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ABSTRACT
We study the dynamical properties of objects in hyperbolic orbits passing through the inner
Solar system in the context of two different potential sources: interstellar space and the Oort
cloud. We analytically derive the probability distributions of eccentricity, e, and perihelion
distance, q, for each source and estimate the numbers of objects produced per unit of time as a
function of these quantities. By comparing the numbers from the two sources, we assess which
origin is more likely for a hyperbolic object having a given eccentricity and perihelion distance.
We find that the likelihood that a given hyperbolic object is of interstellar origin increases with
decreasing eccentricity and perihelion. Conversely, the likelihood that a hyperbolic object has
been scattered from the Oort cloud by a passing star increases with decreasing eccentricity
and increasing perihelion. By carefully considering their orbital elements, we conclude that
both 1I/2017 U1 ‘Oumuamua (e � 1.2 and q � 0.26 au) and 2I/2019 Q4 Borisov (e � 3.3 and
q � 2 au) are most likely of interstellar origin, not scattered from the Oort cloud. However, we
also find that Oort cloud objects can be scattered into hyperbolic orbits like those of the two
known examples, by sub-stellar and even sub-Jovian mass perturbers. This highlights the need
for better characterization of the low-mass end of the free-floating brown dwarf and planet
population.

Key words: comets: general – Oort cloud.

1 IN T RO D U C T I O N

The standard formation scenario of planetary systems naturally
suggests that interstellar space is filled with many planetesimals
because exo-giant planets eject planetesimals during planet forma-
tion, as the planets in the Solar system did (e.g. Dones et al. 2004).
Planetesimals that are almost but not completely ejected from the
planetary system survive as Oort cloud comets in the planetary
system. Oort cloud comets become observable from Earth when
their perihelion distances become small due to external forces. For
example, when a star penetrates the Oort cloud, the star drills a
narrow tunnel through the Oort cloud by ejecting the comets within
some distance from the star as described in Fig. 1. Some of the
ejected comets make a last perihelion passage as their farewell to
the Solar system before becoming fully interstellar objects. In other
words, both interstellar space and the Oort cloud are possible as
sources of objects moving along hyperbolic orbits.

1I/2017 U1 ‘Oumuamua, (hereafter U1) is the first highly
eccentric (e � 1.2) object identified in the Solar system, with

� E-mail: higuchi.arika@nao.ac.jp

an effective velocity at infinity V � 26 km s−1 (e.g. Williams
2017). This velocity cannot be explained by planetary perturbations
because U1 did not encounter any of the planets (Meech et al. 2017).
Many observations of U1’s shape, thermal properties, colours,
absence of cometary activity, tumbling rotational state, and non-
gravitational acceleration have been reported (e.g. Bannister et al.
2017; Jewitt et al. 2017; Knight et al. 2017; Meech et al. 2017;
Ye et al. 2017; Bolin et al. 2018; Fraser et al. 2018; Micheli
et al. 2018) and are summarized in ‘Oumuamua ISSI Team (2019).
Peculiar physical properties of U1 include its extremely elongated or
oblate (Mashchenko 2019) shape and its lack of cometary activity.
Together, these properties are unlike those found in other small
Solar system objects. However, physical pecularities alone are not
enough to exclude the possibility that U1 might be a Solar system
body deflected from the Oort cloud. We examine this possibility
here. A second hyperbolic object, the comet C/2019 Q4 (2I/Borisov,
hereafter Q4), was discovered by G. Borisov on 2019 August 30,
observing from MARGO, Nauchnij, in the Crimean peninsula.1

1MPEC 2019-R106: COMET C/2019 Q4 (Borisov) https://minorplanetcen
ter.net/mpec/K19/K19RA6.html.
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Figure 1. Schematic illustration of the penetration of a star through the
Oort cloud. The star scatters comets away along the trajectory and generates
long-period comets, hyperbolic comets, and interstellar objects.

Soon after that the Q4’s interstellar nature was confirmed.2 Q4 has
a very high eccentricity of e = 3.3, a comet-like appearance and
spectrum similar to those of D-type asteroids (de León et al. 2019;
Fitzsimmons et al. 2019; Jewitt & Luu 2019).

While most long-period comets have e < 1, some are known with
e � 1. Królikowska & Dybczyński (2017) calculated the orbits of
long-period comets carefully taking into account the perturbations
from planets and the non-gravitational forces to infer their original
elements, defined as the orbital elements at 250 au from the Sun
before the perihelion passage (e.g. Królikowska 2014; Królikowska
& Dybczyński 2017). Królikowska & Dybczyński (2019) collected
data for a full sample of long-period comets discovered over the
1801–2017 period and calculated their original orbital elements.
They used the JPL Small Body Database Search Engine3 to
construct a complete list of long-period comets discovered since
1801, omitting sungrazing comets. They found that, in most cases,
the comets followed elliptical (bound) orbits prior to their last
perihelion. Fig. 2(a) shows the original eccentricities eorig and
perihelion distances qorig of 11 comets in original, marginally
hyperbolic orbits from table 1 in Królikowska & Dybczyński
(2019). While these comets could also come from the interstellar
space, it is more likely that their eccentricities exceed unity only
because of uncertainties in the astrometry. In that case, comets in
Fig. 2(a) are dynamically the same as other long-period comets, but
different from U1 and Q4 shown in Fig. 2(b).

Here, we derive analytically the probability distributions of
eccentricity, e, and perihelion distance, q, for hyperbolic orbits
derived from either interstellar space or the Oort cloud. We estimate
the ratio of numbers of objects from the two sources and the
dependence of this ratio on various parameters of the Oort cloud
and the interstellar objects.

In Section 2, we describe the derivation of the likelihood that
interstellar objects have a given value of b, the impact parameter
to the Sun and V, the velocity at infinity. Section 3 follows the
methodology applied in Section 2 but for the production of comets
scattered from the Oort cloud on hyperbolic orbits. In Section 4,
we plot the probabilities derived in Sections 2 and 3 on the e
versus q plane and make comparison between interstellar objects

2MPEC 2019-S72: 2I/Borisov = C/2019 Q4 (Borisov) https://minorplanetc
enter.net/mpec/K19/K19S72.html.
3https://ssd.jpl.nasa.gov/ query.cgi

Figure 2. Original eccentricities and perihelion distances of originally
in hyperbolic orbits. (a) 11 comets listed in table 1 in Królikowska
& Dybczyński (2019). (b) 1I/2017 U1 (‘Oumuamua) and 2I/2019 Q4
(Borisov). Equi-V curves from equation (14) for V = 0.3, 0.5, 1, 2, 3,
10, 30, and 50 km s−1 are shown with thin dashed curves.

and hyperbolic Oort cloud comets. In Section 5, we compare the
expected numbers of interstellar objects and hyperbolic Oort cloud
comets with an assumption that the Solar system recently had an
encounter with a passing object. The properties of a passing object
implied by the orbits of U1 and Q4 are discussed in Section 6.
Section 7 gives a summary and discussion.

2 INTERSTELLAR O BJECTS

Assuming a uniform spatial distribution and a Maxwellian velocity
distribution, the number of interstellar objects (hereafter ISOs)
encountering the Sun with the velocity at infinity between V and V
+ δV and the impact parameter between b and b + δb per time is
given by

δNISO(V , b) = 2πbδbV ρISOp(V )δV , (1)

where ρISO is the total number density of ISOs and p(V) is a
Maxwellian distribution,

p(V ) =
√

2

π
V 2 exp

(
− V 2

2a2

)
a−3, (2)

where a = √
π/8〈V 〉 and 〈V 〉 is the mean velocity. We assume that

ISOs are planetesimals ejected from planetary systems by scattering
from giant planet(s). Other fragments might be generated by tidal
disruption of planets (Ćuk 2018; Rafikov 2018) but their expected
contribution is small and neglected here. We estimate the number
density of ISOs generated by stars of spectral type ‘i’ as

ρi
ISO = ρi

starp
i
gpn

i
OCkISO, (3)

where ρi
star is the number density of the stars, pi

gp is the probability
that the stars have one of more giant planets, ni

OC is the number
of comets in the Oort cloud around each star, and kISO is set so
that ni

OCkISO gives the number of ISOs generated by a star of type
‘i’. We use ρstar in Garcı́a-Sánchez et al. (2001) and for simplicity
set pi

gp =0.015, 0.1, and 0 for MK, GFA, and other type stars,
respectively (Moro-Martı́n, Turner & Loeb 2009). Assuming that
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Table 1. Stellar parameters used in this paper. ‘wd’ and ‘gi’ indicate
white dwarfs and giant stars, respectively. The last column gives the mean
heliocentric velocity. The values are taken from Garcı́a-Sánchez et al. (2001),
Moro-Martı́n et al. (2009), and Rickman et al. (2008).

Type mi∗ (m�) ρi
star (10−3 pc−3) pi

gp V∗ (km s−1)

B0 9 0.06 0 24.6
A0 3.2 0.27 0 27.5
A5 2.1 0.44 0.1 29.3
F0 1.7 1.42 0.1 36.5
F5 1.3 0.64 0.1 43.6
G0 1.1 1.52 0.1 49.8
G5 0.93 2.34 0.1 49.6
K0 0.78 2.68 0.015 42.6
K5 0.69 5.26 0.015 54.3
M0 0.47 8.72 0.015 50.0
M5 0.21 41.55 0.015 51.8
wd 0.9 3.0 0 80.2
gi 4 0.43 0 49.7

the number of Oort cloud comets is proportional to the mass of the
parent star mi

∗, we set ni
OC = nSS

OC(mi
∗/m�), where nSS

OC is the number
of Oort cloud comets in the Solar system. We use mi

∗ summarized
by Rickman et al. (2008), substituting all the values assumed above
and summing over all the stellar types, to obtain the total number
density of ISOs as

ρISO = nSS
OCkISO

13∑
i=0

ρi
starp

i
gp

(
mi

∗
m�

)
� �nSS

OCkISO , (4)

where � � 10−3 [pc−3]. Table 1 lists our adopted values. We assume
that the velocity distribution of ISOs is similar to that of their parent
stars, which is 〈V 〉 � 50 km s−1 as summarized in Table 1 (Rickman
et al. 2008). This value is larger than the velocity of the Sun with
respect to the Local Standard of Rest (� 20 km s-1), which previous
studies used (e.g. Moro-Martı́n et al. 2009; Engelhardt et al. 2017)
Substituting equations (2) and (4) into equation (1), we obtain

δNISO(V , b) = CISOδV δb, (5)

where CISO is the number density of ISOs with a given V and b,
written as

CISO = 2π�nSS
OCkISO V p(V ) b. (6)

3 H Y P E R B O L I C O O RT C L O U D C O M E T S

We first derive the velocity and impact parameter of a hyperbolic
Oort cloud comet (hereafter HOC) against the Sun after an encounter
with a passing object by using the two-body scattering formula.
Then, we derive the expected number of HOCs for given V and b by
taking into account the number density of comets in the Oort cloud.

3.1 Velocity and impact parameter given by a passing object

We assume that an object that approaches the Sun passes on a
straight trajectory. We describe each encounter of the object with
a comet using the following parameters: m∗ and V∗, the mass and
velocity of the object, bSun, the impact parameter of the object to
the Sun, bHOC, the impact parameter vector from the comet to the
object, and r∗, the position vector of the object from the Sun at the
moment when the object has the closest approach to the comet. We
assume that the comet is not moving relative to the Sun and V and
b of scattered comets are determined only by the perturber. Also

considering bSun 	 bHOC, we approximate the position vector of the
comet from the Sun with r = r∗.

The angle between the velocity vectors of the comet to the
object before and after the encounter θ is given as a function
of only V and V∗. The angle θ determines the position of the
object at the encounter so that the comet has an orbit with b after
the encounter (Appendix A1). We find r∗ that gives V and b as
(Appendix A2),

r∗ = bSun

(
1 − V 2

4V 2∗

)− 1
2

. (7)

3.2 Expected number of HOCs per unit of time

We estimate the number of HOCs encountering the Sun with a
velocity between V and V + δv and an impact parameter between b
and b + δb per unit of time as

δNHOC = pseδgρOC(r), (8)

where pse is a probability of having an encounter with an object and
δg is an element of volume per unit of time (dimensions of l3 t−1)
placed at distance bHOC from the passing object,

δg = 8(Gm∗)2

V∗bSun
V −3δV δb, (9)

and ρOC(r) is the number density of comets in the Oort cloud at r.
The probability pse is 1 if the Solar system just had an encounter
with an object, and if not, pse = 0. The value of pse averaged over
the age of the Solar system is discussed in Section 6. The element of
volume per unit time, δg, is defined so that comets contained within
δg have a velocity between V and V + δV and an impact parameter
between b and b + δb (Appendix A3). We model the distribution
of comets in the Oort cloud as ρOC(r) = ρ̄0n

SS
OCr−γ . Numerical

studies show γ ∼ 3 (e.g. Dones et al. 2004). Assuming that the
Oort cloud has inner and outer edges at rmin and rmax, respectively,
we have

ρ̄0 =

⎧⎪⎪⎨
⎪⎪⎩

(γ − 3)

4π
rγ−3

min for γ > 3[
4π log

(
rmax

rmin

)]−1

for γ = 3
, (10)

where we assume rmin � rmax for γ > 3. Substituting equations (9)
and (10) into equation (8), we obtain

δNHOC(V , b) = CHOC δV δb, (11)

where CHOC is the number density of HOCs at a given V and b and
using equation (7) written as

CHOC = 8(Gm∗)2

V∗
ρ̄0n

SS
OCb

−(γ+1)
Sun

(
1 − V 2

4V 2∗

) 1
2 γ

V −3. (12)

4 D I S T R I BU T I O N S O F E C C E N T R I C I T Y A N D
PERI HELI ON D I STA NCE

We convert the distributions of V and b into those of e and q assuming
that all objects move on hyperbolic orbits whose focus is at the Sun
(Appendix A4). The numbers of ISOs and HOCs encountering the
Sun with eccentricity between e and e + δe and the perihelion
distance between q and q + δq per time is given by

δn(e, q) = CJδeδq = δn(V , b)J , (13)

MNRAS 492, 268–275 (2020)
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Figure 3. Panels (a), (b), and (c): Scaled contours of the two-dimensional probability distributions plotted on the e versus q plane for ISOs for 〈V〉 = 20 km s−1

(a), 50 km s−1 (b), and 100 km s−1 (c) and an equi-V curve for each Vm(〈V〉) (thin black curve). Panel (d): Scaled contours of the two-dimensional probability
distributions integrated over an encounter with an object with V∗ = 50 km s−1 plotted on the e versus q plane and equi-V curves for V = 10, 26, and 60 km s−1

(thin black curves). Black squares in each panel indicate U1 and Q4.

where δn(V, b) and C represent δNISO(V, b) or δNHOC(V, b) and
CISO or CHOC, respectively, and J is the determinant of the Jacobian
between the (V, b) and (e, q) frames.

Panels (a), (b), and (c) in Fig. 3 show the contours of the
two-dimensional probability distributions for ISOs obtained from
equations (5) and (13) on the e versus q plane. The values of the
contours are normalized at U1: we call this normalized probability
pISO(e, q). We adopt 〈V〉 = 20, 50, and 100 km s−1.

For any value of 〈V〉 shown in Fig. 3, the probability increases
with decreasing e and q. The ridge roughly following the equi-
velocity curve given by

V =
√

Gm�(e − 1)

q
(14)

for each mode Vm(〈V 〉) = (
√

π/2)〈V 〉 is seen, however, the distri-
bution is rather flat. The probability at the same eccentricity as U1’s
but at q = 1 au, is given by pISO(e = 1.2, q = 1) �1.3, 0.34, 0.28,
for 〈V 〉 = 20, 50, and 100 km s−1, respectively. The probability at
Q4’s e and q is given by pISO(e = 3.3, q = 2) �0.12, 0.30, 0.34 for
〈V 〉 = 20, 50, and 100 km s−1, respectively. This implies that U1’s
orbit is more typical of ISOs than Q4’s.

For HOCs, we examine the probability distribution of e and q
not per unit of time but over an encounter with an object because it
varies with time during the encounter. We weight equation (12) by
2b/sin α, the path-length of the object where it can generate comets
with given V and b (see Fig. 4). Fig. 3(d) shows the probability
distribution obtained from equations (11) and (13) on the e versus q
plane for HOCs integrated over an encounter with an object with
V∗ = 50 km s−1. The probability diverges at e = 1 and q → ∞
(pHOC∝q2.5). We obtain that pHOC(e = 1.2, q = 1) is �10. The
distribution is steep compared to that of ISOs where e is small. This
result barely changes with V∗. The black dotted lines in Fig. 3(d)
show the equi-velocity curves for V = 10, 26, and 60 km s−1.
Comets on equi-velocity curves arrive at the Sun almost at the same
time since b � bSun. At q = 1 au on the V = 26 km s−1 − curve,
p(e = 1.76, q = 1) � 0.4. This implies that, among the HOCs V
= 26 km s−1 that arrive at the Sun around the same time, U1’s

Figure 4. Geometry among the Sun, Star D (a passing object), U1, and
U1’s siblings plotted on the plane that contains the Sun and the trajectory of
Star D, as an example of the HOC production. Star D passes bSun at t = 0.
U1 arrives at the Sun at t = tobs.

e and q are as likely for an origin as HOCs as much as ISOs.
The arrival time is calculated as tobs(V ) = w/V − (w/tan α)/V∗ �
bSun[1 − (3/8)(V/V∗)2]/V for V/V∗ < 1, where w is the path-length
of the HOC (see Fig. 4). This means that the HOCs with larger V
arrive at the Sun earlier than those with smaller V. In other words,
the advance members of a comet shower are more consistent with
U1 than other comets coming after them. Note that pHOC(e, q) is
independent of m∗ and bSun.

5 R AT I O O F I S O TO H O C

Integration of equations (5) and (11) over ranges of given eccen-
tricity and perihelion distance gives the absolute numbers of ISOs
and HOCs per time. However, we prefer to discuss ratio of ISOs
to HOCs, because their absolute numbers strongly depend on the
uncertain size distributions. In what follows, we have implicitly
assumed that ISOs and HOCs have the same size–frequency
distributions, allowing nSS

OC to be cancelled out.

MNRAS 492, 268–275 (2020)
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Figure 5. Contours of ratios of the number of HOCs to that of ISOs on the
e versus q plane, obtained from equation (15) for γ = 3, bSun = 104 au, m∗
= 10−2 m�, V∗ = 50 km s−1, and 〈V〉 = 50 km s−1. Thin black curve shows
equation (16). Black squares indicate U1 and Q4.

We define the ratio of the number of HOCs to that of ISOs for
given e and q as

H = δNHOC

δNISO
= CHOC

CISO
, (15)

which tells us which source is more likely given a particular e and
q pair. We assume that an encounter of the Solar system with an
object HOC occurs and set pse = 1.

Fig. 5 shows contours of H on the e versus q plane for 〈V〉 =
50 km s−1, bSun = 104 au, m∗/m� = 10−2, and V∗ = 50 km s−1.
Other parameters are fixed at � = 10−3, kISO = 10, and γ = 3.
At the e and q of U1 and Q4 in Fig. 5, H ∼ 10−3 and ∼10−4,
respectively. This means that both U1 and Q4 would be less likely
to be HOCs, even if the Solar system had a recent encounter with
a passing object as assumed above. One can easily calculate H for
any bSun, m∗, γ , and kISO from Fig. 5 as the dependence of H on bSun

and m∗ is simply H ∝ b
−(γ+1)
Sun m2

∗γ
−1k−1

ISO (equation 12). For bSun =
103 au, H ∼ 10 and ∼1 at the e and q of U1 and Q4, respectively.
The overall trend of H on the e versus q plane does not change with
any of the parameters; diverge at e = 1 and q = ∞. however, note
that there are lower limits of m∗ for HOC production defined by
the condition to avoid a collision between a comet and the passing
object (equation 16) and the lower limit of V∗ > V/2 (equation A3).
There is no HOC below the curve showing equation (16) in Fig. 5.

Alternatively to Fig. 5, we can derive the condition for a passing
object to generate hyperbolic minor bodies having an origin in the
Oort cloud (HOCs) with equal probability to that of being ISOs, by
setting H = 1. Fig. 6 shows curves for H = 1 for given e and q on
the b�−V ∗ Pl plane for several m∗ and 〈V〉. Panels (a), (b), and (c)

Figure 6. Curves for HHOC/ISO = 1 for given e and q on the b�−V∗ plane
obtained by solving equation (15) = 1 for 〈V〉 = 20 km s−1 (orange),
50 km s−1 (black), 100 km s−1 (blue), and m∗/m� = 10−2 (dashed) and
10−1 (solid). Panels (a), (b), and (c) are for (e, q) = (1.2, 0.26), (3.3, 2), and
(1.2, 10), respectively.

MNRAS 492, 268–275 (2020)
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in Fig. 6 are for (e, q) = (1.2, 0.26), (e, q) = (3.3, 2), and (e, q)
= (1.2, 10), respectively. Closed areas between the curves and the
y-axis in Fig. 6 show the range for passing objects to have H = 1.
The curve is roughly defined by a horizontal line at the lower limit
of V∗ and a diagonal line for constant b

(γ+1)
Sun V∗. Figs 6(a) and (b)

clearly show that a close encounter with bSun ∼ 103 au is required
for H > 1 if m∗ is as small as ∼ 0.01 m�. The range for H > 1
becomes larger for larger q. If we can observe objects with q up to
10 au, an encounter with an object with m∗ = 0.01 m� and bSun ∼
104 au is enough for H > 1 (Fig. 6c).

6 PRO PERTIES OF A H YPOTHETICAL
PE RTURBER

Suppose a hypothetical object, which we will call ‘Star D’, scattered
an Oort cloud comet on to a hyperbolic object with the velocity at
infinity, V. What can we say about the current position and the
mass-range of Star D and about the averaged encounter frequency
of the Solar system with similar objects?

We assume that Star D is moving along a straight trajectory
shown in Fig. 4. The distance travelled since the instant of time that
corresponds to the encounter with Star D until now is estimated
from l = b�/sin α and, for Star D, l∗ = lV∗/V . Then the distance
to the Sun from the current position of Star D is approximated
by equation (A8). In three-dimensional space, the geometry of the
trajectory of Star D and r∗ is axisymmetric about the trajectory of
U1. Therefore, equation (A8) defines a torus-like volume with a
cross-section given by the uncertainties of b� and V∗. Star D has r∗
� 2b� for V∗ = 50 km s−1, where b� ≤ rmax ∼ 105 au to penetrate
the Oort cloud.

A lower limit to the mass of Star D, mmin
D , is set by the requirement

to avoid a collision, which occurs when impact parameter required
to give V (equation A13) becomes smaller than the physical radius
of Star D. This leads to

mmin
D =

(
3

4πG3

) 1
2

ρ
− 1

2∗ V 3
∗

(
4V 2

∗
V 2

− 1

)− 3
4

, (16)

where V∗ and ρ∗ are the velocity and density of Star D. Fig. 7 shows
the contours of mmin

D derived from equations (14) and (16) on the e
versus q plane for V∗ = 50 km s−1 and ρ∗ = 103 kg m−3. We have
mmin

D � 2 × 10−4 m� for the production of both U1 (V � 26 km s−1)
and Q4 (V � 32 km s−1). This corresponds to ∼0.2 Jupiter masses
For the other (e ∼1) comets in Fig. 2(a), we have mmin

D � 10−5 m�
(a few Earth masses).

An upper limit to the mass of Star D, mmax
D , can be set by the fact

that Star D has not been found by the Wide-Field Infrared Survey
Explorer (WISE; Wright et al. 2010). The free-floating planetary-
mass object closest to the Sun is WISE j085510.83−071442.5
(Luhman 2014). Its distance and mass are estimated, respectively, as
2.23 ± 0.04 pc (Luhman & Esplin 2016) and 3–10 Jovian masses,
assuming an age of 1–10 Gyr (Luhman 2014). Taking this as a
measure of the sensitivity of WISE to nearby sub-stellar objects,
any Jovian mass object with the same brightness as the closest one
would have been detected within 1–1.5 pc. The detection capability
of WISE and the relation between the brightness and the mass of
Star D are required to give mmax

D . If mmax
D is larger than mmin

D , there
is a possibility that U1 is an Oort cloud comet injected by an object.

The averaged encounter frequency of the Solar system with
the candidates for Star D might be estimated from that for stars.
Summing up the encounter frequencies of the Solar system with
main-sequence stars, white dwarfs, and giant stars given in table 1
in Rickman et al. (2008), we obtain �10.5 stellar encounters per

Figure 7. Contours of mmin
D derived from equations (14) and (16) on the

e versus q plane for V∗ = 50 km s−1 and ρ∗ = 103 kg m−3. Black dotted
curve shows V = 2V∗ (no solution below this curve). Black squares indicate
U1 and Q4.

Myr within 1 pc. This is a lower limit because planetary mass
objects have not been taken into account in Rickman et al. (2008)
but may nevertheless scatter comets, as estimated in equation (16).
The encounter frequency with such small objects over the age of
the Solar system cannot yet be reliably estimated. Gravitational
microlensing is the only method capable of exploring the entire
population of free-floating planets down to mars-mass objects.
Although this issue is far from well understood (Sumi et al. 2011;
Mróz et al. 2019), some authors (Mróz et al. 2019) have given a value
for the upper limit of the frequency of Jupiter-mass free-floating or
wide-orbit planets of 0.25 planets per main-sequence star. We give
pse = 1 in equation (8) to compare the numbers of ISOs and HOCs
when we have HOCs (otherwise δNHOC = 0).

7 SUMMARY AND DI SCUSSI ON

We analytically derive the expected distributions of eccentricity,
e, and perihelion distance, q, for objects belonging to two distinct
populations. First, we consider initially unbound objects entering
the Solar system from interstellar space (ISOs). Secondly, we
consider initially bound objects from the Oort cloud (HOCs)
scattered on to hyperbolic trajectories by gravitational interaction
with a passing star (see Fig. 3). We estimate the numbers of ISOs and
HOCs and evaluate them by using their ratio, H, on the e versus q
plane (Fig. 5).

(1) We find that hyperbolic objects with small e and small q are
the most likely to have an interstellar origin. Conversely, hyperbolic
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objects with small e but large q have a higher likelihood of having
being scattered from the Oort cloud.

(2) Both 1I/‘Oumuamua (2017 U1) and 2I/Borisov (2019 Q4)
have orbits most consistent with an interstellar origin. While an
origin by scattering from the Oort cloud cannot be rejected, this
possibility has a very low probability of occurrence in the absence
of a recent and very close stellar encounter, for which we have no
evidence.

(3) We find that passing bodies of sub-stellar mass (down to ∼0.2
MJ) are capable of deflecting Oort cloud comets into hyperbolic
orbits like those of 1I/‘Oumuamua (2017 U1) and 2I/Borisov (2019
Q4).

Future observations of two kinds are needed to provide an
improved understanding of the dynamics and origin of hyperbolic
objects in the Solar system. First, the distribution of orbital elements
of such bodies, especially in the eccentricity versus perihelion dis-
tance plane, will help determine the ratio of interstellar to scattered
Oort cloud sources. Secondly, measurements of the abundance and
distribution of sub-stellar (even sub-Jupiter) mass perturbers near
the Sun are needed to quantify the role of scattering from the Oort
cloud.
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APPENDI X: DERI VATI ON

A1 Scattering angle

We assume a passing object that approaches the Sun on a hyperbolic
orbit. Using non-rotational coordinates centred on the object having
a given hyperbolic orbit defined by V∗∞ and b�, a comet encounters
the object with the velocity and impact parameter V∗ and bHOC,
respectively. The velocity of the object at the moment of the closest
approach is given by

V∗ =
√

V 2∗∞ + 2GM

r∗
, (A1)

where M = m� + m∗. The angle between the velocity vectors of
the comet before and after the encounter θ is given by

tan
θ

2
= Gm∗

V 2∗ bHOC
. (A2)

Then, the velocity of the comet to the Sun after the encounter is
expressed as

V =
√

V 2∗ + V 2∗ − 2V∗V∗ cos θ = 2V∗

√
tan2 θ

2

1 + tan2 θ
2

, (A3)

For θ � 1,

V = 2Gm∗
V∗bHOC

, (A4)

which is the velocity change given by the impulse approximation.
Scattering that gives the velocity as large as the U1’s, which
is ∼V∗, cannot be dealt with using the impulse approximation.
Equation (A3) gives

tan
θ

2
=

(
4V 2

∗
V 2

− 1

)− 1
2

. (A5)

Next, we choose the non-rotating Cartesian coordinates centred
on the Sun such that the x-axis is antiparallel to V∗, the z-axis is
antiparallel to the angular momentum vector of the object, and the
y-axis is perpendicular to the x- and z-axes. The velocity vector of
the comet after the encounter is expressed as V = V(cos αcos β,
sin αcos β, −sin β), where α = (π + θ )/2 is the angle between the
x-axis and V and β is the angle between bHOC and the reference
plane. Using equation (A5), we have

sin α =
(

1 − V 2

4V 2∗

) 1
2

. (A6)

A2 Object position

For the comet to have a trajectory with b after the encounter, the
position of the object during the encounter must be determined. Let
the angle between r∗ and the x-axis be α∗. From the conservation
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of angular momentum,

sin α∗ = b�V∗∞
r∗V∗

. (A7)

By combining equations (A6) and (A7) and using equation (A1),
we find r∗ that gives V and b as

r∗ = b�

(
1 − V 2

4V 2∗∞

)− 1
2

S, (A8)

S =
[

1 +
(

GM

V 2∗∞b�

)2 (
1 − V 2

4V 2∗∞

)−1
] 1

2

− GM

V 2∗∞b�

(
1 − V 2

4V 2∗∞

)− 1
2

� 1, (A9)

where V∗∞ �= 0. The assumption of S = 1 corresponds to the
approximation that the trajectory of the object is not hyperbolic
but a straight line. We give S = 1 and V∗∞ = V∗ since this is true in
almost all cases in this paper.

A3 Derivation of δg

The tiny volume δg is defined with the following equation so that
comets contained within δg have V and b;

δg =
∣∣∣∣2πbHOCδbHOC × V∗ × δβ

π

∣∣∣∣ , (A10)

where the ring-area with the radius of bHOC decides V and δβ gives
the direction of V to meet the Sun with b. Using b� 	 bHOC, the
relation between β and b is

β � sin β = b

r∗ sin α
. (A11)

Substituting equation (7) into equation (A11) and carrying out the
differentiation, we obtain

δβ = δb

r∗ sin α
= δb

b�
. (A12)

The explicit expression of bHOC is given from equations (A2) and
(A5) as

bHOC = Gm∗
V 2∗

√
4V 2∗
V 2

− 1. (A13)

By carrying out the differentiation of equation (A13), we obtain

δbHOC = −4
(Gm∗)2

V 2∗
V −3b−1

HOCδV . (A14)

Substituting equations (A12) and (A14) into equation (A10), we
obtain δg as a function of V and b (equation 9).

A4 Coordinate transformation from impact parameters to
orbital elements

From the relation of V = √
Gm�(e − 1)/q and b =

q
√

(e + 1)/(e − 1), the determinant of the Jacobian between
the (V, b) and (e, q) frames is calculated as

J =

∣∣∣∣∣∣∣
∂V

∂e

∂V

∂q
∂b

∂e

∂b

∂q

∣∣∣∣∣∣∣ = 1

2

√
Gm�

q(e + 1)

e

e − 1
. (A15)
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