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ABSTRACT
A new approach to the cosmological recombination problem is presented, which completes
our previous analysis on the effects of two-photon processes during the epoch of cosmological
hydrogen recombination, accounting for ns–1s and nd–1s Raman events and two-photon
transitions from levels with n ≥ 2. The recombination problem for hydrogen is described
using an effective 400-shell multilevel approach to which we subsequently add all important
recombination corrections discussed in the literature thus far. We explicitly solve the radiative
transfer equation of the Lyman-series photon field to obtain the required modifications to the
rate equations of the resolved levels. In agreement with earlier computations, we find that
2s–1s Raman scattering leads to a delay in recombination by �Ne/Ne ∼ 0.9 per cent at z ∼
920. Two-photon decay and the Raman scattering from higher levels (n > 3) result in small
additional modifications, and precise results can be obtained when including their effect for the
first three to five shells. This work is a major step towards a new cosmological recombination
code (COSMOREC) that supersedes the physical model included in RECFAST, and which, owing to
its short run time, can be used in the analysis of future cosmic microwave background data
from the PLANCK Surveyor.

Key words: cosmic background radiation – cosmological parameters – cosmology: observa-
tions – cosmology: theory.

1 IN T RO D U C T I O N

The PLANCK Surveyor1 is currently observing the temperature
and polarization anisotropies of the cosmic microwave background
(CMB), and scientists all over the world eagerly await its first data
release scheduled for early 2011. With PLANCK data sets, cosmol-
ogists will be able to determine key cosmological parameters with
unprecedented precision, making it possible to distinguish between
the various models of inflation (e.g. see Komatsu et al. 2010, for
recent constraints).

Over the past five years, various groups (e.g. see Dubrovich &
Grachev 2005; Chluba & Sunyaev 2006b; Kholupenko & Ivanchik
2006; Wong & Scott 2007; Chluba & Sunyaev 2008; Hirata 2008;
Karshenboim & Ivanov 2008; Rubiño-Martı́n, Chluba & Sunyaev
2008; Switzer & Hirata 2008; Jentschura 2009; Labzowsky,
Solovyev & Plunien 2009; Ali-Haı̈moud & Hirata 2010; Grin &
Hirata 2010) have realized that the uncertainties in the theoretical
treatment of the cosmological recombination process could have
important consequences for the analysis of the CMB data from the
PLANCK Surveyor. It was shown that, in particular, our ability to
measure the precise value of the spectral index of scalar perturba-
tions, nS, and the baryon content of our Universe will be compro-
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1 www.rssd.esa.int/Planck.

mised if modifications to the recombination model by RECFAST (Sea-
ger, Sasselov & Scott 1999, 2000) are neglected (Rubiño-Martı́n et
al. 2010).

To ensure that uncertainties in the cosmological recombination
model do not undermine the science return of the PLANCK satel-
lite, it is crucial to incorporate all important processes leading to
changes in the free electron fraction close to the maxima of the
Thomson visibility function (Sunyaev & Zeldovich 1970) by more
than ∼0.1 per cent into one recombination module. The main ob-
stacle towards accomplishing this so far was that detailed recom-
bination calculations took too long to allow accounting for the full
cosmological dependence of the recombination corrections on a
model-by-model basis. This led to the introduction of improved
fudge factors to RECFAST (Wong & Scott 2007; Wong, Moss &
Scott 2008), or multidimensional interpolation schemes (Fendt et al.
2009; Rubiño-Martı́n et al. 2010), that allow fast but approximate
representation of the full recombination code.

Although it was already argued that for the stringent error bars
of today’s cosmological parameters such approaches should be suf-
ficient (Rubiño-Martı́n et al. 2010), from a physical stand point it
would be much more satisfying to have a full representation of the
recombination problem, that does not suffer from the limitations
mentioned above, while capturing all the important physical pro-
cesses simultaneously. Furthermore, such a recombination module
increases the flexibility, and allows us to provide extensions, e.g. to
account for the effect of dark matter annihilation, energy injection
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by decaying particles (e.g. see Chen & Kamionkowski 2004;
Padmanabhan & Finkbeiner 2005; Chluba 2010), or the variation of
fundamental constants (Kaplinghat, Scherrer & Turner 1999; Galli
et al. 2009; Scóccola, Landau & Vucetich 2009), while treating all
processes simultaneously.

In this paper, we describe our new approach to the recombination
problem, which enables us to fulfill this ambition by overcoming
the problems mentioned above. Our code, called COSMOREC,2 runs in
1–2 min for a given set of cosmological parameters as it stands and
can be optimized further to run well below a minute, eliminating
the need for fudge factors to solve the recombination problem.
One of the key ingredients that facilitates this increase in speed is
the effective multilevel approach which was proposed recently by
Ali-Haı̈moud & Hirata (2010).

We also extend our previous analysis on the effects of two-photon
processes during the cosmological recombination epoch of hydro-
gen (Chluba & Sunyaev 2008, 2010b) to account for ns–1s and
nd–1s Raman scattering and two-photon transitions from levels
with n ≥ 2. The radiative transfer equation for the Lyman-series
photons during hydrogen recombination is solved in detail using a
partial differential equation (PDE) solver that we developed for this
purpose and can accommodate non-uniform grids (see Appendix B
for more details). Our results for the effect of the Raman scattering
on the recombination dynamics are in good agreement with earlier
computations (Hirata 2008). Furthermore, we show that two-photon
decays from levels with n � 4–5 can be neglected and Raman scat-
tering is only important for the first few shells.

The main difficulty with two-photon and Raman processes dur-
ing the recombination epoch is the presence of resonances in the
interaction cross-sections related to normal ‘1+1’-photon transi-
tions that are already included into the multilevel recombination
code (Chluba & Sunyaev 2008; Hirata 2008; Hirata & Switzer
2008; Chluba & Sunyaev 2010b). Unlike for the 2s–1s two-photon
decay, all the higher ns–1s and nd–1s two-photon channels include
‘1 + 1’-photon sequences via energetically lower Lyman-series
resonances, i.e. ns/d ↔ kp ↔ 1s with k < n. Similarly, for ns–1s
and nd–1s Raman-scattering events, all higher Lyman-series reso-
nances, i.e. ns/d ↔ kp ↔ 1s with k > n, appear. Therefore, special
care has to be taken to avoid double counting of these resonances
in the rate equations of the multilevel atom as we explain in Sec-
tions 3.4.3, 3.4.4, 3.5.3 and 3.5.4.

In Section 2, we outline our principal approach to the recombi-
nation problem. The terms for the radiative transfer equation that
allow to take all important recombination corrections into account
are derived in Section 3. We then solve the evolution equation for the
high-frequency photon field during the recombination epoch, and
illustrate the different changes in Section 4. In Section 5, we discuss
the different corrections to the ionization history, and present our
conclusions and outlook in Section 6.

2 PERTURBATIVE A PPROACH TO SOLV ING
THE FU LL R ECOMBINATION PRO BLEM

2.1 General aspects of the standard recombination problem

The cosmological recombination problem consists of determining
an accurate estimate of the free electron fraction, Xe = Ne/NH, as
a function of redshift. Because of the particle conservation and the
number of electrons in excited states of H I and He I being negligible,

2 This code will be available at www.Chluba.de/CosmoRec.

one may write3

Ne ≈ NH(1 − XH
1s) + NH(fHe − XHe

1s ), (1)

where NH denotes the number density of hydrogen nuclei, and
f He = NHe/NH is the fraction of helium nuclei. The populations of
the different levels are given by Xa

i = Na
i /NH, where ‘a’ indicates

the atomic species. Furthermore, Xi ≡ XH
i for convenience.

Equation (1) implies that the recombination problem reduces to
finding solutions to Xa

1s. For hydrogen, the standard rate equation
describing the evolution of the ground-state population has the form
(see also Seager et al. 1999, 2000)

dXH
1s

dt

∣∣∣∣
st

= �Rst
2s↔1s +

∑
k

�Rst
kp↔1s, (2a)

�Rst
2s↔1s = A2s1s

(
XH

2s − XH
1se

−hν21/kTγ
)
, (2b)

�Rst
kp↔1s = Akp1s(1 + n

pl
kp1s)

(
XH

kp − 3 XH
1sn̄kp1s

)
. (2c)

Here, n̄kp1s is the mean photon occupation number over the Lyman-
k line profile, Ai is the atomic rate coefficients for spontaneous
emission and n

pl
kp1s is the occupation number of the CMB blackbody

photons at the Lyman-k transition frequency νk1 ≡ νkp1s.
The solution of equation (2) depends on the level populations

of the 2s and kp states. In addition, the photon distribution in the
vicinity of every Lyman resonance has to be known to define n̄kp1s.
n̄kp1s is often estimated by the Sobolev approximation, which, how-
ever, breaks down during recombination, leading to non-negligible
corrections to the recombination dynamics (e.g. see Chluba & Sun-
yaev 2009a,b, 2010b). The rate equations for the 2s and kp states
themselves can, in principle, be explicitly given. But here it is only
important to realize that these lead to a large network of rate equa-
tions which depend on the populations of all other excited levels.
To further complicate matters, the electron temperature, Te, enters
the whole problem via recombination coefficients, αi(Te, Tγ ), to
each level i, where Tγ is the photon temperature.

The evolution of Te is described by one simple differential equa-
tion, which accounts for the cooling of electrons caused by the
Hubble expansion, and the energy exchange with CMB photons via
Compton scattering. Other processes, e.g. bremsstrahlung cooling,
are subdominant (Seager et al. 2000).

2.1.1 The effective multilevel approach

Recently, Ali-Haı̈moud & Hirata (2010) suggested to simplify the
recombination problem to a subset of levels that need to be followed
explicitly. Here, we shall call the members of this subset ‘resolved’
levels. This approach enables us to account for the effect of recom-
binations due to highly excited states (n > 100), without actually
solving for all these level populations explicitly. The rationale being
that except for the optically thick Lyman-series transitions, all other
rates are mediated by the CMB blackbody photons, and hence only
depend on the photon and electron temperatures.

The downside of this simplification entails the need to tabulate
effective rate coefficients as a function of Tγ and Te prior to the com-
putation. This, however, needs to be done only once, and given that
the number of resolved states necessary for converging solutions
is small, this effective multilevel approach results in tremendous

3 We assume to be at redshifts z � 6000, well after doubly ionized helium
recombines.
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speedup for recombination calculations (see Ali-Haı̈moud & Hirata
2010, for more details). For this work, we also implemented an ef-
fective rate approach. The rate coefficients for an effective 400-shell
hydrogen atom were computed using our most recent recombina-
tion code (Chluba et al. 2010), while helium is described with a
multilevel treatment (Chluba & Sunyaev 2010a).

Within this framework, the choice of the number of resolved
states depends on the extra physics that one intends to include.
For example, in a minimal model for the hydrogen recombination
problem, one should explicitly solve for the 1s, 2s and 2p level
populations in tandem with the electron temperature, Te.4

This minimal choice already allows us to include processes that
affect the net rates in the 2s–1s two-photon channel and the 2p–1s
Lyman α resonance, e.g. the effect of stimulated 2s–1s two-photon
decay (Chluba & Sunyaev 2006b) or the feedback of Lyman α

photons on the 1s–2s rate (Kholupenko & Ivanchik 2006). However,
since we restricted ourselves to the 1s, 2s and 2p states, corrections
due to Lyman β or higher resonance feedback cannot be modelled
as these would require resolving np states with n > 2 (Chluba &
Sunyaev 2007). We will return to these points in Section 2.2.1.

2.1.2 Sobolev approximation for n̄kp1s

In a multilevel approach, the Sobolev approximation is invoked
to obtain a solution for the photon field around every resonance
appearing in equation (2c). The photon occupation number around
each line is then given by5

�nk
ν = �nk

L

[
1 − e−τk

S (1−χk
ν )
]
, (3)

where �nk
L ≈ nk

L − n
pl
kp1s, τ k

S is the Sobolev optical depth in the
Lyman-k resonance, and χk

ν = ∫ ν

0 ϕk
V(ν) dν. Here, ϕk

V (ν) is the
Voigt profile corresponding to a resonance, and the line occupation
number, nk

L, is defined as

nk
L = Nkp

3 N1s
. (4)

Consequently, a simple approximation for the mean occupation
number is

n̄kp1s = nk
L − P k

S �nk
L (5)

with P k
S = (1 − e−τk

S )/τ k
S being the Sobolev escape probability.

For the Lyman α resonance, equation (3) results in a photon
distribution that is rather unphysical (e.g. see discussion in Chluba &
Sunyaev 2009b). This is primarily due to the assumption that every
interaction with the resonance leads to a complete redistribution
of photons over the whole line profile, which for typical values
of τ S during recombination couples the photon distribution from
the line centre up to frequencies in the Lyman continuum. For
the conditions present in our Universe, photon redistribution over
frequency is much less effective, most notably in the distant wings.
Thus, it is important to distinguish between scattering, real emission
and absorption events, as we will discuss in Section 3.

4 Because the 2s and 2p states are usually close to full statistical equilibrium,
one could also eliminate either of these states using X2p = 3X2s and, as a
result, closely resemble the normal RECFAST code, now without requiring a
fudge factor.
5 We assumed that as ν → ∞, the distortion �n∞ → 0, and that (as usual)
the factor of (νk1/ν)2 ∼ 1.

2.2 Beyond the standard rate equation for 1s

As mentioned in Section 2.1.1 within the effective multilevel ap-
proach, the choice for the resolved states depends on the physics to
be modelled in detail. For example, in order to include the full effect
of Lyman-series feedback, say up to n = 8, the minimal model that
follows 1s, 2s and 2p would at least have to be extended by all kp
states up to 8p state.

Also, the inclusion of two-photon processes from higher levels
and Raman scattering requires us to rewrite equation (2) in a more
generalized form as

dXH
1s

dt

∣∣∣∣
mod

=
∑

i

(
XH

i Ri→1s − XH
1sR1s→i

)
, (6)

where Ri→j are the rates between the levels i and j. These rates
depend on atomic physics, the CMB blackbody, the electron tem-
perature and the solution for the Lyman-series spectral distortion
introduced by the recombination process.

To include two-photon corrections to the Lyman series up to n ≤
nmax, the important levels to follow are all the nd and ns states with
2 ≤ n ≤ nmax. The corresponding partial rates to the np states drop
out of the equations, and the Lyman-series emission and absorption
profiles, usually given by a Voigt function, will be replaced by the
two-photon profiles for the ns ↔ 1s and nd ↔ 1s processes, and
similarly for the Raman process. We will specify these corrections
more precisely in the following sections.

2.2.1 Accounting for corrections from radiative transfer effects

Changes in the level populations, electron temperature and free
electron fraction remain small (∼1 per cent), when different phys-
ical processes, which were neglected in earlier treatments (e.g. see
Rubiño-Martı́n et al. 2010, for overview), are included. This justifies
treating corrections to Te and the populations of resolved levels, Xi,
as small perturbations. On the other hand, it has been shown that the
changes in the photon field caused by time-dependence (Chluba &
Sunyaev 2009b), line scattering (Chluba & Sunyaev 2009a; Hirata
& Forbes 2009) or two-photon corrections (Hirata 2008; Chluba &
Sunyaev 2010b) are non-perturbative.

In Section 3, we derive in detail the different correction terms
for the photon diffusion equation and provide modifications to the
net rates of the effective multilevel atom. The idea is to first solve
the recombination history using the effective multilevel approach
in the ‘1 + 1’-photon description, i.e. equate Ri→j = R1+1

i→j in equa-
tion (6), and then compute the solution to the photon field using the
radiative transfer equation. This then leads to corrections in the net
rates, which are used in computing changes to the recombination
dynamics, and hence modify equation (6). These corrections being
small demand only one iteration to converge. Detailed descriptions
to the notations in the following sections and part of the methods
used can also be found in Chluba & Sunyaev (2009a,b, 2010b).

3 EQUAT I O N FO R T H E PH OTO N FI E L D
E VO L U T I O N A N D C O R R E C T I O N S TO
THE EFFECTI VE MULTI LEVEL ATOM

To account for all corrections to the cosmological recombination
problem, it is important to follow the evolution of non-thermal pho-
tons in the Lyman series, which are produced during recombina-
tion. These photons interact strongly with neutral hydrogen atoms
throughout the entire epoch of recombination, and their rate of
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escape from the Lyman resonances is one of the key ingredients in
accurately solving the recombination problem.

The partial differential equation governing the evolution of the
photon field has the form (see Chluba & Sunyaev 2009b, for a
detailed discussion)

1

c

(
∂�nν

∂t

∣∣∣∣
ν

− Hν
∂�nν

∂ν

∣∣∣∣
t

)
= C(�nν)em/abs + C(�nν)scat, (7)

where �nν = [c2/(2ν2)]�Nν is the distortion in the photon occupa-
tion number, and a distinction is made between the collision terms
leading to emission and absorption, C(�nν)em/abs, and scattering,
C(�nν)scat. As an example, the first term on the right-hand side of
the equation can account for two-photon corrections to the line pro-
files, while the second term accounts for electron and/or resonance
scattering. The second term on the left-hand side describes the red-
shifting of photons due to Hubble expansion, and plays a crucial
role in the escape of photons from the optically thick Lyman-series
resonances.

In equation (7), the CMB blackbody has been subtracted, i.e.
�nν = nν − npl

ν , where npl
ν = (ehν/kTγ − 1)−1 is the blackbody

occupation number, because the left-hand side directly vanishes
for a blackbody with temperature Tγ (z) ∝ (1 + z). Also, spectral
distortions created by Compton scattering of electrons with Te =
Tγ will be extremely small for conditions in our Universe,6 at least
if there is no additional energy release.

By changing the time variable to redshift z using dz/ dt =
−H (1 + z), and scaling to dimensionless frequency x = ν/ν21,
equation (7) reads

∂�nx

∂z

∣∣∣∣
x

=− x

(1 + z)

∂�nx

∂x

∣∣∣∣
z

− �z

{C(�nν)em/abs + C(�nν)scat

}
,

(8)

where �nx = ν21 �nν and �z = cν21/[H(1 + z)]. We will now
discuss the terms describing the resonance and electron scattering.
In Section 3.1, we specify the different emission and absorption
terms, which then in Sections 4 and 5 are used to compute the
corrections to the Lyman-series distortion and ionization history.

3.1 Inclusion of partial redistribution by resonance and
electron scattering

Here, we provide the terms for the Boltzmann equation describ-
ing the effect of (partial) photon redistribution by resonance and
electron scattering. The form of the collision term for these cases
within a Fokker–Planck formulation was discussed earlier (e.g.
Zeldovich & Sunyaev 1969; Basko 1978b,a; Rybicki &
dell’Antonio 1994; Sazonov & Sunyaev 2000; Rybicki 2006;
Chluba & Sunyaev 2009a). Since we are only following the evo-
lution of the distortion from a blackbody, and since it is clear that
induced effects are negligible,7 one can readily write as

�z C(�nν)|scatt ≈ 1

x2

∂

∂x
D(x)

[
∂

∂x
�nx + ξ (z)�nx

]
, (9)

6 The cooling of CMB photons by losing energy to keep electrons at Te ∼
Tγ should lead to a y-distortion with y-parameter y ∼ 10−10 to 10−9. The
dissipation of energy by acoustic waves should lead to y ∼ 10−8. These can
be neglected for our purpose.
7 Eliminating the dominant term of the CMB blackbody leaves us with a
term that is tiny because we are always in the distant Wien tail of the CMB
at all times during recombination.

where x is the dimensionless frequency and ξ (z) = hν21
kTe

≈ 40 1100
(1+z) .

The first term on the right-hand side describes photon diffusion and
the second term accounts for the recoil effect.

3.1.1 Electron scattering

The diffusion coefficient in the case of electron scattering is (e.g.
see Zeldovich & Sunyaev 1969; Sazonov & Sunyaev 2000)

De(x) = σTNec

H (1 + z)

(
kTe

mec2

)
x4, (10)

where σT ≈ 6.65×10−25 cm2 is the Thomson cross-section. Chluba
& Sunyaev (2009a) pointed out that electron scattering has an ef-
fect only at the early stages of recombination (z � 1400). However,
it is easy to include, and also has the advantage of stabilizing the
numerical treatment by damping small-scale fluctuations of the pho-
ton occupation number caused by numerical errors, even in places
where line scattering is already negligible.

As can be seen from the form of the diffusion coefficient in equa-
tion (10), the efficiency of electron scattering to a large extent is
achromatic. This is in stark contrast to the case of resonance scat-
tering, which is most efficient only in a very narrow range around
the line centre (see the next paragraph). Furthermore, the number of
free electrons drops rapidly towards the end of recombination, such
that the Fokker–Planck approximation is expected to break down
(Chluba & Sunyaev 2009a). Nevertheless, the diffusion approxima-
tion remains sufficient for computations of the free electron fraction
(see Ali-Haı̈moud, Grin & Hirata 2010).

3.1.2 Resonance scattering

For resonance scattering by a Lyman-k line, the diffusion coefficient
is (e.g. see Basko 1978b,a; Rybicki 2006; Chluba & Sunyaev 2009a,
and reference therein)

Dk(x) ≈ pkp
sc

σ kp
r N1sc

H (1 + z)

(
kTe

mHc2

)
ν2

k1

ν2
21

x2φ
kp
V (x), (11)

where σ kp
r = 3λ2

k1
8π

Akp1s

�ν
kp
D

and �ν
kp
D denote the resonant-scattering

cross-section and the Doppler width of the Lyman-k resonance,
respectively. For the Lyman α line, σ 2p

r ∼ 1.91 × 10−13 cm2 and
�ν

2p
D ∼ 2.35 × 10−5 ν21 at z ∼ 1100. The Voigt profile, φ

kp
V (x) =

ϕ
kp
V (x) �ν

kp
D , is normalized as

∫ ∞
−∞ φ

kp
V (xkp

D ) dx
kp
D = ∫ ∞

0 ϕ
kp
V (ν) dν =

1, where x
kp
D = (ν − νkp)/�ν

kp
D is the distance to the line centre in

units of the Doppler width.
The scattering probability of the Lyman-k resonance, pkp

sc , is de-
termined by a weighted count of all possible ways out of the kp state,
R−

kp(Tγ ), excluding the Lyman-series resonance being considered,
and then writing the branching ratio as8

pkp
sc = Akp1s

Akp1s + R−
kp

, (12)

yielding the probability for re-injection into the Lyman-k resonance.
The rates R−

kp (Tγ ) and the scattering probabilities, pkp
sc (Tγ ), can

be pre-computed, independent of the solutions obtained from the
multilevel code. We detail the procedure below.

Following Rybicki & dell’Antonio (1994), the diffusion coeffi-
cient is D ∝ φ

kp
V (ν). We neglect corrections due to non-resonant

8 Stimulated emission for the Lyman series has been neglected.
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contributions (e.g. see Lee 2005) in calculating the scattering cross-
section, which would lead to a different frequency dependence far
away from the resonance (e.g. Rayleigh scattering in the distant
red wing, Jackson 1998). However, because it turns out that reso-
nance scattering is only important in the vicinity of the Lyman α

resonance, this approximation suffices.
It is also worth mentioning that equation (11) together with equa-

tion (9), in the limit of large optical depth,9 provides a viable de-
scription for the redistribution of photon over frequency. Unlike the
case of complete redistribution (in which the re-emission after each
scattering event occurs over the whole Voigt profile) in the recom-
bination epoch, photons are only partially redistributed as a result
of the Doppler motions of the hydrogen atoms, so-called type II
redistribution as defined in Hummer (1962).

3.1.3 Equilibrium solution for the scattering term

Independent of the type of scattering, the equilibrium distribution
with respect to the scattering term equation (9) is given by

�nsc,eq
x = �nx0 (z) e−ξ (z)(x−x0). (13)

This is the expected Wien spectrum with the temperature defined
by the electrons. The normalization �nx0 (z) is determined by the
emission and absorption process.

The optical depth to line scattering being extremely large inside
the Doppler cores of the Lyman resonances (τ S ∼ 106–108 during H I

recombination) causes the photon distribution within the Doppler
core to remain extremely close to equilibrium, �nsc,eq

x .

3.2 Normal Lyman-k emission and absorption terms

In the normal ‘1 + 1’-photon picture, the emission profile for each
Lyman-series resonance is given by a Voigt profile, ϕ

kp
V , with Voigt

parameter akp. Given the rate, R+
kp(Tγ , Te), at which fresh10 electrons

reach the kp state, and the probability of photon injection into the
Lyman-k resonance, pkp

em ≡ pkp
sc , the Lyman-k line emission and

absorption term are (e.g. see Chluba & Sunyaev 2010b) written as

∂�nx

∂z

∣∣∣∣
Ly−k

em/abs

= −p
kp
d

σ kp
r N1sc

H (1 + z)

ν2
k1

ν2
21

φ
kp
V

x2

(
ν2p1s �nkp

em − f kp
x �nx

)
.

(14)

The factor of 1/x2 accounts for the translation from photon number
to the occupation number because �Nν ∝ ν2�nν , for which the
Voigt profile is defined. Also, p

kp
d = 1 − pkp

em is the death or the
real absorption probability in the kth Lyman-series resonance, and
�nkp

em and f kp
x are given by

�nkp
em = g1s

gkp

R+
kp

R−
kp N1s

− e−hνk1/kTγ , (15a)

f kp
x = exp

[
h(ν − νk1)/kTγ

]
, (15b)

where g1s/gkp is the ratio of the statistical weights of the initial
and final states. The function �nkp

em(Tγ , Te) can, in principle, be
pre-computed using the solution for the populations of the levels
from the initial run of the effective multilevel recombination code.

9 During hydrogen recombination, photons scatter efficiently off the Lyman
α resonance out to ∼104–105 Doppler width (see fig. 3 in Chluba & Sunyaev
2009b). However, the redistribution of photons in the distant damping wings
still remains rather slow (Chluba & Sunyaev 2009a).
10 Electrons that did not enter the p state via the Lyman-k resonance.

However, the simplest way to define the ratio R+
kp/R

−
kp is to use

the quasi-stationary approximation for the np-population (see the
details below). We also note that in full thermodynamic equilibrium
�nkp

em = 0, so that no distortion is created (�nx = 0).
Physically, equation (14) includes two important aspects, which

are not considered in the standard recombination calculation. First,
it allows for a distinction between scattering events on one side, and
real emission and absorption events on the other side. Secondly, it
ensures conservation of blackbody spectrum in full thermodynamic
equilibrium, even in the very distant wings of the lines. Refer to
Chluba & Sunyaev (2010b) for a detailed explanation of the latter
point, and on how this leads to one of the largest corrections in the
case of Lyman α transport.

3.2.1 Computing �nkp
em

To solve the evolution of the photon field, one has to know at
which rate photons are produced by the Lyman resonance. This rate
depends on �nkp

em as defined in equation (15).
The rate equation for the evolution of the population in the kp

level has the form (see Appendix B; Chluba & Sunyaev 2010b)

dXkp

dt
= dXkp

dt

∣∣∣∣
Ly−k

+ R+
kp − R−

kpXkp, (16a)

dXkp

dt

∣∣∣∣
Ly−k

= g1s

gkp
Akp1s X1s Ikp

1 − Akp1s XkpIkp
2 , (16b)

Ikp
1 =

∫
ϕ

kp
V (ν) eh(ν−νk1)/kTγ nν dν, (16c)

Ikp
2 =

∫
ϕ

kp
V (ν)(1 + nν) dν ≈ 1 + npl(νk1) ≈ 1. (16d)

In this picture, the emission, absorption and resonance scattering
terms are all treated simultaneously. In addition, the asymmetry
between the emission and the absorption profile in the Lyman-k
resonance, as required by detailed balance, has been incorporated.

Under quasi-stationarity, and using the definition of the death
probability, p

kp
d , equation (16) yields

g1s

gkp

R+
kp

R−
kp X1s

= 1

p
kp
d

(
gkp

g1s

Xkp

X1s
− Ikp

1

)
+ Ikp

1 , (17)

such that with equation (15)

�nkp
em = 1

p
kp
d

(
gkp

g1s

Xkp

X1s
− Ikp

1

)
+ Ikp

1 − e−hνkp1s/kTγ (18a)

≈ �nk
L

(
1 + pkp

em

p
kp
d

P k
S

)
. (18b)

In the second step, we used the normal Sobolev approximation, for
which Ikp

1 ≈ nk
L −P k

S (nk
L −n

pl
kp1s) (for the case of Lyman α compare

also with equation (41) in Chluba & Sunyaev 2009b).
From equation (18b), we have �nkp

em ≈ �nk
L, since for all Lyman-

series resonances the second term in brackets is very small. Never-
theless, for the total normalization of the line intensity close to the
line centre, this small correction is important (Chluba & Sunyaev
2009b), in particular for the Lyman α resonance.

Also we would like to mention that for the Voigt parameter of the
Lyman-k profiles, akp = A

kp
tot/(4π�ν

kp
D ), the total width of the line

is used, where transitions induced by the CMB blackbody (e.g. to
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Towards a complete treatment of recombination 753

higher levels) are included. Numerically, it is possible to compute
the total width for the Lyman-k resonance with A

kp
tot ≡ Akp1s/p

kp
em.

3.3 The 2s–1s two-photon channel

The 2s–1s two-photon channel provides the pathway for about
60 per cent of all electrons in hydrogen to settle into the ground
state (Chluba & Sunyaev 2006a). Therefore, it provides the most
important channel in the cosmological recombination process. Here,
we treat the case of 2s–1s separately to illustrate the important ap-
proximations in the two-photon picture. The derivation outlined
in this section is then used to obtain the corresponding terms for
the two-photon processes from excited states with n > 2 (see Sec-
tion 3.4).

The net change of the number density of electrons in the 2s level
via the 2s–1s two-photon channel is given by

dX2s

dt

∣∣∣∣
2γ

1s

= A
2γ
2s1sX1s

∫
ϕ

2γ
2s n(ν) n(ν21 − ν) dν

−A
2γ
2s1sX2s

∫
ϕ

2γ
2s [1 + n(ν)][1 + n(ν21 − ν)] dν,

(19)

where A2γ
2s1s = 8.2206 s−1 (Labzowsky, Shonin & Solovyev 2005) is

the vacuum 2s–1s two-photon decay rate, and ϕ
2γ
2s denotes the 2s–1s

two-photon decay profile normalized as
∫

ϕ
2γ
2s dν = 1. Including

all possible ways in and out of the 2s level, the net change of the
number density of electrons in the 2s state can be written as

dX2s

dt
= dX2s

dt

∣∣∣∣
2γ

1s

+ R+
2s − R−

2sX2s. (20)

Here, R+
2s and R−

2s include the effect of all transitions to bound states
with n > 2 and the continuum.

In order to simplify the notation, we now introduce

〈 f (ν) 〉2γ
i =

∫ νi1s

0
ϕ

2γ
i f (ν) dν, (21a)

Gi
1 = 〈 n n′ 〉2γ

i , (21b)

Gi
2 = 〈 (1 + n)(1 + n′) 〉2γ

i , (21c)

where f (ν) is some arbitrary function of frequency and n = n(ν)
and n′ = n(ν ′) with ν ′ = νi1s − ν.

Then, under quasi-stationarity, the solution for the population of
the 2s state is given by

X
QS
2s = R+

2s + A
2γ
2s1sX1s G2s

1

R−
2s + A

2γ
2s1s G2s

2

. (22)

In the multilevel approach, the effect of stimulated two-photon
emission is neglected leading to G2s

2 ≈ 1. Also any CMB spec-
tral distortion that is introduced by the recombination process
(e.g. because of Lyman α emission) is omitted, implying G2s

1 ≈
〈 npl npl ′ 〉2γ

2s ≈ exp(−hν21/kTγ ). In this approximation, the result
from equation (22) becomes identical to the one obtained using
equations (2b) and (20), in the standard multilevel approach.

However, in the recombination problem, corrections to both G2s
1

andG2s
2 are important. For the stimulated two-photon emission, only

the occupation number given by the undistorted CMB blackbody
has to be considered and thus,

G2s
2 ≈ 〈 (1 + npl)(1 + npl ′) 〉2γ

2s ≡ G2s,pl
2 , (23)

which can be pre-computed as a function of temperature. Typically,
G2s,pl

2 exceeds unity by a few per cent (Chluba & Sunyaev 2006b).
For G2s

1 , one can make use of the fact that the distortions at either
ν or ν ′ are very small, so that

n n′ ≈ npl npl ′ + npl ′ �n + npl �n′. (24)

Hence equation (19) can be rewritten as

dX2s

dt

∣∣∣∣
2γ

1s

= A
2γ,∗
2s1s

(
X1se

−hν21/kTγ − X2s

) + A
2γ
2s1s X1s �G2s

1 , (25a)

�G2s
1 =
∫

ϕ
2γ
2s

(
npl ′�n + npl �n′

)
dν ≡2

∫ ν21

ν21
2

ϕ
2γ
2s npl ′�n dν,

(25b)

where we defined the stimulated 2s–1s two-photon decay rate within
the CMB ambient radiation field as A

2γ,∗
2s1s = A

2γ
2s1s G2s,pl

2 (cf. Chluba
& Sunyaev 2006b). Also equation (25b) reflects the symmetry of
the two-photon profile around ν = ν21/2.

Note that for G2s,pl
2 , only the CMB blackbody spectrum is impor-

tant and therefore can, in principle, be pre-computed as a function
of photon temperature, Tγ . This also emphasizes the difference in
the origin of the two terms of equation (25a), G2s,pl

2 being the ther-
mal contribution, while �G2s

1 arises solely because of non-thermal
photons created in the recombination process.

By comparing equation (25) with equation (2b), one can write
down the correction to the 2s–1s net two-photon rate

�Rcorr
2s↔1s = A

2γ
2s1s�G2s,pl

2

(
X1se

−hν21/kTγ − X2s

) + A
2γ
2s1s X1s �G2s

1 .

(26)

Here, we introduced �G2s,pl
2 = G2s,pl

2 − 1, which during recombi-
nation is of the order of ∼1 per cent. In equation (25), the integral
�G2s

1 depends on the spectral distortion introduced by the recombi-
nation process in the Wien’s tail of the CMB blackbody. Including
only the Lyman α distortion provides a manner in which to take its
feedback effect into account (cf. Kholupenko & Ivanchik 2006).

3.3.1 The 2s–1s two-photon emission and absorption term

In contrast to the Lyman-series channels, the terms for the photon
radiative transfer equation in the case of the 2s–1s channel can be
directly obtained from the net rate between the 2s and 1s state as in
equation (19), resulting in

1

c

∂Nν

∂t

∣∣∣∣
2s1s

2γ

= A
2γ
2s1sN2sϕ̃

2γ
2s [1 + n(ν)][1 + n(ν21 − ν)]

−A
2γ
2s1sN1sϕ̃

2γ
2s n(ν) n(ν21 − ν). (27)

Here, we defined ϕ̃
2γ
2s = 2 ϕ

2γ
2s

4π
, where the factor of 2 results from

two photons being added to the photon field, and the 4π converts
the units to per steradian.

The reason for this simple connection to the net rate equation
is related to the fact that every transition from the 1s state to the
2s level is expected to lead to a complete redistribution over the
2s–1s two-photon profile. The main reason behind this assumption
of redistribution is that the probability of coherent 1s–2s scattering
event is tiny because the 2s–1s decay rate is extremely small com-
pared to the time it takes to excite a 2s electron to higher levels or
the continuum.

However, some additional simplifications are possible. First, we
can again replace the factors, (1 + n)(1 + n′), accounting for stim-
ulated two-photon emission with those from the undistorted CMB
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blackbody. Furthermore, from equation (24),

n n′ ≈ e−hν21/kTγ (1 + npl)(1 + npl ′)
(

1 + �n

npl
+ �n′

npl ′

)
. (28)

Also, since the spectral distortions at very low frequencies are never
important, one of the two terms in equation (28) (say the one re-
lated to �n′) can always be omitted. Therefore, we can rewrite
equation (27) as

1

c

∂Nν

∂t

∣∣∣∣
2s1s

2γ

= A
2γ
2s1sN1s ϕ̃

2γ,∗
2s

(
�n2s

em − f 2s
ν �nν

)
, (29)

where ϕ̃
2γ,∗
2s ≡ ϕ̃

2γ
2s (1 + npl)(1 + npl ′) and

�n2s
em = X2s

X1s
− e−hν21/kTγ , (30a)

f 2s
ν = e−hν21/kTγ

npl(ν)
≈ exp[h(ν − ν21)/kTγ ]. (30b)

If the term �n′
npl ′ is non-negligible, as might be the case at very low

redshifts (z � 400), where the Lyman α photons emitted at z ∼ 1400
redshifts into the 2s–1s absorption channel, one in addition has to
subtract the term f 2s

ν′ �nν′ within the brackets of equation (29). In
terms of x = ν/ν21, z and �nx, the photon occupation number now
evolves as

∂�nx

∂z

∣∣∣∣
2s1s

2γ

= − σ
2γ
2s1sN1sc

H (1 + z)

φ
2γ,∗
2s

x2

(
ν21 �n2s

em − f 2s
x �nx

)
. (31)

Here, the 2s–1s cross-section is given by σ
2γ
2s1s = λ2

21A
2γ
2s1s

8πν21
, and

φ
2γ,∗
2s = 4 π ν21ϕ̃

2γ,∗
2s .

Equation (31) bears a striking resemblance to the emission and
absorption in the Lyman-series channels as in equation (14) because
one of the two photons that are involved in the 2s–1s two-photon
process is drawn from the undistorted CMB blackbody spectrum,
so that the evolution equation essentially becomes a one-photon
equation. The difference is the absence of a death probability since
practically every electron that is excited to the 2s state will take a
detour to higher levels or the continuum as p2s

d ≈ 1.

3.4 Two-photon emission and absorption terms
from excited levels with n > 2

One of the most interesting modifications to the solution for the pho-
ton field is related to the deviations of the profiles for the different
two-photon emission and absorption channels from the Lorentzian
shape (Chluba & Sunyaev 2008). For the recombination problem,
only those one-photon sequences involving a Lyman-series reso-
nance (e.g. 4d ↔ 2p ↔ 1s) are important.11 In this section, we shall
replace the standard ‘1 + 1’-photon terms for these channels with
the full two-photon description that takes into account the coherent
nature of the process.12

11 All the other two-photon emissions and absorption channels (e.g.
4d ↔ 2p ↔ 2s) can be treated within a blackbody ambient radiation field,
so that their net rate can be directly computed. Without deviations from the
blackbody shape, these will be extremely close to the normal ‘1 + 1’-photon
rates. Also they can only affect the net recombination rate as a ‘correction
to correction’, because they only act on the electron ‘feeding rates’ into
the main channels towards the ground state. A similar argument holds for
Raman-scattering events that do not directly connect to the ground state.
12 Conditions persistent in the Universe at the recombination epoch make
collisions negligible, maintaining the coherence of the two-photon decay
(e.g. see Chluba & Sunyaev 2008; Hirata 2008)

We generalize the approach detailed in Chluba & Sunyaev
(2010b) for emission of photons close to the Lyman α line to include
corrections around the Lyman β and higher resonances.

3.4.1 Net rates for two-photon transitions from excited
s and d states

The net change of the number density of electrons in the level j ∈
{ns, nd} via the j-1s two-photon channel is given by

dXj

dt

∣∣∣∣
2γ

1s

= gj

g1s
A

2γ
j1sX1s

∫
ϕ

2γ
j (ν) n(ν) n(νj1 − ν) dν

−A
2γ
j1sXj

∫
ϕ

2γ
j (ν) [1 + n(ν)][1 + n(νj1 − ν)] dν.

(32)

Here, ϕ
2γ
j denotes the profile for the j-1s two-photon decay, which

can be computed as explained in Appendix A, and is normalized13

as
∫

ϕ
2γ
j dν = 1. The (vacuum) two-photon decay rate is given by

A
2γ
j1s =

nj −1∑
k=2

Aj kp pkp
em. (33)

The ratio of the statistical weights is gj/g1s = 1 for the ns states, and
gj/g1s = 5 for nd states. Equation (33) simply reflects the one-photon
decay rates and branching ratios of all the ‘1 + 1’-photon routes j →
np → 1s via intermediate p states with n < nj. Stimulated emission
induced by the CMB photons is not included in the definition of
A

2γ
j1s, since it is taken into account differentially by the integrals in

equation (32).
With notations defined in equation (21), and by following the

procedure to derive equation (25), we can rewrite equation (32) as

dXj

dt

∣∣∣∣
2γ

1s

= A
2γ,∗
j1s

(
gj

g1s
X1se

−hνj1s/kTγ − Xj

)
+ gj

g1s
A

2γ
j1s X1s �Gj

1 ,

(34a)

�Gj
1 = 2

∫ νj1s

νj1s/2
ϕ

2γ
j npl ′�n dν, (34b)

where we defined the stimulated j-1s two-photon decay rate within
the CMB ambient radiation field as A

2γ,∗
j1s = A

2γ
j1s Gj,pl

2 .

TheGj,pl
2 depends crucially only on the CMB blackbody spectrum

and thus can be pre-computed as a function of photon temperature,
Tγ . On the other hand, like for the 2s–1s two-photon process (see
equation 25), �Gj

1 arises due to non-thermal photons, and hence
depends directly on the solution for the photon field.

In the normal ‘1 + 1’-photon picture, the two-photon profiles can
be considered as a sum of δ-functions and therefore

A
2γ (1+1),∗
j1s =

nj −1∑
k=2

A∗
j kp pkp

em. (35)

Here, A∗
j kp = Aj kp [1 + npl (ν jk)], and the stimulated effect close to the

Lyman-series resonances has been neglected, i.e. 1+npl(νkp1s) ≈ 1.

13 Small corrections to the normalization due to the two-photon description
are neglected.
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Towards a complete treatment of recombination 755

3.4.2 Two-photon emission and absorption for excited s and d
states

The two-photon emission and absorption terms are obtained by
following the steps in the derivation of equation (31). For the j-1s
two-photon channel, one therefore obtains

∂�nx

∂z

∣∣∣∣
j1s

2γ

= − σ
2γ
j1sN1sc

H (1 + z)

ν2
j1

ν2
21

φ
2γ,∗
j

x2

(
ν21 �nj

em − f j
x �nx

)
. (36)

The j-1s two-photon cross-section is given by σ
2γ
j1s = gj

g1s

λ2
j1A

2γ
j1s

8πνj1
and

φ
2γ,∗
j = 4 π νj1ϕ̃

2γ
j (ν) [1 + npl(ν)][1 + npl(ν ′)], where, because of

energy conservation, ν ′ = νj1s − ν. Also,

�nj
em = g1s

gj

Xj

X1s
− e−hνj1/kTγ , (37a)

f j
ν = e−hνj1/kTγ

npl(ν)
≡ eh(ν−νj1)/kTγ

1 + npl(ν)
≈ exp

[
h(ν − νj1)/kTγ

]
. (37b)

Again we emphasize the resemblance of the equation above to
that of the one-photon equation for the Lyman-series emission and
absorption channels as in equation (14).

3.4.3 Correcting the Lyman-series emission and absorption terms
in the radiative transfer equation

Two-photon decays from a given initial state j ∈ {ns, nd} involve
Lyman-series resonances with k < n. For example, a 4d–1s two-
photon emission event includes the effect of the Lyman α and β

resonance. In the Lyman-series emission and absorption terms as
in equation (14), these are already accounted for as ‘1 + 1’-photon
terms, when the profile is given by the normal Voigt function.

To avoid the double counting of these transitions in the radiative
transfer equation, two modifications are necessary: (i) all death
probabilities, p

kp
d , have to be reduced to account only for those

channels that are not included in the two-photon description and (ii)
the Lyman-series emission rates have to be reduced for the same
reason. This approach was also explained in Chluba & Sunyaev
(2010b) for the 3s–1s and 3d–1s two-photon process. Including
only the j-1s two-photon process (say for 3d–1s), the modified death
probability and �ñkp

em of the Lyman-k resonance become

p̃
kp
d = p

kp
d − p

j,kp
d , (38a)

�ñkp
em = 1

3 X1s

R+
kp − R

j,+
kp

R−
kp − R

j,−
kp

− e−hνkp/kTγ , (38b)

where the partial death probability, p
j,kp
d , is given by

p
j,kp
d = R

j,−
kp

Akp1s + R−
kp

≡ pkp
em

R
j,−
kp

Akp1s
≡ p

kp
d

R
j,−
kp

R−
kp

. (38c)

The partial rates in and out of the kp state are

R
j,+
kp = Aj kp[1 + npl(νj kp)] Xj , (38d)

R
j,−
kp = gj

gkp
Aj kp npl(νj kp), (38e)

such that g1s
gkp

R
j,+
kp

R
j,−
kp X1s

≡ n
j
L ehνj kp/kTγ with n

j
L = g1s

gj

Xj

X1s
.

When more than one two-photon channel is included, then for
every Lyman resonance the following needs to be computed:

p̃
kp
d = p

kp
d −

∑
j

p
j,kp
d , (39a)

�ñkp
em = 1

3 X1s

R+
kp −∑j R

j,+
kp

R−
kp −∑j R

j,−
kp

− e−hνkp/kTγ , (39b)

where the sums run over all involved initial levels j.

3.4.4 Correcting the net rates in the multilevel atom

Equation (32) relates the population of level j with the ground state.
The corresponding net two-photon transition rate includes the effect
of all ‘1 + 1’-photon processes, j ↔ np ↔ 1s, via Lyman-series
resonances with n < nj. Double-counting can again be avoided by
subtracting the corresponding ‘1 + 1’-photon terms from the full
j-1s two-photon rate. The remaining corrections can then be added
to the effective multilevel code as additional rates which directly
connects level j to the ground state.14

In the standard multilevel description of all j ↔ np ↔ 1s se-
quences (nj > n), the contributions to the two-photon net rate as
in equation (32) take the form (see also Chluba & Sunyaev 2010b)

dXj

dt

∣∣∣∣
2γ (1+1)

1s,kp

= gkp

g1s
X1s Akp1s p

j,kp
d n̄kp1s − Xj A∗

j kp pkp
em, (40a)

≡ gj

g1s
X1s Aj kp pkp

em npl(νjk) n̄kp1s − Xj A∗
j kp pkp

em, (40b)

dXj

dt

∣∣∣∣
2γ (1+1)

1s

=
nj −1∑
k=2

dXj

dt

∣∣∣∣
2γ (1+1)

1s,kp

. (40c)

Equation (40a) is interpreted as electrons exiting level j via the route
j → np → 1s at a rate A∗

j kp times the probability, pkp
em (the second

term). Similarly, electrons reach state j from the ground state via the
route 1s → np → j, with the Lyman-k excitation rate,

gkp

g1s
Akp1s n̄kp1s

times the probability, p
j,kp
d , to then make the transition kp → j (the

first term). Using equations (38c) and (38e) leads to equation (40b).
Equation (40b) helps make the connection of the full two-photon

net rate and the ‘1 + 1’-photon terms because equation (40b) can be
directly derived from equation (32), assuming that the two-photon
profile is given by independent (non-interacting) resonances, where
the line shapes are given by the normal Voigt profiles.

Substituting n̄kp1s = npl(νkp1s) + �n̄kp1s, and using the relation
ehν/kTγ = [1 + npl(ν)]/npl(ν), equation (40b) simplifies to

dXj

dt

∣∣∣∣
2γ (1+1)

1s,kp

= A∗
j kp pkp

em

(
gj

g1s
X1s e−hνj1/kTγ − Xj

)

+ gj

g1s
X1s Aj kp pkp

em npl(νjkp) �n̄kp1s, (41)

such that upon summing over the intermediate kp resonances, we
have

dXj

dt

∣∣∣∣
2γ (1+1)

1s

= A
2γ (1+1),∗
j1s

(
gj

g1s
X1s e−hνj1/kTγ − Xj

)

+ gj

g1s
X1s

k<nj∑
k=2

Aj kp pkp
em npl(νjkp) �n̄kp1s. (42)

14 Chluba & Sunyaev (2010b) proposed a varied treatment in which the
‘1 + 1’-photon terms were first taken out of the standard network of rate
equations and then the full two-photon rate between level j and 1s added,
which at the end, is completely equivalent.
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The above equation (34) reveals the correction term for the rate
equations as

�R
2γ
j↔1s = A

2γ
j1s �Gj

2

[
gj

g1s
X1se

−hνj1s/kTγ − Xj

]

+A
2γ
j1s

gj

g1s
X1s

⎡
⎣�Gj

1 −
k<nj∑
k=2

Aj kp pkp
em

A
2γ
j1s

npl(νjkp) �n̄kp1s

⎤
⎦ . (43)

Here, we define �Gj
2 = Gj

2 − A
2γ (1+1),∗
j1s /A

2γ
j1s.

Similar to the 2s–1s two-photon channel, the correction to the rate
equations here has two contributions. The first is related to �Gj

2 ,
which is independent of the solution to the photon distribution
and therefore can be pre-calculated, and the second arising from
the integral �Gj

1 . However, in contrast to the 2s–1s two-photon
channel, in the normal rate equations, part of the latter term is
already included. Thus, the ‘1 + 1’-photon term has to be subtracted
(the last term in brackets), where this term is calculated using the
Sobolev approximation for �n̄kp1s.

�Gj
2 , in principle, also arises in the normal ‘1 + 1’ picture, when

differentially accounting for the effect of stimulated emission in the
CMB blackbody. However, the shape of the two-photon emission
profile is crucial, since with the normal sum of Lorentzians the
integrand in equation (21c) would diverge for ν → ν j1 and ν →
0 (Chluba & Sunyaev 2010b). Furthermore, the latter two terms in
equation (43) account for both modifications in the shape of the full
two-photon profiles and differences in the solution of the photon
field in comparison with the standard Sobolev approximation.

The problem is numerical because two large terms are being
subtracted. One way to achieve stable results is to split the range of
integration into intervals where the mean occupation number in the
standard Sobolev approximation is represented by (compare Chluba
& Sunyaev 2009b)

�n̄kp1s = �n
kp
L

∫ ∞

0
ϕ

kp
V (ν ′)

[
1 − e−τ

kp
S (1−χ

kp
ν′ )
]

dν ′

= �n
kp
L

[
χ

kp
ν′ − e−τ

kp
S (1−χ

kp
ν′ )

τ
kp
S

]∞

0

= �n
kp
L

(
1 − P

kp
S

)
, (44)

with χkp
ν = ∫ ν

0 ϕ
kp
V dν ′. Outside the resonances, one can simply

compute each term in equation (43) separately, since there the con-
tributions are small. For those intervals containing a resonance k
on the other hand, one should compute both contributions in one
integral, so that the main terms cancel. Clearly, the choice of the
intervals is only motivated by the numerical precision that needs
to be achieved. Since the Voigt profiles have their main support
inside the Doppler core, it is sufficient to define regions of a few
Doppler width around the resonances. This approach suffices for
our purpose.

Alternatively, one can directly integrate the net two-photon pro-
duction rate, equation (36), over frequency, and then subtract the
net ‘1 + 1’-photon rate to obtain the correction. We confirmed that
both approaches lead to the same answer.

To capture part of the dependence of �R2γ
j↔1s on the solution for

the populations in numerical computations, we tabulate the function
F 2γ

j↔1s = �R
2γ
j↔1s/(X1s�n

j
L) as a function of redshift, once we

computed the solution for the photon field using the results for
the populations of the levels obtained from a run of our effective
multilevel recombination code.

3.5 Raman scattering

In our previous work (Chluba & Sunyaev 2009a, 2010b), we did not
consider the effect of the Raman scattering on the ionization his-
tory. However, the correction due to this process reaches �Ne/Ne

∼ 0.9 per cent at z ∼ 900 (Hirata 2008), and hence demands care-
ful consideration. The matrix element for this process is directly
related to the one for the two-photon emission process by crossing-
symmetry. In Appendix A, we explain how to compute the Raman-
scattering profiles, ϕR

j (ν), for the j-1s Raman process. Additional
details can also be found in Hirata (2008), where the importance of
this effect during recombination was shown for the first time.

3.5.1 Net rates for ns–1s and nd–1s Raman scattering

The net change in the number density of electrons in the level j ∈
{ns, nd} caused by j-1s Raman scatterings is given by

dXj

dt

∣∣∣∣
R

1s

= gj

g1s
AR

j1sX1s

∫ ν1sc

νj1s

ϕR
j (ν − νj1s) n(ν) [1 + n(ν − νj1s)] dν

− AR
j1sXj

∫ νjc

0
ϕR

j (ν) n(ν) [1 + n(νj1s + ν)] dν, (45a)

≡ gj

g1s
AR

j1sX1s

∫ ν1sc

νj1s

ϕR
j (ν − νj1s) n(ν) [1 + n(ν − νj1s)] dν

−AR
j1sXj

∫ ν1sc

νj1s

ϕR
j (ν − νj1s) n(ν − νj1s) [1 + n(ν)] dν, (45b)

where equation (45b) was simply obtained from equation (45a) by
transforming the frequency range of the second integral.

In equation (45), ϕR
j denotes the j-1s Raman-scattering profile,

and the Raman-scattering coefficient is given by15

AR
j1s =

nmax∑
k=nj +1

gkp

gj

Akp j pkp
em. (46)

The ratio of the statistical weights is gkp/gj = 3 for the ns states,
and gkp/gj = 3/5 for nd states. Equation (46) simply reflects the
one-photon terms and branching ratios of all the ‘1 + 1’-photon
routes j → np → 1s via intermediate p states with n > nj.

A rigorous treatment of equation (46) would include the integral
over continuum states. However, any electron reaching the contin-
uum would forget its history because of fast Coulomb interactions
resulting in decoherence of the Raman process in the continuum.
Furthermore, as mentioned above, the Lyman continuum is ex-
tremely optically thick such that these channels will always cancel
out (see also Hirata 2008). Also, in numerical computations we
only follow the evolution of the photon field up to some maximal
frequency, νmax. Therefore, in our description, we are not account-
ing for the full Raman process connected with transitions involving
photons with ν > νmax. This approximation is fully justified as the
higher Lyman series contribute negligible amounts to the total re-
combination rate. Thus, the sum over intermediate p states become
finite without significant loss of precision.

To simplify equation (45), we define the following quantities:16

〈 f (ν) 〉R
i =

∫ νmax

νi1s

ϕR
i (ν − νj1s) f (ν) dν, (47a)

15 We call AR
j1s ‘coefficient’ since in vacuum there is no Raman process.

16 Formally, the upper limit of the integral over the Raman profiles should
go to infinity. However, since we are following the spectrum in a finite range
of frequencies, this introduces an upper limit, νmax ≤ ν1sc.
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Ri
1 = 〈 n (1 + n′) 〉R

i , (47b)

Ri
2 = 〈 n′(1 + n) 〉R

i , (47c)

with n′ = n(ν − νj1s). In the spirit of the two-photon emission and
absorption process, we can now write

Ri
1 ≈ 〈 npl (1 + npl ′) 〉R

i + 〈�n (1 + npl ′) 〉R
i

≈ Ri
2 e−hνj1s/kTγ + 〈�n (1 + npl ′) 〉R

i
(48a)

Ri
2 ≈ 〈 npl ′(1 + npl) 〉R

i = AR,∗
j1s/A

R
j1s. (48b)

The total j → 1s ‘1 + 1’ Raman-scattering rate in the CMB
blackbody ambient radiation field is

A
R(1+1),∗
j1s =

nmax∑
k=nj +1

gkp

gj

Akp j npl(νjk) pkp
em. (49)

This then leads to

dNj

dt

∣∣∣∣
R

1s

= AR,∗
j1s

(
gj

g1s
X1se

−hνj1s/kTγ − Xj

)
+ gj

g1s
AR

j1s X1s �Rj
1,

(50a)

�Rj
1 =

∫ νmax

νj1s

ϕR
j (ν − νj1s) (1 + npl ′) �n(ν) dν. (50b)

Here AR,∗
j1s and �Rj

1 are important in defining the correction to

the rate equations (see Section 3.5.4). Again AR,∗
j1s is the thermal

contribution, while �Rj
1 arises from non-thermal photons.

3.5.2 Terms in the radiative transfer equation for the Raman
scattering

From equation (45), the terms in the radiative transfer equation for
the photon field can be obtained. However, one aspect is important
to keep in mind: a photon that Raman scatters off an electron in the
jth state is removed from frequencies 0 ≤ ν ≤ νjc. However, the
scattered photon appears in the frequency range νjc < νj1 ≤ ν ′ ≤
ν1c, and likewise for the inverse process. This description assumes
complete redistribution of photons over the full Raman-scattering
profile17 during each scattering event. Therefore, the terms for the
radiative transfer equation read as follows:

1

c

∂Nν

∂t

∣∣∣∣
j1s

R,ν≤νjc

= gj

g1s
AR

j1sN1s ϕ̃R
j (ν) n(νj1s + ν) [1 + n(ν)]

−AR
j1sNj ϕ̃R

j (ν) n(ν) [1 + n(νj1s + ν)], (51a)

1

c

∂Nν

∂t

∣∣∣∣
j1s

R,νj1s≤ν

= AR
j1sNj ϕ̃R

j (ν − νj1s) n(ν − νj1s) [1 + n(ν)]

− gj

g1s
AR

j1sN1s ϕ̃R
j (ν − νj1s) n(ν) [1 + n(ν − νj1s)], (51b)

where ϕ̃R
j (ν) = ϕR

j (ν)/4π. It is clear that the total integral over
frequency vanishes, when adding the above two terms, showing
that the Raman process conserves photon number. However, the
number density of electrons in the 1s and j state is altered after each
Raman-scattering event, according to equation (45).

17 We neglect corrections caused by partial redistribution in the Raman-
scattering events, but like in the case of two-photon transitions these should
be very small.

With regards to the recombination dynamics, we are not in-
terested in the changes to the photon spectrum at low frequen-
cies. Therefore, we only consider equation (51b). For stimulated
terms, the distortions can be neglected. Furthermore, one can de-
fine ϕ̃R,∗

j (ν) ≡ ϕ̃R
j (ν) npl(ν) [1 + npl(νj1s + ν)] ≈ ϕ̃R

j (ν) npl(ν), and
neglect the distortions at low frequencies, such that

1

c

∂Nν

∂t

∣∣∣∣
j1s

R,νj1s≤ν

≈ AR
j1sNj ϕ̃R,∗

j (ν − νj1s)

− gj

g1s
AR

j1sN1s ϕ̃R,∗
j (ν − νj1s) f j

ν n(ν), (52)

where f j
ν is defined by equation (37b). In terms of the photon occu-

pation number, this equation becomes

∂�nx

∂z

∣∣∣∣
j1s

R,νj1s≤ν

= − σ R
j1sN1sc

H [1 + z]

ν2
j1

ν2
21

φR,∗
j

x2

(
ν21 �nj

em − f j
x �nx

)
,

(53)

where �nj
em is defined as in equation (37a). The j-1s Raman-

scattering cross-section is given by σ R
j1s = gj

g1s

λ2
j1AR

j1s

8πνj1
, and we set

φR,∗
j ≡ 4 π νj1ϕ̃

R,∗
j (ν − νj1s). Note the close similarity of this equa-

tion to the one-photon equation for the Lyman-series emission and
absorption channels in equation (14). Photons scattering from fre-
quencies 0 ≤ ν ≤ νjc into the range νj1s ≤ ν appear as a source
term. This is related to the fact that these photons are drawn from
the CMB blackbody.

3.5.3 Correcting the Lyman-series emission and absorption terms
in the radiative transfer equation

Like in the case of two-photon emission and absorption, the reso-
nant part of the Raman process is already part of the ‘1 + 1’-photon
Lyman-series transfer in equation (14). To avoid double count-
ing, we simply have to correct the death probability and �nkp

em of
the Lyman-k resonance for terms that are included in the Raman-
scattering process. For example, when using the terms for the 2s–1s
Raman-scattering process in the radiative transfer equation, pkp

d and
�nkp

em for Lyman β, γ , δ and higher will have to be corrected.
The modified death probability can be obtained by adding ap-

propriate terms to the sums of equation (39). However, for each
included Raman channels one now has R

j,−
kp = Akp j [1+npl(νj kp)],

and R
j,+
kp = gkp

gj
Akp j npl(νj kp) Xj ≡ R

j,−
kp

gkp

gj
Xj e−hνj kp/kTγ .

3.5.4 Correcting the net rates in the multilevel atom

Like in the case of two-photon emission and absorption events,
corrections to the net rates in the multilevel atom have to be defined
to avoid double counting. In the standard multilevel description of
all j ↔ np ↔ 1s sequences (nj < n), the contributions to the Raman-
scattering net rate, equation (45), take the following form:

dXj

dt

∣∣∣∣
R(1+1)

1s,kp

=gkp

g1s
X1s Akp1s p

j,kp
d n̄kp1s− gkp

gj

Xj Akpj npl(νjk)pkp
em,

(54a)

≡ gkp

g1s
X1s A∗

kpj pkp
em n̄kp1s − gkp

gj

Xj Akpj npl(νjk)pkp
em, (54b)

dXj

dt

∣∣∣∣
R(1+1)

1s

=
nmax∑

k=nj +1

dXj

dt

∣∣∣∣
R(1+1)

1s,kp

. (54c)
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As mentioned above, nmax is a consequence of the finite compu-
tational domain. The terms in equation (54) are interpreted as in the
case of two-photon emission and absorption (see Section 3.4.4).

Inserting n̄kp1s = npl(νkp1s) + �n̄kp1s and using the relation
ehν/kTγ = [1 + npl(ν)]/npl(ν), equation (54b) simplifies to

dXj

dt

∣∣∣∣
R(1+1)

1s,kp

= gkp

gj

Akp j npl(νjk)pkp
em

(
gj

g1s
X1s e−hνj1/kTγ − Xj

)

+gkp

g1s
X1s A∗

kp j pkp
em �n̄kp1s, (55)

such that summing over the intermediate kp resonances leads to

dXj

dt

∣∣∣∣
R(1+1)

1s

= AR,∗
j1s

(
gj

g1s
X1s e−hνj1/kTγ − Xj

)

+X1s

nmax∑
k=nj +1

gkp

g1s
A∗

kp j pkp
em �n̄kp1s. (56)

Using equation (50), it is clear that the correction term for the rate
equations is

�RR
j↔1s = AR

j1s �Rj
2

(
gj

g1s
X1se

−hνj1s/kTγ − Xj

)

+AR
j1s

gj

g1s
X1s

⎛
⎝�Rj

1 −
nmax∑

k=nj +1

gkp

gj

A∗
kp j pkp

em

AR
j1s

�n̄kp1s

⎞
⎠ , (57)

where we define �Rj
2 = Rj

2 − A
R(1+1),∗
j1s /AR

j1s. Like for the two-

photon channels (see equation 43), �Rj
2, in principle, also arises in

the normal ‘1 + 1’ picture, where the shape of the Raman profile
ensures that the integrand remains finite, this time in the limit of
ν → νj ls (see Appendix A2). Furthermore, the latter two terms in
equation (57) account for both modifications in the shape of the
Raman profiles with respect to the normal sum of Lorentzians and
differences in the solution of the photon field with respect to the
Sobolev approximation.

Again one can compute the integrals over frequency by split-
ting the range of integration and using equation (44) to model the
‘Sobolev part’. In numerical calculations, we tabulate FR

j↔1s =
�RR

j↔1s/(X1s �n
j
L) versus redshift to include the correction into

the effective multilevel recombination code, and then use this to
correct the rate equations.

4 C H A N GES IN THE LYMAN-SERIES
DISTORTION FOR DIFFERENT PHYSICAL
PROCESSES

In Section 5, we discuss the changes to the free electron fraction due
to the various physical processes under consideration. However, in
order to understand the source of these corrections, it is illustra-
tive to first look at the modifications in the Lyman-series spectral
distortion.

In Fig. 1, we present the spectral distortion at two different
redshifts, one before the maximum of the Lyman-series emission
(which happens at z ∼ 1300–1400), and one just before the max-
imum of the Thomson visibility function. We include Lyman res-
onances up to n = 8 for these computations. The solutions to the
populations of the hydrogen levels were obtained from our imple-
mentation of the effective 400-shell recombination code.

The solid black line in all the panels shows our reference case, for
which the Lyman series is modelled using Voigt profiles. This case
already includes the effect of resonance scattering (for all Lyman-
series resonances), electron scattering, the full time-dependence

(Chluba & Sunyaev 2009b) of the emission and absorption pro-
cess, and the thermodynamic correction factor for each resonance
(Chluba & Sunyaev 2010b), capturing a large part of the corrections
with respect to the Sobolev treatment. In particular, the distinction
between scattering and emission/absorption events (by introduc-
ing the death probability) is important for the photon distribu-
tion on the blue side of the Lyman α resonance (see discussion
in Chluba & Sunyaev 2009b). Furthermore, time-dependence and
the thermodynamic correction factor lead to a large modification
of the photon distribution with respect to the standard Sobolev
case.

We will now discuss the effect of the different processes on the
shape of the Lyman-series distortion separately.

4.1 Effect of Lyman-series scattering

In Fig. 1, the dotted curve shows the case for which we ‘switched
off’ the terms for Lyman-series scattering. This line is only visible
in the upper panels, since at high frequencies above the Lyman α

line it coincides with the reference case. The figure illustrates that
partial redistribution by Lyman-series scattering is only important
close to the Lyman α resonance, and on its red wing. We could,
in principle, neglect the correction due to resonance scattering for
Lyman n with n > 2; however, with our efficient PDE solver, it is
straightforward to take them into account.

The physical reason for this behaviour is that the scattering prob-
ability in the Lyman α line is very close to unity (p2p

sc ∼ 0.999–
0.9999), such that only in the vicinity of the Doppler core can real
emission and absorption terms act efficiently, strongly redistributing
photons over frequency. Outside the Doppler core, however, redis-
tribution is much slower making the effect of Doppler redistribution
visible.

For the higher Lyman-series resonance, on the other hand, the
death probability is only about an order of magnitude smaller than
the scattering probability, implying that far out in the wings of
the resonance photons can be efficiently redistributed by emis-
sion and absorption processes. In this case, resonance scattering
leads to a small correction (see also arguments in Ali-Haı̈moud
et al. 2010).

4.2 Two-photon emission and absorption from the excited
states with n ≥ 3

Next we include the corrections due to the shapes of the ns–1s
and nd–1s two-photon profiles (Fig. 1, red/dashed line). By shape,
we also address modifications caused by the presence of CMB
blackbody photons.

One can see that in comparison to the reference case, this slightly
decreases the spectral distortion between all Lyman resonances, in-
dicating that the emission/absorption opacity has decreased. The
largest effect is seen between the Lyman α and Lyman β lines, as
a result of the 3s–1s and 3d–1s two-photon emission and absorp-
tion process. This result is in agreement with our earlier treatment
(Chluba & Sunyaev 2010b), where it was demonstrated that the
shape of the 3s–1s and 3d–1s two-photon profiles leads to a slight
acceleration of recombination, which, however, is less important
than the corrections arising from the thermodynamic correction
factor and time-dependence, individually.

We tried to identify the main source of the modifications above the
Lyman β resonance in more detail. In the full two-photon picture,
the 3s–1s and 3d–1s two-photon emission and absorption channels
only act on photons with ν ≤ ν31. However, when neglecting the
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Towards a complete treatment of recombination 759

Figure 1. Solution for the Lyman-series distortion at z = 1490 (left-hand panels) and z = 1190 (right-hand panels) for different combinations of physical
processes (for details see Section 4). In all the cases, we include the effect of electron scattering. We also marked the positions of the Lyman-series
resonances with the vertical dashed-dot-dotted lines. The effect of partial frequency redistribution is only important close to the Lyman α line centre, so that
the dotted line is only visible in the upper panels. A movie on the time-evolution of the Lyman-series distortion can be found at www.Chluba.de/Lyman-
series-movie.

modifications to the shapes of the two-photon profiles, a large part
of the opacity above the Lyman β line (incorrectly) comes from the
3s–1s and 3d–1s ‘1 + 1’-photon channel, which involves the Lyman
α resonance and is modelled by a normal Voigt profile. It turns out
that only for the 3s–1s and 3d–1s two-photon process does the exact
shape of the two-photon profile really matter. Above the Lyman β

line, the small correction with respect to the solid line is practically
captured by truncating the Voigt profiles (in particular the one for
Lyman α), such that the energy is conserved (e.g. photons emitted
or absorbed in a 3s–1s and 3d–1s ‘1 + 1’-photon process can only
have energies ν ≤ ν31, and so on). This illustrates how important
the shape of the line profiles is when going far into the damping
wings of the resonances.

4.3 Importance of Raman scattering

In addition to the two-photon corrections, we ran cases that also in-
clude the full Raman-scattering treatment (Fig. 1, blue/dash–dotted
line). One can see that the Raman process led to an enhancement
of the spectral distortion between the Lyman α and Lyman β reso-
nance, while in all the other cases the spectral distortion decreases
between the resonances. Thus, one expects an increased blue-wing
feedback correction and hence a delay of hydrogen recombina-

tion from Lyman α. On the other hand, these additional red-wing
Lyman β photons were created in a 2s–1s Raman event, such that
at earlier times an acceleration is expected. This simple picture is
in agreement with earlier discussions of this process (Hirata 2008).

In the case considered, the main source of the difference in the
Lyman-series distortion comes from the 2s–1s Raman treatment.
Neglecting the Raman corrections to the higher ns–1s and nd–1s
channels does no affect the shape of the distortion notably. This is
one of the reasons why the Raman process need to be included only
for the first few levels.

Since in the case of Raman scattering, the 2s → 1s scattering
profile is given by ϕ̃R,∗

j (ν) ≈ ϕ̃R
j (ν) npl(ν) (see Section 3.5), one

expects two sources of corrections: (i) due to the difference of ϕR
j

(ν) with respect to a sum of Voigt profiles with appropriate weights
and (ii) the factor of npl(ν). In the normal ‘1 + 1’-photon picture, this
factor would not appear differentially, but instead directly for each
resonance frequency. It turns out that both parts of the correction
are important for the 2s–1s Raman treatment.

We note that the spectral distortion at z = 1190 in the full treat-
ment looks very similar to the curve given in Hirata (2008). How-
ever, in Hirata (2008) also the CMB blackbody spectrum was added,
and nν instead of x3�nx was plotted, which makes a direct compar-
ison more difficult.
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Figure 2. Dependence of the modifications to the recombination dynamics
on the number of included shells. The results of our effective multilevel
recombination code were directly compared with the output from RECFAST.

5 C H A N G E S TO T H E FR E E E L E C T RO N
FRAC TION FOR DIFFERENT PHYSICAL
PROCESSES

In this section, we present our analysis of the different corrections
to the standard recombination calculation. We focus on hydrogen,
and model the helium recombination dynamics using the descrip-
tion given in Chluba & Sunyaev (2010a), including the first five
shells with full feedback. With the current version of our effective
multilevel recombination code, we are able to account for all im-
portant corrections to the recombination dynamics of hydrogen. We
show a direct comparison with previous results and find very good
agreement. All figures in which we compared the output of our
recombination code with RECFAST we used RECFAST v1.4.2 (Wong &
Scott 2007), but excluded the corrections to the helium recombi-
nation history in RECFAST and removed the switches in the RECFAST

ordinary differential equation (ODE) system (see Fendt et al. 2009,
for details). The cumulative effect on the ionization history is pre-
sented in Fig. 6.

5.1 Results from our effective multilevel code

In Fig. 2, we show the changes in the recombination dynamics with
the number of shells that were included into the computation of
the effective rates. This figure confirms that our implementation
of the effective multilevel approach yields corrections that are in
agreement with our earlier computations Chluba et al. (2010). We
find that the correction converges down to z ∼ 200 when including
∼300–400 shells as already explained in Chluba et al. (2010). We
also directly compared with our full multilevel recombination code
and found the difference to be smaller than �Ne/Ne ∼ 10−5.

Collisional processes are still able to change the low-redshift
behaviour at the ∼0.1 per cent level in this redshift range (Chluba et
al. 2010), however, we defer a detailed analysis on the importance
of this effect to a future work.

5.2 The reference case

In Fig. 3, we present a compilation of different corrections to the
ionization history that are included into our reference case. For this,
we internally compared the outputs of our recombination code when

Figure 3. Corrections that are included into the reference case.

switching on and off different processes. We computed the solution
to the photon transfer problem including the Lyman series up to
n = 8 with Lyman θ (n = 9) on the upper boundary of the frequency
grid. In the Lyman-series transfer, we did not include the corrections
to the profiles of the emission and absorption processes arising from
two-photon and Raman events, i.e. we described Lyman-k emission
and absorption using equation (14). However, in our full reference
case, Lyman-k resonance and electron scattering, as well as 2s–1s
two-photon emission and absorption were included (see Section 4
for additional comments).

To account for all the corrections to the rate equations in the ef-
fective multilevel recombination code, we ran the obtained solution
for the photon distribution through the modules that also allow us
to take the two-photon and Raman-scattering corrections into ac-
count (see explanations in Section 3). However, we replaced the full
profiles of the channels with the normal Voigt profiles.

The cumulative difference with respect to the output of our ef-
fective multilevel recombination code which does not include any
of the radiative transfer corrections is shown in Fig. 3. In total, we
find a delay in recombination by �Ne/Ne ∼ 0.4 per cent at z ∼ 930,
and an early acceleration by �Ne/Ne ∼ −1.0 per cent at z ∼ 1270.
The reference case, therefore, captures a significant part of the total
correction with respect to RECFAST (see Section 5.5 for details).

5.2.1 The 2s–1s two-photon correction

Fig. 3 shows the total correction due to changes in the 2s–1s two-
photon channel. We only modified the 2s–1s two-photon and Lyman
α net rate in our effective multilevel recombination code using
equation (26), but did not alter any of the other rates. Also we
switched off line diffusion.

We find a delay of recombination by �Ne/Ne ∼ 0.83 per cent at
z ∼ 990, which is slightly (by �Ne/Ne ∼ 0.18 per cent) larger than
in earlier computations of this process (e.g. Fendt et al. 2009).

There are two main reasons for this difference: (i) because in the
reference case we include the emission and absorption in the 2s–1s
two-photon channel, the self-feedback of photons emitted by 2s–1s
transitions on the 1s–2s two-photon channel is accounted for, which
leads to an additional delay of �Ne/Ne ∼ 0.08 per cent and (ii) the
remaining deceleration by �Ne/Ne ∼ 0.1 per cent is just caused by
normal absorption of 2s–1s photons by Lyman α (without the aid
of line diffusion).
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5.2.2 Feedback to Lyman α and the diffusion correction

We now considered the feedback correction to Lyman α. Like
in our earlier treatment (Chluba & Sunyaev 2007), we find
�Ne/Ne ∼ 0.21 per cent at z ∼ 1100. We computed this correction
from our radiative transfer code by modifying the Lyman α escape
probability, with resonance scattering switched off. We also left the
rate equations for the higher Lyman-series resonances unaffected,
in order to not reflect the full Lyman-series feedback correction,
which amounts to �Ne/Ne ∼ 0.26 per cent at z ∼ 1100 (Chluba &
Sunyaev 2010a).

In Fig. 3, the correction due to Lyman α diffusion alone is de-
picted. Again this was computed as a correction to the Lyman α res-
onance only. We find an acceleration by �Ne/Ne ∼ −0.44 per cent
at z ∼ 900. This is slightly smaller than in our earlier computation
(Chluba & Sunyaev 2009a). The reason is simply that there we
included only three shells into our computation. However, when
including more than 5–10 shells the diffusion correction becomes
slightly smaller, reducing to the curve presented in Fig. 3. To check
the precision of our PDE solver, we recomputed the curve for the
three-shells case and confirmed our earlier result.

5.2.3 The correction due to time-dependence and thermodynamic
factor

The final correction that is taken into account by the computa-
tions in the reference case is caused by the time-dependence of the
Lyman α emission process and the thermodynamic correction factor
(see Fig. 3). The origin of these terms was first explained in detail
by Chluba & Sunyaev (2009b) and Chluba & Sunyaev (2010b).
The net effect is an acceleration in recombination by �Ne/Ne ∼
−1.28 per cent at z ∼ 1200. This result is in excellent agreement
with the curves presented in Chluba & Sunyaev (2010b), fig. 18
therein. Note that also in the figure of Chluba & Sunyaev (2010b),
the 3s–1s and 3d–1s two-photon profile correction was included.

5.2.4 Correction from the higher Lyman n

For the solid black line in Fig. 3, all Lyman-series corrections were
included. However, so far we have just discussed the corrections to
the 2s–1s two-photon and Lyman α channel. We found a cumula-
tive acceleration by �Ne/Ne ∼ −0.06 per cent at z ∼ 1210 as result
of the higher Lyman series. This correction includes all feedback
corrections among the higher levels, time-dependence and the ther-
modynamic factors. Since the additional modification is small, this
shows that just a detailed treatment of 2s–1s two-photon and Lyman
α corrections already gives a very good approximation to the total
correction in the reference case.

5.3 Two-photon corrections from levels with n > 2

In this section, we discuss the correction caused by the modifications
in the emission and absorption profiles of the ns–1s and nd–1s
two-photon channels. These corrections are due to (i) quantum-
mechanical modifications to the shapes of the line profiles and (ii)
stimulated two-photon emission in the CMB blackbody radiation
field. For two-photon processes from ns and nd states with n > 2,
the former dominates.

In Fig. 4, we present the changes to the free electron fraction when
the two-photon corrections up to the 8s–1s and 8d–1s two-photon
channel are included. Two-photon processes lead to a total acceler-
ation of recombination by �Ne/Ne ∼ −0.46 per cent at z ∼ 1120.

Figure 4. Two-photon corrections from highly excited levels (n > 2) and
their convergence with n.

Figure 5. Raman-scattering corrections from excited levels

The main contribution comes from the 3s–1s and 3d–1s two-photon
process, while the higher levels only add �Ne/Ne ∼ −0.08 per cent
at z ∼ 1200. The correction practically converges when accounting
for the two-photon terms up to 5s–1s and 5d–1s. Also the result
for the 3s–1s and 3d–1s two-photon process compares extremely
well with our earlier computation (Chluba & Sunyaev 2010b). We
conclude that for practical purposes it is sufficient to include the
two-photon corrections for all ns and nd states up to n ∼ 4–5.

5.4 Corrections caused by Raman processes

The final process we discuss is the effect of the Raman scattering,
which was also investigated by Hirata (2008). The result of our
computation is shown in Fig. 5, confirming that Raman scattering
leads to a delay of recombination by �Ne/Ne ∼ 0.9 per cent at z
∼ 920. This result is in very good agreement with the analysis of
Hirata (2008). We found that the correction is dominated by the
2s–1s Raman process. Higher level Raman scattering leads to a
small additional modification, which for practical purposes could
be neglected. We recommend including the Raman corrections for
the first three shells.

As mentioned above, the Raman correction has two separate
contribution: one from the feedback of Lyman β photons on the
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Figure 6. Total correction to the ionization history. We compared the output
of our effective multilevel recombination code with RECFAST v1.4.2 (Wong
& Scott 2007). However, we switched all helium flags in RECFAST off.

Lyman α resonance, which leads to a delay of recombination a
low redshift, and secondly arising because of the accelerated 2s–1s
scattering. The delay and acceleration need to be out of phase in
redshift to create a net effect. We find that their individual contribu-
tions have amplitudes comparable to ∼2 per cent; however, partial
cancellation makes them smaller.

5.5 Total correction with respect to RECFAST

In Fig. 6, we show the cumulative correction to the ionization history
caused by all the processes included into our present recombination
code. The changes during hydrogen recombination found here are
very similar to those presented in Rubiño-Martı́n et al. (2010). The
only major difference is visible at low redshifts, since their analysis
was based on the results from a 100-shell hydrogen recombination
model and hence the low-redshift freeze-out tail was overestimated
(see Fig. 3 and comments in Chluba et al. 2010). However, as argued
earlier (Fendt et al. 2009; Chluba et al. 2010; Rubiño-Martı́n et al.
2010), we expect that this additional modification does not affect
the conclusions of their work at a significant level. In particular, they
showed that the cumulative effect of all published recombination
corrections could lead to biases in the values of �b h2 and nS which
reach ∼ −1.7σ and ∼ −2.3σ , respectively. For the analysis of
CMB data from the PLANCK Surveyor, these corrections have to be
taken into account carefully when answering queries about different
models of inflation.

6 C O N C L U S I O N S

In this paper, we complete our analysis on the importance of the
two-photon transitions and Raman scattering during the cosmolog-
ical recombination epoch. We explicitly solve the radiative transfer
equation for the H I Lyman-series transport, including all important
processes (e.g. resonance scattering, full time-dependence), extend-
ing our former treatment to account for the Raman scattering as well
as two-photon transition from highly excited levels with n > 3. Our
computations are performed using an effective multilevel approach
for hydrogen to accelerate the recombination calculation, which
without optimization achieves run times of ∼1–2 min.

We find that 2s–1s Raman scattering leads to a small initial ac-
celeration of recombination at high redshifts, which then turns into

a deceleration of �Ne/Ne ∼ 0.9 per cent at z ∼ 920. ns–1s and
nd–1s Raman processes from levels with n > 2 only result in a
small additional correction. Two-photon transitions from ns and nd
states with n > 3 accelerate hydrogen recombination by additional
�Ne/Ne ∼ −0.08 per cent at z ∼ 1200. For practical purposes, one
only has to include the two-photon corrections for the first ∼4–5
shells.

This work carves a path towards a new cosmological recombina-
tion code, COSMOREC, that supersedes the physical model included
in RECFAST and can be used in the analysis of future CMB data, e.g.
from the PLANCK Surveyor, ACT, SPT and CMBPOL. The final
step will perform a detailed code comparison, and to optimize the
implementation of the recombination code, so that run times of sec-
onds can be accomplished, incorporating all the important physical
processes without requiring any fudge factors. Our final version of
COSMOREC will be available at www.Chluba.de/CosmoRec.
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APPEN D IX A : C OMPUTING
THE TWO -PHOTON EMISSION
AND RAMAN PROFILES

A1 Two-photon emission profiles

We compute the two-photon decay profiles according to Chluba &
Sunyaev (2009b) and Chluba & Sunyaev (2010b). In their treatment,
the infinite sum over intermediate np states is split up into levels
with principal quantum numbers n > ni and n ≤ ni, where ni is
the principal quantum number of the initial state. This makes the
sum over resonances (in the case of 3s and 3d only one) finite and
allows to use interpolation or fitting formulae for the remaining
contributions to the total matrix element from the infinite sum.

We tabulate the non-resonant parts of the two-photon matrix
elements prior to the computation. The resonances are analytically
added afterwards. As explained in Chluba & Sunyaev (2010b), close
to the resonances, the motion of the atoms becomes important, lead-
ing to a broadening of the two-photon profiles. To include the effect
of motion on the shape of the lines close to the Doppler core, we
take the ratio, ρ2γ

i = ϕ2γ
i /ϕ��

i , of the vacuum two-photon profiles to
the sum of Lorentzians, and tabulate it on the computational grid in
frequency. For every evaluation in time, we first compute the Voigt
profiles for the resonances of interest and then sum these with their
respective weights to obtain the total Voigt profile of the resonance.
These are then multiplied by ρ2γ

i to obtain an approximation for the
two-photon profile in the lab frame.

This procedure also allows us to include the changes in the total
width, �np, of the resonances with redshift. In vacuum, this width
is related to the total decay rate; however, with the CMB this rate
can change at the level of ∼10 per cent for the Lyman-n line when
n > 2.

A2 Raman profiles

A ns–1s and nd–1s Raman process has form H∗ + γ → H + γ ′,
where H∗ denotes a neutral hydrogen atom in an excited ns/nd state.
In contrast to the two-photon emission process, H∗ → H + γ +
γ ′, the Raman process only works when photons are available. In
vacuum, no Raman-scattering events occur. The ns–1s and nd–1s

Figure A1. Frequency dependence of the 2s–1s Raman profile. This profile
has to be interpreted as a scattering cross-section, where the electron is in
the excited state. The positions of the Balmer α, β, γ and δ resonances are
marked. For comparison, the cross-section computed as a sum of Lorentzians
is shown. Furthermore, we also show the ratio of these two profiles, indicat-
ing that close to the resonances the profile becomes Lorentzian, with small
corrections.

Raman-scattering matrix elements are related to the ns–1s and nd–
1s two-photon matrix elements by crossing-symmetry. The energies
of the incoming photon, γ , and the outgoing photon, γ ′, are given
by ν + νj1s = ν ′, where hνj1s is the excitation energy of the initial
state with respect to the ground state.

Raman-scattering profiles can be derived using the formulae
given in Chluba & Sunyaev (2010b). The main differences are:
(i) in the functions fn(y) and hn(y) (see equations 8c and 10d in their
paper) y = ν/νj1s has to be replaced with −y; (ii) the pre-factor
y3(1 − y)3 needs to be substituted by y3(1 + y)3 and (iii) the reso-
nances now appear for intermediate np states with n > nj, where nj

is the principal quantum number of the initial state.
For a given computational frequency grid, only a finite number

of resonances appear, say for nj < n ≤ nres. Like in computations
of the two-photon emission profiles, one can therefore split the in-
finite sum over intermediate p states (including the continuum) into
resonant and non-resonant contributions. The non-resonant contri-
butions come from n < nj and nres < n, where the non-resonant
matrix element scales like 1/y for y → 0 and [1/(n2

j − 1) − y]−1

towards the ionization threshold, ν → νjc. One can, therefore, tab-
ulate Mnr y [1/(n2

j − 1) − y] on a grid and add the finite number of
remaining resonances analytically. The pole displacements arising
from the finite lifetime of the intermediate p state, as mentioned in
Chluba & Sunyaev (2010b), have to be included.

In Figs A1 and A2, we present some examples of Raman-
scattering profiles. The electron is assumed to be in the excited
state, so that a low-frequency photon can Raman scatter off the
atom. In the recombination problem, these photons will be drawn
from the CMB blackbody, as spectral distortions below the Balmer
continuum can be neglected. Figs A1 and A2 also show the ratios
of the Raman profiles with respect to the sum of Lorentzians. Close
to the resonances, all these ratios are extremely close to unity as
expected. We use this ratio to include the effect of motion of the
atom on the shape of the resonances close to the Doppler core as
explained in the previous section.
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Figure A2. Same as Fig. A1, but for the 3s–1s and 3d–1s Raman profiles.
We marked the positions of the Paschen α, β and γ resonances.

APPEN D IX B: PARTIAL D IFFERENTIAL
E QUAT I O N SO LV E R

For this work, we implement our own partial differential equa-
tion (PDE) solver in order to fine-tune performance and precision.
Comparing with previous results obtained using the NAG library
confirms the precision of our own implementation.

The PDE describing the radiative transfer problem during recom-
bination is of the parabolic type. It is desirable to use an implicit or

a semi-implicit numerical scheme to avoid strong limitation on the
step size imposed by stability. Several numerical algorithms for this
type of problems have been discussed, e.g. Crank–Nicolson method
(see Antia 2002).

For the recombination problem, it is beneficial to use a non-
uniform grid in frequency as in the vicinity of the resonances one
needs a resolution of �ν/ν ∼ 10−7 to 10−5, while a much coarser
grid can be introduced outside this zone. However, this implies
that the spatial discretization that is normally used in the Crank–
Nicolson method is only accurate to first order in the grid spacing.
We therefore decided to implement a second-order scheme in which
the first and second derivatives of the occupation number nx with
respect to frequency can be written as

∂nx

∂x
=
∑

i

κi(x) nxi
, (B1)

∂2nx

∂x2 =
∑

i

�i(x) nxi
, (B2)

where the sums run over five grid-points in the neighbourhood
of x. The coefficients κ i(x) and �i(x) can be easily derived using
Lagrange interpolation formulae (e.g. see Abramowitz & Stegun
1972). These coefficients can then be pre-computed and stored once
the grid is chosen. The PDE appearing in the diffusion problem can
thus be written as matrix equation,

Bij nxj
= bi, (B3)

where the matrix, Bi j , is banded18 with four off-diagonal elements.
Such system can be easily solved with O(M) operations, where M
denotes the number of grid-points.

For each resonance, we typically needed ∼103 points in fre-
quency. Increasing this number to ∼104 per resonance did not make
a notable difference for the final correction to the ionization history.
Our typical step size in redshift was �z ∼ 1, but we also tried a ten
times smaller time-step, without finding any significant modifica-
tion in the solution. Our tests also showed that even �z ∼ 10 should
be sufficient for detailed computations of the ionization history.

Furthermore, we tried fully implicit and semi-implicit schemes
(θ method with θ > 0.5) finding good performance for θ ∼ 0.6. We
also experimented with the distribution of grid points, and found
that it is important to sample the Doppler core well.

18 At the boundary, the matrix is not perfectly banded, but this does not pose
a big problem.
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