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ABSTRACT

We present general, analytic methods for cosmological likelihood analysis and solve the
‘many parameters’ problem in cosmology. Maxima are found by Newton’s method, while
marginalization over nuisance parameters, and parameter errors and covariances are estimated
by analytic marginalization of an arbitrary likelihood function, expanding the log-likelihood
to second order, with flat or Gaussian priors. We show that information about remaining
parameters is preserved by marginalization. Marginalizing over all parameters, we find an
analytic expression for the Bayesian evidence for model selection. We apply these methods
to data described by Gaussian likelihoods with parameters in the mean and covariance. These
methods can speed up conventional likelihood analysis by orders of magnitude when combined
with Markov chain Monte Carlo methods, while Bayesian model selection becomes effectively
instantaneous.

Key words: methods: analytical – methods: data analysis – methods: statistical – cosmology:
theory – large-scale structure of Universe.

1 IN T RO D U C T I O N

There is now a standard model of cosmology, � cold dark matter
(�CDM), which has substantial predictive power but is highly un-
satisfactory from a theoretical viewpoint. The most serious of these
is the unknown nature of the dominant dark energy component driv-
ing the accelerated expansion of the Universe. This may be due to
a new force of nature, or possibly a break-down of Einstein gravity
on large scales. Without a clear direction of how to progress beyond
a phenomenological picture to a more fundamental theory, atten-
tion is turning to proposing a wide range of modified or alternative
models to the standard model and use observations as a guide to
future progress.

To realize this a number of large and challenging observational
programmes are being planned and carried out, e.g. ESA’s Planck
Cosmic Microwave Background mission, the Canada–France–
Hawaii Telescope Legacy Survey (CFHTLS), ESA’s Visible and
Infrared Survey Telescope for Astronomy (VISTA) and VLT Sur-
vey Telescope (VST), the Panoramic Survey Telescope and Rapid
Response System (Pan-STARRS), the Dark Energy Survey (DES),
the Large Synoptic Survey Telescope (LSST), ESA’s proposed
Euclid satellite, the NASA/DOE proposed Joint Dark Energy Mis-
sion (JDEM) and the Square-Kilometre Array (SKA). One of the
main aims of these large data sets is to distinguish between diverse
competing models, some with large parameter spaces. The �CDM
model, and basic extensions, contains some 18 parameters, (�m,
�b, �de, �ν , w0, wa, h, As, ns, αs, AT , nT , τ , b, f NL, Aiso, γ , η),

�E-mail: ant@roe.ac.uk (ANT);tdk@roe.ac.uk (TDK)

covering the dark matter, dark energy, initial conditions and gravity
sectors. Such large parameter spaces become a problem to investi-
gate, while fundamental models of dark energy or modified gravity
may have many more parameters which are not well described by
these phenomenological parameters.

The analysis of these large-scale data sets is not limited by shot
noise, data volume or the volume of the Universe covered. The
main limitation is our ability to understand and remove, to high
accuracy, systematic effects in the data. For example, we may not
precisely know the calibration factor, beam size and shape or ef-
fect of Galactic foreground contamination in cosmic microwave
background (CMB) experiments; the calibration and effect of out-
liers in photometric redshift surveys; scale-dependent and stochas-
tic bias in galaxy redshift surveys; calibration of cosmic shear or
intrinsic alignment effects in weak lensing surveys; or environ-
mental effects and evolution in Type Ia supernovae. These sys-
tematic effects are generally parametrized by a set of nuisance
parameters, which themselves must to be constrained by data.
The number of these nuisance parameters can vastly outweigh the
number of cosmological parameters. The size of these large pa-
rameter spaces for a likelihood analysis is the ‘many parameters’
problem.

We also need a systematic approach to discriminating between
what is becoming a large number of competing cosmological models
for dark energy and modified gravity. The Bayesian approach to
model selection is to evaluate the evidence, the probability of model
given the data, for all possible cosmological and nuisance parameter
space. For a large number models, each with a large number of
cosmological and nuisance parameters, this can be an immense
task.
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The standard approach to the analysis of cosmological data sets
is through a likelihood analysis of the model parameter space
(e.g. Kaiser 1988; Heavens & Taylor 1995; Verde et al. 2003).
Parameter values are given by the maximum, or mean, of the like-
lihood function, and parameter errors and covariances are given by
the shape of the marginalized likelihood surface around the maxi-
mum. Since we are not directly interested in nuisance parameters
which characterize systematic effects, these are marginalized out.
To evaluate the Bayesian evidence we marginalize over the entire
parameter space, both cosmological and nuisance to find the prob-
ability of the model.

The likelihood surface can be mapped out numerically using
Markov chain Monte Carlo (MCMC) methods (Gamerman 1997;
Lewis & Bridle 2002; MacKay 2003), where the likelihood dis-
tribution is sampled by a cloud of points whose density follows
the likelihood. Marginalization is then carried out by projecting the
points on to subsets of the parameter space. As efficient as this
is, when the number of parameters and nuisance parameters be-
comes large, or even infinite, this become unfeasible. MCMC is
not an efficient or accurate way to find the maximum of the likeli-
hood, and mean values are often quoted. The MCMC method can
also be sensitive to the choice of priors, and insensitive to sharply
peaked and strongly degenerate likelihood surfaces. Methods have
evolved to compensate for this, including using physical parameters
(Kosowsky, Milosavljevic & Jimenez 2002) or rotating to orthog-
onal parameter sets (Tegmark et al. 2004). However, the effect of
priors on these spaces is less transparent.

An alternative approach to numerical marginalization is to ap-
proximate the likelihood in parameter space as a Gaussian and
analytically marginalize (Bretthorst 1988; Gull 1989; Bridle et al.
2002; MacKay 2003). Bridle et al. (2002) apply this method in
cosmology to marginalize over nuisance parameters appearing in
the mean of a Gaussian likelihood. This approach is exact when
the parameters are Gaussian distributed such as the amplitude of
the mean, and this is publicly available in CosmoMC1 (Lewis &
Bridle 2002). An analytic marginalization method has also been
developed for evaluating the Bayesian evidence, using the saddle
point, or Laplace, approximation to marginalize over all parameters
around the peak of the likelihood (e.g. MacKay 2003; Trotta 2008).
However, this does not evaluate the absolute evidence. There is no
general treatment of analytic marginalization which will accommo-
date both of these, and even more general, situations. In this paper
we present a new, self-consistent and general framework in which to
maximize and marginalize over an arbitrary likelihood function, to
remove nuisance parameters, estimate marginalized projections of
parameter space and derive an analytic expression for the Bayesian
evidence.

The paper is set out as follows. In Section 2 we describe like-
lihood methods for parameter estimation and set out the general
approach for maximization and marginalization over nuisance pa-
rameters for an arbitrary likelihood function with flat or Gaussian
priors. We show that the marginalized likelihood function preserves
information on cosmological parameters. In Section 3 we show how
to apply the method to the specific case of a multivariate Gaussian-
distributed data where the cosmological and systematic information
is contained in the mean and covariance. In Section 4 we present
some applications: marginalization over an amplitude, projections
of parameter space and semi-analytic marginalization. We show
how our methods can applied to find a solution to the problem

1http://cosmologist.info

of Bayesian evidence in Section 5, and discuss some aspects of
model selection in model-space. Finally, in Section 6 we present
our conclusions.

2 A NA LY T I C L I K E L I H O O D A NA LY S I S

Assuming a model, M, for a cosmological data set, D, which is
parametrized by a set of Np parameters, θ , the conditional proba-
bility distribution of the data is given by the likelihood function,
L = p(D|θ ,M). We can transform from the likelihood func-
tion to the posteriori probability for the parameters given the data,
p(θ |D,M), using Bayes’ theorem;

p(θ |D,M) = L(D|θ ,M)p(θ |M)

p(D|M)
, (1)

where p(θ |M) is the prior distribution of the parameters assumed
before the analysis. The normalizing distribution, p(D|M), is
called the evidence. Priors are commonly assumed to be either flat,
where the distribution is a top-hat with constant value over some
parameter range and zero outside, or Gaussian with a mean con-
strained by earlier experiments. The posterior distribution is then
maximized with respect to the Np cosmological parameters in the
model. Marginalization of the posteriori or likelihood function is
required if we have a subset of M parameters, ψ , which we want to
integrate over,

p(θ |M) =
∫

dMψ p(θ, ψ |M). (2)

The ψ parameters may be nuisance parameters which characterize
some systematic effect, or some of the cosmological parameters,
θ , whose effect we want to integrate over when we do not have
an accurate understanding of the effect (e.g. the normalization of
galaxy perturbations due to galaxy bias). We may also want to
project out the likelihood surface to lower dimensions to study the
distribution, or even marginalize over all of the Np + M nuisance
and cosmological parameters if we want to estimate the evidence.

Now consider an arbitrary likelihood function, L(D|�,M),
which depends on a set of cosmological parameters, θ , and on a
set of marginalization parameters, ψ , which we want to integrate
over, where we have combined all parameters into � = (θ , ψ). We
begin by defining the log-likelihood, L, of the likelihood function

L = −2 ln L. (3)

This can be expanded around an arbitrary point, �0, in the full
parameter space to second-order

L = L0 + δμLμ + 1

2
δμδνLμν, (4)

where Lν = ∂νL0 and Lνμ = ∂ν∂μL0 are evaluated at �0, and
where we denote derivatives with respect to a nuisance parameter
by Greek indices.

2.1 Maximizing the likelihood

We first want to find the minimum of the log-likelihood function in
the full NP + M cosmological and nuisance parameter space. Dif-
ferentiating equation (4) with respect to the parameters and setting
the gradient to zero, we find the displacement between the fiducial
point and the peak of the likelihood as

δμ = −LνL−1
νμ. (5)

If the likelihood is close to Gaussian, we can find the maximum of
the likelihood in a single step. If the likelihood is non-Gaussian, but
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smooth, we can iterate towards the peak. This is Newton’s method
for finding the peak of the likelihood (e.g. Press et al. 1989). The
assumption of Gaussianity in equation (4) is therefore benign since
we can maximize the likelihood for non-Gaussian distributions.

2.2 Analytic marginalization

We now want to marginalize over the ψ nuisance parameters.
Locally expanding the likelihood in the ψ parameters yields

L = L0 + δψαLα + 1

2
δψαδψβLαβ, (6)

where the indices α and β refer to nuisance parameters. Analytically
marginalizing over ψ (see Appendix A for details), assuming a non-
zero flat prior in the volume Vψ of ψ-space, p(ψ |M) = 1/Vψ ,
yields

L = L0 − 1

2
LαL−1

αβLβ + Tr ln
(
V

2/M
ψ Lαβ

)
, (7)

where we have dropped an unimportant constant of −M ln (4π).
This is the marginalized log-likelihood function under the assump-
tion of local Gaussianity in these directions. We consider methods
for dealing with non-Gaussianity in Section 4.3.

The first term, L0 = L(θ |ψ = ψ0) is the conditional likelihood
at fixed ψ . The second term in equation (7), which is quadratic in
Lα , has an intuitive meaning. Although we have fixed the values
of ψ = ψ0 at their maximum in the full parameter space, and
where the gradient is zero, the likelihood is still a function of the
remaining parameters, θ . As we move in parameter space away
from the maximum along one of the directions of θ , the peak will
move away from ψ0, unless the parameters are uncorrelated, and
the gradient Lα will be non-zero. This term then describes the full
shape of the likelihood and the coupling between the marginalized
parameters and the remaining parameters. Its presence removes the
dependence of the likelihood on the marginalized parameters, and
widens the distribution.

The third, well-known, term accounts for the volume of marginal-
ized parameter space with significant likelihood, and is called the
Occam factor. The presence of the curvature of the log-likelihood,
through Lαβ , shows that this expression is sensitive to information
in the data itself about the systematic nuisance parameters. Note
that we have made no assumptions about the form of the likeli-
hood function in θ space, only that we can approximate the peak
of the likelihood function in the marginalized ψ parameter space
by a multivariate Gaussian. Analytic marginalization does not suf-
fer from prior boundary problems, since the full likelihood space is
marginalized over, and infinitely resolves the peak of the likelihood.

We can derive the marginalized likelihood in a second, more
illuminating, way. We can use the expansion given by equation (6)
to find the displacement of a fixed point in nuisance parameter space
from the peak of the likelihood,

δψα = −LβL−1
αβ . (8)

Substituting this back into equation (6) we find that maximum value
of the likelihood is

Lmax = L0 − 1

2
LαL−1

αβLβ . (9)

The first two terms in equation (7) are just the maximum likelihood
value, while the third term is just the width of the likelihood curve.
This shows us that the marginalized likelihood is independent of
the choice of ψ0, when L(ψ) is Gaussian, since the second term in
equation (9) corrects the likelihood estimated at ψ0 to the value at

the peak. In Appendix B, we derive the mean and variance of the
likelihood from its Generating Function.

Analytic marginalization preserves information about cosmolog-
ical parameters. Expanding equation (7) to lowest order in the
remaining cosmological parameters, �θ , around the peak of the
ensemble averaged likelihood keeping the curvature Lαβ fixed at its
expectation value, we find

L = L0 + �θi�θj

[〈Lij 〉 − 〈Liα〉〈Lαβ〉−1〈Lβj 〉
]
, (10)

where Arabic indices i and j indicate cosmological parameters.
Here we can identify the Schur complement (e.g. Zhang 2005)
of the marginalized Fisher information matrix for cosmological
parameters,

F M
ij = Fij − FiαF

−1
αβ Fβj , (11)

where

Fμν = 1

2
〈Lμν〉 (12)

is the full (Np + M)-dimensional Fisher matrix (see, e.g. Tegmark,
Taylor & Heavens 1997) for cosmological parameters and system-
atic nuisance parameters. The indices (μ, ν) extend over all (i, j)
and (α, β). Equation (11) is identical to the Fisher matrix found by
maximizing the pre-marginalized likelihood and then marginalizing
over the nuisance parameters. Hence, at the level of Fisher matrices,
no information is lost by analytic marginalization.

When we have a Gaussian prior on the nuisance parameters, the
log-likelihood becomes

L = L0 + δψαLα + 1

2
δψα[Lαβ + 2C−1

αβ ]δψβ + Tr ln Cαβ, (13)

where Cαβ is the prior covariance matrix. The maximum is now
found at

δψα = −Lβ [Lαβ + 2C−1
αβ ]−1, (14)

while marginalization leads to

L = L0 − 1

2
Lα[Lαβ + 2C−1

αβ ]−1Lβ + Tr ln

(
δK
αβ + 1

2
CαδLδβ

)
.

(15)

3 G AU SSI AN LI KELI HOODS

Let us assume the statistical properties of the data, D, can be mod-
elled by a multivariate Gaussian distribution, L(D|θ , ψ) which
depends only on a mean, μ(θ , ψ) = 〈D〉, and a covariance matrix,
C(θ , ψ) = 〈�D�Dt〉, where �D = D − μ(θ , ψ) is the variation
of the data about the mean. By definition 〈�D〉 = 0. The Gaussian
log-likelihood function is given by

L0 = �DC−1�Dt + Tr ln C. (16)

The cosmological and nuisance parameters can appear in both the
mean of the data values or in the covariance. We consider each in
turn, starting with parameters in the mean.

3.1 Parameters in the mean

If the nuisance parameters are in the mean, μ = μ(ψ), and we
assume a flat prior on marginalization parameters, the gradient and
curvature of the log-likelihood in parameter space is

Lα = −2�Dt C−1μα, (17)
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Lαβ = 2
(
μαC−1μt

β − �Dt C−1μαβ

)
. (18)

The expectation value of the slope is 〈Lα〉 = 0, while the expectation
value of the curvature around the peak in parameter space is

〈Lαβ〉 = 2Fαβ = 2μαC−1μt
β . (19)

If we choose to use the Fisher Matrix for the local curvature, the
maximum of the Gaussian likelihood function lies at

max
ν = 0

ν + F −1
μν �Dt C−1μμ, (20)

where �0 is an arbitrary point in parameter space. Since the curva-
ture is approximated by the Fisher matrix, this is a quasi-Newtonian
method. Again if the likelihood is Gaussian in parameter space, this
is exact and if not some iteration is required.

Marginalizing over the nuisance parameters assuming a flat prior,
we find the likelihood function is again a Gaussian,

L = �DC−1
M �Dt + Tr ln V

2/M
ψ Fαβ, (21)

where the marginalized data covariance matrix, CM is given by

CM = 〈�D�Dt 〉M = (
C−1 − C−1μt

αF
−1
αβ μβ C−1

)−1
. (22)

If we assume the curvature is given by its expectation value, the
constant term, ln det V 2

ψFαβ in equation (21), can be dropped and we
can identifyLwith the χ 2-statistic and all our results still hold. Note
that in these expressions, the parameter-dependence only appears
in the mean in �D = D − μ(θ , ψ0). Everything else is fixed at the
fiducial values, θ 0 and ψ0. We can also see from this solution that
there is a requirement on the marginalized covariance matrix that it
is positive definite, �DC−1

M �Dt > 0, in order that the likelihood
function has a maximum bound, however this is always true.

If we assume a Gaussian prior on the nuisance parameters, the
marginalized data covariance matrix is regularized and can be sim-
plified using the Woodbury matrix identity (Woodbury 1950) so
that

CM = (
C−1 − C−1μt

α[Fαβ + C−1
αβ ]−1μβ C−1

)−1
(23)

= C + Cαβμαμ
t
β , (24)

where the last expression is explicitly positive-definite. Equa-
tions (23) and (24) have previously been derived by Bridle et al.
(2002) using a somewhat different method for marginalizing over
a Gaussian likelihood with a Gaussian prior and nuisance parame-
ters in the mean. If we include a prior on nuisance parameters, the
log-likelihood function becomes

L = �DC−1
M �Dt + Tr ln CM, (25)

again up to an unimportant normalization constant. We note that
even if the cosmological parameters do not affect the covariance,
the marginalized covariance, CM, will gain a dependence on cos-
mological parameters through the mean.

3.2 Parameters in the covariance

If the parameters are in the data covariance matrix, C = C(θ , ψ),
the derivatives of the log-likelihood are

Lα = −Tr (∂αln C �ln C) , (26)

Lαβ = Tr [(∂αln C)(∂β ln C)(I + 2�ln C)

− C−1(∂α∂β C)�ln C], (27)

where ∂αln C = C−1∂αC, �ln C = �DC−1�Dt − I and
〈�ln C〉 = 0. The expectation values of the gradient is 〈Lα〉 = 0
while the expectation of the curvature is given by

〈Lαβ〉 = 2Fαβ = Tr [(∂αln C)(∂β ln C)]. (28)

If we assume the curvature is given by its expectation value, we find
the peak is at

δν = 1

2
F −1

νμ Tr
(
∂μln C �ln C

)
, (29)

from the fiducial point in � space. For a single-step estimate of the
peak, this is equivalent to Tegmark’s (1997) quadratic estimator.
The analytically marginalized log-likelihood is

L = L0 − 1

4
LαF

−1
αβ Lβ + Tr ln V

2/M
ψ Fαβ, (30)

where Lα is given by equation (26). To change the prior to a Gaus-
sian, we again make the substitution

L = L0 − 1

4
Lα[Fαβ + C−1

αβ ]−1Lβ + Tr ln
(
δK
αβ + CαβFαβ

)
, (31)

Again, we require that L > 0 to bound the likelihood function.

4 A PPLI CATI ONS

Having calculated the marginalized likelihoods for Gaussian-
distributed data with parameters in both mean and covariance ma-
trix, we now turn to two examples: marginalization over nuisance
parameters and projections of the likelihood function in parameter
space.

4.1 Systematic nuisance parameters

A simple, and well-known, example of a nuisance parameter is the
normalization of the mean with a flat prior. This is an interesting
case since the analysis is exact. Let the mean be given by μ = Aμ0,
where the Fisher matrix for the amplitude, A, found from the data
is given by FAA = (1/A2) Tr [μC−1μt], then

CM =
(

C−1 − C−1μtμC−1

Tr [μC−1μt ]

)−1

(32)

and the peak is found from equation (20). If we assume the covari-
ance is diagonal, Cij = σ 2

i δ
K
ij , then the log-likelihood becomes

L =
∑

i

�D2
i

σ 2
i

−
(

1∑
k μ2

k/σ
2
k

) (∑
i

�Diμi

σ 2
i

)2

. (33)

If we assume further that the mean values are Gaussian-distributed
power spectra, μk = Pk, their variance is given by σ 2

k = 2 P2
k , and

the log-likelihood is

L = 1

2

∑
k

(
� ln Pk − � ln Pk

)2
. (34)

In the last expression � ln Pk = [P̂k − Pk(θ )]/Pk , where P̂k is the
measured power, x = (1/ND)

∑
k xk and ND is the number of data

points. Hence the log-likelihood is positive-definite, and minimizing
L is equivalent to minimizing the variance of �ln Pk. This expres-
sion makes sense as the second term removes any dependence on
the best estimate of the calibration off-set from the likelihood. Equa-
tion (34) has an immediate cosmological application for removing
the dependence of a linear galaxy bias on parameters estimated
from the galaxy power spectrum, assuming the power spectrum
passbands are independent.
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More generally, we find the marginalized likelihood for multiple
parameters is given by

L = 1

2

[∑
k

|�ln Pk|2 − 1

2
LαF

−1
αβ Lβ

]
, (35)

where the Fisher matrix and gradient of the log-likelihood are

Fαβ = 1

2

∑
k

(∂αln Pk)(∂β ln Pk), (36)

Lα = −
∑

k

�ln Pk ∂α ln Pk, (37)

and the peak of the likelihood is at

δμ = −1

2
F −1

μν Lν . (38)

If we want to include noise in these expressions, we can do so
by substituting Pk → Pk + N(r), where N(r) is the noise power,
which may depend on position within the survey. For example in
galaxy redshift surveys, N (r) = 1/n̄(r), and we should extend the
summation over k to Tr → ∑

k

∫
d3r . In the continuum limit, we

would substitute Tr = ∫
d3k/(2π)3 (see, e.g., Taylor & Watts 2001).

For CMB or weak lensing analysis on the sky, we should substitute
Pk → C� and Tr → ∑

�(2�+1), where we have implicitly assumed
statistical isotropy and summed over the 2� + 1 azimuthal modes.
Finally, for 3D Cosmic Shear (e.g. Heavens, Kitching & Taylor
2006), where the covariance matrix is C = Cγ γ

� (z, z′) we substitute
Tr → ∑

�(2� + 1)
∫

dzdz′.
If the parameter appear in the covariance matrix, and the data

have a Gaussian distribution, the log-likelihood distribution is
given by

L0 = Tr (ĈC−1 + ln C) = Tr (�ln C + ln C) + ND, (39)

where Ĉ = �D�Dt and ND is the number of data-points used. If
again we use the example of marginalization over the normalization
of the covariance matrix, C = A C0, where the Fisher matrix is
FAA = ND/2A2, the marginalized likelihood is

L = Tr (�ln C + ln C) − 1

ND
Tr [�ln C�ln C] + ND. (40)

For a diagonal covariance matrix, the marginalized log-likelihood
with parameters in the covariance can be written

L =
∑

k

(
P̂k

Pk

+ ln Pk

)
− 1

4
LαF

−1
αβ Lβ . (41)

Despite the different form of the term LαL−1
αβLβ when the param-

eters appear in the data covariance matrix, in this limit this term
is the same as when the parameters appear only in the mean (cf.
equation 35).

4.1.1 Galaxy clustering

In Fig. 1 we show the likelihood, L(�m, A), for a joint measure-
ment of the matter density parameter, �m, and galaxy clustering
amplitude, A = bσ 8, from the galaxy power spectrum, Pg(k). Here
b is a linear bias parameter and σ 8 the variance of matter clustering
in spheres of 8 h−1 Mpc. The matter power spectrum is generated
using the Eisenstein & Hu (1997) parametrization with a Smith
et al. (2003) non-linear correction, and we have ignored the ef-
fect of redshift-space distortions.. We have assumed a fixed Hubble
parameter, hence �m determines the linear break scale in the mat-
ter power spectrum and amplitude of non-linear corrections. We

Figure 1. Example of marginalization over a nuisance parameter. The lower
panel shows the two-parameter 1σ (68.3 per cent), 2σ (90 per cent) and 3σ

(99.9 per cent) contours in white, grey and black for the matter density
parameter, �m, and a nuisance power-spectrum normalization parameter,
A = bσ 8, for a measurement of the matter power spectrum for a survey
covering an effective volume of 19.7 h−3 Gpc3 with negligible shot noise.
The solid lines show the convergence to the maximum likelihood. The
upper panel compares the one-parameter marginalized �m constraint for full
numerical marginalization (black solid line) with analytic marginalization
using equation (34) (red dot–dashed line), the difference between these lines,
even in this non-Gaussian case, is small. The dashed horizontal lines show
the one-parameter 1σ , 2σ and 3σ limits (assuming a Gaussian likelihood).

assume a fiducial model with �m = 0.3 and bσ 8 = 1. The er-
ror on the measured power is assumed to be sample-dominated,
with negligible shot noise, given by σ (k) = 2πP (k)/

√
V k3d ln k

(e.g. Tegmark 1997), where we have assumed V = 19.7 h−3 Gpc3

and spectroscopic redshifts and no redshift-space distortion. We in-
clude a wavenumber range up to kmax = 100 h Mpc−1. In the lower
panel we show the two-parameter distribution and how Newton’s
method converges to the maximum likelihood. It is clear that af-
ter approximately three to four iterations the maximum likelihood
is covered, even in this case of a highly non-Gaussian likelihood
surface.

Since the galaxy bias parameter is poorly known, it is useful to
marginalize over the amplitude when estimating �m. The upper plot
in Fig. 1 shows the projected 1D marginalized likelihood for �m, for
both numerical marginalization over the amplitude (black line) and
using the analytic marginalization result given by equation (34) (red
line). The analytic result accurately reproduces the full numerical
result for the 1σ , 2σ and 3σ errors, even though there is some
non-Gaussianity in the �m–A plane.

4.2 Projection of parameter space

Another application for analytic marginalization is in the projection
of parameter space. Usually the maximum likelihood parameter
values are quoted along with the marginalized errors and marginal-
ized parameter covariances. Sometimes the mean of a parameter,
marginalized over all other parameters, is also quoted (e.g. Spergel
et al. 2003), and the 2D projected parameter space plotted to illus-
trate non-Gaussianity. We can again use analytic marginalization to
do this for us.
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870 A. N. Taylor and T. D. Kitching

Figure 2. Projected cosmological three-parameter space for a Euclid-type (20 000 deg2, median redshift of z = 0.8) gravitational lensing survey. Grey contours
are 1σ 2σ and 3σ levels using analytic marginalization over the extra parameters, solid blue lined ellipses are the 1σ contours using the Fisher matrix
approximation to the projected likelihood surface, solid red lined ellipses are the 1σ fully marginalized constraints. The upper panels show the 1D marginalized
likelihoods for the analytic marginalization (black lines), the Fisher approximation (blue lines) and for a full numerical marginalization (red lines) – in the
upper panel all the lines are effectively coincident, which highlights the accuracy of the analytic marginalization approach in such cases.

4.2.1 Dark energy parameters from 3D cosmic shear

In Fig. 2, we show the predicted projected likelihood space esti-
mated on a grid for a set of three cosmological parameters (w0, wa,
h), where w(a) = w0 + (1 − a)wa is the dark energy equation of
state, p =w(a) ρ and h = H0/100 km s−1 Mpc−1 is the reduced Hub-
ble parameter. The fiducial maximum-likelihood values are w0 =
−0.95, wa = 0 and h = 0.7, and we have assumed a 3D tomo-
graphic cosmic shear analysis with the proposed Euclid satellite
mission (Refregier et al. 2010), covering 20 000 deg2 with median
redshift z = 0.8. The upper row in Fig. 2 compare the analytically
marginalized 1D parameter distribution with numerical marginal-
ization over the remaining 2D likelihood surface and the Fisher
matrix prediction. We see that analytic marginalization is indistin-
guishable from numerical marginalization. The lower panels show
the projected 2D likelihood surface for analytic marginalization
(solid white/grey/black 1σ , 2σ , 3σ regions) along with the two-
parameter 1σ (68.3 per cent) likelihood contours estimated from
the Fisher matrix approximation (blue ellipse), and a contour for
the numerical marginalization (red ellipse). It can be seen in all pan-
els that the analytic marginalized likelihood surface is in excellent
agreement with the numerical marginalization, reproducing even
small departures from the Fisher matrix approximation. While re-

sults will clearly depend on which parameters are in the likelihood
analysis, this does suggest that for large numbers of parameters, the
marginalization will tend towards a Gaussian distribution, since any
departures from Gaussianity will be averaged out.

In Fig. 3 we extend the comparison to an eight-parameter cosmo-
logical model. In this example, the qualitative differences between
the analytic marginalization results are clear. In some 2D parame-
ter spaces for example (�b, h) there is significant non-Gaussianity,
however in others such as (w0, wa) the 2D parameter space is very
Gaussian. In such circumstances, analytic marginalization could be
used to marginalize over Gaussian parameter combinations and a
numerical marginalization used to capture any non-Gaussian be-
haviour.

4.3 Semi-analytic marginalization

Non-Gaussianity may be significant for some parameters and so
we propose an algorithm for semi-analytic marginalization. In this
section, we propose two algorithms for this: top-down and bottom-
up. In the bottom-up approach we first find the (Np + M)-parameter
maximum-likelihood peak by a quasi-Newton solution,

δν = −1

2
F −1

μν Lμ (42)
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Analytic likelihood 871

Figure 3. Projected cosmological eight-parameter space for a Euclid-type (20 000 deg2, median redshift of z = 0.8) gravitational lensing survey. The upper
panels show the 1D parameter constraints using analytic marginalization (black) and the Fisher matrix approximation (blue, dark grey). The other panels show
the 2D parameter constraints. Grey contours are 1σ , 2σ and 3σ levels using analytic marginalization over the extra parameters, (blue) solid-lined ellipses are
the 1σ contours using the Fisher matrix approximation to the projected likelihood surface.

and use MCMC to plot out the 1D and 2D parameter likelihood
distributions, analytically marginalized over all other parameters.
Any non-Gaussian parameters can be removed from the analytic
marginalization and numerically marginalized over with MCMC. If
new, non-Gaussian parameters appear we can numerically marginal-
ize over them until stability is reached. A potential disadvantage of
this approach is that non-Gaussian features may be obscured by
projection which may bias confidence regions. We will investigate
this algorithm elsewhere. This process may also end up running
MCMC on all parameters – but in many cases some, if not many,
of the parameters will be close to Gaussian-distributed in parameter
space with just a few non-Gaussian parameters needing numerical
marginalization.

An alternative, and more robust, approach is top-down where
we would run an initial short-chain MCMC analysis and iden-
tify the Gaussian directions. We would then run subsequent semi-
analytic marginalization, analytically marginalizing over the Gaus-
sian parameters, and MCMC chains over the raining parameters.
While this version clearly requires an initial, full MCMC anal-
ysis to be run, the speed-up will occur if we have to run the
parameter estimation analysis many times as is common in data
analysis or is run on a series of simulated data. However, if the
number of parameters is too large, a traditional MCMC approach

may not be feasible, in which case a bottom-up approach will be
required.

Once the Gaussian directions are identified, the time spent map-
ping parameter space can be decreased significantly. We assume the
time to run a full MCMC analysis in a Np-parameter space is

TMC = �tMCNp ln Np, (43)

where �tMC is the time to run one point in the MCMC chain. If M
of these parameters can be analytically marginalized over, a semi-
analytic marginalization scheme will take

TSAM = �tMC(Np − M) ln(Np − M) + �tFM, (44)

where �tF ��tMCMC is the time taken to estimate the Fisher matrix.
Clearly if all parameters are well approximated by a multivariate
Gaussian, the main effort is in finding the peak of the likelihood,
since we already know the Fisher matrix. For example in our eight-
parameter cosmological model (Fig. 3), only the baryon density, �b,
and the scalar spectral index, ns, show significant deviations from
Gaussianity. This implies we can reduce the computation time by
a factor of 12. If we have a model with an additional 200 nuisance
parameters, all of which can all be marginalized over, this is a
reduction of around 67. Even if MCMC has be to extensively used
to map out the parameter space, analytic marginalization can also
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be used to map the MCMC proposal distributions more accurately
than a Fisher matrix approximation.

5 MODEL SELECTION AND THE BAY ESIAN

E V I D E N C E

5.1 The Bayesian evidence

Having explored analytic methods for maximizing and marginaliz-
ing in a likelihood analysis, we now turn to the problem of model
selection. For model selection, we need to find the probability of the
most likely model given the data, p(M|D). From Bayes’ theorem,
we find (see, e.g., Trotta 2008; Liddle 2009)

p(M|D) = p(D|M)p(M)

p(D)
, (45)

where the probability p(D|M) can be identified as the evidence
from the likelihood analysis (equation 1). The probability p(M) is
the prior probability of the model in the absence of the data, for
example from a previous experiment. The evidence, the probability
of getting the data given the model for the system, is found by
marginalizing over all cosmological parameters in the model,

E(D|M) = p(D|M) =
∫

dNpθ L(D|θ ,M)p(θ |M). (46)

This can be estimated numerically using thermodynamic integration
(Slosar et al. 2003; Beltran et al. 2005), a variant of MCMC, or by
nested sampling (Skilling 2004; applied to cosmology by Bassett,
Corasaniti & Kunz 2004; Mukherjee et al. 2006) or VEGAS, a multi-
dimensional integrator developed in particle physics (Lepage 1978)
and applied in cosmology by Serra, Heavens & Melchiorri (2007).
Alternative, approximate methods are the Savage–Dickey ratio for
nested models (Trotta 2007), and the Bayesian information criterion
(Schwartz 1987). When combining independent data set, parameter
estimation only requires the addition of the log-likelihoods, but the
Bayesian evidence must be re-evaluated by marginalization over the
product of the posteriori distributions. For a large parameter space,
the estimation of the evidence can be highly CPU-intensive, and so
analytic methods are desirable.

5.1.1 The Laplace approximation

There is already a well-known analytic marginalization method
which uses the saddle point, or Laplace, approximation (see
e.g. MacKay 2003; Trotta 2008), where the likelihood is expanded
around the peak in parameter space:

LLaplace = Lmax + 1

2
�θi�θjLij , (47)

where Lmax is evaluated at the maximum of the likelihood function
in the full parameter space, and �θ = θ − θmax. With a flat prior,
p(θ |M) = 1/Vθ , where Vθ is the prior volume of parameter space,
we can carry out the Gaussian integration to find

LLaplace = Lmax + 2 ln(Vθ

√
det Fij ). (48)

The last term is again the Occam factor, the ratio of the prior (non-
zero) volume of parameter space to the effective posterior volume
measured by the parameter covariance matrix, 〈�θ i�θ j〉 = F−1

ij .
A severe limitation of the Laplace approximation is that the value

of Lmax is evaluated at the maximum likelihood point in parameter
space,

Lmax = L(θmax|D,M), (49)

which depends on the data. Hence to evaluate it, we must first
find the maximum likelihood for each model. To circumvent this,
embedded or nested models have been considered, where the rela-
tive evidence between the evidence in one parameter space can be
compared with that of a lower dimensional parameter space (see
e.g. Heavens, Kitching & Verde 2007).

5.1.2 Analytic evidence

However, with analytic marginalization we now have a way to es-
timate the maximum of the likelihood for an arbitrary data set and
fixed fiducial parameter values (Section 2.2). Expanding the cos-
mological parameter space to second order and marginalizing, and
this time keeping all terms, we find

E = L0 − 1

2
LiL−1

ij Lj + Tr ln V
2/Np
θ Lij − Np ln 4π, (50)

where E ≡ −2 ln E is the log-evidence. This expression is again
independent of the fiducial model used, as we should expect after
marginalization.

5.1.3 Gaussian likelihoods

If the likelihood for the data is Gaussian and the parameters appear
in the mean, the evidence is

E(D|M) = �D
(

C−1 − C−1μt
iF

−1
ij μj C−1

)
�Dt

+ Tr ln C + 2 ln(Vθ

√
det Fij ) − Np ln 2π. (51)

The evidence is the probability based on the outcome of given
experiment. However we can also forecast the evidence of future
experiments and ask what is the expected evidence, and even what is
the variance on a prediction of the evidence. Just like the frequentist
χ 2-statistic, this will give us an expectation of the mean and range
of values of evidence we should expect from an experiment, given
the uncertainty in the data.

The expectation value of the Gaussian log-evidence is

〈E〉 = ν + Tr ln C + 2 ln(Vθ

√
det Fij ) − Np ln 2π, (52)

where ν = ND − Np is the number of degrees of freedom, ND is
the number of data points and Np is the number free parameters.
This is then just the χ 2 number of degrees of freedom, plus
the normalization factor and the Occam factor. If we were to ig-
nore these terms, we see the Gaussian log-evidence, E , has the
same expectation value as the χ 2-statistic. If we further estimate
the variance of the log-evidence, we find

〈�E2〉 = 2ν (53)

is just twice the number of degrees of freedom, as we might expect
for a Gaussian distribution. This highlights the connection between
the evidence and the χ 2-statistic, and shows that, although they are
asking different questions of the data, they have a similar ‘sensi-
tivity’.

5.1.4 Evidence for an arbitrary model

In addition to calculating the evidence for the data, given the maxi-
mum likelihood model also from the data, we can also ask what is
the probability that the measured data are drawn from an arbitrary
model, given an assumed set of ‘true’ parameter values, p(D|Mt ),
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and scatter in the possible data. We can calculate this from

E(D|Mt ) = �DC−1�Dt + Tr ln C (54)

+ 2 ln(Vθ

√
det Fij ) − Np ln 2π, (55)

where the likelihood peaks at the ‘true’ values, not the values which
best fit the data. As an example, if the maximum likelihood given
the data peaks at a non-�CDM (non-standard model), equation (51)
will yield the evidence for that model. But instead if we assume that
�CDM parameters is the ‘true’ model; equation (54) will tells us
the probability that the data are drawn from this model. If this is
very low, it is unlikely the data are drawn from this model.

5.1.5 The Occam factor

The final term in the evidence, the Occam factor, is often problem-
atic as it depends on the assumed prior volume of the parameter
space, which is not well defined. While we can hope that for good
data the other terms in the evidence dominate over the Occam fac-
tor, for poor data, this may not be the case. One approach is to
assume that the prior is set using the Fisher matrix. We can let
Vθ = aNp/

√
det Fij , where the constant of proportionality of order

a = 10 and Np is the number of parameters. This factor becomes
simply 2Np ln a, and so this term still gives more weight to models
with fewer parameters. The parameter a becomes an adjustable pa-
rameter, depending on how much weight one wants to give to the
Occam factor. A value of a = 10 would seem to be fairly conserva-
tive. Clearly, this scheme can be extended for parameter which are
highly unconstrained.

We also note that our expression for the evidence will disfavour
models which have arbitrary unconstrained parameters. A common
concern in evidence calculations is that an extra parameter entirely
unconstrained by the data could be added that would result in the
disfavourment of the model only via the Occam factor. We find
that in such an unconstrained model, the χ 2 term becomes infinity
because the Fisher matrix element for these parameters is zero and
hence the probability of such models is zero.

5.2 Model selection

5.2.1 Model selection: Bayes’ factor

A common approach to model selection is the use of the Bayes’
factor (Kass & Raftery 1995), the ratio of pairs of models or its
logarithm,

BAB = −2 ln BAB = E(D|MA) − E(D|MB ). (56)

This has the advantage that we do not need to consider the normal-
ization factor, p(D), in Bayes’ equation (45). Jeffreys (1961) has
proposed a qualitative scale based on these ratios.

5.2.2 Model selection: Model-space

An alternative is to rank-order models by their evidence, with a
uniform prior, p(M) = 1/NM, where NM is the number of models.
Even though we do not expect to have a complete set of all possible
models, we can still normalize the set we have to estimate the
posterior probability for each model, MA:

p(MA|D) = p(D|MA)p(MA)∑NM
B p(D|MB )p(MB )

, (57)

where we consider independent models to form a countable set. By
this definition, uncountable sets of models contain models that can
be distinguished by a continuous parameter, which is then just a
model with a variable parameter, i.e. we class a model as the set of
parameters, not a set of parameter values.

Even though the models may be incomplete, p(MA|D) is an
upper limit on the true probability for each model with this data set.
Adding any new model will only reduce the probability. Since the
prior is uniform, we expect a new model to appear at random in
the distribution. This scheme not only assesses ‘goodness-of-fit’ to
the data, but also the competitiveness of models. If one model does
well compared to other proposed models, we rightly attach more
belief to it. However, it does not prevent a new model appearing
with a higher evidence which would become the best model. In this
scheme, one would not necessarily truncate or throw away models,
since they contribute to the normalization of the probabilities –
although if the contribution is negligible it would seem sensible to
drop outliers so the model-space is of a manageable size.

5.2.3 Model significance

Even though the scheme outlined above puts an upper limit on the
absolute model probability, it will still return the following result:
that if we only have one model, Bayes’ theorem tells us we must
assign it a 100 per cent probability (since it is the only viable model).
Instead we could judge a model in relation to the prior we assign it.
To do this, we define a significance factor,

S = p(M|D)

p(M)
= p(D|M)

p(D)
, (58)

where, by definition, S ≥ 1, since we cannot lose information by
adding data. The evidence for any model is only significant if the
ratio, S, of the evidence to the prior for the model M is much
larger than unity. For example, if we consider again the situation
when we only have one model the prior probability is p(M) = 1,
so that S = 1, and we have not learned anything about the absolute
validity of the model.

We can now estimate the number of models needed for any model
to be convincing in an absolute sense. For two models the uniform
prior for each model is p(MA) = 1/2, so the maximum signifi-
cance is 2. While the Bayes’ factor between the two models could
‘decisively’ favour one model over the other (odds of �1:100 on
Jeffreys scale), one could only be at most ‘inconclusive’ (odds of
1:2) that the model is correct. For absolute confidence, we need
at least three models for comparison.2 This argument can be used
to retrospectively understand the history of model selection. For
example, when given the choice of a steady state model over the
big bang the later was clearly favoured due to a large Bayes’ factor.
However the absolute confidence in the big bang could not be high
since there were no alternative theories. Indeed once inflationary
cosmologies appeared this new theory became preferable.

If a new model is added to the model-space, the significance, SA

scales as

S ′
A = SA(NM + 1)

NM + SA[p(D|Mnew)/p(D|MA)]
. (59)

If the new model has lower probability the significance scales as
S ′

A = SA(NM + 1)/NM, while if it has much higher probability it
scales as S ′

A = (NM + 1)p(D|MA)/p(D|Mnew).

2 Note the prior on the model is important here. A flat prior of 1/NM is
only appropriate for equally credible models. Including a vast array of non-
credible models can be countered by giving these a low-prior weighting.
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Figure 4. A simple example of non-nested evidence analysis. The bottom row shows three w(z) realizations, the top row shows the corresponding rank-ordered,
non-nested evidence for each model on the left (using a Euclid weak lensing tomography experiment). The models are fo=Fourier (turquoise), ch=Chebyshev
(red), la=Laguerre (orange), Le=Legendre (blue), in=Interpolation (dark green), ta=Taylor (light green), co=Cosine (purple) and si=Sine (yellow) (see
Kitching & Amara 2009, for details). These represent the three possible classes of expected model-space, a broad variance but with a favoured model; a highly
favoured model; or a broad set of equally favoured models. In solid outlined bars we show the evidence that the data are drawn from a �CDM cosmology
instead of the best-fitting values to the data. The dashed line show the flat model prior, p(M) = 1/NM.

5.2.4 Dark energy model-space

In Fig. 4, we show an example of how the evidence can be used
in practice for the predicted evidence for a Euclid (Refregier et al.
2010) weak lensing tomography experiment to measure dark energy.
In this example, we have assumed a dark energy equation of state,
w(z), as a function of redshift, z, which we use to construct mock
lensing data. We fit this data using models that assume a cosmology
with different w(z) models. We have chosen some non-nested basis
set expansions for our w(z) models; these have a maximum order
of 2 (these phenomenological models are described in Kitching &
Amara 2009). For each w(z) realization, we rank-order the evidence
for each model. In the first example, the cosine model has the highest
probability with 0.4 and the distribution in model-space is Gaussian-
like. In the second example, the Chebyshev model fits the data very
well, creating a spike in model-space. In the third example, there is
no model that favours the data over any other. These three examples
represent the three broad classes of behaviour we can expect for real
data, where we hope for example 2 with a spike in model-space. The
variance in model-space is also an interesting quantity, reflecting
both the distinguishability of the models and the quality of the data
for model selection.

6 D ISCUSSION

We have presented new, analytic methods for cosmological likeli-
hood analysis to solve the ‘many parameters’ problem in cosmol-
ogy. Our approach maximizes the likelihood with a pseudo-Newton
method, analytically marginalizes over nuisance parameters in an
arbitrary likelihood function, and analytically marginalizes over
cosmological parameters to project out one and two dimensions of
parameter space to estimate marginalized errors and covariance ma-
trices. Parameters may have either flat or Gaussian priors. Marginal-
izing over all parameters, we derive an analytic expression for the
Bayesian evidence to select between competing cosmological mod-

els. The marginalized likelihood does not degrade information about
the remaining parameters, and the marginalized parameter informa-
tion is preserved in the Fisher information matrix. The marginalized
likelihood is also independent of the fiducial model when the un-
derlying likelihood is exactly Gaussian.

We have applied our results to multivariate Gaussian likelihoods
for the data, where the marginalized parameters appearing in ei-
ther the mean of the data or its covariance matrix. An exact re-
sult for a normalization nuisance parameter is found and applied
to the problem of estimation the matter density parameter, �m,
from galaxy power spectra, where the normalization, which depends
on the galaxy bias parameter, b, is marginalized out. The analytic
marginalization is found to be very close to numerical marginaliza-
tion. Analytic marginalization can also be used to project parameter
space on to lower dimensions to allow a simple visualization of the
full likelihood function.

We describe a semi-analytic marginalization method which could
be carried out by identifying Gaussian and non-Gaussian parame-
ters, in top-down or bottom-up scenarios, and treating them ana-
lytically and numerically, respectively, in semi-analytic marginal-
ization. An example is presented of a three-parameter dark energy
model with (w0, wa, h), and again the 1D analytically marginalized
distribution is in very good agreement with the numerical one. We
extend this to an eight-parameter model, where we highlight non-
Gaussianity in the 2D projected distribution which is missed by the
Fisher matrix approximation.

Finally, we have also applied our analytic marginalization method
to find a closed expression for the Bayesian evidence and shown
its relation to the Laplace approximation. We discuss the case of
multivariate Gaussian-distributed data sets. We consider the Bayes’
factor, the ratio of the evidence of two models, and discuss the
properties of the full model-space posteriori distribution, p(M).
We also introduce the significance of the model, the degree by
which the model evidence changes with respect to the uniform prior.
Finally, we have illustrated our model selection scheme on a set of
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non-nested dark energy models. Our method has applications in
cosmological parameter estimation and model selection, and many
wider applications in the statistical analysis of data.
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APPENDI X A : G AU SSI AN I NTEGRATI ON

In this appendix we derive equation (7). Expanding the log-
likelihood to second order we find

L = L0 + δψαLα + 1

2
δψαδψβLαβ . (A1)

By completing the square, this can be rewritten as

L = L0 + 1

2
Lαβ

(LγL−1
γα + δψα

) (LδL−1
δβ + δψβ

) − 1

2
LαL−1

αβLβ .

(A2)

Now writing the likelihood explicitly, we find

L = e− 1
2 L0+ 1

4 LαL−1
αβ Lβ− 1

4 Lαβ (Lγ L−1
γ α+δψα )(LδL−1

δβ +δψβ )
. (A3)

Integrating over δψ , and using the multivariate Gaussian formula∫
dnx e− 1

2 xiC
−1
ij xj = (2π)n/2

√
det C, (A4)

we find

L = e− 1
2 L0+ 1

4 LαL−1
αβ Lβ (2π)N/2

√
det 2L−1

αβ . (A5)

Taking the log again we find

L = L0 − 1

2
LαL−1

αβLβ + ln det
1

2
Lαβ − N ln 2π. (A6)

Using the identity ln det M = Tr ln M yields equation (7).

APPENDI X B: G ENERATI NG FUNCTI ON

The generating function of a distribution is

( J ) = 〈ei J .δψ 〉 =
∫

dMψ e−L/2 ei J .δψ (B1)

which leads to the generating function of the likelihood:

−2 ln (J ) = L0 − 1

2
(Lα − 2iJα)L−1

αβ (Lβ − 2iJβ ) + Tr ln
1

2
Lαβ .

(B2)

Taking the first derivative with respect to iJα , we find the mean is

〈δψα〉 = ∂ ln 

∂(iJα)

∣∣∣∣
J=0

= −L−1
αβLβ (θ). (B3)

For a Gaussian the mean is also at the peak, so this is an offset
between a fixed point, ψ0, where the likelihood is evaluated and the
peak. The second derivative yields the covariance matrix

〈δψαδψβ〉 = ∂2 ln 

∂(iJα)∂(iJβ )

∣∣∣∣
J=0

= 2L−1
αβ . (B4)

Taking the ensemble average of the data, we see

〈δψαδψβ〉 = F −1
αβ (B5)

as expected. Expanding θ around its maximum-likelihood value,
we find

〈δψα〉 = −L−1
αβLβi�θi . (B6)

Finally, inverting this we find the bias in cosmological parameters,
δθ , due to an offset in the nuisance parameter is given by

δθi = −L−1
iα Lαβδψβ. (B7)

in agreement with the result of Taylor et al. (2007).
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