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ABSTRACT
We discuss a Bayesian approach to the analysis of radial velocities in planet searches. We
use a combination of exact and approximate analytic and numerical techniques to efficiently
evaluate χ2 for multiple values of orbital parameters, and to carry out the marginalization
integrals for a single planet including the possibility of a long-term trend. The result is a robust
algorithm that is rapid enough for use in real-time analysis that outputs constraints on orbital
parameters and false-alarm probabilities for the planet and long-term trend. The constraints
on parameters and odds ratio that we derive compare well with previous calculations based
on Markov Chain Monte Carlo methods, and we compare our results with other techniques
for estimating false-alarm probabilities and errors in derived orbital parameters. False-alarm
probabilities from the Bayesian analysis are systematically higher than frequentist false-alarm
probabilities, due to the different accounting of the number of trials. We show that upper limits
on the velocity amplitude derived for circular orbits are a good estimate of the upper limit on
the amplitude of eccentric orbits for e � 0.5.

Key words: methods: statistical – binaries: spectroscopic – planetary systems.

1 IN T RO D U C T I O N

The analysis of a set of radial velocities in planet searches typically
involves a number of different steps. First, the best-fitting Keplerian
orbital parameters are found by minimizing χ 2, for example with
a Levenberg–Marquardt algorithm (Press et al. 1992). Because of
the complex multimodal shape of the χ 2 distribution in parameter
space, a Lomb–Scargle periodogram (Lomb 1978; Scargle 1982) is
often used beforehand to fit circular orbits at a range of orbital peri-
ods, providing starting points for the Keplerian fit. Then, the reality
of the signal is assessed by calculating the false-alarm probability
(FAP) that the observed signal could arise due to noise fluctua-
tions, typically using Monte Carlo simulations (Marcy et al. 2005;
Cumming 2004). This has become particularly important as radial
velocity surveys reveal planets with lower velocity amplitudes, com-
parable to the measurement uncertainties and other sources of noise.
A related question is comparing different models for the data, for
example deciding whether a two (or more) planet model is preferred
over a single-planet model, or whether to include a long-term trend
due to a long-period companion (see e.g. Robinson et al. 2007).

Uncertainties in the fitted orbital parameters are then calculated.
A common technique is to scramble the residuals to the best-fitting
Keplerian orbit, add them back to the predicted velocity curve, and
refit the orbit. After repeating this many times, the distribution of
fitted parameters gives an estimate of the uncertainty (Marcy et al.
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2005). Another approach is to use Bayesian methods implemented
with Markov Chain Monte Carlo (MCMC) simulations (Ford 2005).
In the case of a non-detection, the upper limit on the planet mass
as a function of orbital period is an important input for population
studies (Walker et al. 1995; Cumming, Marcy & Butler 1999; Endl
et al. 2002; Wittenmyer et al. 2006).

Often, all of these steps must be carried out for a given radial ve-
locity data set. Many of them are based on Monte Carlo simulations
involving fitting Keplerian orbits to synthetic data sets. These trials
can become cumbersome for the large numbers of orbital frequen-
cies that must be considered. For this reason, recent calculations
have produced upper limits for circular orbits only (Cumming et al.
2008), relying on the fact that detectability of planets falls off with
eccentricity only for e � 0.6 (Endl et al. 2002; Cumming 2004), or
on a sparse grid of orbital period values (O’Toole et al. 2008).

We focus in this paper on a Bayesian approach to the analysis of
radial velocity data. The advantage is that, in principle, a Bayesian
analysis answers all of the above questions with a single calcu-
lation, providing constraints on model parameters and odds ratios
which can be used to decide which model best describes the data
(Cumming 2004; Ford 2005; Gregory 2005b). This would simplify
analysis of radial velocity data sets. The difficulty in practice is
that the marginalization over parameters requires the evaluation of
multidimensional integrals over parameter space.

Bayesian methods have been applied to planet searches, using so-
phisticated MCMC techniques to evaluate the integrals. Ford (2005)
applied this technique to determine the constraints on orbital param-
eters, while Gregory in a series of papers (Gregory 2005b, 2007a,b)
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also considers model comparison. Ford (2006) investigated dif-
ferent proposal distribution functions to help speed convergence
of MCMC chains. Whereas the chains used by Ford (2005) were
106–1010 steps in length, Ford (2006) found that it was possible
to achieve convergence after only 104–106 steps by optimizing the
directions in parameter space in which steps are taken. Recently,
Balan & Lahav (2009) have developed an MCMC code EXOFIT based
on the methodology of Ford & Gregory (2007) which is publicly
available.1

Despite this tremendous progress, the application of MCMC to
radial velocity data is not yet routine, although it is commonly used
to assess uncertainties in orbital parameters. As well as optimizing
the steps in parameter space, one important difficulty in using the
MCMC approach is assessing whether the chains have converged.
Another is that when the signal-to-noise ratio is low and the distribu-
tion of χ 2 in parameter space is multimodal, the MCMC chain may
miss minima in χ 2. Gregory (2005b) introduced a parallel temper-
ing scheme in which several MCMC chains are run simultaneously,
each with a different temperature, hotter chains making larger jumps
in parameter space and colder chains exploring local minima. As
the calculation progresses, the chains exchange information in a
way that preserves their statistical character. This scheme has been
successfully applied to multiple planet systems (Gregory 2007a,b).

In this paper, we take a different approach. We consider models
with one planet only, or one planet plus a long-term linear trend,
and use a combination of grid-based numerical evaluation and exact
and approximate analytic methods to evaluate the marginalization
integrals. The idea is to look for ways in which the marginalization
integrals can be evaluated more efficiently. As well as providing
a useful tool for analysing radial velocity data for single-planet
systems, it provides a check on the output of MCMC simulations,
and may have application to making MCMC codes for the analysis
of multiple-planet systems more efficient.

We start in Section 2 with an overview of the Bayesian approach,
including how to write down the posterior probabilities for orbital
parameters and how to use them to calculate FAPs. In Section 3,
we discuss circular orbits, using analytic techniques to evaluate the
marginalization integrals. In Section 4, we divide the parameters for
eccentric orbits into fast (linear) and slow (non-linear) parameters,
and use the analytic techniques for circular orbits to marginalize
over the fast parameters. In Section 5, we compare our results to
MCMC calculations, and traditional methods for evaluating FAPs
and upper limits on companion mass.

2 OVERV IEW

The Bayesian analysis of radial velocity data has been discussed
previously by several authors (Cumming 2004; Ford 2005; Gregory
2005a,b; Ford 2006; Ford & Gregory 2007; Gregory 2007a,b; Ford
2008). Here, we give a brief reminder of the basic ideas and intro-
duce our notation, and show how the systemic velocity and noise
uncertainty can be analytically marginalized.

2.1 Parameter estimation

We start with a model for the radial velocities with set of parameters
a. For example, a single Keplerian orbit has six parameters a = (K ,
P , e, ωp, tp, γ ), where K is the velocity amplitude, P is the orbital
period, e is the eccentricity, ωp and tp are the argument and time of

1 Available at http://www.http://zuserver2.star.ucl.ac.uk/ lahav/exofit.html.

pericentre and γ is the systemic velocity. The data consist of a set of
N measured velocities vi, observation times ti and errors σ i. Bayes’
theorem allows us to calculate the probability distribution of the
parameters a given the data, also known as the posterior probability
of a,

P (a|d) = P(a)P(d|a)

P(d)
, (1)

where P(d) is a normalization factor. The term P(a) is the prior
probability distribution for the parameters a, which allows us to
specify any knowledge of the parameter distribution that we have
before the data are taken. If the errors are Gaussian distributed and
uncorrelated, the likelihood of the data or probability of the data
given a particular choice of model parameters is

P (d|a) = 1∏
i(2π)1/2σi

exp

[
−χ 2(a)

2

]
, (2)

where

χ 2(a) =
N∑

i=1

wi [vi − Vi(a)]2 (3)

is the usual χ 2 statistic, written in terms of weights wi = 1/σ 2
i . We

write the model velocity at time ti as Vi.
Often, we are interested in the probability distribution of a single

parameter, or a subset of parameters. For example, a circular orbit
has a = (K , P , γ , φ), where K is the velocity amplitude, P is the
orbital period, γ is the systemic velocity and φ is the orbital phase.
It is likely that we are not interested in the particular values of γ or
φ, but want to constrain the orbital period and velocity amplitude.
The joint probability distribution for P and K can be obtained by
marginalizing over the other parameters,

P(P , K|d) =
∫

dφ

∫
dγP(P , K, φ, γ |d). (4)

Marginalization amounts to performing a weighted average of the
probability distribution over the unwanted parameters.

A number of other useful quantities can be obtained from
P(P , K|d). Further integration over K gives P(P |d), or integra-
tion over P gives P(K|d). A confidence interval for K can be
calculated from P(K|d). For example, if a planet is not detected
in a given data set, an upper limit can be placed on the amplitude
of undetected orbits. The 99 per cent upper limit K99 is given by∫ K99

0 dKP(K|d)/
∫ ∞

0 dKP(K|d) = 0.99.
For eccentric orbits, we will focus in this paper on obtaining

P(P , e, K|d) by marginalizing over γ , ωp and tp.

2.2 The noise distribution

In equation (2), we assumed that the standard deviation of the noise
for each observation σ i was given. In reality, other noise sources
may be present in the data that hinder the identification of planetary
signals, for example intrinsic stellar ‘jitter’ (e.g. Wright 2005) due
to rotation of spots across the surface of the star or changes in line
profiles over time related to magnetic activity. This extra noise can
be incorporated as an additional parameter of the model. A common
choice (Gregory 2005b; Ford 2006) is to add the extra noise term
in quadrature with the measurement errors σ i.

Here, we instead multiply each value of σ i by a noise scaling fac-
tor k (Cumming 2004; Gregory 2005a), and analytically marginalize
over k (e.g. Sivia 1996)

P(d|a) ∝
∫ ∞

0

dk

k

1

kN
exp

[
−χ 2(a)

2k2

]
∝ [χ 2(a)]−N/2. (5)
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The constant prefactor, which depends only on the weights wi and
the number of observations N, does not affect the shape of the pos-
terior probability distributions, and cancels out when we calculate
odds ratios. Therefore, we drop it and replace equation (2) with

P(d|a) = [χ 2(a)]−N/2. (6)

This is a Student’s t-distribution rather than Gaussian distribution
(Sivia 1996).

We take an infinite range for k in equation (5), whereas in reality
we likely have some information about the uncertainty in the noise
level. For example, we may be able to estimate the size of the
expected stellar jitter based on stellar properties (Wright 2005).
Alternatively, we could keep k as a parameter, and evaluate the
constraints on k from the data, P(k|d) (e.g. Ford 2006). We have
tried marginalizing numerically over k with finite limits, and find
that the results for realistic ranges of k are close to the analytic case
with infinite limits. Therefore, we marginalize analytically over k
and adopt equation (6) as the likelihood throughout this paper.2

2.3 Priors

The choice of appropriate prior probabilities P(a) for the various
parameters has been discussed in depth in the literature (e.g. Gregory
2005b; Ford & Gregory 2007). We mostly follow this previous
work. For circular orbits, we use uniform priors for γ and φ, and
priors for K, P that are uniform in log (the Jeffreys prior). For
eccentric orbits, we take uniform priors in γ , tp, ωp, e, and log-
uniform priors in K, and P, i.e. P(P ) = 1/[P log(P2/P1)] and
P(K) = 1/[K log(K2/K1)]. If a long-term trend is included in the
model (a linear term βti; see Appendix A), we take a uniform prior
in the slope β.

In fact, Gregory (2005b) and Ford & Gregory (2007) use a mod-
ified Jeffreys prior for the noise term and the velocity amplitude
rather than the standard Jeffreys prior. A modified Jeffreys prior is
uniform in log above some scale, and uniform below that scale. For
radial velocity amplitude K or extra noise term, the turnover scale
is taken to be ≈1 m s−1. The values of K we are interested in are
typically larger than this, and so for simplicity we use a Jeffreys
prior between our lower and upper limits in K. The ranges that we
take are K = 1 m s−1 to 2	v, where 	v is the observed range of
velocities, and P = 1 day to the time-span of the observations.

2.4 Model comparison and the false-alarm probability

Marginalizing over all the parameters of a model gives the total
probability of that model. For example, given P(P , K|d) for cir-
cular orbits, we could calculate the total probability that a planet is
present:

P(1|d) =
∫

dP

∫
dKP(P , K|d). (7)

Similarly, by considering a model without a planet, we can calculate
the probability that no planet is present given the data, P(0|d). We
define the normalization P(d) in equation (1) so that the sum over
the probabilities of all models is unity. For example, if we consider
only two possible models, that there is or is not a planet present, we
choose P(d) such that

P(1|d) + P(0|d) = 1. (8)

2 The techniques we develop below for rapidly marginalizing over parame-
ters can also be applied to the case where k is kept as a parameter. This is
discussed in Appendix B.

We can think of the posterior probability that there is no planet
present P(0|d) as the FAP. It can be written without including the
P(d) factors explicitly as

F = P(0|d) = 1

1 + 

, (9)

where 
 is the odds ratio


 = P(1|d)

P(0|d)
(10)

(the normalization factors P(d) cancel out when the ratio is taken).
For 
 � 1, F ≈ 
−1. The odds ratio is


 =
∫

dK
∫

dPP(P , K|d)

P(0|d)
(11)

for circular orbits, or


 =
∫

dK
∫

dP
∫

deP(P , K, e|d)

P(0|d)
(12)

for eccentric orbits.
This approach can be generalized to more than two models. For

example, later we will consider four possible models for a given star,
the possible combinations of including or not including a Keplerian
orbit with period less than the time-span of the observations, and
including or not including a long-term trend. To calculate the FAP
associated with the short-period planet, we define the odds ratio:


 = P(1|d) + P(1, t |d)

P(0|d) + P(0, t |d)
, (13)

where 1 or 0 indicate that the short-period planet is or is not included
in the model, and t indicates that a long-term trend is included.

2.5 Probability that there is no planet P(0|d)

The posterior probability of no planet P(0|d), where the ‘no-planet’
model is a constant velocity Vi = γ , can be calculated analytically.
Using the likelihood of equation (6)

P(0|d) = 1

P(d)	γ

∫ γ2

γ1

dγ [χ 2(γ )]−N/2, (14)

where 	γ = γ 2 − γ 1 is the range of values of γ considered, and
we assume a uniform prior for γ in that range. Minimizing χ 2 with
respect to γ , we find the best-fitting value γ0 = ∑

wivi/
∑

wi . In
terms of γ 0, we can write

χ 2 (γ ) = χ 2(γ0) + (γ − γ0)2
∑

wi. (15)

The fact that the distribution of χ 2(γ ) is analytic is mentioned in
Ford (2006). For clarity, we drop the subscript i on the sum in
equation (15) and in the remainder of the paper, a sum over the
observations with i running from 1 to N is implied.

The quadratic form of χ 2 allows the integral over γ to be carried
out analytically when the limits γ1 → −∞ and γ2 → ∞. In that
limit, the normalization factor diverges, 	γ → ∞. However, the
values of 	γ cancel when we form an odds ratio, as does the
normalization factor P(d). Therefore, we can drop the prefactor
after integrating, giving the final result

P(0|d) = [
χ 2(γ0)

]−(N−1)/2
. (16)

An alternative ‘no-planet’ model is a linear trend in the radial
velocities over time, Vi = γ + βti. A linear term is often included
(and needed) in radial velocity fits to account for additional com-
panions with long orbital periods. A similar formula for P(0|d) can
be derived in that case. For clarity, we leave this to Appendix A,
along with how to add a linear term to the circular and Keplerian
orbit fits, and consider only the constant-velocity no-planet model
in the main text.
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3 C I R C U L A R O R B I T S

In the previous section, we saw that a calculation ofP(a|d) followed
by successive marginalization provides constraints on all model
parameters and a measure of the FAP. The difficulty in practice is
in performing the integrals over parameter space. We first consider
circular orbits, which have a simple sinusoidal velocity curve, and
introduce some analytic approximations that allow us to rapidly
carry out these integrals. Apart from being a testing ground for
these techniques which we will then apply to eccentric orbits, fitting
circular orbits is actually quite useful since sinusoid fits are sufficient
to detect orbits even with moderate eccentricities (e � 0.5; Endl et al.
2002; Cumming 2004).

For a circular orbit, the model for the velocities is

Vi = γ + K sin (ωti + φ) (17)

which has four parameters: γ is the systemic velocity; K is the
velocity semi-amplitude; φ is the phase and ω = 2π/P is the orbital
frequency, P is the orbital period. Our aim in this section is to
obtain P(P , K), marginalizing over γ and φ. We first marginalize
analytically over γ to obtain P(φ,K, P |d), and then present two
different methods for efficiently marginalizing over the parameters
K and φ. The methods are summarized and applied to an example
data set in Section 3.5.

3.1 Analytic marginalization of the systemic velocity

To integrate over γ , we note again that χ 2 depends quadratically
on γ around the best-fitting value, as given by equation (15), where
this time γ 0(φ, K , P ) is the best-fitting systemic velocity at each
φ, P and K, i.e. γ 0(φ, K , P ) is the value of γ that minimizes χ 2 at
each φ, P and K, and χ 2(γ 0) is the corresponding minimum value
of χ 2. The best-fitting systemic velocity can be calculated from
∂χ 2/∂γ = 0, giving

γ0 =
∑

wi [vi − K sin (ωti + φ)] /
∑

wi. (18)

Adopting a uniform prior for γ and integrating for 	γ → ∞, we
find

P (d|φ,K,P ) = (
χ 2 [γ0, φ,K, P ]

)−(N−1)/2
, (19)

where γ 0(φ, K , P ) is given by equation (18), and we have set the
prefactor equal to unity as in Section 2.5.

3.2 Evaluation of P(φ, K, P|d) on a grid

Next, we describe a method for rapidly evaluating P(φ,K, P |d)
numerically for a grid of values of φ, K and P. We introduce the
averages

〈v〉 =
∑

wivi/
∑

wi

〈C〉 =
∑

wi cos(ωti)/
∑

wi

〈S〉 =
∑

wi sin(ωti)/
∑

wi

〈vC〉 =
∑

wivi cos(ωti)/
∑

wi

〈vS〉 =
∑

wivi sin(ωti)/
∑

wi

〈C2〉 =
∑

wi cos2(ωti)/
∑

wi

〈S2〉 =
∑

wi sin2(ωti)/
∑

wi

〈SC〉 =
∑

wi cos(ωti) sin(ωti)/
∑

wi. (20)

In this notation, equation (18) can be written as γ 0 = 〈v〉 − K〈C〉
sin φ − K〈S〉 cos φ. Substituting this expression into χ 2 and sim-
plifying, we find

χ 2(φ,K, P )∑
wi

= 〈〈v2〉〉 − 2K [〈〈vC〉〉 sin φ + 〈〈vS〉〉 cos φ]

+K2
[〈〈C2〉〉 sin2 φ + 〈〈S2〉〉 cos2 φ

+ 2〈〈SC〉〉 sin φ cos φ] , (21)

where 〈〈f g〉〉 = 〈 (f − 〈f 〉)(g − 〈g〉)〉 = 〈f g〉 − 〈f 〉〈g〉.
Equation (21) allows efficient calculation of χ 2 for multiple val-

ues of the parameters φ, K and P. Given three vectors – a vector of
K values, a vector of φ values (and corresponding values of sin φ

and cos φ) and a vector of orbital periods and the corresponding av-
erages over the data (terms in angle brackets) – a three-dimensional
(3D) matrix of χ 2 values can be quickly generated. The advantage
is that the sums over the data need to be calculated only once, rather
than being re-evaluated for each new choice of K and φ.

Marginalizing over φ is then straightforward, since the integral

P(d|K, P ) = 1

2π

∫ 2π

0
dφP(d|φ,K,P )

= 1

2π

∫ 2π

0
dφ

[
χ 2(φ,K, P )

]−(N−1)/2 (22)

can be calculated using a quadrature method based on the values of
φ in the grid. To calculate the odds ratio, we should compare this
with the probability for a no-planet model, which has Vi = γ only.
In this case, γ 0 = 〈v〉 and χ 2

0 /
∑

wi = 〈〈v2〉〉, so that

P(0|d) =
(
〈〈v2〉〉

∑
wi

)−(N−1)/2
, (23)

which can be used in equation (11) for 
.

3.3 Analytic marginalization of φ and K

The reason that we could analytically integrate over γ is that the
model Vi is linear in γ . Now in fact, we can perform a similar
analytic integration over K and φ by rewriting equation (17) in
terms of the linear parameters A and B,

Vi = γ + A sin ωti + B cos ωti (24)

where A = K cos φ and B = K sin φ. In seminal papers on Bayesian
signal detection, Bretthorst (1988) carried out analytic integration
over A and B, and we follow the same approach here (see also Ford
2008).

To perform the integration, we use the fact that the quadratic
shape of χ 2 that we found for γ (equation 15) generalizes to an
arbitrary linear model Vi = ∑

k akgk(ti). It is straightforward to
show that3

χ 2(a) = χ 2(a0) + δa · α · δa, (25)

3 There is an approximation known as the Laplace approximation (Sivia
1996) in which the quadratic form in equation (25) is assumed close to
the mimimum χ2 value. Ford (2008) applied this approximation to circular
orbit fits at specified orbital periods, but in fact as we have noted here the
approximation is exact in this case because the model is linear. We have
tried applying the Laplace approximation to carry out the integral in φ in
equation (22). However, we find that this approximation does not perform
well at low K, where P(d|φ) is bimodal, and in addition it is not convenient
numerically as it requires a search for the peak in P(d|φ) at each value
of K.
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Analysis of radial velocities 1033

where the matrix α is the inverse of the correlation matrix (Press
et al. 1992), and has components αkl = (1/2)(∂2χ 2/∂ak∂al) =∑

wigk(ti)gl(ti). The marginalization integral with uniform priors
for the parameters can be done analytically4

∫
dma(χ 2)−N/2 =

(
χ 2

0

)− N−m
2

√
det α

πm/2

(

N−m

2

)



(
N

2

) , (26)

where m is the number of parameters integrated over. We use sub-
script zero to indicate the best-fitting value of parameters, or the
corresponding minimum value of χ 2.

Applying this result to the integration over A and B gives

P(P |d) = 1

P

∫
dAdBdγ

	A	B	γ

[
χ 2(A,B, γ, P )

]−N/2

= 1

P	A	B	γ

(
χ 2

0

)− N−3
2

√
det α

π3/2

(

N−3
2

)



(
N

2

) . (27)

The values of χ 2
0 and det α can be calculated as a function of P

as follows. First, by minimizing χ 2 with respect to A, B and γ , the
best-fitting values of γ , A = K cos φ and B = K sin φ are

A0 = 〈〈vS〉〉〈〈C2〉〉 − 〈〈vC〉〉〈〈SC〉〉
〈〈C2〉〉〈〈S2〉〉 − 〈〈SC〉〉2

(28)

B0 = 〈〈vC〉〉〈〈S2〉〉 − 〈〈vS〉〉〈〈SC〉〉
〈〈C2〉〉〈〈S2〉〉 − 〈〈SC〉〉2

(29)

γ0 = 〈v〉 − A0〈S〉 − B0〈C〉, (30)

and the minimum value of χ 2 is

χ 2
0 (P )∑

wi

= 〈〈v2〉〉 − 2A0〈〈vS〉〉 − 2B0〈〈vC〉〉

+ A2
0〈〈S2〉〉 + B2

0 〈〈C2〉〉 + 2A0B0〈〈SC〉〉 (31)

and

det α(∑
wi

)3 = 〈〈S2〉〉〈〈C2〉〉 − 〈〈SC〉〉2. (32)

This allows us to easily calculate P(P |d).
The only remaining question is what to choose for the prior

ranges 	A and 	B (the prior range in gamma 	γ cancels when
we form the odds ratio). Unfortunately, the analytic evaluation of
the integral in equation (27) is only possible for a uniform prior
in A and B. Since dAdB = KdKdφ, a uniform prior in A and B
corresponds to a prior P(K) ∝ K rather than the logarithmic prior
P(K) ∝ 1/K that we assumed in the grid-based calculation (see the
discussion in Bretthorst 1988 who chose a different prior to Jaynes
1987). Therefore, the analytic marginalization gives more weight
to large-K solutions, whereas the grid-based approach gives more
weight to small-K solutions. We correct for this in an approximate
way by choosing the normalization appropriately. We find that the
choice

	A	B = K0(P )K0,av log(K2/K1), (33)

where K0,av is the best-fitting velocity amplitude averaged over all
frequencies reproduces the normalization of the grid-based calcu-
lation, with final odds ratios typically within a factor of 2.

4 To prove equation (26), follow the method given in the Appendix of Sivia
(1996), where a similar result is derived for a likelihood ∝ exp(−χ2/2).

3.4 The probability distribution of K at each orbital period

Analytical marginalization over the linear parameters A and B is
convenient, but in doing so we have thrown away information about
the velocity amplitude K. It turns out that we can get it back very
easily using an analytic approximation for the shape of P(d|K) due
to Jaynes (1987).5 The idea is to assume the parameters A and B are
uncorrelated,6 giving

P(A, B|d) ∝ exp

[
− (A − A0)2

2σ 2
A

− (B − B0)2

2σ 2
B

]
, (34)

where A0 and B0 are the best-fitting values and σ A and σ B are the
errors in determining A and B from the data. Now writing A = K

cos φ and B = K sin φ, we find

P(K, φ|d) ∝ exp

[
− K2

2σ 2
K

+ KK0

σ 2
K

cos(φ + φ0)

]
, (35)

where φ0 is a constant that can be determined (the precise value is
not important here), the best-fitting amplitude is K0 = (A2

0 + B2
0)1/2

and we assume σ 2
A = σ 2

B = σ 2
K . If the variance of the noise is s2,

we expect to be able to determine the amplitude K to an accuracy
σ 2

K ≈ 2s2/N . Using this approximation, together with the integral
representation of the modified Bessel function

I0(z) = 1

2π

∫ 2π

0
dtez cos t (36)

gives

P(K|d) ∝ exp

(
−NK2

4s2

)
I0

(
NKK0

2s2

)
. (37)

Since we want a prior for K of P(K) ∝ 1/K , we divide the area
element dAdB = KdKdφ by K2, giving the final result

P(K|d)dK ∝ exp

(
−NK2

4s2

)
I0

(
NKK0

2s2

)
dK

K
. (38)

Comparing to the results of our grid search, we find that equa-
tion (38) reproduces the distribution of K values at each orbital
period remarkably well. We estimate s2 as the mean square de-
viation of the residuals to the best-fitting sinusoid, or s2(P ) =
χ 2

0 (P )/
∑

wi . We normalize the distribution of K at each P so that∫
P(K, P |d)dK = P(P |d), where P(P |d) is determined from the

analytic marginalization over A and B (equation 27). This choice of
normalization as a function of P gives the best agreement with the
grid code.

3.5 Summary and example

Let us summarize the main results of this section. We have dis-
cussed two methods for evaluating P(P , K|d) for circular orbits.
First, equations (21) and (22) can be used to calculate χ 2(P , K , φ)
for many different values of P, K and φ, and from there P(P , K|d)
obtained by integration over φ. No approximations are made in this
approach, which we refer to as the ‘grid-based approach’. Secondly,

5 We follow a slightly different argument than Jaynes (1987), but with the
same spirit. The same approach was used by Groth (1975) to derive the
statistical distribution of periodogram powers in the presence of a signal
plus Gaussian noise, and recently Shen & Turner (2008) made a similar
approximation to derive the shape of the probability density for eccentricity
in a Keplerian orbit fit.
6 This is a good approximation for large N. The covariance between A and
B is ∝ ∑

wi sin ωti cos ωti which averages to zero for large N.
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1034 A. Cumming and D. Dragomir

equations (27–33) provide a method for evaluating P(P |d) using
analytic marginalization over the linear parameters A and B and
therefore K and φ. The analytic marginalization requires that we
assume a priorP(K) ∝ K rather than 1/K , but by choosing the nor-
malization appropriately (equation 33) we approximately recover
the results corresponding to P(K) ∝ 1/K . Next, given the best-
fitting amplitude K0 = (A2

0 + B2
0)1/2 at each period, P(P , K|d),

can be calculated for a grid of K values using the analytic approx-
imation of equation (38). We refer to this second approach as the
‘analytic approach’.

As an example, we consider the 23 radial velocities for the star HD
4203 made available in the Butler et al. (2006) catalogue of nearby
exoplanets (see Vogt et al. 2004 for the original discovery of this
planet). The orbital parameters given by Butler et al. (2006) are P =
431.88 ± 0.85 d, K = 60.3 ± 2.2 m s−1 and e = 0.519 ± 0.027. They
also include a linear long-term trend of −4.38 ± 0.71 m s−1 yr−1.
The rms of the residuals to this solution is 4.1 m s−1.

We use both of the techniques described above to fit a circular
orbit plus constant to this data. We consider orbital periods between
1 day and the time-span of the data, T = 2000 d. We evaluate
4Nf frequencies, where Nf = (	f )T is the estimated number of
independent frequencies in the frequency range 	f (Cumming
2004). The values of K considered range from 1 m s−1 to 2	v,
where 	v is the range of the measured velocities. For the grid-based
approach, we find that the typical time required on a 2–3 GHz CPU
is ∼10−7 s per set of parameters (φ, K , P ), so that for example 3000
periods, 100 values of K and 30 phases, or 107 total combinations,
take 1 s to evaluate. For φ, we align the grid with the best-fitting
phase φ0 at each P. In this way, we guarantee that the best-fitting
value of φ is included on the grid, which reduces the number of grid
points we need to use in φ. The analytic marginalization technique
requires ∼5 × 10−7 s per P and K value, so that a search of 3000
periods, keeping track of 100 values of K takes ∼0.1 s. We use
the routine BESSI0 from Press et al. (1992) to calculate the Bessel
function in equation (38).

Fig. 1 compares the two techniques. The red curves show the
results of the analytic marginalization, the black curves show the
results of the grid-based calculation. The FAPs are 0.14 (grid) and
0.060 (analytic) (odds ratios 6.3 and 16, respectively). The distri-
bution of K agrees well between the two techniques, although the
probability curve is shifted to larger values of K for the analytic ap-
proach compared to the grid approach, consistent with the different
priors. The FAP ∼0.1 means that this would not count as a detection.
This is an example of a case in which the large eccentricity e > 0.5
prevents detection by fitting circular orbits. The best-fitting ampli-
tude K ≈ 30 m s−1 for circular orbits is significantly smaller than
for the Keplerian orbit fit of Butler et al. (2006). Using 100 values
of K between 1 and 60 m s−1, we find the 99 per cent upper limit
on K is 41.2 m s−1 (analytic) or 41.3 m s−1 (grid). The bottom panel
in Fig. 1 compares the probability distribution of K at two different
periods obtained from the grid-based approach and the analytic ap-
proach. This shows that equation (38) reproduces the distribution
from the grid-based calculation well.

4 ECCEN TRIC O RBITS

We now consider full Keplerian fits to the data. The techniques we
developed in the previous section for circular orbits can be readily
applied to Keplerian orbits, because the Keplerian model is linear in
a subset of parameters which can therefore be treated analytically,
as we now describe.

Figure 1. Results of circular orbit fitting to data for HD 4203, using analytic
marginalization over K and φ, and reconstructing P(K) using equation (38)
(red curves) and by calculatingP(φ,K, P ) on a grid (black curves).P(K) in
the third panel is normalized such that each curve has the same area beneath
the curve. The bottom panel compares the P(K) obtained for periods 420.1
days (solid curves, close to the best-fitting frequency) and 19.0 days (dot–
dashed curves, no significant fit at this frequency) for the analytic and
grid-based approaches.

4.1 Calculation of P(P, K, e|d)

For a Keplerian orbit, the radial velocity can be written as

V = γ + K[cos(θ + ωp) + e cos ωp], (39)

where K is the velocity amplitude, e is the eccentricity of the orbit,
ωp is the argument of periastron.7 The true anomaly θ is a function
of the time t and the three parameters e, P and tp, where tp is the
time of periastron passage [acting as an overall phase for V(t)]. To
calculate θ (t ; e, P , tp), we must solve the relations

tan

(
θ

2

)
=

(
1 + e

1 − e

)1/2

tan

(
E

2

)
(40)

E − e sin E = M = 2π

P
(t − tp), (41)

where E is the eccentric anomaly and M is the mean anomaly.
The first point to note is that the six orbital parameters, a = (γ ,

K , ωp, P , e, tp) can be divided into two groups, ‘slow’ and ‘fast’
parameters, as = (P , e, tp) and af = (γ , K , ωp), respectively. Each
time we change a value of the slow parameters, we must resolve
equations (40) and (41) to calculate the values of θ , whereas when

7 We write it as ωp to distinguish it from the orbital frequency ω = 2π/P .
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we change a value of the fast parameters only we do not need
to recalculate the values of θ . This is reminiscent of the division
into fast and slow parameters in analysis of cosmic microwave
background data (e.g. Lewis & Bridle 2002; Tegmark et al. 2004).
We can use this division to increase the speed of the parameter
search.

For a given set of the slow parameters, we can find the best-fitting
fast parameters with a linear least-squares fit, since we can write

V = A sin θ + B cos θ + γ̃ (42)

with A = −K sin ωp, B = K cos ωp and γ̃ = γ + Ke cos ωp. A
linear least-squares fit returns the best-fitting values of A, B and γ̃ ,
and therefore K (K2 = A2 + B2), ωp(tan ωp = −B/A) and γ . This
halves the number of parameters that we need to search to find the
best-fitting solution.

The fact that the fast parameters af can be obtained from a linear
fit means that we can directly apply the techniques we developed
for circular orbits in Section 3 to marginalize over them. For the
grid-based approach, equation (21) should be replaced by

χ 2(K, ωp)∑
wi

= 〈〈v2〉〉 + 2K
[〈〈vS〉〉 sin ωp − 〈〈vC〉〉 cos ωp

]
+ K2

[〈〈C2〉〉 cos2 ωp + 〈〈S2〉〉 sin2 ωp

−〈〈SC〉〉2 sin ωp cos ωp

]
, (43)

where ωp now plays the same role as φ for circular orbits, and
the sums over the data involve θ i rather than ωti. For example,
the definition of 〈S〉 in equation (20) should be replaced by 〈S〉 =∑

wi sin θi/
∑

wi .
Similarly, since equations (24) and (42) are of the same form,

the analytic integration over A and B can be applied directly to
the Keplerian case, giving P(P , e, tp|d) analytically from equations
(27–33). As for circular orbits, the distribution of velocity amplitude
at each (P , e, tp),P(K,P , e, tp|d), can be recovered, being well
approximated by equation (38).

4.2 Example

As an example, we return to the HD 4203 data considered pre-
viously. We first calculate P(P , e|d) for a grid in P and e. The
integration over tp is carried out using a simple algorithm in which
we double the number of equally spaced tp values until the required
accuracy is obtained. For each combination of P, e and tp consid-
ered, we analytically integrate over γ , K and ωp, and at the same
time use equation (38) to keep track of P(K; P , e, tp|d). We use
Newton’s method to solve Kepler’s equation, taking advantage of
the fact that the required derivative can be calculated analytically.
Our implementation of this algorithm takes ≈ 5 × 10−5 s per P,
e and tp value considered, with 30 K values tracked through the
calculation. For an average 200 values of tp, 10 eccentricities and
3000 periods, the total time needed is ≈ 30 s for a scan of parame-
ter space. We have also implemented the grid-based approach, and
find that it is about 10 times slower than the analytic approach. The
results agree well between both techniques.

The results for HD 4203 are shown in Figs 2 and 3. We first run a
coarse scan of the parameter space for a single Keplerian orbit plus
a linear trend. We calculate 4Nf ≈ 8000 frequencies, corresponding
to the period range 1 day to ≈ 2000 days (the time-span of the
data), 10 eccentricities between 0 and 0.9, 10 velocities between 1
and 216 m s−1 (twice the velocity span of the data). The resulting
constraints on P, e and K are shown in Fig. 2. The odds ratio is 4 ×
104 for the Keplerian orbit plus linear trend compared to a constant-
velocity model. We show the results including a linear trend, because

Figure 2. Results of Keplerian fits to the HD 4203 data from Butler et al.
(2006), including a linear trend. In this coarse scan of parameter space,
P(P , e, K|d) is calculated for 10 eccentricities between 0 and 0.9, 10 ve-
locities between 1 and 217 m s−1 (twice the velocity span of the data) and
7978 periods between 1 and 1996 days (the time-span of the data).

the best-fitting model presented by Butler et al. (2006) includes a
trend, but in fact our results at this stage do not require a trend. The
odds ratio for a similar search but without the linear term is 5 ×
104.

We then carry out a more detailed calculation of the parame-
ter space near the best-fitting model corresponding to the peak in
P(P |d) at ≈ 440 d in Fig. 2. The results are shown in Fig. 3. The
odds ratio is 9.5 × 1010 for a Keplerian orbit plus trend compared
to a constant model (for the ranges of parameters shown in Fig. 3).
The much larger value of the odds ratio compared to our coarse
calculation is because the parameter space considered is smaller
and the peak in P(P , e, K|d) has now been resolved. We can renor-
malize the odds ratio to correspond to the full range of parameter
space considered in the coarse search by multiplying by the ratio
of log P 2/P 1 and log K2/K1 in each calculation. Doing this, we
find an odds ratio 7.4 × 107. Without the linear trend, the odds ratio
is 100 times smaller, 7 × 105, normalized to the full range of pa-
rameters. This indicates that a model with a linear trend is strongly
preferred given this data. Without the linear trend, the probability
peaks at similar values of P and K, but with a larger eccentricity,
e ≈ 0.7.

The dotted curves in Fig. 3 show Gaussian distributions with the
central values and standard deviations given by Butler et al. (2006)
for K, P and e. Overall, there is a good agreement with the central
values and widths.

Repeating the calculation shown in Fig. 3 with the grid-based
method for marginalizing over K and ωp gives almost identical
constraints on orbital parameters, but a smaller odds ratio by a factor
of 2, 3.5 × 107 compared to 7.4 × 107. We have also checked that
other peaks in P(P |d) that can be seen in Fig. 2 do not contribute
significantly to the odds ratio. The next most important is the peak
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1036 A. Cumming and D. Dragomir

Figure 3. Results of Keplerian fits to the HD 4203 data from Butler et al. (2006), including a long-term trend. The dotted curves show Gaussian distributions
with central values and standard deviations matching those given by Butler et al. (2006). 100 values of K, 30 eccentricities and 30 periods were calculated in
the range shown. The contours enclose 10, 50, 90 and 99 per cent of the probability.

at P ≈ 800 d, but its odds ratio is 400 times smaller than the peak
at 432 d shown in detail in Fig. 3.

The coarse sampling for HD 4203 gave an odds ratio that was a
factor of 400 smaller than the final odds ratio obtained by zooming
in on the most significant peak. We find that increasing the period
sampling by a factor of 2 to 8T 	f gives an odds ratio from the
coarse search in good agreement with the odds ratio from zooming
in on the peak.

5 C O M PA R I S O N W I T H P R E V I O U S WO R K

In Section 4, we presented an algorithm that can efficiently com-
pute P(P , K, e|d) for a radial velocity data set. As described in
Section 2, this contains information about the constraints on P, K,
and e and also allows a FAP to be calculated. We now use our algo-
rithm to recalculate results in the literature from MCMC and other
techniques and compare.

5.1 Orbital parameter constraints from MCMC calculations

Ford (2005) used a MCMC calculation to study the constraints
on orbital parameters from radial velocity data, and this paper has
been followed by several others (Gregory 2005b; Ford 2006; Ford &
Gregory 2007; Gregory 2007a,b; Ford 2008; Balan & Lahav 2009).
We have calculated the constraints on orbital parameters for the
different single-planet cases considered in these papers, and overall
the agreement is excellent.

One difference is that in several published cases the posterior
probability for eccentricity drops towards zero at low eccentricities,
whereas we find P(e|d) is approximately constant as e goes to
zero. For HD 76700, this difference appears to be because of the
different prior assumed by Ford (2005). The MCMC calculations
in that paper take steps in e cos ωp and e sin ωp in such a way that
the assumed prior is uniform in d(e cos ωp) d(e sin ωp) giving a
prior e de d ωp ∝ e. In Fig. 4, we allow for this different prior by
plotting eP(e|d), and the result compares favourably with fig. 2 of
Ford (2005). (Ford 2005 discusses the use of importance sampling,
in which the samples are weighted ∝ 1/e to give an effective prior
uniform in e, but this does not seem to have been applied in Fig. 2
of that paper.)

Figure 4. The eccentricity distribution derived for HD 76700, using data
from Tinney et al. (2003). The solid curve is for analytical marginalization
over the noise scaling parameter k, the dotted curve is for k = 1, and the
dashed curve shows eP(e|d), corresponding to a uniform prior in d(e cos ωp)
d (e sin ωp).

For HD 72659, marginalization over the extra noise source opens
up considerable parameter space at low eccentricity. In Fig. 5, we
show the constraints on eccentricity and period with k fixed at
k = 1 and with k marginalized over. Ford (2005), unlike later papers
(e.g. Ford 2006), does not include an additional noise term, and our
results for k = 1 compare well with Figs 4 and 5 of that paper.

5.2 Odds ratios from Gregory’s parallel tempering MCMC
approach

In a series of papers, Gregory has developed a MCMC code which
uses parallel tempering to exchange information between chains
running with different ‘temperatures’. Combining the results of dif-
ferent chains gives the total posterior probability for the model,
allowing calculations of odds ratios and therefore model compar-
isons.

Gregory (2005b) analysed 18 radial velocities for HD 73526 from
Tinney et al. (2003). The period range was from 0.5 to 3732 days,
and velocities from 0 to 400 m s−1 using a Jeffrey’s prior with a
break at 1 m s−1. An additional noise term was added which was
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Analysis of radial velocities 1037

Figure 5. The eccentricity distribution and joint eccentricity–orbital period
distribution derived for HD 72659. The top panels are for analytic marginal-
ization over the noise parameter k, whereas the bottom panels take k =
1 as in Ford (2005). Contours enclose 10, 50, 90 and 99 per cent of the
probability.

allowed to range between 0 and 100 m s−1. He pointed out that
there were two additional possible solutions with P ≈ 128 and
376 d besides the previously obtained solution at P ≈ 191 d. A
chain covering the entire parameter space did not converge, and so
separate chains were run focussing on each of the three probability
peaks. The odds ratio for a planet compared to a constant velocity
was found to be 9.3 × 105 (table 5 of Gregory 2005b). We ran
a calculation with the same period and velocity range as Gregory
(2005b) (except that we take the lower bound in K to be 1 m s−1

with a Jeffrey’s prior) (9940 frequencies, 30 eccentricities and 30
velocities). The odds ratio was 3.3 × 106. Zooming in on the three
peaks gives probability distributions for e, P and K that are very
similar to the results of Gregory (2005b). The odds ratios for the
P ≈ 128, 190, and 376 d peaks are 2.4 × 104, 1.1 × 105, and 1.0 ×
106 (assuming the full prior range so that these numbers can be
compared). The sum of these, 1.1 × 106 agrees well with the odds
ratio found by Gregory (2005b) whose odds ratio includes only
these three peaks. The relative probabilities of the three peaks are
2, 10 and 88 per cent. Gregory (2005b) found relative probabilities
of 4, 3 and 93 per cent.

Gregory (2007a) found evidence for a second planet in HD
208487; we compare to their odds ratio and posterior probabil-
ity for a one-planet fit. The posterior probability distributions were
calculated for the 35 velocities from Butler et al. (2006). We find
an excellent agreement with the distributions of P, e and K shown
in fig. 7 of Gregory (2007a). The odds ratio for a single-planet
model for this data (table 6 of Gregory 2007a) was 1.7–2.6 × 104

for two different choices of the turnover in the modified Jeffrey’s
prior for the extra noise scale. For the parameter ranges in fig. 7 of
Gregory (2007a), we find an odds ratio of 1.4 × 108. Rescaling to a
velocity range 1–2129 m s−1, and period range 1 day to 1000 years,
this becomes 6.1 × 104, a factor of 3 times greater than Gregory
(2007a). (The details of the priors were different, e.g. the upper
limit on velocity in Gregory 2007a’s prior depended on period and
eccentricity, but we expect this to give only a small difference.)

Gregory (2007b) presented evidence for three planets in HD
11964 from 87 radial velocities in the Butler et al. (2006) cata-
logue. The odds ratio reported for the single-planet model is 3 ×
109 (table 4 of Gregory 2007b). We find an odds ratio in good agree-
ment, 2 × 109. Although Gregory (2007b) does not show posterior
probability distributions for orbital parameters for the one-planet

model, the distributions of P, e and K we find compare well with
those for the P ≈ 2000 d signal in the three-planet model of Gre-
gory (2007b). For this data, Butler et al. (2006) include a linear
term. We find the odds ratio for a linear versus constant no-planet
model to be 1300. Including a linear term in the planet model gives
an odds ratio of 3 × 106, much smaller than the odds ratio for a
planet model only. Therefore, we find that a single-planet model
with P ≈ 2000 d is preferred over a linear trend only or planet plus
linear trend by a large factor (in agreement with Wright et al. 2007
who also concluded that the trend reported by Butler et al. 2006 was
likely spurious).

5.3 False-alarm probabilities

Marcy et al. (2005) discuss the calculation of FAPs using a scram-
bled velocity method in which the residuals to the best-fitting Ke-
plerian orbit are used as an estimate of the noise distribution. In
that paper, they announced five new planets from the Keck Planet
Search. FAPs were calculated for two cases that looked marginal,
HD 45350 (FAP <0.1 per cent scrambled, 4 × 10−5 F-test) and
HD 99492 (FAP ≈0.1 per cent scrambled, 3 × 10−4 F-test).
For HD 99492, we find odds ratios scaled to 1.0 for no planet
are 0.33 for a linear trend but no planet, 1.66 for a planet, 200.0
for a planet plus linear trend. Therefore, a linear trend is preferred
in this case. The FAP using equation (13) for the odds ratio is 7 ×
10−3. For HD 45350, we find odds ratios: 1.0, 0.18, 6.7 × 105,
4.7 × 105, giving FAP ≈10−6. As Marcy et al. (2005) noted, the
evidence for a linear trend in this source is marginal (the odds ratios
are similar with and without a trend).

Cumming (2004) described a quick estimate of the FAP based on
an F-test at each independent frequency. Generalizing the Lomb–
Scargle periodogram to eccentric orbits, the idea is to define a power
at each frequency

z = (N − 5)	χ 2

4χ 2
Kep

= (N − 5)
(
χ 2

0 − χ 2
Kep

)
4χ 2

Kep

. (44)

For Gaussian noise, z follows the F 4,N−5 distribution,8 which allows
a calculation of Prob (z > zmax) for an observed maximum power
zmax. The FAP is then

FAP = 1 − [1 − Prob(z > zmax)]Nf ≈ Nf Prob(z > zmax). (45)

The number of independent frequencies Nf can be estimated as
Nf ≈ T 	f .

We have used this approach to calculate the FAP for the 84 stars
with published radial velocities as part of the Butler et al. (2006)
catalogue of exoplanets. To find χ 2

Kep, we follow the automated
procedure used by Cumming et al. (2008), which involves using the
top two well-separated peaks in the Lomb–Scargle periodogram as
starting periods for full Keplerian fits. To compare with the Bayesian
odds ratios, we convert the F-test FAP into an odds ratio by inverting
equation (9). To find Bayesian odds ratios, we run a coarse sampling
of the parameter space with 8T 	f periods for each of these 84 stars,
with and without a long-term linear trend.

The results are shown in Fig. 6. In the lower panel, we use the
minimum value of χ 2 found in the Bayesian calculation to calcu-
late the F-test FAP. In this case, the odds ratios are well correlated,

8 Assuming that the no-planet model being compared to is a constant-
velocity model. If a linear trend is included in the no-planet model and
the planet model, z is defined with a factor of N − 6 replacing N − 5, and
then follows the F 4,N−6 distribution.
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Figure 6. Comparison between logarithm of the odds ratio log10 
 from
the Bayesian calculation and the F-test. The Bayesian odds ratios are from
coarse sampling (8T 	f periods, 10 eccentricities) of the 84 radial velocity
data sets from Keck, Lick and Anglo-Australian Telescope published as part
of the Butler et al. (2006) catalogue. We compare with analytic F-test FAPs,
converted to odds ratios using the relation 
 = (1/F ) − 1. The crosses
are the odds ratios for a linear trend versus constant velocity, the diamonds
are odds ratios for a planet versus constant and the triangles are for planet
plus long-term trend versus long-term trend only. The upper panel uses a
Keplerian fitting routine to determine the F-test FAP, whereas in the lower
panel we use the minimum χ2 found in the Bayesian routine to calculate
the analytic FAP.

although with the Bayesian odds ratio between 1 and 1000 times
smaller than the F-test odds ratio. In the upper panel, there is more
scatter. This arises from differences between the minimum χ 2 val-
ues found by the Keplerian fitting routine and the Bayesian routine.
For example, the two points above and to the left of the upper panel
of Fig. 6 are for HD 80606, which has a very eccentric orbit. Our
Keplerian fitting routine, which uses circular orbit fits as its starting
point failed to find the best-fitting solution, whereas the Bayesian
routine with its systematic scan of parameter space did find it. Gen-
erally, the scatter is downwards, indicating that the Bayesian routine
sometimes find a larger minimum χ 2 than the Keplerian fitting rou-
tine. Likely this is due to the finite period sampling, whereas the
Keplerian fitting routine can adjust the period to lower χ 2.

The fact that the Bayesian odds ratios tend to be lower than the
F-test odds ratios indicates that the Bayesian calculation is more
conservative than the F-test. In fact, this is expected. Cumming
(2004) showed that the Bayesian odds ratio is closely related to
the F-test (periodogram), but with a different definition for the
number of independent frequencies. In the Bayesian calculation, the

number of trials not only counts the frequencies, but also the range
of the other parameters (Cumming 2004). In this way, the Bayesian
calculation penalizes models with larger ranges of parameters, for
all parameters, not just frequency.

5.4 2D periodograms

Wright et al. (2007) investigate the constraints that can be placed
on the orbital parameters of long-period orbits that have been only
partially observed. They calculated the minimum χ 2 at points across
the m sin i–P plane. Similarly, O’Toole et al. (2008) introduced
a ‘2D Keplerian Lomb–Scargle periodogram (2DKLS)’ in which
the periodogram power is evaluated on a grid of P and e, with
a full Keplerian fit carried out at each point. O’Toole et al. (2008)
discuss the considerable computing resources being used to conduct
simulations of detectability using this new 2D periodogram. The
techniques we discuss earlier for rapid evaluation of multiple χ 2

values could prove useful in more efficiently evaluating the 2DKLS
periodogram. The constraints on P–e or P–K calculated in this paper
differ from Wright et al. (2007) and O’Toole et al. (2008) in that
for each choice of P, e or P, K all values of the other parameters
are taken into account, weighted by their probability, rather than
finding the best-fitting values of the other parameters. This is the
standard difference between Bayesian and frequentist approaches.

O’Toole et al. (2008) mention that one of the reasons for looking
at the periodogram power as a function of P and e is to help with
detection of highly eccentric orbits. They consider the e = 0.97
planet around HD20782 as an example. Their best fit has e =
0.97 ± 0.01, P = 591.9 ± 2.8 and K = 185.3 ± 49.7. Our results for
this data are shown in Fig. 7. The discrete nature of the K distribution
is due to the finite sampling of the grid in eccentricity. The O’Toole
et al. (2008) solution lies on our contours, but towards the edge.
The Bayesian calculation, which averages over the marginalized
parameters, opens up a wider parameter space than the best fit and
error bars from O’Toole et al. (2008) suggest.

5.5 HD 5319

HD 5319 has a planet with minimum mass 1.9 MJ in a 675-d
low-eccentricity orbit (Robinson et al. 2007). This is an interesting
example to compare to because the analysis of Robinson et al.
(2007) used several different statistical methods. First, they used
Monte Carlo simulations of data sets with noise only (simulated by
selecting with replacement from the observed velocities) to assess
the FAP, finding 1.3 × 10−3. They used both a scrambled velocity
Monte Carlo simulations and an MCMC Bayesian calculation to
estimate the uncertainties in the derived orbital parameters. They
used an F-test to test the significance of including a linear trend in
their model, finding a FAP of 3 × 10−4 indicating that a linear term
is strongly preferred.

The results of our calculation are shown in Fig. 8. The dotted lines
show the best-fitting parameters and the errors found by Robinson
et al. (2007), assuming Gaussian distributions, and agree well both
in terms of central values and widths. Interestingly, the MCMC
simulations run by Robinson et al. (2007) did not agree as well with
their scrambled velocity approach, whereas we find good agree-
ment. The odds ratio for a trend in the no-planet model is 0.9. For
models with a planet, the odds ratios are 9.0 × 108 (with trend) and
1.0 × 106 (without trend). The model with a trend therefore has
greater odds by a factor of 103, in good agreement with the F-test
FAP of 3 × 10−4 found by Robinson et al. (2007). However, the
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Analysis of radial velocities 1039

Figure 7. Results of Keplerian fits to the HD 20782 data from O’Toole et al. (2008). 30 eccentricities, 30 periods and 100 K values were calculated in the
ranges shown. Contours enclose 10, 50, 90 and 99 per cent of the total probability.

Figure 8. Results of Keplerian fits to the 5319 data including a linear trend. 30 eccentricities, 30 periods and 100 K values were calculated in the ranges
shown. Dotted curves show Gaussian distributions with central values and standard deviations taken from Robinson et al. (2007). Contours enclose 10, 50, 90
and 99 per cent of the total probability.

overall FAP we find ∼10−9 is much smaller than the simulations of
Robinson et al. (2007) suggested, ∼10−3.

5.6 Upper limits on K

In an analysis of the Lick Planet Search, Cumming et al. (1999) cal-
culated upper limits for 63 stars with non-detections. They used a
Monte Carlo approach, in which simulated data sets with a circular
orbit plus noise were analysed and the velocity amplitude deter-
mined which resulted in detection 99 per cent of the time. We have
reanalysed the same data using our Bayesian scheme, first with cir-
cular orbits and then with eccentric orbits. We calculate the 99 per
cent upper limit K99 by

∫ K99
0 dKP(K|d) = 0.99 [where P(K|d) is

normalized so that the total probability is unity].
The results are shown in Fig. 9. The triangles are for circular orbit

models, and the circles are for eccentric orbits. For the seven stars
found to have a significant linear trend by Cumming et al. (1999),
we include a linear trend in the model. Overall, the agreement is
good. Cumming et al. (1999) (and Cumming et al. 2008) calculate
upper limits for circular orbits to reduce the computational time

needed. Based on the calculations of the effect of eccentricity on
detectability of Endl et al. (2002) and Cumming (2004), they pro-
posed that K99 for circular orbits would be a good estimate of K99

for orbits with e � 0.5. We can test that here by calculating K99

from the partial K distribution

P(K|d) =
∫ ecut−off

0
deP(e, K|d) (46)

with different cut-offs ecut−off . For ecut−off = 0.9, we find that the
value of K99 is generally much greater than K99 for circular orbits,
due to a tail of large-K, large-eccentricity solutions. However, for
ecut−off = 0.5, the agreement is very good. This is shown in Fig. 9,
where we show results for ecut−off = 0.5 (red symbols) and ecut−off =
0.7 (green symbols). The ecut−off = 0.7 values of K99 are significantly
greater than the circular orbit or ecut−off = 0.5 values.

6 SU M M A RY A N D C O N C L U S I O N S

In this paper, we consider the Bayesian analysis of radial velocity
data. An advantage of this kind of analysis over traditional methods
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1040 A. Cumming and D. Dragomir

Figure 9. Comparison between the 99 per cent upper limits on K for circular
orbits determined by Cumming et al. (1999) for 63 stars from the Lick Planet
Search and the 99 per cent upper limits on K from a Bayesian analysis of the
same data. Solid triangles or circles include a linear trend in the fits [these
are the seven stars that Cumming et al. (1999) found to have a significant
slope], whereas open triangles or circles do not include a linear trend. The
dotted line indicates a 1:1 correspondence between the two calculations of
the upper limit. The black triangles are for circular orbits, the red circles are
for eccentric orbits with e < 0.5 and the green circles are for eccentric orbits
with e < 0.7.

is that a single calculation gives the FAP and the probability distribu-
tions of orbital period, eccentricity and velocity amplitude, allowing
error bars or upper limits on these quantities to be determined. Us-
ing periodogram methods, separate calculations are required for
each of these quantities, typically requiring many Monte Carlo
trials.

Previous work on the Bayesian analysis of radial velocities has
used MCMC techniques (although see Ford 2008 who used analytic
techniques to partially carry out the marginalization for circular
orbits). Our approach has been to apply some exact and approximate
analytic results (based on previous work by Jaynes 1987; Bretthorst
1988) to the marginalization integrals for Keplerian fits to radial
velocity data. In particular, we analytically integrate over the linear
model parameters for each combination of P, e and tp, and use an
analytic approximation (equation 38) to reconstruct the probability
distribution of K. An implementation of this algorithm in IDL is
available on request from the authors.

With this approach, a full search of parameter space for a single
Keplerian orbit takes several minutes on a 2–3 GHz processor, or
several seconds for circular orbits, making it applicable to data
sets from large-velocity surveys. Constraints on orbital parameters
(which involve surveying smaller regions of parameter space) can
be calculated in seconds, competitive with MCMC techniques.9

Our calculation can certainly be improved further. For example,
we have focused on the marginalization over the linear parameters
in this paper, and used the simplest approach of evaluation on an
evenly spaced grid to integrate over the remaining parameters P, K
and e.

We compared our results with previous calculations. The con-
straints on orbital parameters and odds ratios agree well with

9 In Ford (2006), the computer time needed was ∼10−6 s NobsNpLcN c,
where Nobs is the number of observations, Np is the number of planets, Lc

the length of each chain and Nc is the number of chains considered. For
30 observations, 1 planet, 10 chains each of length 104 (multiple chains are
required to assess convergence; Ford 2006), the total time required is ≈3 s.

MCMC results. We find that the Bayesian odds ratios are systemat-
ically lower than F-test odds ratios by a factor between 1 and 1000.
This is due to the different accounting of trials in the two calcula-
tions (Cumming 2004), with the Bayesian calculation including an
Occam’s razor penalty which accounts for the range of all parame-
ters rather than only the frequency range. The techniques we have
developed for rapidly calculating χ 2 may have application to other
techniques, such as the 2D periodograms of Wright et al. (2007) and
O’Toole et al. (2008). We find good agreement with the upper limits
on velocity amplitude K calculated for circular orbits by Cumming
et al. (1999) if we restrict our attention to e � 0.5. More eccentric
orbits give rise to a tail of solutions at large K. This shows that
characterizing the K distribution with a single parameter (e.g. the
99 per cent upper limit; Cumming et al. 2008) is not appropriate
for population analyses with highly eccentric orbits included. On
the other hand, for low-to-moderate eccentricity orbits (e � 0.5),
upper limits can be derived from circular orbit fits which is much
less numerically intensive.

The division of Keplerian parameters into ‘fast’ and ‘slow’ may
prove useful in MCMC simulations. At the least, the systemic ve-
locity does not need to be included as a parameter; it can be quickly
evaluated for each set of the other parameters, and used to evaluate
χ 2 (this was also noted by Ford 2006). One possible complication
is that Ford (2005) takes steps in a mixture of fast and slow parame-
ters, e cos ω and e sin ω, to help speed convergence. Separating the
slow and fast parameters could potentially reduce efficiency in this
case. Further investigations are needed.
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APPEN D IX A : INCLUDING A LINEAR TE RM
( L O N G - T E R M TR E N D )

In the main text, the ‘no-planet’ model that we have compared the
sinusoid and Kepler fits to was a constant-velocity model. Often,
a linear term is included in the fit to account for long time-scale
trends in the data. Since adding a linear trend adds one extra linear
term to the model, we can analytically marginalize over the slope
in the same way as we marginalize over the constant term. In this
Appendix, we give the formulae to do that.

A1 Is there evidence for a long-term trend?

First, consider a constant versus a linear model. Minimizing χ 2 as
a function of γ for Vi = γ , we find the best-fitting constant term is

γ0 = 〈v〉, (A1)

the corresponding minimum value of χ 2 is

χ 2
const∑
wi

= 〈〈v2〉〉 (A2)

and

det α =
∑

wi. (A3)

Inserting these expressions into equation (26) with the number of
parameters m = 1 gives the posterior probability for a fit of a
constant.

For a straight line fit, Vi = γ + βti, we find

γ0 = 〈v〉〈t2〉 − 〈vt〉〈t〉
〈〈t2〉〉 (A4)

β0 = 〈〈vt〉〉
〈〈t2〉〉 (A5)

det α(∑
wi

)2 = 〈〈t2〉〉 (A6)

χ 2
line∑
wi

= 〈v2〉 − 2γ0〈v〉 − 2β0〈vt〉

+γ 2
0 + 2mβ0γ0〈t〉 + β2

0 〈t2〉. (A7)

Using equation (26), the odds ratio is


 =
(
χ 2

line

)−(N−2)/2(
χ 2

const

)−(N−1)/2

[
π(∑

wi

) 〈〈t2〉〉

]1/2


[(N − 2)/2]


[(N − 1)/2]

1

	β
, (A8)

where 	β is the prior range for β (the prior range for γ is the
same in both models, and cancels). Here, we take β to lie between
±	v/T = ±(vmax − vmin)/T , giving 	β = 2	v/T , i.e. we use the
range of velocity amplitudes that we consider and the time of the
observations to set the range of slopes.

There is an important issue to mention here (we thank the ref-
eree for raising it) that the prior range of parameters should not
depend on the data (the prior probability should reflect our state of
knowledge before the data were taken.). That is not true here since
the range of observed velocities is used to determine what range
of velocity amplitudes to search. Strictly, the normalization of the
prior should not reflect this but be completely independent of the
data. For example, the range of slopes could be set by looking at
the range of slopes in previous planet discoveries (e.g. in Butler
et al. 2006 the reported slopes extend to ≈100 m s−1 yr−1) or the
range of velocity amplitudes extend up to a maximum set by the am-
plitude induced by a ≈10 MJ companion (Gregory 2005b; Ford &
Gregory 2007). However, the final odds ratios are not very sensitive
to the exact choice of prior range. The range of velocity amplitudes
enters the normalization logarithmically (since the prior is taken to
be uniform in log). The range of slopes has the largest effect since
it enters linearly, but we find that using a different choice, e.g. a
range of β from −100 to +100 m s−1 yr−1 changes the odds ratios
by factors of a few to several only.

A2 Including a trend in the circular or Keplerian orbit fit

Consider the model

Vi = γ + βti + A sin θi + B cos θi, (A9)

where θ i = 2πti/P for a circular orbit fit. Minimizing χ 2 with
respect to the four parameters γ , β, A, B, we find that their best-
fitting values can be written in a concise way by defining a new
average:

xy ≡ 〈〈xy〉〉 − 〈〈xt〉〉〈〈yt〉〉
〈〈t2〉〉 . (A10)

Using this notation,

γ0 = 〈v〉 − β0〈t〉 − A〈S〉 − B〈C〉 (A11)

β0 = 〈〈vt〉〉 − A〈〈St〉〉 − B〈〈Ct〉〉
〈〈t2〉〉 (A12)

A0 = vS C2 − vC SC

C2 S2 − SC
2 (A13)

B0 = vC S2 − vS SC

C2 S2 − SC
2 . (A14)
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The expressions for A0 and B0 are the same as previously, but with
the new averages. We also find

det α(∑
wi

)4 = 〈〈t2〉〉
[
S2 C2 − (

S C
)2

]
(A15)

and

χ 2
0∑
wi

= 〈〈v2〉〉 − 2 (A0〈〈vS〉〉 + B0〈〈vC〉〉)

+A2
0〈〈S2〉〉 + B2

0 〈〈C2〉〉 + 2A0B0〈〈SC〉〉
−β2

0 〈〈t2〉〉
= v2 − 2

(
A0 vS + B0 vC

)
+A2

0 S2 + B2
0 C2 + 2A0B0 SC.

(A16)

Equations (A11–A16) replace equations (28–32) when a long-term
trend is included. They are essentially the same, but with the average
xy used instead of 〈〈xy〉〉. Equation (26) with m = 4 then allows
marginalization over the four parameters A, B, β and γ .

Similarly, for the grid-based approach, the expression for χ 2 is
of the same form as equation (21), but with the averages calculated
as xy instead of 〈〈xy〉〉.

A P P E N D I X B: L I K E L I H O O D F O R FI X E D
NOISE SCALING PARAMETER K

In the main text, we integrated over the noise scaling parameter
k, giving the likelihood in equation (6) (t-distribution) rather than
equation (2) (exponential). As we argued in Section 2.3, the analytic
marginalization over an infinite range of k is a good approximation

for a reasonable spread in k. However, it could be that we are able
to predict k quite accurately, e.g. if the level of stellar jitter has
been predetermined for a particular star, in which case we might
want to carry out a calculation for fixed k. Also, this would allow a
calculation of the posterior probability for k.

For fixed k, we have P(d|a) ∝ k−N exp[−χ 2(a)/2k2]. The nor-
malization over the constant term is then, taking circular orbits as
an example,

P(d|φ, K,P ) ∝
∫ ∞

−∞
dγ k−N exp

(
− χ 2

2k2

)
, (B1)

where χ 2(γ ) has the quadratic form of equation (15). Therefore, we
can take

P(d|φ, K,P ) = k−(N−1) exp

(
−χ 2 [γ0, φ,K, P ]

2k2

)
(B2)

as a replacement for equation (19), where we set the prefactor to
unity as it cancels when we form the odds ratio.

Similarly, the analytic result giving marginalization over m pa-
rameters for a general linear model (equation 26) becomes∫

dmak−N exp

(
− χ 2

2k2

)

= (2π)m/2k−(N−m)

√
det α

exp

(
− χ 2

0

2k2

)
(B3)

As a check, marginalization over k at this stage takes us back to
equation (26).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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