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ABSTRACT
The discovery by Swift that a good fraction of gamma-ray bursts (GRBs) have a slowly decaying

X-ray afterglow phase led to the suggestion that energy injection into the blast wave takes place

several hundred seconds after the burst. This implies that right after the burst the kinetic energy

of the blast wave was very low and in turn the efficiency of production of γ -rays during the

burst was extremely high, rendering the internal shocks model unlikely. We re-examine the

estimates of kinetic energy in GRB afterglows and show that the efficiency of converting

the kinetic energy into γ -rays is moderate and does not challenge the standard internal shock

model. We also examine several models, including in particular energy injection, suggested

to interpret this slow decay phase. We show that with proper parameters, all these models

give rise to a slow decline lasting several hours. However, even those models that fit all X-ray

observations, and in particular the energy injection model, cannot account self-consistently for

both the X-ray and the optical afterglows of well-monitored GRBs such as GRB 050319 and

GRB 050401. We speculate about a possible alternative resolution of this puzzle.

Key words: radiation mechanisms: non-thermal – ISM: jets and outflows – gamma-rays:

bursts – X-rays: general.

1 I N T RO D U C T I O N

The X-ray telescope (XRT) onboard Swift has provided high-quality

early X-ray afterglow light curves of many gamma-ray bursts

(GRBs). One of the most remarkable and unexpected features dis-

covered by Swift was that many of these X-ray afterglow light curves

are distinguished by a slow decline – the flux F decreases with

observer’s time t as F ∝ t [0,−0.8], lasting from a few hundred sec-

onds to few hours (Campana et al. 2005; Cusumano et al. 2006;

Nousek et al. 2005; Vaughan et al. 2006; de Pasquale et al. 2006).

Such a phase is unexpected in the standard fireball model. A sim-

ple explanation is that the slow decline arises due to a significant

energy injection (Nousek et al. 2005; Zhang et al. 2005; Granot

& Kumar 2006; Panaitescu et al. 2006), as suggested previously

(for baryon-rich injection, see Panaitescu, Mészáros & Rees 1998;

Rees & Mészáros 1998; Kumar & Piran 2000; Sari & Mészáros

2000; Zhang & Mészáros 2002; Granot, Nakar & Piran 2003; for

Poynting flux-dominated injection1, see Dai & Lu 1998a; Zhang &

�E-mail: yzfan@pmo.ac.cn (YF); tsvi@phys.huji.ac.il (TP)

†Lady Davis Fellow.
1 If the outflow ejected from the central engine after the GRB phase is highly

magnetized, at a radius ∼1015 cm, the magnetohydrodynamics (MHD) con-

dition breaks down. Significant magnetic field dissipation processes are ex-

Mészáros 2001; Dai 2004. It has been argued that consequently the

resulted GRB efficiency, i.e. the ratio of the energy emitted in γ -ray

energy to the total energy (the sum of the γ -ray energy and the ki-

netic energy of the ejecta powering the afterglow), should be 90 per

cent or higher. Some extreme assumptions are needed (Beloborodov

2000; Kobayashi & Sari 2001) to reach such a high efficiency within

the framework of the standard internal shocks model (Paczynski &

Xu 1994; Rees & Mészáros 1994; Kobayashi, Piran & Sari 1997;

Sari & Piran 1997a,b; Daigne & Mochkovitch 1998; Piran 1999).

We re-examine this issue focusing on two critical aspects of the

analysis. The estimate of the kinetic energy of the ejecta from the

afterglow observations and in particular from the X-ray flux and

the need of energy injection. We show in Section 2 that even for

these Swift GRBs with long duration X-ray flattening the γ -ray

conversion efficiency is high but not unreasonable.

We then turn to the puzzling slow decline seen in the first few

hours of the X-ray afterglow. We explore in Section 3 several models

that may give rise to slowly decaying X-ray afterglows. (i) Energy

injection. (ii) A small ζ e, in which only a small fraction, ζ e � 1

pected to happen which converts energy into radiation. As long as the highly

magnetized outflow is steady enough, strong and slowly decaying X-ray

emission is possible (see Fan, Zhang & Proga 2005a and the references

therein).
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of the electrons are accelerated to high energies and contribute to

the radiation process. (iii) Evolving shock parameters, where the

microscopic shock parameters ε e and/or ε B (the fraction of shock

energy given to the magnetic filed) vary in time and are inversely

proportional to the Lorentz factor of the ejecta. (iv) A very low-

variable external density model, in which the number density of the

medium is not only very low but it also a function of the radius. (v)

Highly magnetized outflow where flattening might arise because of

a slow conversion of the magnetic energy to kinetic energy of the

external matter. We present in Section 3 analytical derivation as well

as numerical calculations of the expected light curves in all these

models except the last one. In Section 4, we compare the models to

the observations of GRB 050319 and GRB 050401. We summarize

our results and discuss their implications in Section 5. We conclude

with a speculation on the nature of the solution to this puzzle.

2 I S T H E R E A G R B E F F I C I E N C Y C R I S I S ?

One of the critical factors that characterize the emitting of a GRB is

the energy conversion efficiency. The γ -ray efficiency is defined as

εγ ≡ Eγ

Eγ + Ek
, (1)

where E γ is the isotropic equivalent energy of the γ -ray emission

and Ek is the isotropic equivalent energy of the outflow powering

the afterglow. Following the Swift observations of flattening in the

X-ray afterglow light curve of many GRBs, it has been argued that

typical values of εγ could be as high as 90 per cent or even higher

(Ioka et al. 2005; Nousek et al. 2005; Zhang et al. 2005; for the

discussion of pre-Swift GRBs, see Llod-Ronning & Zhang 2004,

hereafter LZ04). This very high efficiency would challenge most

γ -ray emission models and in particular it challenges the standard

fireball model that is based on internal shocks.

These claims arise from revised estimates of the kinetic en-

ergy immediately following the GRB. Therefore, in order to ex-

plore this issue we re-examine the estimates of the kinetic energy

from the X-ray observations. As we show below, at a late afterglow

epoch, the X-ray band is above the cooling frequency. In this case,

the X-ray flux is independent of the poorly constrained n and the

X-ray luminosity is a good probe of Ek (Kumar 2000; Freedman &

Waxman 2001, LZ04).

In the standard GRB afterglow model (e.g. Sari, Piran & Narayan

1998; Piran 1999), the X-ray afterglow is produced by a shock prop-

agating into the circumburst matter. The equations that govern the

emission of this shock are (Yost et al. 2003)2

Fν,max = 6.6 mJy

(
1 + z

2

)
D−2

L,28.34ε
1/2
B,−2 Ek,53n1/2

0 , (2)

νm = 7.6 × 1011 Hz E1/2
k,53ε

1/2
B,−2ε

2
e,−1C2

p

(
1 + z

2

)1/2

t−3/2
d , (3)

2 To derive these equations, the deceleration of the fireball is governed by the

energy conservation �2 Mc2 = Ek , where M is the rest mass of the shocked

medium (e.g. Blandford & McKee 1976; Sari et al. 1998; Piran 1999). The

distribution of the fresh electrons accelerated by the shock is assumed to

be dn/dγ e ∝ γ
−p
e for γ e � γ e,m, where γ e,m = (mp/m e)[(p − 2)/(p

− 1)]ε e(� − 1), governed by the strict shock jump conditions (Blandford

& McKee 1976). The other crucial parameter is the cooling Lorentz factor

γ e,c = 6(1 + z) πm e c/[σ T �B2 t(1 + Y )], above which the energy loss

due to the synchrotron/inverse Compton radiation is important (Sari et al.

1998; Piran

νc = 1.4 × 1015 Hz E−1/2
k,53 ε

−3/2
B,−2n−1

0

(
1 + z

2

)−1/2

t−1/2
d

1

(1 + Y )2
,

(4)

where z is the redshift, DL is the corresponding luminosity distance,

p is the power-law index of the shocked electrons, we use p = 2.3

throughout this work, Cp ≡ 13(p − 2)/[3(p − 1)] and td is the ob-

server’s time in unit of days. Y = (−1+√
1 + 4ηη

KN
εe/εB)/2 is the

Compton parameter, where η = min {1, (νm/ν c)
(p−2)/2} (e.g. Sari,

Narayan & Piran 1996; Wei & Lu 1998, 2000), 0 � ηKN � 1 is a

coefficient accounting for the Klein–Nishina effect, which is γ e (the

random Lorentz factor of the electron) dependent (see Appendix A

for detail). Here and throughout this text, the convention Qx =
Q/10x has been adopted in CGS units.

For the typical parameters taken here, νm crosses the observer

frequency νX ∼ 1017 Hz at t d ∼ 4 × 10−4. It is quite reasonable to

assume νX > max{ν c, νm}, and the predicted X-ray flux is

FνX
= Fν,maxν

1/2
c ν(p−1)/2

m ν
−p/2
X

= 3.8 × 10−4 mJy

(
1 + z

2

)(2+p)/4

D−2
L,28.34ε

(p−2)/4
B,−2 ε

p−1
e,−1

× E (p+2)/4
k,53 (1 + Y )−1t (2−3p)/4

d ν
−p/2
X ,17 . (5)

The flux recorded by XRT is

F =
∫ νX2

νX1

FνX
dνX

= 1.2 × 10−12 erg s−1 cm−2

(
1 + z

2

)(p+2)/4

D−2
L,28.34

× ε
(p−2)/4
B,−2 ε

p−1
e,−1 E (p+2)/4

k,53 (1 + Y )−1t (2−3p)/4
d ,

(6)

where ν X1 = 0.2 keV and ν X2 = 10 keV. This equation is now

inverted to obtain Ek from the observed flux.

In some special cases, νm < νX < ν c, the flux recorded by XRT

should be

F = 1.5 × 10−11 erg s−1 cm−2

(
1 + z

2

)(p+3)/4

D−2
L,28.34

× ε
(p+1)/4
B,−2 ε

p−1
e,−1n1/2

0 E (p+3)/4
k,53 t3(1−p)/4

d , (7)

2.1 The efficiency of the pre-Swift GRBs

With equation (6), the corresponding X-ray luminosity at t d = 0.4

(∼10 h, to compare with the results of LZ04) is

LX = 4πD2
LF/(1 + z)

= 1.1 × 1046 erg s−1 cm−2

(
1 + z

2

)(p−2)/4

× ε
(p−2)/4
B,−2 ε

p−1
e,−1(1 + Y )−1 E (p+2)/4

k,53 , (8)

1999), where σ T is the Thompson cross-section and B is the magnetic field of

the shocked medium. νm and ν c are the corresponding synchrotron radiation

frequency of electrons with Lorentz factors γ e,m and γ e,c, respectively. The

maximum specific flux is estimated as F ν,max ≈ (1 + z)M�e3 B/(4πmp

m e c2 D2
L) (Sari et al. 1998; Wijers & Galama 1999), where e is the charge

of electron. The ν c and F ν ,max taken here are comparable with that of most

previous works (e.g. Granot, Piran & Sari 1999; Wijers & Galama 1999;

Panaitescu & Kumar 2002; LZ04). The νm is close to that taken in Sari et al.

(1998), Granot et al. (1999) and Wijers & Galama (1999), but is about 30–40

times smaller than that taken in Panaitescu & Kumar (2002) and LZ04. Such

a large divergency may arise if one ignores the term (p − 2)/(p − 1) when

evaluating γ e,m.
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Table 1. GRB energies and efficiencies, LX used in equation (9) and E γ

are all taken from LZ04. The numerical values quoted in parentheses are for

(1 + Y ) � (ε e/ε B )1/2.

GRB E γ /1052 (erg) Ek/1052 (erg) Efficiency εγ

970228 1.42 17.5 (47.5) 0.08 (0.03)

970508 0.55 9.1 (24.8) 0.06 (0.02)

970828 21.98 37.4 (101.5) 0.37 (0.18)

971214 21.05 78.0 (212) 0.21 (0.09)

980613 0.54 11.2 (30.5) 0.05 (0.02)

980703 6.01 22.2 (60.2) 0.21 (0.09)

990123 143.8 186.6 (507) 0.43 (0.22)

990510 17.6 121.1 (329) 0.13 (0.05)

990705 25.6 3.1 (8.5) 0.89 (0.75)

991216 53.5 337.1 (916) 0.14 (0.06)

000216 16.9 4.6 (12.5) 0.78 (0.58)

000926 27.97 91.7 (249.3) 0.23 (0.1)

010222 85.78 209.7 (569.8) 0.29 (0.13)

011211 6.72 12.1 (33) 0.36 (0.17)

020405 7.2 42.3 (115) 0.15 (0.06)

020813 77.5 203.9 (554) 0.28 (0.12)

021004 5.56 76.8 (208.8) 0.07 (0.03)

XRF 020903 0.0011 0.09 (0.25) 0.01 (0.004)

which in turn yields

Ek = 9.2 × 1052 erg RL4/(p+2)
X ,46

(
1 + z

2

)(2−p)/(p+2)

× ε
−(p−2)/(p+2)
B,−2 ε

4(1−p)/(p+2)
e,−1 (1 + Y )4/(p+2), (9)

where R ∼ [t(10 h)/T 90]17εe/16 is a factor accounting for the en-

ergy radiative loss during the first 10 h following the prompt γ -ray

emission phase (Sari 1997; LZ04), T 90 is the duration of the GRB.

The numerical factor of our equation (9) is larger than that of equa-

tion (7) of LZ04 by a factor of 9.2(1 + Y )4/(p+2) due to the facts

that (1) the νm taken here, which matches the numerical result better

(one can verify this with a simple code to calculate the dynamical

evolution as well as νm numerically), is about one and half orders

smaller than that taken in LZ04. (2) The inverse Compton effect

has been taken into account. Similar conclusions have been reached

by Granot et al. (2006). However, it is not easy to estimate Y since

it depends on ε B sensitively (see Appendix B for discussion). One

good way to estimate the GRB efficiency may be to take Y ∼ 0 and

(1 + Y ) ∼ (ε e/ε B)1/2, respectively. In both cases, our estimates of

εγ (Table 1) are significantly lower than those of LZ04.3 Smaller

εγ may be possible in view of that both ε e and ε B might be signifi-

cantly lower than the standard parameters taken here (Panaitescu &

Kumar 2002). We suggest that the typical GRB efficiency of these

pre-Swift bursts is ∼0.1 (see Table 1 for detail). Such values are well

understood within the internal shock model.

Additional support for this conclusion arises from late energy

estimates. Berger, Kulkarni & Frail (2004) used the late-time radio

observation to estimate the kinetic energy at this stage. The find high

energies and correspondingly lowγ -ray efficiency. For GRB 970508

3 While our results are very close to the recent calculations of Granot et al.

(2006), they also show that the estimates of Ek are very sensitive to the exact

expressions used for ν c, νm and F ν,max. Similar conclusion can be drawn

by comparing previous results of Granot et al. (1999), Wijers & Galama

(1999), Freedman & Waxman (2001), Panaitescu & Kumar (2002) and LZ04.

Therefore, an alternative explanation for the apparent high efficiencies is that

the blast wave energy estimates using LX are simply inaccurate.

Figure 1. X-ray (0.2–10 keV) afterglow light curves: analytical (dashed

line) light curve, and numerical (solid line) when Inverse Compton effect

has been ignored. The divergence is about a factor of 2. Numerical estimates

when the inverse Compton effect has been taken into account with (dotted

line) and without (dashed–dotted line) a Klein–Nishina correction. Clearly,

the Klein–Nishina correction is unimportant for the fiducial parameters listed

in the figure.

and GRB 970803, the efficiencies are 0.03 and 0.2, respectively,

which coincide with our estimates (see Table 1).

The coefficient of our equation (9) are very different from that

of equation (7) of LZ04. Below we check its validity numerically.

The code used here has already been used in Zhang et al. (2005)

and has been tested by J. Dyks independently (Dyks, Zhang & Fan

2005). Here, we just describe briefly the technical treatment. The

dynamical evolution of the outflow is calculated with the formu-

lae presented in Huang et al. (2000), which are able to describe

the dynamical evolution of the outflow in both the relativistic and

the non-relativistic phases. The electron energy distribution is calcu-

lated by solving the continuity equation with the power-law source

function Q = Kγ −p
e , normalized by a local injection rate. The cool-

ing of the electrons due to both synchrotron and inverse Compton

(Moderski, Sikora & Bulik 2000) has been taken into account.

Fig. 1 depicts the numerical results. One can see that the numerical

results match the analytical ones to within a factor of 2. We therefore

conclude that equations (6) and (9) are reasonable approximations

to the full solution of the problem.

2.2 The GRB efficiency of Swift GRBs with X-ray flattening

Early flattening is evident for a good fraction of the X-ray after-

glow light curves recorded by the Swift XRT. Determination of the

GRB efficiency of these GRBs is quite challenging since, as we see

in Section 4 the underlying physical process that controls the slow

decline is unclear. A common interpretation for this flat decay is en-

ergy injection, which essentially increases the required initial GRB

efficiency. In spite of the uncertainties concerning the applicability

of this model we consider its implication to the efficiency.

The energy injection is characterized by a factor f such that

fEk( f ∼ a few tens; in the following discussion, we take f = 5)

is the energy injected into the fireball (Zhang et al. 2005). The ini-

tial GRB efficiency should be

ε̃γ ≡ Eγ

Eγ + Ek
= f εγ

1 + ( f − 1)εγ

, (10)
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where εγ ≡ E γ /(E γ + fEk) is the GRB efficiency derived at t d ∼
0.4. LZ04 find that εγ > 0.4, and therefore, ε̃γ > 0.8, which is too

high within the framework of the standard (internal shocks) fireball

model. However, as shown in Section 2.1, εγ presented in LZ04 has

been overestimated significantly. We suggest that εγ ∼ 0.1, therefore

even when correcting for the additional energy ε̃γ ∼ 0.3, which is

still consistent with this model.

As an example, we consider the γ -ray efficiency of GRB 050319.

Both the optical (Mason et al. 2006) and the X-ray (Cusumano et al.

2006) light curves are well recorded for this burst and can be used to

constrain the efficiency (see Section 4.1 for a detailed discussion).

(1) The time-averaged optical-to-X-ray spectrum (t ∼ 200–900 s)

is a single power law with an index β = −0.8 (Mason et al. 2006).

This implies that νm(t ∼ 100 s) < ν R = 4.3 × 1014 Hz. (2) The

very early R-band observation suggests that F ν,max(t ∼ 100 s) ∼
1 mJy (assuming that energy injection takes place at t � 400 s).

(3) ν c > νX ∼ 1017 Hz holds up to t ∼ 106 s, as suggested by the

XRT spectrum. We have (see equations 31–33) ε e ∼ 4 × 10−2,

ε B ∼ 4 × 10−5, and Ek ∼ 1.3 × 1054 erg (the energy carried by

the initial outflow). With K-correction, the isotropic energy of the

γ -ray emission of GRB 050319 is E γ ∼ 1.2 × 1053 erg (Nousek

et al. 2005), so ε̃γ = Eγ /(Eγ + Ek) ∼ 0.1. It is sufficiently low to

be well understood within the standard fireball model.

3 M O D E L S F O R A S L OW LY D E C AY I N G
X - R AY A F T E R G L OW

We turn now to explore (both analytically and numerically) models

that can give rise to a slowly decaying X-ray afterglow phase. The

models we discuss include: (i) energy injection; (ii) a small ζ e; (iii)

evolving shock parameters and (iv) a very low non-constant circum-

burst density. We also examine the possibility of the X-ray flattening

is attributed to a highly magnetized outflow. In the numerical calcu-

lations that we present the parameters are chosen to reproduce the

XRT light curve of GRB 050319 (for t > 380 s). We also present

the corresponding R-band light curve.

3.1 Energy injection

In the standard fireball model, the fireball that is sweeping the cir-

cumburst matter decelerates and its bulk Lorentz factor evolves with

the time as � ∝ t−3/8. With continuous significant energy injection,

the fireball decelerates more slowly and slowly decaying multiwave-

length afterglows are expected. This model has been analytically

investigated by many authors (Sari & Mészáros 2000; Nousek et al.

2005; Zhang et al. 2005; Granot & Kumar 2006; Panaitescu et al.

2006). As shown in Zhang et al. (2005), for dE inj/dt ∝ t−q we find

νm ∝ t−(2+q)/2, ν c ∝ t (q−2)/2 and F ν,max ∝ t1−q . In this subsection,

we take q = 0.5 and find

Fν ∝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t (8−7q)/6 ∼ t0.75, for ν < νc < νm;

t (2−3q)/4 ∼ t1/8, for νc < ν < νm;

t (8−5q)/6 ∼ t0.92, for νc < ν < νm;

t [(6−2p)−(p+3)q]/4 ∼ t−0.32, for νm < ν < νc;

t [(4−2p)−(p+2)q]/4 ∼ t−0.68, for ν > max{νc, νm}.

(11)

Following Zhang et al. (2005), we consider an energy injec-

tion rate of the form (1 + z) dE inj/dt = Ac2(t/t 0)−q for t 0 <

t < t e, where A is a constant. With the energy injection, equa-

tion (8) of Huang et al. (2000) should be replaced by (see also

Figure 2. The X-ray (0.2–10 keV) afterglow light curve and the R-band

light curve for the energy injection model.

Wei, Yan & Fan 2006)

d� = (1 − �2) dm + A(t/t0)−q [dt/(1 + z)]

Mej + εm + 2(1 − ε)�m
, (12)

where Mej is the rest mass of the initial GRB ejecta, m is the

mass of the medium swept by the GRB ejecta, which is gov-

erned by dm = 4πR2 nmp dR, m p is the rest mass of proton,

dR = �(� + √
�2 − 1)cdt/(1 + z), ε = ηεe is the radiation

efficiency. Our numerical results, the R-band emission and the

0.2–10 keV emission, are shown in Fig. 2.

3.2 Small ζ e

In the standard afterglow model, it is assumed that a fraction ε e of the

shock energy is given to all the fresh electrons that are swept by the

shock front. However, it is possible that only a fraction ζ e of fresh

electrons has been accelerated, as suggested by Papathanassiou &

Mészáros (1996). With this correction, equations (2) and (3) take

the form

Fν,max = 6.6 mJy ζe

(
1 + z

2

)
D−2

L,28.34ε
1/2
B,−2 Ek,53n1/2

0 , (13)

νm = 7.6 × 1011 Hz ζ−2
e E1/2

k,53ε
1/2
B,−2ε

2
e,−1C2

p

(
1 + z

2

)1/2

t−3/2
d , (14)

respectively.

For νc < νX < νm, FνX
∝ t−1/4. A steeper decline is possible (the

steepest one is F νX
∝ t−4/7), depending on the radiative correction,

as shown in the upper panel of fig. 2 of Sari et al. (1998).

The transition of the slow decline to a normal decline (F νX
∝

t−1.2) usually takes place at t ∼ 0.1 d or earlier, when νX = νm. So

we have

ζe � 0.016E1/4
k,53εe,−1ε

1/4
B,−2t−3/4

d,−1 Cp

(
2

1 + z

)1/2

. (15)

The numerical light curve is presented in Fig. 3. One can see that

a long-time multiwavelength flattening is evident with a small ζ e.

Before and after the temporal decline transition, the energy spec-

trum of the XRT observation should be F ν ∝ ν−1/2 and F ν ∝ ν−p/2,

respectively. In other words, after the break in the light curve, the

X-ray spectrum should be much softer (see also Zhang et al. 2005),

which is inconsistent with most XRT observations (Nousek et al.
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Figure 3. The X-ray (0.2–10 keV) afterglow light curve and the R-band

light curve for the small ζ e model.

2005). In addition, in this model, the spectral index of the XRT af-

terglows in the slow decline phase is −1/2. It is much harder than

that of most Swift X-ray afterglows (see table 1 of Nousek et al.

2005). The Swift observations therefore provide us robust evidences

of that significant part of, rather than a small fraction of electrons,

have been accelerated in the shock front.

3.3 Evolving shock parameters

In the standard afterglow model, the shock parameters ε e and ε B

are assumed to be constant. However, it is also possible that ε e

or ε B , or both, vary with time (see Yost et al. 2003, for detailed

discussion). Fan et al. (2002) and Wei, Yan & Fan (2006) modelled

the optical flares detected in GRB 990123 and GRB 050904 and

found that both ε e and ε B of the forward shock (ultrarelativistic) and

reverse shock (mild relativistic to relativistic) were very different.

This provides an indication evidence for a dependence of the shock

parameters on the strength of the shock. Possible evidence for the

shock strength-dependent ε B was also found by Zhang, Kobayashi

& Mészáros (2003), Kumar & Panaitescu (2003), McMahon, Kumar

& Panaitescu (2004), Panaitescu & Kumar (2004), Fan, Zhang &

Wei (2005b) and Blustin et al. (2006). Yost et al. (2003) and Ioka

et al. (2005) considered afterglow emission assuming ε B and ε e

are time-dependent, respectively. Here we simply take (ε e, ε B) ∝
(�−a , �−b) for � > �o, otherwise (ε e, ε B) ∼ constant, where �o is

the Lorentz factor of the outflow at the X-ray decline translation,

both a and b are taken to be positive. For simplicity, we discuss only

the case of a = b for � > �o. Below �o, the solution is the usual

one.

The typical synchrotron radiation frequency νm satisfies

νm ∝
(

�

�o

)−5a/2

t−3/2 ∝ t (15a−24)/16, (16)

where � ≈ 25 E1/8
iso,53 [2/(1 + z)]−3/8 t−3/8

d,−1 n−1/3
0 .

The cooling frequency ν c satisfies

νc ∝
(

�

�o

)3a/2

t−1/2 ∝ t−(8+9a)/16. (17)

The maximum spectral flux F ν,max satisfies

Fν,max ∝
(

�

�o

)−a/2

∝ t3a/16. (18)

Figure 4. The X-ray (0.2–10 keV) and R-band afterglow light curves for the

evolving shock parameter model. The parameters are listed in the figure.

The observed flux behaves as (in this subsection, we take a = 1)

FνX
∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fν,maxν
−1/3
c ∝ t (4+9a)/24 ∼ t0.55,

for νX < νc < νm;

Fν,maxν
1/2
c ∝ t−(8+3a)/32 ∼ t−0.35,

for νc < νX < νm;

Fν,maxν
−1/3
m ∝ t (4−a)/8 ∼ t0.38,

for νX < νm < νc;

Fν,maxν
(p−1)/2
m ∝ t (15ap−9a−24p+24)/32 ∼ t−0.2,

for νm < νX < νc;

Fν,maxν
1/2
c ν(p−1)/2

m ∝ t (16−18a−24p+15ap)/32 ∼ t−0.65,

for νX > max{νc, νm}.

(19)

The afterglow light curves are shown in Fig. 4. As both ε e and ε B

increase with time, the flux of the early X-ray emission is dimmer

than that of the constant shock parameters model and the decline

is much slower. Both are consistent with the current Swift XRT

observations (Nousek et al. 2005).

3.4 A very low non-constant density

In the standard interstellar medium (ISM) afterglow model, the

number density of the medium is taken as a constant. In the wind

model, the number density n decreases with the radius R as n ∝ R−2

(Mészáros et al. 1998; Dai & Lu 1998b; Chevalier & Li 2000). Here

we discuss the general case n ∝ R−k (0 � k < 3).

First, we show that for a fireball decelerating in the Blandford–

McKee self-similar regime (Blandford & McKee 1976), no X-ray

flattening is expected regardless of the choice of k. The energy of the

fireball is nearly constant and it is given by E iso ≈ �2 Mc2, where

M ∝ R3−k is the total mass of the swept medium. So � ∝ R−(3−k)/2.

Considering that dR ∝ �2 dt ∝ R−(3−k) dt , we have R ∝ t1/(4−k) and

� ∝ t−(3−k)/[2(4−k)].

Now νm decreases with t as

νm ∝ �4 R−k/2 ∝ t−3/2, (20)

and ν c and F ν,max satisfy

νc ∝ �−4 R3k/2t−2 ∝ t (3k−4)/[2(4−k)], (21)

Fν,max ∝ R3−3k/2�2 ∝ t−k/[2(4−k)], (22)
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Figure 5. X-ray (0.2–10 keV) afterglow light curve for a very low

non-constant density: n = 10−4 cm−3 for R < 1016 cm; n = 10−4

(R/1016)−1 cm−3 for 1016 < R < 1019 cm and n = 10−7 cm−3 for R >

1019 cm.

respectively. This results in

FνX
∝

⎧⎪⎨⎪⎩
t−3(p−1)/4−k/[2(4−k)], for νm < νX < νc;

t−1/4, for νc < νX < νm;

t−(3p−2)/4, for νX > max{νm, νc}.
(23)

The last two are independent of k. So no X-ray flattening appears.

However, if the number density is sufficiently low, the deceler-

ation time-scale (∝ n−1/3) can be very long and even as long as

∼104 s. In this case, a slowly decaying X-ray afterglow may be ob-

tained. One example has been plotted in Fig. 5, in which the density

profile of the medium is taken as n = 10−4 cm−3 for R � 1016 cm, n
= 10−4 R−1

16 cm−3 for 1 � R16 � 103 and n = 10−7 cm−3 for R16 >

103. An X-ray flattening appears when the shock front reaches R =
1019 cm. However, while the shape of the light curve is correct the

X-ray flux is too low to account for most XRT light curves.

3.5 Magnetized outflow

A Poynting flux dominated outflow (Lyutikov & Blandford 2003;

Thompson 1994; Usov 1994) is an alternative to the standard bary-

onic fireball model. Within the context of this discussion it is of inter-

est since it may also give rise to a slowly decaying X-ray afterglow

(Zhang et al. 2005). We investigate, here, briefly this possibility,

extended discussion will be presented elsewhere.

We assume that the electromagnetic energy Ep will be trans-

formed continuously into the kinetic energy of the forward shock.

The dynamical evolution of the shocked medium is governed by

(Huang et al. 2000; Wei et al. 2006)

d� = − (�2 − 1) dm + dE p/c2

Mej + εm + 2(1 − ε)�m
, (24)

where E p ≡ �2VB′2/(4π), V is the volume of the magnetized out-

flow (measured by the observer) and B′ is the comoving strength of

the magnetic field.

If the magnetic pressure is higher than the thermal pressure of

the shocked medium, the magnetic pressure works on the shocked

medium and the kinetic energy of the forward shock increases. A

pressure balance between the shocked medium and the magnetized

outflow is established, so we have (see also Lyutikov & Blandford

2003) B ′2/(8π) = pgas � 4�2 nmpc2/3, where pgas is the thermal

pressure of the shocked medium. Therefore, Ep can be estimated

by4

Ep = 2�2 PgasV ≈ 8�4nmpc2V /3. (25)

dE p/c2 can be calculated as follows. Assuming that the whole

system (the shocked medium and the magnetized outflow) is adia-

batic (i.e. the radiation efficiency ε = 0), the energy conservation

yields

2�2 pgasV + 3�2 pgas(Vtot − V ) = Etot − �(Mej + m)c2, (26)

where V tot ≈ 4πR2 is the total volume of the system,  is the

width of the system, which is described by d = (β fsh − β) dR and

βfsh � √
�2 − 1/[� − 1/(4� + 3)] is the velocity of the forward

shock. Differentiating equation (26) we obtain

dEp/c2 = 2{(16�3nmpVtot + Mej + m) d� + 16π�4 Rnmp

×[R(βfsh − β) + 2] dR + � dm}. (27)

After simple algebra, equation (24) can be rearranged as (note

that now we take ε = 0)

d� = − (�2 + 2A� − 1) dm + B dR

Mej + 2�m + 2A(16�3nmpVtot + Mej + m)
, (28)

where A = 1 for dE p/dR � 0, otherwise A = 0; B = 32Aπnmp �4

R [(β fsh − β)R + 2].

With proper boundary conditions and the relations dm = 4πnmp

R2 dR, dR =βc�2(1+β) dt/(1+ z), V tot =4πR2 and d= (β fsh

− β) dR, equation (28) can be solved numerically. In our numerical

example, we take Ek = 1052 erg, n = 1 cm−3, E p = 10Ek and the

width of the outflow is taken as 3 × 1011 cm. The starting point

of our calculation is at R = 2 × 1016 cm (∼Rdec, the deceleration

radius of the outflow, where ∼Ek/2 has been given to the shocked

medium), at which � = 360.5 We find out that most of the magnetic

energy has been converted into the kinetic energy of the forward

shock in a very short time ∼50(1 + z) s. A similar result has been

obtained by Lyutikov & Blandford (2003). Though this time-scale

is much longer than the crossing time of the reverse shock, it is not

long enough to account for the X-ray flattening detected in most

GRBs.

4 C A S E S T U D I E S : C O N S T R A I N I N G
T H E M O D E L S

GRB 050319 and GRB 050401, have well-recorded X-ray and op-

tical afterglows, with which the models discussed in Section 3 can

4 Providing that V ∝ R2+c �−d, E p ∝ �8+2c−d t2+c ∝ t−δ (c, d and δ are

all larger than 0), we have � ∝ t−(2+c+δ)/(8+2c−d), which should be flatter

than �−3/8 (the canonical dynamical evolution of a ejecta without energy

injection). It requires that 2c + 3d < 8 − 8δ, otherwise dE p/dt < 0 has been

violated. It is evident that in the spreading phase, i.e. c = 1 and d = 2, E p

can not be converted into the kinetic energy of the forward shock effectively.
5 At that radius, the reverse shock has crossed the ejecta and a pressure

balance between the shocked medium and the magnetized outflow is reached.

In this work, we do not calculate the reverse shock emission (see Fan, Wei

& Wang 2004a) for the reverse shock emission with mild magnetization

and Zhang & Kobayashi (2005) for reverse shock emission with arbitrary

magnetization. With the ideal MHD jump condition, the reverse shock can

not convert the magnetic energy into the kinetic energy of the forward shock

effectively, as shown in Kennel & Coronitti (1984), Fan, Wei & Zhang

(2004b) and Zhang & Kobayashi (2005) both analytically and numerically.
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be constrained. We discuss these constraints in detail here. For most

Swift GRBs only the X-ray afterglow is well detected. Such bursts

provide, of course, much weaker constraints on the model. We dis-

cuss one example, GRB 050315, briefly.

4.1 GRB 050319

Both the optical and X-ray afterglows of GRB 050319 have been

well recorded (Mason et al. 2006; Nousek et al. 2005; Woźniak

et al. 2005; Cusumano et al. 2006). The optical flux declines with a

power-law slope of α = −0.57 between ∼200 s after the burst onset

until it fades below the sensitivity threshold of the UVOT after 5

× 104 s. The optical V-band emission lies on the extension of the

X-ray spectrum, with an spectral slope β = −0.8 (Mason et al.

2006). The temporal behaviour of the X-ray afterglow is more com-

plicated. After a steep decay (α = −5.53) up to t = 370 s, the light

curve shows a slow decay with a temporal index of α = −0.54. It

steepens to α = −1.14 at t = 2.60 × 104 s. The spectral indices in

the slow decline phase and the normal decay phase are β = −0.7 and

β = −0.8, respectively (Cusumano et al. 2005; Nousek et al. 2005,

However, see Quimby et al. 2006). Below we examine whether the

models discussed above (in Section 3) can explain both the optical

and the X-ray afterglows self-consistently.

Energy injection: The energy injection model is believed to able

to explain the observation (e.g. Cusumano et al. 2005; Mason et al.

2006; Zhang et al. 2005). As shown in Section 3.1, for q = 0.6 and

p = 2.4, both the optical and the X-ray afterglows decline as F νX
∝

t−0.54 when νm < ν R < νX < ν c, the corresponding spectral index

should be β = −(p − 1)/2 ∼ −0.7. All these values are consis-

tent with the observation. However, the non-detection of the further

X-ray break caused by the spectral translation (ν c <νX) up to ∼106 s

after the trigger suggests that ε B ∼ 5 × 10−3 and n ∼ 10−3 cm−3

(Cusumano et al. 2005). The problem is that F νX
depends on n and

ε B sensitively for νX < ν c (see equation 7). The smaller n and ε B ,

the smaller F νX
. We show below that it is quite difficult to reproduce

the detected X-ray and optical light curves with the energy injection

model.

The earliest R-band data is collected at ∼200 s (note that the real

onset of GRB 050319 is about 130 s before the Swift trigger time

taken in Woźniak et al. 2005, see Cusumano et al. 2005 for clarifi-

cation), and the flux is about F νR ∼ 0.7 mJy. At that time, the total

energy of the outflow is still dominated by the initial Ek, and F ν,max

and νm are still described by equations (2) and (3), respectively. The

conditions F ν,max � 0.7 mJy and νm(t ∼ 200 s) � ν R yield

ε
1/2
B,−2 Ek,53n1/2

0 � 0.8 ⇒ Ek,53 � 0.8ε
−1/2
B,−2n−1/2

0 , (29)

E1/2
k,53ε

1/2
B,−2ε

2
e,−1 � 0.04 ⇒ εe � 0.02E−1/4

k,53 ε
−1/4
B,−2, (30)

respectively. The condition ν c � νX ∼ 1017 Hz holding up to t ∼
106 s gives

E−1/2
k,53 ε

−3/2
B,−2n−1

0 (1 + Yo)−2 � 940

⇒ εB � 10−4 E−1/3
k,53 n−2/3

0 (1 + Yo)−4/3, (31)

where Y o is the Compton parameter at t ∼ 106 s. To derived this

relation, we assume that at t ∼ 200 s, ν c is described by equation (4),

and ν c ∝ t (q−2)/2 ∼ t−0.7 up to t ∼ 2.6 × 104 s (i.e. in the energy

injection phase), then ν c ∝ t−1/2 up to t ∼ 106 s.Combing equations

(29–31), we have

Ek,53 � 13n−1/5
0 (1 + Yo)4/5, (32)

εe � 0.06E−1/6
k,53 n1/6

0 (1 + Yo)1/3. (33)

Now Y 0 ∼0 (see Appendices A and B for detail), we have Ek >1.3×
1054 erg n−1/5

0 . On the other hand, the energy injection coefficient

A′ ≡ Ac2 ∼ (1 + z)Ek/t 0 ∼ 1.4 × 1052 n−1/5
0 erg s−1 for t 0 ∼

370 s. Please note that A′ is comparable to the recorded luminosity

of most GRBs and the X-ray luminosity recorded by XRT is just

∼1048 erg s−1. The outflow accounting for the late-time injection is

so energetic that strong soft X-ray to γ -ray emission powering by

shocks or magnetic dissipation are expected. They will quite likely

dominate over the corresponding forward shock emission, which is

inconsistent with the observation.

This model is also disfavoured by the different temporal behaviour

of the X-ray and the optical afterglows at t > 2.6 × 104 s. We

therefore conclude that the energy injection model cannot account

for the multiwavelength afterglows of GRB 050319. We tried to fit

both the R-band and X-ray afterglows with reasonable parameters

numerically but failed.

Provided that the energy injection model works (i.e. there is a

mechanism to keep such energetic outflow steady enough and there

is no magnetic dissipation), the initial GRB efficiency in this case

is as low as ε̃γ = Eγ /(Eγ + Ek) ∼ 0.08n1/5
0 .

Small ζe: This model is disfavoured by two facts. One is that in

the X-ray flattening phase, ν c <νX <νm, the corresponding spectral

index is β ∼ − 1/2, which only marginally matches the observation

∼ −0.7. The other is that after the temporal transition at t ∼ 104

s, ν c < νm < νX, the spectral index should be β = −p/2 ∼ −1.2,

which is inconsistent with the observation.

Evolving shock parameters: As shown in Section 3.3, for νm <

ν R < νX < ν c, p = 2.4 and a = b = 0.6, (F νR , F νX
) ∝ t−0.54 and the

spectral index β = −(p − 1)/2 ∼ −0.7, are all consistent with the

observation. After the shock parameters saturate at t ∼ 2.6 × 104 s,

F νX
∝ t−1.1 and β = −0.7 as long as νX < ν c, which also matches

the observation. However, the optical light curve should be much

steeper since νm < ν R < ν c also holds. The UVOT observation

and the ground basedR-band observation suggest that the decline

of optical emission does not change up to t ∼ 2 × 105 s, though

the scatter of the flux is quite large (Kiziloglu et al. 2005; Sharapov

et al. 2005; see Mason et al. 2006 for a summary). Therefore the

evolving shock parameter model is disfavoured.

Very low non-constant density: With proper parameters as

well as proper density profile, an X-ray flattening does ap-

pear (see Fig. 5). However, as already mentioned, the flux is

too low to match most observations, here we do not discuss it

further.

Off-beam annular jet model: Recently, Eichler & Granot (2006)

suggested that the flat part of the XRT light curve may be a combi-

nation of the decaying tail of the prompt γ -ray emission and the de-

layed onset of the afterglow emission observed from viewing angles

slightly outside of the edge of the jet (i.e. off-beam). This model,

like others mentioned above, can account for the slow decline of

many X-ray afterglows, but may be unable to explain both the op-

tical and the X-ray afterglows of GRB 050319 self-consistently, as

shown below.

Following Eichler & Granot (2006), we assume that the off-beam

angle is δθ ∼ 1/� int, where � int is the initial Lorentz factor of

the outflow. Larger δθ is less favoured since the slowly decaying

R-band afterglow has been well recorded as early as t ∼ 200 s, which

implies that the afterglow onset has not been delayed so much. In the

off-beam case, the typical synchrotron radiation frequency should

be

νm ≈ 7.6 × 1011 Hz E1/2
k,53ε

1/2
B,−2ε

2
e,−1C2

p

(
1 + z

2

)1/2

a1/2t−3/2
d , (34)
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where a ≈ [1 + (� int δθ )2] ∼ 2 is the Doppler factor. Therefore, the

condition νm(t ∼ 200 s) < ν R results in

εe � 0.017E−1/4
k,53 ε

−1/4
B,−2(a/2)−1/4. (35)

For δθ ∼ 1/� int, the late-time (i.e. the normal decline phase) af-

terglow emission is quite similar to the on-beam case (Eichler &

Granot 2006).

We use equation (7) to estimate the late-time X-ray flux, though

the predicted flux of the annular jet model should be somewhat

different from that of our conical jet model (Eichler & Granot 2006;

Granot 2005). The XRT flux ≈8 × 10−12 erg s−1 cm−2 at t d ∼ 0.3

gives

Ek,53 ≈ 0.33ε
4(1−p)/(p+3)
e,−1 ε

−(p+1)/(p+3)
B,−2 n−2/(p+3)

0 . (36)

The condition ν c > νX ∼ 1017 Hz holding up to t ∼ 106 s yields

εB < 3 × 10−4 E−1/3
k,53 n−2/3

0 . (37)

Combing equations (35–37), we have Ek > 1055 erg n−1/5
0

(a/2)3(p−1)/10. While we manage to fit both X-ray and optical data,

the energy needed is too large for any realistic progenitor models.

We therefore suggest that the off-beam annular jet model is also

unable to account for the afterglows of GRB 050319.

4.2 GRB 050401

The early X-ray light curve is consistent with a broken power law

with α = −0.63 and −1.41 respectively, the break is at tb ∼ 4480 s

(de Pasquale et al. 2006). The X-ray spectral indices before and

after the break are nearly constant ∼ −0.90. Therefore, the small

ζ e model is ruled out directly. Zhang et al. (2005) also show that

the flat electron distribution model (1 < p < 2) is unable to account

for the X-ray afterglow observation. The afterglow has also been

detected in R-band, which decays as a simple power law ∝ t−0.76 up

to t ∼ 3.5 × 104 s (Rykoff et al. 2005).

Energy injection (p ∼ 2.8): After the break, the light curve is

consistent with an ISM model for νm < νX < ν c with p ∼ 2.8.

Before the break, it is consistent with the same model with q = 0.5

(see also Zhang et al. 2005). As far as the R-band afterglow emission

is concerned, there are two possibilities. One is that νm < ν R < ν c,

the optical afterglow should follow the temporal behaviour of the

X-ray afterglow, which is not the case. The other is that ν R < νm for

t � tb, the afterglow increases as t0.9 for q ∼ 0.5 (see Section 3.1),

which is inconsistent with the observation. We therefore conclude

that the popular energy injection model is unable to account for the

data in this burst as well.

Evolving shock parameters (p ∼ 2.8): The light curve after

the break is consistent with an ISM model for νm < νX < ν c with

p ∼ 2.8. Before the break, it is consistent with the same model with

a = b = 0.7. Can it reproduce the optical afterglow? The answer

is negative. Provided that ν R < νm for t � tb, the optical afterglow

should increase as t0.4 (see Section 3.3), which is inconsistent with

the data. The case of νm < ν R is ruled out directly in view of the

different temporal behaviour of X-ray and R-band afterglows.

4.3 GRB 050315

After a steep decay up to t b1 = 308 s, the X-ray light curve shows

a flat ‘plateau’ with a temporal index of α = −0.06 (the spectral

index of XRT data is β = −0.73). It then turns to α = −0.71 at

t b2 = 1.2 × 104 s, the spectral index is β = −0.79. Finally, there is

a third break at t b3 = 2.5 × 105 s, after which the temporal decay

index is α = −2.0 and the spectral index is β = −0.7 (Barthelmy

et al. 2005; Nousek et al. 2005).

There are two possible interpretations for the long-term constant

spectral index β ∼ −0.7. One is that max{ν c, νm} < νX after t =
308 s and the power-law index of the shocked electron p ∼ 1.5. The

other is that νm < νX < ν c for t b1 < t < t b3 and p ∼ 2.5.

Energy injection (p ∼ 2.5): To obtain the slow decline for t b1 <

t < t b2, energy injection with q ∼ 0.2 is needed. q ∼ 0.9 is needed to

reproduce the X-ray afterglows at t b2 < t < t b3. The late-time sharp

decay appears when the boundary of a non-spreading jet becomes

visible.

Evolving shock parameters (p ∼ 2.5): As shown in Section 3.3,

with a = b = 1.2, we have a slow decline slope α = −0.06 between

t b1 and t b2. To get a decline slope α = −0.71 between t b2 and t b3,

a = b = 0.45 are needed. The late-time sharp decay appears when

the boundary of a non-spreading jet becomes visible and a = b =
0.45.

We find that both models can explain the observed X-ray light

curves of GRB 050315.

5 S U M M A RY A N D D I S C U S S I O N

During the past several months, the Swift XRT has collected a rich

sample of early X-ray afterglow data. A good fraction of these af-

terglows show a slow decline phase lasting between a few hun-

dred to several thousand seconds. The energy injection model is

the leading model to account for these slowly decaying X-ray after-

glows (e.g. Nousek et al. 2005; Zhang et al. 2005; Granot & Kumar

2006; Panaitescu et al. 2006). It has been suggested that in this

model, the GRB efficiency might be as high as 90 per cent. Such

a high-efficiency challenges the standard internal shock model for

the prompt γ -ray emission.

In this work, we have re-examined the GRB efficiency of several

pre-Swift GRBs and one Swift GRB. In addition, we have explored

several mechanism which might give rise to a slowly decaying X-ray

light curve and we have compared the predictions of these models

with the well-recorded multiwavelength afterglows of GRB 050319

and GRB 050401. We draw the following conclusions:

(1) The GRB efficiency of pre-Swift GRBs that has been derived

directly from the X-ray flux 10 h after the burst has been overesti-

mated. For these Swift GRBs with long-time X-ray flattening, the

GRB efficiency is also moderate (around 0.5), even when taking

into account the possibility of energy injection. Such efficiency can

be understood within the standard internal shock model.

(2) With a proper choice of parameters, the slow decline slope

of X-ray afterglow like the one detected in GRB 050319 can be

well reproduced by several models – the energy injection model,

evolving shock parameter model (in which the shock parameters

are assumed to increase with the decrease of the shock strength

for t < 104 s), the small ζ e model (in which the shock energy has

been give to a fraction ζ e of electrons, rather than total) and the

very low non-constant density model. Out of these models, the last

two are ruled out by the X-ray data itself. In the last model, the

resulting X-ray afterglow is too dim to match most XRT obser-

vations. The small ζ e model is also disfavoured since (1) in the

slow decline phase, the XRT spectrum are usually much softer than

ν−1/2; (2) after the light-curve break, no spectral steepening has

been detected in most cases, which is inconsistent with the model.

The other models, including the energy injection model and the

evolving shock parameter model seem to be consistent with the

X-ray afterglow observations.
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(3) While two models, the energy injection model and the evolv-

ing shock parameter model, are consistent with the X-ray data, they

fail to reproduce both the X-ray and the optical afterglows of GRB

050319 and GRB 050401. In each burst, the optical flux declines

slowly up to ∼105 s. On the other hand, the X-ray light curve de-

cays slowly up to t ∼ 104 and then turns to the normal faster decay

(F ∝ t−1.2 or so). The temporal index of the slow decay X-ray phase

is close to that of the optical light curve. The XRT spectrum is un-

changed before and after the X-ray break. This means that the break

is not caused by a cooling break in which ν c crosses the observed

frequency.

The failure of all models that we considered to fit both the X-ray

and the optical afterglow light curves suggests that we should look

for another alternative. An intriguing possibility is based on fact that

the extrapolation backwards of the late X-ray light curve is in agree-

ment with (or 1–2 order lower than) the prompt X-ray emission. This

suggests that we face a ‘missing energy problem’. Namely, during

the slow decay phase (in which the X-ray flux is rather low) we

miss X-ray emission. Is it possible that during this phase this en-

ergy is dissipated into a different channel and not into synchrotron

X-rays and that this different channel becomes ineffective at around

10 h? Put differently, during this phase the electrons within the for-

ward shock emit synchrotron X-rays inefficiently. A possibility of

this kind (that we have considered and found not to work) is if the

X-ray emitting electrons are cooled efficiently via inverse Compton

(and hence their synchrotron X-ray emission is weaker). As already

mentioned inverse Compton cooling is important in determining

the X-ray flux. Furthermore, due to the Klein–Nishina cut-off this

cooling becomes unimportant at approximately 1 d. However, this

transition is not sharp enough to produce the observed slowly de-

caying X-ray light curves. While inverse Compton cooling does not

work it is possible that another, yet unexplored, process of this kind

is responsible for the observed light curves.
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Panaitescu A., Mészáros P., Rees M. J., 1998, ApJ, 503, 314

Panaitescu A., Mészáros P., Gehrels N., Burrows D., Nousek J., 2006,

MNRAS, 366, 1357
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Sari R., Mészáros P., 2000, ApJ, 535, L33

Sari R., Piran T., 1997a, MNRAS, 287, 110

Sari R., Piran T., 1997b, ApJ, 485, 270

Sari R., Narayan R., Piran T., 1996, ApJ, 473, 204

Sari R., Piran T., Narayan R., 1998, ApJ, 497, L17

Sharapov D., Ibrahimov M., Karimov R., Kahharov B., Pozanenko A.,

Rumyantsev V., Beskin G., 2005, GCN Circ., 3140

Thompson C., 1994, MNRAS, 270, 480

Usov V. V., 1994, MNRAS, 267, 1035

Vaughan S. et al., 2006, ApJ, 638, 920

Wei D. M., Lu T., 1998, ApJ, 505, 252

Wei D. M., Lu T., 2000, A&A, 360, L13

Wei D. M., Yan T., Fan Y. Z., 2006, ApJ, 636, L29

Wijers R. A. M. J., Galama T. J., 1999, ApJ, 523, 177
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A P P E N D I X A : T H E G E N E R A L F O R M O F T H E
I N V E R S E C O M P TO N PA R A M E T E R

For the photons with frequency higher than ν̂, the Compton param-

eter should be suppressed significantly since it is the Klein–Nishina

regime, where ν̂ is governed by (1 + z)γehν̂ ∼ �mec2, i.e.

ν̂ ∼ 1.2 × 1020 Hz (1 + z)−1�γ −1
e . (A1)

We extend the derivation of the Compton parameter Y given by

Sari et al. (1996) to the general form, in the limit of single scattering.

The ratio of the inverse Compton power (PIC) to the synchrotron

power (Psyn) of an electron with random Lorentz factor γ e is given

by

Y (γe) = PIC

Psyn

= η
KN

Usyn

UB
= ηη

KN
εe

[1 + Y (γe)]εB
, (A2)

where ηKN is the fraction of synchrotron radiation energy of total

electrons emitted at frequencies below ν̂. So we have

Y (γe) = (−1 +
√

1 + 4ηη
KN

εe/εB)/2. (A3)

Below we estimate the parameter ηKN in different cooling regimes.

A1 Slow cooling

Fν = F0

{
(ν/νc)

−(p−1)/2, for νm < ν < νc;

(ν/νc)
−p/2, for νc < ν < νM .

(A4)

where ν M ∼ 2.8 × 1022 �/(1 + z) Hz is the maximal syn-

chrotron radiation frequency of the electrons accelerated by the

forward shock. For p > 2, the total energy emitted is
∫

Fνdν =
2F0

(3−p)
ν(p−1)/2

c [ 1
(p−2)

ν(3−p)/2
c − ν(3−p)/2

m ], where the photons with fre-

quencies below νm have been ignored. Throughout the appendix, ν c

is still described by equation (4) but without the correction of 1/(1 +
Y )2. We have

η
KN

∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, for ν̂ < νm;

ν̂(3−p)/2−ν
(3−p)/2
m

[1/(p−2)]ν
(3−p)/2
c −ν

(3−p)/2
m

, for νm < ν̂ < νc;

1 − (3−p)ν
1/2
c ν̂(2−p)/2

ν
(3−p)/2
c −(p−2)ν

(3−p)/2
m

, for νc < ν̂.

(A5)

For 1 < p < 2, the total energy emitted is
∫

Fνdν =
2F0

(2−p)(3−p)
ν(p−1)/2

c S1, where S1 = [(3 − p)ν1/2
c ν

(2−p)/2
M − ν(3−p)/2

c

− (2 − p) ν(3−p)/2
m ]. Now ηKN can be estimated as

η
KN

∼

⎧⎪⎪⎨⎪⎪⎩
0, for ν̂ < νm;

(2−p)(ν̂(3−p)/2−ν
(3−p)/2
m )

S1
, for νm < ν̂ < νc;

1 − (3−p)ν
1/2
c (ν

(2−p)/2
M −ν̂(2−p)/2)

S1
, for νc < ν̂ < νM .

(A6)

A2 Fast cooling

Fν = F0

{
(ν/νm)−1/2, for νc < ν < νm;

(ν/νm)−p/2, for νm < ν < νM .
(A7)

For p > 2, the total energy emitted is
∫

Fνdν = 2F0ν
1/2
m [( p−1

p−2
)ν1/2

m −
ν1/2

c ], where the emission below ν c has been ignored. The ηKN is

estimated as

η
KN

∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, for ν̂ < νc;

ν̂1/2−ν
1/2
c

[(p−1)/(p−2)]ν
1/2
m −ν

1/2
c

, for νc < ν̂ < νm;

1 − ν
(p−1)/2
m ν̂(2−p)/2

(p−1)ν
1/2
m −(p−2)ν

1/2
c

, for νm < ν̂.

(A8)

For 1 < p < 2, the total energy emitted is
∫

Fνdν = 2F0ν
1/2
m

2−p S2,

where S2 = [ν(p−1)/2
m ν

(2−p)/2
M − (p − 1) ν1/2

m − (2 − p)ν1/2
c ]. We

have

η
KN

∼

⎧⎪⎪⎨⎪⎪⎩
0, for ν̂ < νc;

(2−p)(ν̂1/2−ν
1/2
c )

S2
, for νc < ν̂ < νm;

1 − ν
(p−1)/2
m [ν

(2−p)/2
M −ν̂(2−p)/2]

S2
, for νm < ν̂ < νM .

(A9)

A P P E N D I X B : W H E N I S T H E K L E I N – N I S H I NA
C O R R E C T I O N I M P O RTA N T ?

In the shock front, the magnetic field strength B is

B = 0.04�ε
1/2
B,−2n1/2

0 . (B1)

The typical synchrotron radiation frequency of an electron with

random Lorentz factor γ e is

ν(γe) = 2.8 × 106

1 + z
Hz γ 2

e �B. (B2)

B1 The XRT light curve

For νX ∼ 1017 Hz, we have γ e(νX) = 1.3 × 105[2/(1 + z)]−1/2 �−1
1

ε
−1/4
B,−2 n−1/4

0 and

ν̂ ∼ 5 × 1015 Hz [(1 + z)/2]1/2�2
1ε

1/4
B,−2n1/4

0 . (B3)

Therefore, the Klein–Nishina correction seems to be unimportant

(i.e. ηKN∼ 1) for t d ∼ 1 (when ν̂ ∼ νc) and ε B ∼ 0.01.

B2 The R-band light curve

For ν R ∼ 4.3 × 1014 Hz, we have γ e(ν R) = 8 × 103[2/(1 + z)]−1/2

�−1
1 ε

−1/4
B,−2 n−1/4

0 and

ν̂ ∼ 8 × 1016 Hz [(1 + z)/2]1/2�2
1ε

1/4
B,−2n1/4

0 . (B4)

Then, with ε B ∼ 0.01, the Klein–Nishina correction seems to be

unimportant for a long time. On the other hand, the factor η � min

{1, (νm/ν c)
(p−1)/2} ∼ 1 for t d < 1. As a consequence, the inverse

Compton effect is very important both for the long wavelength after-

glow calculation and for the X-ray light-curve calculation. However,

it may be unimportant for a lower ε B since ν c ∝ ε
−3/2
B .
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