance (Table 1), the commonpercentages
reveal a gap between the ugri and gri 3CLASS experiments; never-
theless the other three run experiments reach more than 90 per cent
of common predictions, finding about 500 GCs candidates.

After having verified the robustness of the method with respect
to the data set variations and that the results seem to reflect the
performances achieved on the blind test set, we trained the GNG
on the whole KB. In order to quantify the overall performances of
the network, we used samples of bona fide Hubble space Telescope
(HST) GCs in the central region of NGC 1399 (Brescia et al. 2012;
Cavuoti et al. 2013; Puzia et al. 2014). After a cross-match between
VST and HST catalogues, we found 100 HST sources (GC and
notGC) within our run data set. The resulting classification statistics
are shown in Table 5. Despite the reduced number of samples, the
measures reflect what was obtained on the blind tests: an increase
of the classification accuracy for the ugri-band data set with respect
to the gri case, and for the GCALL experiments with respect to the
3CLASS case.

We want to emphasize the result obtained with the experiment
ugri GCALL, which outperforms the others, reaching an excellent
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Table 5. Classification results in terms of statistical estimators using
HST samples as bona fide for both ugri and gri data sets. The estimator
nomenclature is the same as that adopted in Table 1. The columns 3CLASS
shows the results concerning the 3-class experiments, while the columns
GCALL shows the results concerning the 2-class. Despite the limited amount
of labelled sources within the HST sample, the statistical estimators reflect
the performance obtained with the blind test (Table 1).

Estimator (per cent) ugri gri
3CLASS GCALL 3CLASS GCALL

AE 90.1 96.7 80.4 85.5
pur notGCs 92.7 97.7 86.2 89.1
compl notGCs 86.4 95.6 64.1 81.7
F1 notGCs 89.4 96.7 75.1 85.4
pur GCs 88.0 95.6 71.8 82.3
compl GCs 93.6 97.8 92.5 89.1
F1 GCs 90.8 95.6 85.1 85.7

purity-completeness trade-off and a very low GC-notGC contam-
ination (< 4 per cent). Thus, given these measures and the perfor-
mances achieved on the blind test set, we used the GCs identified
by the GNG trained with ugri GCALL data set. Furthermore, since
we were also interested in other source types, we defined as stars
(or galaxies) the sources classified as notGCs trained with the
ugri GCALL experiments, which have been predicted as stars (or
galaxies) by GNG trained with the ugri 3CLASS experiment, i.e.
the common prediction among the ugri experiments.

The resulting colour—colour diagrams for the predicted GCs are
illustrated in Fig. 5 together with the other sources (i.e. galaxies and
stars). These panels clearly show a large overlap between predicted
and training GCs probing the network capability to extract the GC
population, photometrically indistinguishable from the background
and foreground sources. The results confirm the capability of our
method, able to identify the sources without any pre-selection
and in spite of the limited number of labelled sources. The only
requirement is the correspondence, in term of photometric coverage,
between the training and the run data sets.

Concerning the residual misclassified objects, some of these
could be false positives (FPs). This misclassification could be due to
the exiguous number of training sources or a non-uniform sampling
of the PS. In the left-hand panel of Fig. 4, we have shown a
visualization of the ugri train set into a bi-dimensional space through
the ECODOPS tool. Although this is a projection, it is evident
that the space is not uniformly sampled and characterized by the
presence of several contaminants. Such two factors, together with
the exiguous number of training sources, could cause the presence of
the outliers. Thus, in order to visualize the result of the run process,
we estimate the bi-dimensional projection of the run set, analogous
to what was already done in Section 4.2. In Fig. 6, we show this
same projection by overlapping the training set objects. Most of the
predicted sources seem to populate well-defined regions, predom-
inantly occupied by spectroscopic objects, although stars and GCs
show a large overlap, as expected. This aspect, together with the
already discussed problems of the misclassification at the border of
class regions, may cause the presence of redder and bluer outliers.

Given such premises, by considering also the low fraction of
spectroscopic sources available, a larger fraction of FPs could be
expected. However, the resulting exiguous number of contaminants
is a consequence of the approached PS optimization process.

Clearly these outliers must be excluded from the set of the
identified GCs. A simple approach could be excluding sources
from the colour—colour diagrams. However given the arbitrariness
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Figure 5. Colour—colour diagrams for the run predicted sources (orange)
compared with the train sources (blue), overlapped to the colour—colour
distribution related to the other sources (i.e. galaxies and stars, red dots in
figures). From the top panel to the bottom the figures refers to the colours,
respectively, g—i versus u—r, g—r versus u—g, and r—i versus g—r.
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of such procedure, we neglected this solution. In order to exclude
such candidate FPs, we took advantage from the existence of the two
GC populations (namely red and blue, Kundu & Whitmore 1998),
to fit a bimodal bivariate Gaussian distribution deduced from the
spectroscopic GCs. We used a Gaussian Mixture Model (GMM,
Muratov & Gnedin 2010) implemented through the library sklearn
(Pedregosa et al. 2011), which is a generalization of the K-Mixture
Model (Ashman, Bird & Zepf 1994). The method maximizes the
likelihood of the data set using the EM algorithm, which allows to
derive explicit equations for the maximum-likelihood estimate of
the parameters. The projection of this surface on the colour—colour
plane is illustrated in the top panel of Fig. 7. The red and blue
ellipses symbolize the contour levels matching, respectively, lo,
20, and 30 of the bivariate bimodal Gaussian distribution of the
underlying spectroscopic GC population. The black line crossing
the ellipses is the projection on the colour—colour plane of the
intersection between the two bivariate Gaussian surfaces. Training
(i.e. spectroscopic) and predicted sources above such line and within
the 3o levels are considered components of the red population, while
those below and within the 3o levels are assumed to be members of
the blue population. Finally, we assume as FPs the predicted sources
outside the union of the 3o ellipses (110 objects, ~ 23.3 per cent).

Middle and bottom panels of Fig. 7 show the evident bimodal colour
distributions of the GC population. Once the FPs have been excluded
from the GC set, the intracluster error (Floudas & Pardalos 20006;
Murtagh & Legendre 2014), defined as the measure of the overlap
between training and predicted GCs, decreases by ~ 5 per cent
while variance drops down by about 80 per cent.

Panels in Fig. 8 illustrate the colour—colour diagrams for the
selected GCs, galaxies, and stars. Concerning the branch of the stars,
some bluer sources could be false positives, since their distribution
appears to be the extension of the galaxies trend. However, the
stellar branch goes through the diagrams following the expected
shapes and, above all, the GCs occupy the restricted region well
known in literature (e.g. Cantiello et al. 2018a), in which GCs are
particularly difficult to be separated from stars or galaxies through
colours.

5 COMPARISON WITH EXTERNAL DATA

In order to validate the GCs identification through the GNG-GMM
approach, we compare our selection with other similar works:

(i) ML experiments performed by Brescia et al. (2012) and more
recently by Angora et al. (2017) on single-band HST data of NGC
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Table 6. Comparison between classification performed with HST and VST
data. The results related to the HST data obtained by the MLPQNA and
GNG are derived, respectively, from Brescia et al. (2012) and Angora et al.
(2017). The estimators are referred to the GCS. In order to measure the
amount of correctly classified GCs, the contamination (dual estimator of the
purity) has been used.

Estimator (per cent) MLPQNA GNG

HST AE 98.3 86.8
Completeness 97.8 83.8

Contamination 1.6 15.9

VST AE 87.1 88.7
Completeness 81.8 89.1

Contamination 21.1 8.7

1399. This comparison, presented in Section 5.1, analyses the
performances achieved by the same methods (GNG and MLPQNA)
varying the instruments (VST versus HST);

(i1) Other experiments carried out by D’ Abrusco et al. (2016) and
Cantiello et al. (2018b), which exploit techniques different from
ML methods on the same VST data set. In this case, we compare
performances obtained by different approaches (ML versus not-
ML) using the same instruments (discussed in Section 5.2.

5.1 Comparison with HST data

The catalogue used by Brescia et al. (2012) and Angora et al. (2017)
was extracted from single-band HST images of NGC 1399, reaching
7o at my = 27.5, that is ~3.5 magnitudes fainter than the GC lumi-
nosity function turnover point, thus it allows the sampling of nearly
the entire GC population (Puzia et al. 2014). The PS is composed by
seven photometric features, respectively, four magnitudes (isophotal
and three different apertures), FWHM, central surface brightness,
Kron radius and four structural parameters, respectively, King’s
tidal, effective radius, core radius, and ellipticity.

Table 6 reports a comparison between the best results obtained
by the MLPQNA and the GNG networks on the HST and VST
data (the latter extracted from Table 1). Instead of the purity, the
contamination (i.e. the complementary of purity, 1 —purity) was
used to evaluate the capability of the ML models to correctly classify
the GCs. MLPQNA achieves a remarkable result on the HST data,
with a contamination of ~ 1.8 per cent (thus corresponding to a
purity of ~ 98.2 per cent). The GNG performances appear to be
similar by increasing the accuracy in the case of VST data. The
statistics suggest the capability of ML models to disentangle the
GCs from the background and foreground sources also with high-
quality single-band photometry. In order to investigate such result,
the k-fold-based training/test procedure, described in Section 4, has
been reproduced for VST data using all possible filter combinations
and varying the involved number of bands for all the classification
experiments.

Panels in Fig. 9 show the performances of the GNG model
as a function of the used band filters, probing, as expected, the
effectiveness of the complete spectrum data set in order to identify
GCs with ground-based imaging.

The ugri case has the best trade-off between purity and complete-
ness (related to the GCs) in the three classification experiments,
i.e. the model is able to correctly identify the GCs with an
acceptable level of precision and sensitivity. Since the purity and
the completeness are referred to GCs, the average efficiencies
have been displayed in Fig. 9, in order to include classification
information about the notGCs. Concerning the incomplete spectrum
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Figure 9. Comparing among GNG network blind test performances as
function of the involved filter numbers in terms of GCs purity (pur,
light grey), completeness (compl, grey), and average efficiency (AE, dark
grey) for the experiments GCALL (top panel), 3CLASS (middle panel),
and GCSTAR (bottom panel). Experiments involving the U band improve
significantly their purity (more than 5 per cent in the GCALL experiment),
their completeness (more than 7 per cent in the GCALL experiment), and
their average efficiency. This latter has been included to add information
about the notGCs classification.

data sets, the experiment involving the U band improves the
purity by ~ 0.6 per cent to ~ 6.3 per cent, the completeness by
~ 3.1 percent to ~ 7.7 per cent, and the average efficiency by
~ 3.8 per cent to ~ 9.4 per cent. Therefore, there is a significant
performance gap between experiments with or without the U band.

Comparing the accuracy reached by the GNG network on the HST
and the single-band VST data, the experiment based on the u band
is the only one outcoming comparable results. Only using the com-
plete spectrum the GNG achieves better performance than single-
band HST GNG experiments, improving purity, completeness and
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efficiency (by ~ 8.3 per cent, ~ 5.3 per cent, and ~ 1.8 per cent,
respectively, for the GCALL experiment).

Brescia et al. (2012) probed the capability of several ML methods
to disentangle GCs from background and foreground sources using
single-band, high-quality, deep photometry. To achieve similar
results on ground-based VST data, it is necessary to use at least
two filters, where one of them has to be the u band.

Regarding the feature FS procedure, it is possible to compare
results obtained by Angora et al. (2017) with HST data, which
added an FS procedure provided by the RF model, finding a
set of relevant features composed by only photometric quantities,
from which the Kron radius and the ellipticity were also rejected.
Despite some differences between the data sets, for instance, the
magnitude coverage, depth, and number of bands, the FS results
are similar to those performed through ®Lab. In fact, in both
cases the Kron radius is rejected, showing a negligible informative
contribution (< 1 per cent). Concerning the ellipticity, defined as
1 — B.WORLD/A_WORLD, it is related to another ®LAB re-
jected feature, the ELONGATION, connected to the ELLIPTIC-
ITY throughELLIPTICITY = 1 — (1/ELONGATION) (Bertin &
Arnouts 1996). Therefore, its rejection is motivated by the informa-
tive contribution already carried by the ELONGATION feature.

5.2 Comparison with other techniques

With the term other we refer to those methodologies that do not
exploit ML, and use instead several combinations of cuts in a more
or less complex PS, to separate GCs from background/foreground
sources. We have compared our results with two works, respectively,
D’ Abrusco et al. (2016) and Cantiello et al. (2018b), which analyse
the Fornax region with the same VST images.

D’Abrusco et al. (2016) applied a PCA (Bishop 2006) on the
natural colours, identifying a locus in the PC space dominated by
the presence of GCs, excluding brighter and fainter sources (i.e. cuts
on G band) and using the SEXTRACTOR CLASS_STAR parameter.

Cantiello et al. (2018b) introduced a morpho-photometric ap-
proach: in order to analyse the properties of the GC sample
(bimodality, density maps, radial profiles), they use a statistical
background decontamination method. Here, for simplicity, we com-
pare our results to the catalogue provided by Cantiello et al. (2018b),
being aware that this is oversimplified. Cantiello et al. (2018b) used
a spectroscopic set of sources in order to find the PS occupied by
GCs and applied a set of cuts on the features: AX, CLASS_STARY,
FWHMYy, FLUX_RADIUSx, KRON_RADIUSx, PETRO_RADIUS;,
ELONGATIONy, u—i, g—i, A(u — i), A(g — i), Amy, my. X labels
the ¢ and i bands, while A indicates the difference between two
apertures (with respect to magnitudes and colours), respectively,
6 and 12. In addition, they used a selection on the colour—colour
plane: (g — i) — [0.362(u — i) — 0.0205]| < 0.2. The high number
of cuts derives from the need to reduce contamination introduced
by peculiar sources. In order to study the colour bimodality, they
selected GCs inside several annular regions, concentric on NGC
1399. For each GC set within the annular region they applied a
GMM in order to fit a bimodal univariate Gaussian distribution
using the u—i and g—i colour. Moreover, they compared the bimodal
and the unimodal distributions, statistically validating the colour
bimodality.

Regarding the split between blue and red GCs, the blue GCs of
D’ Abrusco et al. (2016) are the sources whose g—i colours are less
than 0.85, while the blue GCs of Cantiello et al. (2018b) are those
sources with u—i < 2.5. These thresholds are stated by authors in
their respective works.
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Table 7 shows the bimodal Gaussian best fit together with the
parameters estimated by D’Abrusco et al. (2016), which applied
a GMM method only for the colour g—i of a larger GC set (their
VST catalogue covers ~8.4 deg?), and by Cantiello et al. (2018b),
which refer to an annular region whose radii are 2.5 and 5 arcmin,
respectively.

Using the criterion of acceptability (Taylor 1996), we have
estimated the number of standard deviations for which our measure
(1) differs from that of D’ Abrusco et al. (2016) and (Cantiello et al.
2018b, uy),i.e.t= |/t — i2|/o. The resulting values are reported in
the last row of Table 7. The discrepancies with the peak of the blue
sub-populations are less than 1.60 , i.e. the measures are comparable.
Concerning the red sub-populations, only the peaks related to u—i
are compatible below 1o7; the g—i peaks differ from each other by at
least 30. However, we point out that in absolute terms the observed
differences are small (<0.1 mag) and they could be easily explained
by noticing that the different studies sample different galactocentric
distances; in particular the value of Cantiello et al. (2018b) refers
to an annulus within 5 arcmin from NGC 1399 where the red GC
component usually peaks at redder colours, and they did not use the
r band, so the samples are inherently different in terms of possible
contamination.

Fig. 10 shows the U—I versus G—I diagram related to the three
sets of candidate GCs, and shows a large overlap between the sets.
In Table 8, the common sources between our GC catalogue and the
candidate GCs provided by D’ Abrusco et al. (2016) and Cantiello
et al. (2018b) are reported. There are, respectively, 91 per cent and
80 per cent GCs in common, of which 72 per cent and 80 per cent
are blue, and 83 per cent and 66 per cent are red. This result
confirms the capability of our method to predict the GC class type.
Furthermore, among the excluded FPs, only 2 and 29 sources are
candidate GCs, strengthening the FPs selection robustness, based
on a GMM approach.

The resulting common sources reflect the difference between
the selection approaches. All the cited works, included this one,
use a GMM best fit to model a bimodal Gaussian underlying the
GC populations, but through a different colour fitting: D’ Abrusco
et al. (2016) performed the fit with the G—I colour; Cantiello
et al. (2018b) uses both U—I and G—I colours separately, in
this work we used both colours by modelling a bivariate bimodal
Gaussian distribution and producing a less sharp cut on the colour
distributions.

Furthermore, we intersected the GCs provided by D’Abrusco
et al. (2016) and Cantiello et al. (2018b) with both our training and
predicted notGCs, i.e. stars and galaxies present in our training set
together with those predicted by our method. From the intersection
with the training stars, resulted 86 and 126 sources, respectively,
for D’Abrusco et al. (2016) and Cantiello et al. (2018b), while
only 2 and 1 sources resulted from the intersection with the training
galaxies. Since the training notGCs are spectroscopically confirmed,
these sources represent a set of candidate FPs for D’ Abrusco et al.
(2016) and Cantiello et al. (2018b).

In order to explore the differences between the GC populations
and sub-populations, we estimated the cumulative distribution
functions (CDFs) related to the u—i and g—i colours, illustrated
in Fig. 11 for the whole GC population and for both the red
and blue GC sub-populations, comparing our selected GCs with
the selection performed by Cantiello et al. and D’Abrusco et al.
Furthermore, we applied a Kolmogorov—Smirnov test (KS test;
Peacock 1983; Fasano & Franceschini 1987) to estimate whether
two samples have been extracted from the same distribution (here
after null hypothesis). Concerning the whole GC systems, the largest
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Table 7. Bivariatebimodal Gaussian parameters fitted through the GMM method compared with parameters fitted by D’ Abrusco et al. (2016)
and by Cantiello et al. (2018b). Values in the last row of the table refer to the discrepancies of distribution peaks that are consistent within
(0.8, 3.1)c. These discrepancies have been estimated as t = |1 — p2|/o (Taylor 1996).

GMM D’ Abrusco et al. Cantiello et al.
Blue Red Blue Red Blue Red

u—i g—i u—i g—i g—i u—i g—i u—i g—i
P 0.63 0.37 0.63 0.37 0.52 0.53 0.48 0.47

N 446 273 1853 1095 78 79 71 70
" 2.14 0.75 2.79 0.98 0.74 0.95 2.08 0.78 2.74 1.06
o 0.32 0.13 0.35 0.15 0.08 0.12 0.34 0.11 0.55 0.17

o’s discrepancy between peaks 1.1 3.0 1.6 1.1 0.8 3.1

1.6 GCs from D'Abrusco et al. [2016]
GCs from Cantiello et al. [2018]

14 GCs in this work
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Figure 10. U—I versus G—I diagrams related to our predicted GC (blue),
and those predicted by D’ Abrusco et al. (2016), orange and Cantiello et al.
(2018b), red.

difference is found comparing the u-i distribution with Cantiello
et al. (bottom left panel in Fig. 11), for which the p-value is <1077;
this could imply the rejection of the null hypothesis, nevertheless
the same GCs distributions in g—i colours (top left panel in Fig. 11)
show a very similar CDFs with a p-value ~ 4 per cent, i.e. the null
hypothesis cannot be rejected. This discrepancy could be due to the
different magnitude spanning range of colours, for instance 1.5 mag
for g—i and 3.5 mag for u—i, which could cause a higher relevance
of outliers in the u—i case. Regarding the sub-populations (centre
and right-hand panels in Fig. 11), the distributions are affected by
the difference between the GC sets (due to the different GC iden-
tification techniques) and by the non-uniform blue-red selection
criteria. Nevertheless the KS test between our and D’ Abrusco et al.
red GCs returns a p-value of 11.7 per cent, so we cannot reject the
null hypothesis.

6 ANALYSIS OF DENSITY MAPS OF GC
SPATIAL DISTRIBUTION

Finally, as further validation method, we present the density maps
of the spatial distribution from the GC sky locations, estimated both
for the whole population and for the blue and red sub-populations
separately. The extracted density maps can be directly compared
with those of D’ Abrusco et al. (2016) and Cantiello et al. (2018b).

The density maps are related to the core of Fornax cluster, with
RA € (54.0, 55.0) and Dec. € (—35.75, —35.13), and have been
estimated from the GCs sky coordinates, applying a K-nearest
neighbour (KNN) method (Duda, Hart & Stork 2000) on a regular
squared grid covering the sky region, following the same process
presented in D’ Abrusco Fabbiano & Zezas (2015) and D’ Abrusco
et al. (2016). Each knot in the grid has a density defined as
d=K/(r ~r,§), i.e. the ratio between the K neighbour GCs used
to estimate the density, and the (projected) area of the circle whose
radius is equal to the distance of the KNN. The value of K shapes
the densities map: small K-values imply maps with compact density
structures, while high K-values lead to large structures losing spatial
information (D’Abrusco et al. 2015, 2016). In the following, K
is taken equals to 9, adopting the same strategy proposed by
D’ Abrusco et al. (2016) which focused on the study of large spatial
scale GC distribution. The GCs used in this process (719) are those
used as training set for our GNG model and derived from the run
executions after the GMM exclusion process. It is worth to say that
the density is underestimated at the edges of the selected region, due
to the lack of sources beyond those edges. Panels in Fig. 12 show
the extracted density maps for the whole GC population (top panel),
and for the blue and red sub-populations (middle and bottom panel,
respectively). In these figures, the grey areas represent the region in
which the density is underestimated.

Looking at the top panel in Fig. 12, the irregular shape of the
region designed as A clearly shows a structure stretched in the W-
E direction, due to the gravitational interaction between the giant
elliptical galaxy NGC 1399 (around which the density is maximum)
and the nearby galaxies (NGC 1396, NGC 1404, NGC 1387, NGC
1381). This region contains 85 per cent of the involved GCs in
the density map estimation. Within such region it is possible to
distinguish an overdensity associated with the NGC 1399-NGC
1396-NGC 1404 complex region (B, 46 per cent), where a bridge
is connecting NGC 1399 and NGC 1404 in the SE-NW direction
(discovered by Bassino et al. 2006 and emphasized by D’ Abrusco
et al. 2016). On a larger scale this complex region stretches to the
west, combining densities related to NGC 1387 and NGC 1381. At
the north there is an isolated density region centred on NGC 1380B
(C, 2.5 per cent). lodice et al. (2017) have detected a previously
unknown region of intracluster light (ICL). This overdensity of ICL
is located in between the three bright galaxies in the core, NGC
1387, NGC 1379, and NGC 1381. They also show that the ICL
is the counterpart in the diffuse light of the known overdensity in
the population of blue GCs. A detail of the connection between
NGC 1387 and the complex region NGC 1399-NGC 1396-NGC
1404 is illustrated in Fig. 13, where the iso-density contours and
the distribution of GCs are overlapped on to the FDS G-band image
of the region whose limits are RA € (54.146, 54.440) and Dec.
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Table 8. Intersection between our prediction and GCs identified by D’ Abrusco et al. (2016) and Cantiello et al.
(2018b). Their prediction has been intersected with our set of spectroscopic confirmed GCs (column TRAIN) and
with our predicted GCs (column PRED). The percentage refers to the amount of training and predicted sources,
i.e. common sources divided by training (or predicted) GCs. The total number of common GCs, together with
the fraction (i.e. common GCs divided by all GCs in our work), is reported in column TRAIN + TEST. Columns
BLUE and RED are the common blue and red GCs; the percentage refers to the amount of blue and red GCs
predicted in this work. The last column of the table (FP) indicates the intersection with the false positives (sources
excluded from our prediction), i.e. the number of our removed GCs that D’ Abrusco et al. (2016) and Cantiello
et al. (2018b) classified as GCs; the percentage refers to the amount of GCs labelled as FPs.

Common sources identified as GCs in our work

TRAIN PRED TRAIN + PRED BLUE RED FP

D’Abrusco et al. 329 322 651 322 227 2

(per cent) 92.2 88.9 90.5 72.2 83.2 2.3

Cantiello et al. 286 291 577 358 180 29

(per cent) 80.1 80.4 80.3 80.3 66.0 25.7

Whole GCs population Blue GCs population Red GCs population
1.0 D'Abrusco Lo D'Abrusco o 1.0 D'Abrusco
—— Cantiello y —— Cantiello ‘IJ —— Cantiello ,.I"'r"r
0.81 —— This work d 0.8] —— This work f 0.8° — This work
0.6 0.6 0.6+
0.4 0.4 0.4+
0.2 0.2 0.2-
0'00.00 0.25 050 0.75 1.00 1.25 1.50 0'00‘0 0.2 0.4 0.6 0.8 1.0 0.0 0.8 1.0 1.2 1.4 1.6
g-i g-i g-i
Whole GCs population Blue GCs population Red GCs population
10 D'Abrusco Lo D'Abrusco i L0y D'Abrusco
—— Cantiello —— Cantiello —— Cantiello

0.8 —— This work 0.8 —— This work 0.8 —— This work
0.6 0.6 0.6+
0.4 0.4 0.4-
0.2 0.2 i 0.2
00 1.0 15 2.0 2:5 3.0 3:5 0:0 1.0 1.5 2.0 2.5 0.0 2.0 2.5 3.0 3.5

Figure 11. CDFs related to colours G—/ (first row) and U—I (second row) for the whole GC population (first column), for the blue GC subpopulation (second
column), and for the red GC subpopulation (third column). In all panels, our CDFs are in blue, D’ Abrusco et al. (2016) CDF:s are in orange and Cantiello et al.

(2018b) CDFs are in red.

€ (—35.380, —35.620). In this figure is shown the connection
between NGC 1399 and NGC 1387 which reflects the ‘bridge-like’
stellar steam between the two galaxies made by several filamentary
structures, detected by lodice et al. (2016), whose existence had
initially been proposed by Bassino et al. (2006) and confirmed
by D’Abrusco et al. (2016). This low surface brightness structure
seems to be confirmed by the GCs distribution, whose iso-density
contour forms a connection between the two galaxies. This suggests
an ongoing interaction between the two galaxies where a fraction
of GCs, originally belonging to NGC 1387, may have been stripped
by the more massive NGC 1399.

This interaction between the central structure (NGC 1399-NGC
1404-NGC 1396) and NGC 1387 is particularly evident in the
density map of red GCs (bottom panel in Fig. 12). Although
NG1396 is a dwarf galaxy separated by 500 km s~ from the central
galaxies, thus inducing a projection effect, it has been included
in analogy with D’Abrusco et al. 2016. Most of the red GCs are
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concentrated in two regions, E (75 per cent) and F (10 per cent).
The inner contours of NGC 1399 are characterized by a tail that
stretches towards east (i.e. towards NGC 1387), maybe due to the
interaction between the ellipticals, although it could be a projection
effect. Indeed, unlike isolated systems (e.g. the blue GC distribution
around NGC 1380B), the shape of the contours is strongly irregular,
although the incompleteness of GC detections in the centre of
giant galaxies could contribute to the observed irregular density
structures. The blue GCs density (middle panel in Fig. 12) shows a
large and stretched complex region (D, 90 per cent), which connects
NGC 1381 with the mean central overdensity. This suggests that
the GC stripping is not confined to NGC 1387, but acts on a
broader scale.

The fact that no overdensity connected to NGC 1379, located at
(54.02, —35.44), is detected is likely due to the fact that the field
covered in this work is limited to the range (54.02, 55.38), and the
density is underestimated in direction of NGC 1379.
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Figure 12. Density maps of GC spatial distribution. Top panel: Whole GC
population. Middle panel: Blue GC sub-population. Bottom panel: Red GC
sub-population. The contours indicate 10 (9 for the sub-populations) log-
spaced density levels. The main Fornax galaxies are marked with black filled
diamonds.

7 CONCLUSIONS

In this work, we have presented an approach based on Astroinfor-
matics methodologies to the identification of GCs from ground-
based data. The models under investigation were the GNG, fully
implemented using the GPU-oriented Theano library (The Theano
Development Team et al. 2016), and the ®Lab FS method (Brescia
et al. 2019).

(i) The difference with the standard GNG model is the batch sam-
ple extraction, which not only allows a faster convergence towards
the minimum of the cost function, but also improves scalability,
together with the capability to fully exploit the computing resources
of the host machine.

4097

o GCs ¢ Fornax galaxies

NGC1399

NGC1408

Figure 13. Detail of the density map overlapped to the FDS G band in the
region that includes NGC 1399, NGC 1396, NGC 1404, NGC 1387, with
limits RA € (54.146, 54.44) and Dec. € (—35.38, —35.62).

(ii) We probed the efficiency of the FS method ®Lab to
individuate the complete set of relevant features, by excluding
features whose informative contribution was negligible. We have
also shown how the relevant set of features found is essentially in
agreement with the physics of the problem, since the distribution
and projections of the selected hyperspace allow the separation
between the class types.

(iii) Comparing the GNG performance with one of the widely
used method in Astrophysics, the MLPQNA (Brescia et al. 2012),
we confirmed the capability of GNG to separate GCs from back-
ground and foreground sources, reaching a satisfying trade-off
between purity and completeness, comparable to the MLPQNA
results, particularly when the full set of bands was used (i.e. ugri).

(iv) Furthermore, we classified an unlabelled set of sources,
extracted from the whole catalogue and validated through the
limited amount of HST detected sources as ground truth. Having
evidence for candidate false positives, we have applied a GMM in
order to exclude them. The bimodal bivariate Gaussian fit returned
a set of parameters fully comparable with the literature, thus
validating our results.

In order to investigate the prediction capabilities of our methods,
the model performances and the identified set of GCs have been
compared with other similar works:

(i) By comparing our multiband ground-based results with those
obtained with the single-band HST photometry (see Brescia et al.
2012; Angora et al. 2017), we showed that, only using all ground-
based photometry, the classifiers reach levels of accuracy com-
parable with those obtained with HST single-band photometry.
In particular, by introducing the information carried by u band
we reached comparable results to HST experiments, although the
different efficiencies of the instruments limit the ground-based
analysis to brighter sources.

(i1) The matching with the results obtained by D’ Abrusco et al.
(2016) and Cantiello et al. (2018b) probed the robustness of our
method, fully comparable with other techniques which exploit
different approaches.

(iii) Finally, the density maps for the red, blue and whole GC
populations showed the usefulness of our prediction method and
underlined some interesting features of the Fornax core, comparable
to other studies (Bassino et al. 2006; D’ Abrusco et al. 2016; Iodice
et al. 2016; Cantiello et al. 2018b).

Although our approach requires a spectroscopic knowledge in order
to build a broad and pure KB, indispensable for training ML models,
the method avoids the introduction of arbitrary photometric cuts,
which, although plausible, are bound to a maximum of three-
dimensional viewpoints of the phenomenology, thus unavoidably
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originating contamination effects. It is important to underline that
our results are constrained by the exiguous number of labelled
sources available in the catalogue and by the unavoidable inhomo-
geneties among the filters, particularly concerning the presence of
~ 82 per cent missing data among the u-band samples, which we
proved to be crucial to effectively separate the GCs from different
types of sources. In future works, an improvement could be obtained
by areduction of VST data tailored to compact sources (in progress)
or by including external photometry such as, e.g. DECam u band
(Abbott et al. 2018). The ongoing reduction of the full FDS survey
data, will allow to extend these results to the whole Fornax cluster
out to the virial radius.
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APPENDIX A: FEATURE IMPORTANCES

In this section, we report five tables regarding the FS process.
Table Al shows the importance values estimated by ®LAB to
select the PS used in the six classification experiments. The top
panel encloses the selected features, while bottom panel contains
the rejected ones. Table A2 specifies the involved features for
the four experiments chosen to validate the FS performed by
PLAB (see Section 4.1). The results achieved by the GNG
and RF are, respectively, shown in Tables A4 and A6. Finally,
Table AS illustrates the results achieved by the GNG and RF on
a data set composed by: (i) the same ugri samples after having
removed the information regarding the u band; (ii) a data set whose
features represent only the information carried by the u band,
(iii) the whole ugri informative contribution (taken from Tables 1
and A6).

Table Al. Feature importance values for the features selected by ®LAB (top table) and for the features rejected (bottom

table), related to the six performed experiments.

SELECTED ugri gri

FEATURE 3CLASS GCALL GCSTAR 3CLASS GCALL GCSTAR
u FWHM 0.0261 0.0085 0.0094

g FWHM 0.0811 0.0281 0.0240 0.0639 0.0294 0.0203
r FWHM 0.0676 0.0407 0.0221 0.0848 0.0272 0.0257
i FWHM 0.0924 0.0225 0.0181 0.0609 0.0257 0.0391
u FLUX RADIUS 0.0290 0.0084 0.0060

g FLUX RADIUS 0.0431 0.0321 0.0120 0.0782 0.0231 0.0139
r FLUX RADIUS 0.0349 0.0188 0.0137 0.0485 0.0312 0.0098
i FLUX RADIUS 0.0390 0.0210 0.0069 0.0804 0.0162 0.0071
u MAG AUTO 0.0106 0.0320 0.0191

g MAG APER4 0.0057 0.0130 0.0174

r MAG APER6 0.0107 0.0080 0.0068

i MAG APERS 0.0063 0.0087 0.0149

g MAG AUTO 0.0108 0.0115 0.0145 0.0120 0.0105 0.0150
g MAG APER4 0.0199 0.0046 0.0132 0.0090 0.0082 0.0162
g MAG APERG6 0.0188 0.0111 0.0179 0.0101 0.0075 0.0118
g MAG APERS 0.0066 0.0051 0.0245 0.0089 0.0128 0.0212
r MAG AUTO 0.0127 0.0247 0.0205 0.0190 0.0184 0.0213
r MAG APER4 0.0148 0.0107 0.0600 0.0124 0.0137 0.0144
r MAG APER6 0.0195 0.0106 0.0432 0.0083 0.0124 0.0232
r MAG APERS 0.0163 0.0145 0.0359 0.0089 0.0167 0.0228
i MAG AUTO 0.0058 0.0099 0.0081 0.0155 0.0274 0.0373
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Table A1 - continued

SELECTED ugri gri

FEATURE 3CLASS GCALL GCSTAR 3CLASS GCALL GCSTAR
i MAG APER4 0.0087 0.0131 0.0231 0.0149 0.0211 0.0469
i MAG APER6 0.0063 0.0123 0.0200 0.0190 0.0208 0.0414
i MAG APERS 0.0072 0.0100 0.0148 0.0176 0.0162 0.0399
u—g AUTO 0.0092 0.0244 0.0120

u—g APER4 0.0301 0.0220 0.0096

u—g APER6 0.0120 0.0260 0.0103

u—g APERS 0.0132 0.0393 0.0109

g—rAUTO 0.0087 0.0183 0.0108 0.0173 0.0350 0.0302
g—rAPER4 0.0054 0.0130 0.0100 0.0154 0.0239 0.0299
g—rAPERG 0.0074 0.0185 0.0090 0.0160 0.0302 0.0283
g—rAPERS 0.0094 0.0185 0.0108 0.0146 0.0263 0.0452
r—i AUTO 0.0047 0.0065 0.0078 0.0083 0.0142 0.0150
r—i APER4 0.0057 0.0067 0.0131 0.0130 0.0154 0.0198
r—i APERG 0.0065 0.0059 0.0107 0.0135 0.0171 0.0191
r—i APERS 0.0053 0.0074 0.0092 0.0089 0.0198 0.0235
u MU MAX 0.0090 0.0085 0.0195

g MU MAX 0.0190 0.0118 0.0383 0.0121 0.0110 0.0179
r MU MAX 0.0206 0.0082 0.0683 0.0152 0.0127 0.0222
i MU MAX 0.0120 0.0102 0.0145 0.0178 0.0146 0.0552
u A WORLD 0.0085 0.0327 0.0037

g A WORLD 0.0105 0.0287 0.0044 0.0148 0.0492 0.0058
rA WORLD 0.0129 0.0248 0.0047 0.0190 0.0292 0.0050
i A WORLD 0.0116 0.0247 0.0052 0.0258 0.0420 0.0081
u B WORLD 0.0043 0.0206 0.0079

g BWORLD 0.0088 0.0263 0.0048 0.0273 0.0449 0.0109
r B WORLD 0.0084 0.0217 0.0046 0.0207 0.0492 0.0094
i BWORLD 0.0082 0.0360 0.0062 0.0227 0.0499 0.0298
i PETRO RADIUS 0.0112 0.0021 0.0042 0.0069 0.0033 0.0090
REJECTED ugri gri

FEATURE 3CLASS GCALL GCSTAR 3CLASS GCALL GCSTAR
u PETRO RADIUS 0.0018 0.0027 0.0012

g PETRO RADIUS 0.0156 0.0011 0.0014 0.0086 0.0030 0.0034
r PETRO RADIUS 0.0084 0.0012 0.0054 0.0063 0.0032 0.0046
u KRON RADIUS 0.0028 0.0034 0.0051

g KRON RADIUS 0.0002 0.0002 0.0001 0.0004 0.0010 0.0006
r KRON RADIUS 0.0003 0.0003 0.0001 0.0009 0.0010 0.0009
i KRON RADIUS 0.0006 0.0005 0.0006 0.0014 0.0025 0.0023
u ELONG 0.0032 0.0047 0.0027

g ELONG 0.0038 0.0028 0.0031 0.0049 0.0049 0.0038
r ELONG 0.0029 0.0034 0.0048 0.0058 0.0050 0.0047
i ELONG 0.0024 0.0029 0.0044 0.0050 0.0049 0.0059
u THETA 0.0018 0.0029 0.0025

g THETA 0.0013 0.0034 0.0041 0.0023 0.0040 0.0041
r THETA 0.0017 0.0026 0.0024 0.0021 0.0041 0.0041
i THETA 0.0018 0.0028 0.0030 0.0025 0.0036 0.0043
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Table A2. List of features composing the four PSs used for validation of the FS process with the method
®LAB: column FULL refers to the original PS, including all available features; column BEST refers
to the best solution obtained by the FS method; column MIXED refers to a variant of the BEST PS
obtained by replacing all 15 features rejected by ®LAB to a subset randomly extracted from the best
solution; finally, column BEST + REJECTED is another variant of the BEST PS, where the 15 rejected

features were inserted in place of the least significant features of the BEST PS.

FEATURE

FULL

BEST

MIXED

BEST + REJECTED

u FWHM

g FWHM

r FWHM

i FWHM

u FLUX RADIUS
g FLUX RADIUS
r FLUX RADIUS
i FLUX RADIUS
u MAG AUTO

u MAG APER4

u MAG APERG

u MAG APERS

g MAG AUTO

g MAG APER4

g MAG APER6

g MAG APERS

r MAG AUTO

r MAG APER4

r MAG APER6

r MAG APERS

i MAG AUTO

i MAG APER4

i MAG APER6

i MAG APERS
u—g AUTO

u—g APER4

u—g APERG6

u—g APERS
g—rAUTO
g—rAPER4
g—rAPERG6

g—r APERS

r—i AUTO

r—i APER4

r—i APERG

r—i APERS

u MU MAX

g MU MAX

r MU MAX

i MU MAX

u A WORLD

g A WORLD

rA WORLD

i A WORLD

u B WORLD

¢ BWORLD

r B WORLD

i BWORLD

i PETRO RADIUS
u PETRO RADIUS
g PETRO RADIUS
r PETRO RADIUS
u KRON RADIUS
g KRON RADIUS
r KRON RADIUS
i KRON RADIUS
u ELONG

g ELONG

r ELONG

i ELONG

X X XXX XX XXX XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXNXXXXXNXXX XXX

X XX XXX XXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXNXNXNXXXXXXXXXX

X

X X X X X X X X

X

X

X

X X X X X

X X X X X X X X X X X X

X X X X X X X X X X X

X

X X X X X X X X X

X X

X X X X

X

X X X X X X X X X X X
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Table A2 — continued

FEATURE FULL BEST MIXED BEST + REJECTED
u THETA X X X
¢ THETA X X X
r THETA X X X
i THETA X X X
TOTAL 64 49 49 49

Table A3. Classification results in terms of statistical estimators (the same used in Table 1)
achieved by GNG and K-means on ugri and gri data sets, using the BEST PS. The results refer
to the three described classification problems: 3CLASS (top table), GCs versus ALL (middle
table), GCs versus STARS (bottom table).

3CLASS ugri gri
ESTIMATOR (per cent) GNG K-means GNG K-means
AE 85.5 82.9 79.4 82.1
pur STAR 89.4 81.3 779 79.9
compl STAR 76.8 70.6 65.4 62.1
F1 STAR 83.1 76.0 71.6 71.0
pur GCs 71.7 70.4 75.3 75.8
compl GCs 86.9 80.6 82.0 81.6
F1 GCs 82.3 75.5 78.5 78.7
pur gal 93.5 93.6 88.9 89.0
compl gal 92.1 92.0 91.1 90.6
F1 gal 92.8 92.8 90.0 89.8
GCs versus ALL ugri gri
ESTIMATOR (per cent) GNG K-means GNG K-means
AE 87.8 86.0 82.8 80.4
pur notGC 82.2 75.4 81.1 78.5
compl notGC 89.6 83.5 82.8 75.2
F1 notGC 85.9 79.4 81.9 76.9
pur GCs 91.5 90.8 87.1 81.7
compl GCs 87.4 87.2 80.3 80.3
F1 GCs 89.4 89.0 83.7 81.0
GCs versus STARs ugri gri
ESTIMATOR (per cent) GNG K-means GNG K-means
AE 83.8 85.7 772 80.5
pur STAR 83.8 87.4 75.5 81.6
compl STAR 88.3 93.6 82.9 90.8
F1 STAR 86.0 90.5 79.2 86.2
pur GCs 88.3 80.0 81.3 81.4
compl GCs 81.0 65.7 71.0 59.4
F1 GCs 84.6 72.8 76.1 70.4
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Table A4. GNG classification results in terms of statistical estimators (the same used in Table 1) for both ugri and gri data set types. Top table reports the
results for the 3-class experiment, middle table for the 2-class experiment between GCs and notGCs (stars + galaxies), and bottom table shows the results
concerning the 2-class experiment between GCs and stars. The columns BEST, FULL, MIXED, and BEST + REJECTED are related to the four PSs, described

in Table A2.
3CLASS ugri gri

BEST + BEST +
ESTIMATOR (per cent) BEST FULL MIXED REJECTED BEST FULL MIXED REJECTED
AE 86.5 51.9 40.0 553 79.4 55.8 30.8 30.0
pur STAR 85.8 333 37.7 39.0 71.9 29.4 0 0
compl STAR 80.3 9.7 7.3 8.8 66.9 28.1 0 0
F1 STAR 83.0 15.0 12.2 14.4 69.3 28.8 0 0
pur GCs 80.0 423 43.0 45.0 78.2 51.7 432 432
compl GCs 90.8 31.7 37.5 79.6 79.6 532 56.8 50.2
F1 GCs 85.1 36.2 40.0 57.5 78.9 524 49.1 46.5
pur gal 92.5 443 44.5 44.6 88.3 56.1 28.3 28.3
compl gal 95.4 78.5 78.4 80.8 92.1 56.1 50.0 49.9
F1 gal 93.9 56.9 56.7 574 90.2 56.1 36.1 36.1
GCs versus ALL ugri gri
ESTIMATOR (per cent) BEST FULL MIXED BEST BEST FULL MIXED BEST

+ REJECTED + REJECTED

AE 88.7 59.6 59.1 59.3 84.0 60.0 66.4 66.3
pur notGC 85.1 51.3 50.7 51.1 81.3 62.4 71.4 71.4
compl notGC 88.0 44.0 40.3 40.6 85.5 423 48.9 48.9
F1 notGC 86.5 474 45.0 452 83.4 52.3 60.1 58.1
pur GCs 91.3 64.1 63.2 63.4 86.2 60.3 63.9 63.9
compl GCs 89.1 70.5 723 72.5 82.1 76.2 82.2 82.2
F1 GCs 90.2 67.2 67.5 67.7 84.2 68.2 71.9 71.9
GCs versus STARs ugri gri
ESTIMATOR (per cent) BEST FULL MIXED BEST + RE- BEST FULL MIXED BEST + RE-

JECTED JECTED
AE 86.8 55.0 52.9 50.8 78.2 50.0 50.0 50.0
pur STAR 87.0 56.5 54.5 52.8 71.3 54.2 54.2 54.2
compl STAR 83.2 52.1 49.3 47.1 84.9 50.1 50.0 49.6
F1 STAR 85.1 54.2 51.7 49.5 81.1 52.1 52.1 51.9
pur GCs 91.6 53.6 51.6 49.6 79.7 45.6 45.6 454
compl GCs 80.3 57.9 56.8 54.7 70.3 49.8 49.8 494
F1 GCs 85.6 55.7 54.1 52.0 75.0 47.6 47.6 474
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Table A5. Classification results in terms of statistical estimators (the same used in Table 1) achieved by GNG and RF on
different data sets: (i) composed only by the information carried by the u band (first two columns), (ii) composed by same
ugri samples without the information carried by the u band (named as gri*, third and fourth columns), (iii) the whole ugri
informative contribution (last two columns, the performances are taken from Tables 1 and A6). The results refer to the three
described classification problems: 3CLASS (top table), GCs versus ALL (middle table), GCs versus STARS (bottom table).

3CLASS u gri* ugri

ESTIMATOR (per cent) GNG RF GNG RF GNG RF
AE 85.5 84.1 79.4 824 86.5 94.4
pur STAR 89.4 80.4 77.9 81.1 85.8 85.4
compl STAR 76.8 81.7 65.4 79.8 80.3 85.5
F1 STAR 83.1 81.0 71.6 80.4 83.0 85.5
pur GCs 71.7 79.3 75.3 80.3 80.0 86.9
compl GCs 86.9 80.8 82.0 80.2 90.8 93.3
F1 GCs 82.3 80.1 78.5 80.2 85.1 90.0
pur gal 93.5 93.3 88.9 90.7 92.5 95.6
compl gal 92.1 90.1 91.1 85.2 95.4 97.7
F1 gal 92.8 91.7 90.0 87.9 93.9 96.6
GCs versus ALL u gri* ugri

ESTIMATOR (per cent) GNG RF GNG RF GNG RF
AE 87.8 86.6 82.8 85.0 88.7 92.2
pur notGC 82.2 81.2 81.1 80.2 85.1 91.0
compl notGC 89.6 80.8 82.8 83.8 88.0 89.9
F1 notGC 85.9 81.0 81.9 82.0 86.5 90.4
pur GCs 91.5 90.8 87.1 88.0 91.3 92.8
compl GCs 87.4 90.1 80.3 84.1 89.1 92.6
F1 GCs 89.4 90.5 83.7 86.0 90.2 92.7
GCs versus STARs u gri* ugri

ESTIMATOR (per cent) GNG RF GNG RF GNG RF
AE 83.8 90.8 77.2 87.0 86.8 88.2
pur STAR 83.8 90.7 75.5 84.8 87.0 85.9
compl STAR 88.3 97.1 82.9 86.0 83.2 92.2
F1 STAR 86.0 93.9 79.2 85.4 85.1 88.9
pur GCs 88.3 92.6 81.3 89.1 91.6 90.8
compl GCs 81.0 80.4 71.0 80.4 80.3 95.2
F1 GCs 84.6 86.5 76.1 84.7 85.6 92.9
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Table A6. Random Forest classification results in terms of statistical estimators (the same used in Table 1) for both ugri and gri data set types. Top table
reports the results for the 3-class experiment, middle table for the 2-class experiment between GCs and notGCs (stars + galaxies), and bottom table shows the
results concerning the 2-class experiment between GCs and stars. The columns BEST, FULL, MIXED, and BEST 4 REJECTED are related to the four PSs,
described in Table A2.

3CLASS ugri gri
ESTIMATOR (per cent) BEST FULL MIXED BEST + BEST FULL MIXED BEST +
REJECTED REJECTED
AE 94.4 92.6 93.0 92.7 92.6 91.1 90.2 90.2
pur STAR 85.4 84.6 85.1 84.7 83.7 80.5 77.1 78.9
compl STAR 85.7 86.1 85.7 86.1 84.1 80.6 80.5 80.2
F1 STAR 85.5 85.3 85.4 85.4 83.9 80.5 78.8 79.5
pur GCs 86.9 87.2 88.0 86.9 88.9 86.5 86.0 86.7
compl GCs 93.3 85.5 85.1 85.1 91.2 90.2 88.8 89.6
F1 GCs 90.0 86.3 86.5 86.0 90.0 88.3 87.4 88.1
pur gal 95.6 97.1 96.8 95.8 94.6 94.6 95.1 95.0
compl gal 97.7 97.0 96.1 97.8 96.6 89.9 88.8 89.1
F1 gal 96.6 97.0 96.4 96.8 95.6 922 915 92.0
GCs versus ALL ugri gri
ESTIMATOR (per cent) BEST FULL MIXED BEST + BEST FULL MIXED BEST +
REJECTED REJECTED
AE 92.2 92.0 91.7 92.3 88.1 87.4 86.1 87.1
pur notGC 91.0 90.1 90.2 90.3 84.6 83.0 83.4 83.2
compl notGC 89.9 90.2 89.7 89.6 91.3 91.3 90.8 91.2
F1 notGC 90.4 90.1 89.9 89.9 87.8 87.0 86.9 87.0
pur GCs 92.8 93.0 92.7 92.7 922 91.3 90.7 92.1
compl GCs 92.6 91.1 90.4 92.8 84.9 83.1 82.0 82.6
F1 GCs 92.7 92.0 91.5 92.7 88.4 86.8 86.1 87.1
GCs versus STARs ugri gri
ESTIMATOR (per cent) BEST FULL MIXED BEST + BEST FULL MIXED BEST +
REJECTED REJECTED
AE 88.2 88.0 87.8 87.6 88.1 88.1 87.3 87.7
pur STAR 85.9 85.9 86.3 85.7 85.9 85.7 83.7 85.9
compl STAR 922 90.4 91.7 91.6 92.7 93.8 92.8 92.7
F1 STAR 88.9 88.1 88.9 88.6 89.2 88.7 88.0 89.2
pur GCs 90.8 89.7 90.7 91.0 91.1 91.7 90.2 91.1
compl GCs 95.2 84.2 84.1 85.1 83.4 83.9 83.8 81.4
F1 GCs 92.9 86.9 87.3 88.0 87.1 87.6 86.9 86.0
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ugri gri
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Figure A1. ROC curves related to the GNG performances for the six experiments. GCs are labelled as 1 (purple), stars are labelled with O (light blue) in the
3CLASS and GCSTAR experiments, while galaxies are labelled with 2 in the 3CLASS experiments (green), in the GCALL experiments the label O refers to the
notGCs. In all the panels is reported the area and the curve and the non-discrimination line (dotted).
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