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ABSTRACT
We use cosmological simulations to study the effects of self-interacting dark matter (SIDM)
on the density profiles and substructure counts of dark-matter haloes from the scales of
spiral galaxies to galaxy clusters, focusing explicitly on models with cross-sections over dark-
matter particle mass σ/m = 1 and 0.1 cm2 g−1. Our simulations rely on a new SIDM N-body
algorithm that is derived self-consistently from the Boltzmann equation and that reproduces
analytic expectations in controlled numerical experiments. We find that well-resolved SIDM
haloes have constant-density cores, with significantly lower central densities than their cold
dark matter (CDM) counterparts. In contrast, the subhalo content of SIDM haloes is only
modestly reduced compared to CDM, with the suppression greatest for large hosts and small
halo-centric distances. Moreover, the large-scale clustering and halo circular velocity functions
in SIDM are effectively identical to CDM, meaning that all of the large-scale successes of
CDM are equally well matched by SIDM. From our largest cross-section runs, we are able to
extract scaling relations for core sizes and central densities over a range of halo sizes and find
a strong correlation between the core radius of an SIDM halo and the NFW scale radius of its
CDM counterpart. We construct a simple analytic model, based on CDM scaling relations, that
captures all aspects of the scaling relations for SIDM haloes. Our results show that halo core
densities in σ/m = 1 cm2 g−1 models are too low to match observations of galaxy clusters,
low surface brightness spirals (LSBs) and dwarf spheroidal galaxies. However, SIDM with
σ/m � 0.1 cm2 g−1 appears capable of reproducing reported core sizes and central densities of
dwarfs, LSBs and galaxy clusters without the need for velocity dependence. Higher resolution
simulations over a wider range of masses will be required to confirm this expectation. We
discuss constraints arising from the Bullet cluster observations, measurements of dark-matter
density on small scales and subhalo survival requirements, and show that SIDM models with
σ/m � 0.1 cm2 g−1 � 0.2 barn GeV−1 are consistent with all observational constraints.
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1 IN T RO D U C T I O N

There is significant evidence that some form of dark matter dom-
inates the gravitating mass in the Universe and its abundance is
known to great precision (Komatsu et al. 2011). The most pop-
ular candidate for dark matter is the class of weakly interacting
massive particles (WIMPs), of which supersymmetric neutralinos
are examples (Steigman & Turner 1985; Griest 1988; Jungman,
Kamionkowski & Griest 1996). WIMPs are stable, with negligi-
ble self-interactions, and are non-relativistic at decoupling (‘cold’).

� E-mail: rocham@uci.edu

It is important to recognize that of these characteristics, it is pri-
marily their coldness that is well tested via its association with
significant small-scale power. Indeed, WIMPs are the canonical
cold dark matter (CDM) candidate. Cosmological models based on
CDM reproduce the spatial clustering of galaxies on large scales
quite well (Reid et al. 2010) and even the clustering of galaxies
on ∼1 Mpc scales appears to match that expected for CDM sub-
haloes (Kravtsov et al. 2004; Conroy, Wechsler & Kravtsov 2006;
Trujillo-Gomez et al. 2011; Reddick et al. 2012).

Beyond the fact that the Universe appears to behave as expected
for CDM on large scales, we have few constraints on the micro-
physical parameters of the dark matter, especially those that would
manifest themselves at the high densities associated with cores of
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galaxy haloes. It is worth asking what (if anything) about vanilla
CDM can change without violating observational bounds. In this pa-
per, we use cosmological simulations to explore the observational
consequences of a CDM particle that is strongly self-interacting,
focusing specifically on the limiting case of velocity-independent,
elastic scattering.

Dark-matter particles with appreciable self-interactions have
been discussed in the literature for more than two decades (Carlson,
Machacek & Hall 1992; Machacek, Carlson & Hall 1993; de Laix,
Scherrer & Schaefer 1995; Firmani et al. 2000; Spergel & Stein-
hardt 2000), and are now recognized as generic consequences of
hidden-sector extensions to the Standard Model (Pospelov, Ritz &
Voloshin 2008; Ackerman et al. 2009; Arkani-Hamed et al. 2009;
Feng et al. 2009; Feng, Kaplinghat & Yu 2010; Loeb & Weiner
2011). Importantly, even if dark sector particles have no couplings
to Standard Model particles they might experience strong interac-
tions with themselves, mediated by dark gauge bosons (see Feng
2010; Peter 2012 for reviews). The implication is that astrophysi-
cal constraints associated with the small-scale clustering of dark
matter may be the only way to test these scenarios.

Phenomenologically, self-interacting dark matter (SIDM) is at-
tractive because it offers a means to lower the central densities of
galaxies without destroying the successes of CDM on large scales.
Cosmological simulations that contain only CDM indicate that dark-
matter haloes should be cuspy and with (high) concentrations that
correlate with the collapse time of the halo (Navarro, Frenk & White
1997; Bullock et al. 2001; Wechsler et al. 2002). This is inconsis-
tent with observations of galaxy rotation curves, which show that
galaxies are less concentrated and less cuspy than predicted in CDM
simulations (e.g. Flores & Primack 1994; Salucci & Burkert 2000;
Gentile et al. 2004; Simon et al. 2005; Kuzio de Naray, McGaugh
& de Blok 2008; de Blok 2010; Dutton et al. 2011; Kuzio de Naray
& Spekkens 2011; Oh et al. 2011a; Walker & Peñarrubia 2011;
Castignani et al. 2012; Salucci et al. 2012). Even for clusters of
galaxies, the density profiles of the host dark-matter haloes appear
in a number of cases to be shallower than predicted by CDM-only
structure simulations, with the total (dark matter + baryons) density
profile in a closer match to the CDM prediction for the dark matter
alone (e.g. Sand et al. 2004, 2008; Newman et al. 2009, 2011; Coe
et al. 2012; Umetsu et al. 2012).

One possible answer is feedback. In principle, the expulsion of
gas from galaxies can result in lower dark-matter densities compared
to dissipationless simulations, and thus bring CDM models in line
with observations (Governato et al. 2010; Oh et al. 2011b; Pontzen
& Governato 2012; Brook et al. 2012; Governato et al. 2012). How-
ever, a new level of concern exists for dwarf spheroidal (dSph)
galaxies (Boylan-Kolchin, Bullock & Kaplinghat 2011, 2013; Fer-
rero et al. 2012). Systems with M∗ ∼ 106 M� appear to be missing
∼5 × 107 M� of dark matter compared to standard CDM expecta-
tions (Boylan-Kolchin et al. 2012). It is difficult to understand how
feedback from such a tiny amount of star formation could have pos-
sibly blown out enough gas to reduce the densities of dSph galaxies
to the level required to match observations (Boylan-Kolchin et al.
2012; Peñarrubia et al. 2012; Teyssier et al. 2012; Zolotov et al.
2012; Garrison-Kimmel et al., in preparation).

Spergel & Steinhardt (2000) were the first to discuss SIDM in the
context of the central density problem (see also Firmani et al. 2000).
The centres of SIDM haloes are expected to have constant-density
isothermal cores that arise as kinetic energy is transmitted from
the hot outer halo inward (Balberg, Shapiro & Inagaki 2002; Colı́n
et al. 2002; Ahn & Shapiro 2005; Koda & Shapiro 2011). This can
happen if the cross-section over mass of the dark-matter particle,

σ/m, is large enough for there to be a relatively high probability of
scattering over a time tage comparable to the age of the halo: � tage ∼
1, where � is the scattering rate per particle. The rate will vary with
local dark-matter density ρ(r) as a function of radius r in a dark
halo as

�(r) � ρ(r)(σ/m)vrms(r) , (1)

up to order unity factors, where vrms is the rms speed of dark-
matter particles. Based on rough analytic arguments, Spergel &
Steinhardt (2000) suggested that σ/m ∼ 0.1–100 cm2 g−1 would
produce observable consequences in the cores of haloes.

Numerical simulations have confirmed the expected phe-
nomenology of core formation (Burkert 2000) though Kochanek
& White (2000) emphasized the possibility that SIDM haloes could
eventually become more dense than their CDM counterparts as a
result of eventual heat flux from the inside out (much like core-
collapse globular clusters). However, this process is suppressed
when merging from hierarchical formation is included (for a dis-
cussion see Ahn & Shapiro 2005). We do not see clear signatures
of core collapse in the haloes we analysed for σ/m = 1 cm2 g−1.

The first cosmological simulations aimed at understanding dwarf
densities were performed by Davé et al. (2001) who used a small
volume (4 h−1 Mpc on a side) in order to focus computational power
on dwarf haloes. They concluded that σ/m = 0.1−10 cm2 g−1 came
close to reproducing core densities of small galaxies, favouring the
upper end of that range but not being able to rule out the lower
end due to resolution. Almost concurrently, Yoshida et al. (2000)
ran cosmological simulations focusing on the cluster-mass regime.
Based on the estimated core size of cluster CL 0024+1654, they
concluded that cross-sections no larger than ∼0.1 cm2 g−1 were
allowed, raising doubts that constant-cross-section SIDM models
could be consistent with observations of both dwarf galaxies and
clusters.

These concerns were echoed by Miralda-Escudé (2002) who sug-
gested that SIDM haloes would be significantly more spherical than
observed for galaxy clusters. Similarly, Gnedin & Ostriker (2001)
argued that SIDM would lead to excessive subhalo evaporation in
galaxy clusters. More recently, the merging cluster system known
as the Bullet cluster has been used to derive the limits (68 per cent
C.L.) σ/m < 0.7 cm2 g−1 (Randall et al. 2008) based on evapora-
tion of dark matter from the subcluster and σ/m < 1.25 cm2 g−1

(Randall et al. 2008) based on the observed lack of offset between
the Bullet subcluster mass peak and the galaxy light centroid. In
order to relax this apparent tension between what was required
to match dwarf densities and the observed properties of galaxy
clusters, velocity-dependent cross-sections that diminish the effects
of self-interaction in cluster environments have been considered
(Firmani et al. 2000; Colı́n et al. 2002; Feng et al. 2009; Loeb &
Weiner 2011; Vogelsberger, Zavala & Loeb 2012).

There are a few new developments that motivate us to revisit
constant SIDM cross-sections of the order of σ/m ∼ 1 cm2 g−1. For
example, the cluster (CL 0024+1654) used by Yoshida et al. (2000)
to place one of the tightest limits at σ/m = 0.1 is now recognized
as an ongoing merger along the line of sight (Czoske et al. 2001,
2002; Zhang et al. 2005; Jee et al. 2007; Jee 2010; Umetsu et al.
2010). This calls into question its usefulness as a comparison case
for non-merging cluster simulations. In a companion paper (Peter
et al. 2012), we use the same simulations described here to show
that published constraints on SIDM based on halo shape compar-
isons are significantly weaker than previously believed. Further, the
results presented below clearly demonstrate that the tendency for
subhaloes to evaporate in SIDM models (Gnedin & Ostriker 2001)
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is not significant for σ/m ∼ 1 cm2 g−1. Finally (and related to the
previous point), the best numerical analysis of the Bullet cluster
(Randall et al. 2008) used initial cluster density profiles that were
unmotivated cosmologically with central densities about a factor
of 2 too high for the SIDM cross-sections considered (producing
a scattering rate that is inconsistently high). Based on this obser-
vation, the Bullet cluster constraint based on evaporation of dark
matter from the subcluster should be relaxed since the amount of
subcluster mass that becomes unbound is directly proportional to
the density of dark matter encountered in its orbit. Moreover, their
model galaxies were placed in the cluster halo potentials without
subhaloes surrounding them, an assumption (based on analytic es-
timates for SIDM subhalo evaporation) that is not supported by our
simulations. This could affect the constraints based on the (lack of)
offset between dynamical mass and light. Thus, we believe that the
Bullet cluster constraints as discussed above are likely only relevant
for models with σ/m > 1 cm2 g−1. However, the constraints could
be made significantly stronger by comparing SIDM predictions to
the densities inferred from the convergence maps since the central
halo densities for σ/m � 1 cm2 g−1 are significantly lower than the
CDM predictions, as we show later.

Given these motivations, we perform a set of cosmological simu-
lations with both CDM and SIDM. For SIDM we ran σ/m = 1 and
0.1 cm2 g−1 models (hereafter SIDM1 and SIDM0.1, respectively),
i.e. models that we have argued pass the Bullet cluster tests. Our
simulations provide us with a sample of haloes that span a mass
range much larger than either Davé et al. (2001) or Yoshida et al.
(2000) both with and without self-interactions.

One of the key findings from our simulations is that the core sizes
are expected to scale approximately as a fixed fraction of the NFW
scale radius the halo would have in the absence of scatterings. We
can see where this scaling arises from a quick look at equation (1).
This equation allows us to argue that the radius (r1) below which
we expect dark-matter particles (on average) to have scattered once
or more is set by

ρsf (r/rs)vrms ∝ V 2
max

r2
max

f (r1/rs)Vmax = constant, (2)

where f(x) is the functional form of the NFW (or a related) den-
sity profile, rmax is the radius at which the circular velocity peaks
and Vmax is the maximum circular velocity. In writing the above
equation we have assumed that the density profile for SIDM is not
significantly different from CDM at r1, something that we verify
through our simulations. Now, since CDM enforces a Vmax−rmax

relation such that Vmax ∝ r1.4
max−r1.5

max, we see that the solution to
r1/rs is going to be only mildly dependent on the halo properties.
We develop an analytic model based on this insight later, but this
is the underlying reason for why we find core sizes to be a fixed
fraction of the NFW scale radius of the same halo in the absence of
scatterings.

The major conclusion we reach based on the simulations and
the analytic model presented here is that an SIDM model with a
cross-section over dark-matter particle mass ∼0.1 cm2 g−1 would be
capable of reproducing the core sizes and central densities observed
in dark-matter haloes at all scales, from clusters to dSphs, without
the need for velocity dependence in the cross-section.

In the next section, we discuss our new algorithm to compute
the self-interaction probability for N-body particles, derived self-
consistently from the Boltzmann equation. We discuss this new
algorithm in detail in Appendix A. In Section 2, we show how this
algorithm is implemented in the publicly available code GADGET2
(Springel 2005). We run tests that show that our algorithm gets the

correct interaction rate and post-scattering kinematics. The results of
these tests are given in Section 3. The cosmological simulations with
this new algorithm are described in detail in Section 4. In Section
5.1 we provide some preliminary illustrations of our simulation
snapshots, and in Section 5.2 we demonstrate that the large-scale
statistical properties of SIDM are identical to CDM. In Section
5.4 we present the properties of individual SIDM1 and SIDM0.1

haloes and compare them to their CDM counterparts. In Section
5.4 we discuss the subhalo mass functions in our SIDM and CDM
simulations and show that SIDM1 subhalo mass functions are very
close to that of CDM in the range of halo masses we can resolve. We
provide scaling relations for the SIDM1 halo properties in Section 6,
and in Section 7 we present an analytic model that reproduces these
scaling relations as well as the absolute densities and core radii of
SIDM1 haloes. We use these scaling relations and the analytic model
to make a broad-brush comparison to observed data in Section 8. We
present a summary together with our final conclusions in Section 9.

2 SI M U L AT I N G DA R K M AT T E R
SELF-I NTERAC TI ONS

Our simulations rely on a new algorithm for modelling SIDM with
N-body simulations. Here we introduce our approach and provide a
brief summary. In Appendix A, we derive the algorithm explicitly
starting with the Boltzmann equation and give details for general
implementation.

In N-body simulations, the simulated (macro)particles represent
an ensemble of many dark-matter particles. Each simulation particle
of mass mp can be thought of as a patch of dark-matter phase-space
density. In our treatment of dark matter self-scattering, the phase-
space patch of each particle is represented by a delta function in
velocity and a spatially extended kernel W(r, hsi), smoothing out the
phase space in configuration space on a self-interaction smoothing
length hsi. The value of hsi needs to be set by considering the
physical conditions of the problem (see Section 3) as it specifies the
range over which N-body particles can affect each other via self-
interactions. In principle, hsi could be different for each particle and
vary depending on the local density, but in the simulations presented
here we fix hsi to be the same for all particles in a given simulation,
setting the size of hsi according to the lowest densities at which
self-interactions are effective for a given cross-section.

When two phase-space patches overlap in configuration space,
we need to calculate the pairwise interaction rate between them.
We do so by considering the ‘scattering out’ part of the Boltzmann
collision term in equation (A1) and equations (A8)–(A13). The
implied rate of scattering of an N-body particle j off of a target
particle i of mass mp is

�(i|j ) = (σ/m)mp|vi − vj |gji , (3)

where gji is a number density factor that accounts for the overlap of
the two particles’ smoothing kernels:1

gji =
∫ hsi

0
d3x′W (|x′|, hsi)W (|δxji + x′|, hsi) . (4)

The probability that such an interaction occurs in a time step δt is

P (i|j ) = �(i|j ) δt , (5)

1 This equation applies only if hsi is the same for both particles. See
Appendix A for the general form.
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and the total probability of interaction between N-body particles i
and j is

Pij = P (i|j ) + P (j |i)
2

. (6)

Specifically, Pij is the probability for a macroparticle representing a
patch of phase space around (xj , vj ) to interact with a target particle
representing a patch of phase space around (xi , vi) in a time δt.

We determine if particles interact by drawing a random number
for each pair of particles that are close enough for the probability
of interaction to be greater than zero. If a pair does scatter, we do a
Monte Carlo for the new velocity directions, populating these parts
of the phase space and deleting the two particles at their initial
phase-space locations. Note that by virtue of populating the new
phase-space regions, we are taking care of the ‘scattering in’ term
of the collision integral in equation (A1). We avoid double counting
by only accounting for Pij = Pji once during a given time step δt. In
the limit of a large number of macroparticles, the total interaction
probability for each particle i should approach

Pi =
∑

j

Pij . (7)

We show in Section 3 that this approach correctly reproduces the
expected number of scatterings in an idealized test case.

Our method for simulating scattering differs from previous ap-
proaches in a few key ways. It is most similar to that of Davé et al.
(2001) in that we both directly consider interactions between pairs
of phase-space patches and rely on a scattering rate similar in form
to equation (3). The difference is that their geometric factor gji is not
the same – our factor arises explicitly from the overlap in patches
of phase space between neighbouring macroparticles, as derived
from the collision term in the Boltzmann equation (see Appendix
A for details). Other authors determine the scattering rate � of in-
dividual phase-space patches based on estimates of the local mass
density (typically using some number of nearest neighbours or us-
ing a smoothed particle hydrodynamics kernel). The Monte Carlo is
then based on an estimated scattering rate of an individual particle
on the background, and a scattering partner is only chosen after a
scattering event is determined to have occurred (Kochanek et al.
2000; Yoshida et al. 2000; Colı́n et al. 2002; Randall et al. 2008).
The scattering probability in this latter approach is not symmetric.
For macroparticles of identical mass, P(i|j) = P(j|i) explicitly in our
approach, but not the other approach because the density estimated
at the position of macroparticle i need not be the same as that esti-
mated at the position of particle j. In the future, there should be a
direct comparison among these scattering algorithms to determine
if they yield consistent results.

We have implemented our algorithm in the publicly available
version of the cosmological simulation code GADGET2 (Springel
2005). GADGET2 computes the short-range gravitational interactions
by means of a hierarchical multipole expansion, also known as a tree
algorithm. Particles are grouped hierarchically by a repeated subdi-
vision of space, so their gravitational contribution can be accounted
by means of a single multipole force computation. A cubical root
node encompasses the full mass distribution. The node is repeatedly
subdivided into eight daughter nodes of half the side length each (an
octree) until one ends up with ‘leaf’ nodes containing single parti-
cles. Forces for a given particle are then obtained by ‘walking’ the
tree, opening nodes that are too close for their multipole expansion
to be a correct approximation to their gravitational contribution. In
GADGET2, spurious strong close encounters by particles are avoided

by convolving the single-point particle density distribution with a
normalized spline kernel (‘gravitational softening’).

To implement our algorithm, we take advantage of the tree-walk
already build in GADGET2, computing self-interactions during the
calculation of the gravitational interactions. For this to work we
have to modify the opening criterion such that nodes are opened if
they are able to have particles closer than 2hsi from a target scatterer
(or hi + hj if particles have different self-interaction smoothing
lengths). When computing the probability of interaction we use the
same spline kernel used in GADGET2 (Monaghan & Lattanzio 1985),
defined as

W (r, h) = 8

πh3

⎧⎪⎪⎨
⎪⎪⎩

1 − 6
(

r
h

)2 + 6
(

r
h

)3
, 0 ≤ r

h
≤ 1

2 ,

2
(
1 − r

h

)3
, 1

2 < r
h

≤ 1,

0, r
h

> 1.

(8)

If a pair interacts we give both particles a kick consistent with an
elastic scattering that is isotropic in the centre-of-mass frame. The
post-scatter particle velocities are

v′
0 = vc + m1

m0 + m1
V e,

v′
1 = vc − m0

m0 + m1
V e, (9)

where vc is the centre-of-mass velocity, V is the relative speed of
the particles (conserved for elastic collisions) and e is a randomly
chosen direction.

The time-step criterion is also modified to assure that the scatter-
ing probability for any pair of particles is small, P = � δt 
 1. An
individual particle time step is decreased by a factor of 2 if during
the last tree-walk the maximum probability of interaction for any
pair involving such a particle was Pmax > 0.2. Once a particle time
step is modified due to the previous restriction, if Pmax < 0.1 for
such a particle and its current time step is smaller than the one given
by the standard criterion on GADGET2, we increase it by a factor
of 2.

3 TEST O F THE SI DM I MPLEMENTATI ON

Before performing cosmological simulations, we carried out a con-
trolled test of the implementation in order to make sure the scattering
rate and kinematics are correctly followed in the code, and to deter-
mine the optimum value of the SIDM softening kernel length hsi.
The simplest and cleanest scenario for testing our implementation
consists of a uniform sphere of particles moving through a uniform
field of stationary background particles. The coordinate system is
defined such as the sphere is moving along the positive z-direction
with constant velocity vs. The particles forming the sphere and those
forming the background field are tagged as different types within
the code and here we will refer to them simply as sphere (s) and
background (bg) particles, respectively. We only allow scatterings
involving two different types of particles (i.e. sphere–background
interactions only) and turn off gravitational forces among all of the
particles. Furthermore, all particles have the same mass mp.

The expected number of interactions for this case is given by

Nexp(t) =
∑

i∈s,j∈bg
Pij = Ns(σ/m)ρbgvst, (10)

where Ns is the total number of sphere particles, ρbg is the density
of the background field and t is the elapsed time from the begin-
ning of the simulation. From this experiment we have found that
the number of interactions computed by the code depends on the
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Figure 1. Fraction of the expected total number of interactions that are com-
puted in our test simulation as a function of the self-interaction smoothing
length. The self-interaction cross-section for each run is shown in units of
cm2 g−1 in the artwork. The code converges to the expected number of inter-
actions when the smoothing length approaches the background interparticle
separation, i.e. when hsi(ρbg/mp)1/3 � 0.2.

self-interaction smoothing length hsi (see Fig. 1), which is fixed
to be the same for all particles in this test. The number of inter-
actions converges to the expected value given by equation (10) as
hsi becomes comparable to the background interparticle separation,
specifically when hsi(ρbg/mp)1/3 � 0.2. For hsi(ρbg/mp)1/3 � 0.5 the
accuracy of the algorithm does not improve by much and the time
of the calculations increases rapidly, ∝h3

si. Apart from the expense,
using larger values of hsi would lead to increasingly non-local inter-
actions among particles, which is inconsistent with the model under
consideration.

We also check the kinematics of the scatters in this test simulation
and describe the results in Appendix B. The resulting kinematics
and number of interactions from our test simulation agree well with
the expectations from the theory as long as hsi(ρbg/mp)1/3 � 0.2.

4 OV E RV I E W O F C O S M O L O G I C A L
SIM U LATIONS

We initialize our cosmological simulations using the Multi-Scale
Initial Conditions (MUSIC) code of Hahn & Abel (2011). We have
a total of four initial condition sets, each run with both CDM and
SIDM. The first two are cubic volumes of 25 and 50 h−1 Mpc on a
side, each with 5123 particles. As discussed below, these simulations
allow us to resolve the structure of a statistical sample of group
(∼1013 M�) and cluster (∼1014 M�) haloes.

The second two initial conditions concentrate computational
power on zoom regions (Katz & White 1993) drawn from the
50 h−1 Mpc box, specifically aimed at exploring the density struc-
ture of two smaller haloes, one with virial mass2 Mvir = 7.1 ×
1011 h−1 M� = 1 × 1012 M� (Z12) and one with Mvir = 3.5 ×
1011 h−1 M� = 5 × 1011 M� (Z11). The Z12 run in particular is
fairly high resolution, with more than five million particles in the

2 We define Mvir as Mvir = 4
3 πρb�vir(z)r3

vir and rvir as ρ̃(rvir) = �vir(z)ρb,
where ρ̃(rvir) denotes the overdensity within rvir, ρb is the background
density and �vir is the virial overdensity.

virial radius. Table 1 summarizes the simulation parameters. The
cosmology used is based on7-year Wilkinson Microwave Anisotropy
Probe results for a �CDM universe: h = 0.71, 	m = 0.266, 	� =
0.734, 	b = 0.0449, ns = 0.963 and σ 8 = 0.801 (Komatsu et al.
2011).

Each of our four initial conditions has been evolved from red-
shift z = 250 to 0 with collisionless dark matter (labelled CDM)
and with two types of SIDM: one with σ/m = 1 cm2 g−1 (la-
belled SIDM1) and another with σ/m = 0.1 cm2 g−1 (labelled
SIDM0.1). We can use the same initial conditions for CDM and
SIDM because at high redshift the low relative velocities of the
dark matter make self-interactions insignificant. Table 1 lists all the
simulations used for this study and details their force, mass and
self-interaction resolution. In addition to the simulations listed in
Table 1, we also ran the cosmological boxes with SIDM cross-
sections σ/m = 0.03 cm2 g−1. We do not present results from
these low cross-section runs here because no core density differ-
ences were resolved within the numerical convergence radii of our
simulations.

As shown in Section 3, the self-interaction smoothing length hsi

must be larger than 20 per cent of the interparticle separation in order
to achieve convergence on the interaction rate. All the work for this
paper was done with a fixed hsi for all particles carefully chosen
for each simulation so that the self-interactions are well resolved
at densities a few times to an order of magnitude lower than the
lowest densities for which self-interactions are significant. We have
run the cosmological boxes with different choices for hsi (changes
by factors of 2–4) and have found that our results are unaffected.
We have also run tests on isolated haloes with varying smoothing
lengths and again find that the effects of self-interactions are robust
to reasonable changes in hsi.

All of our halo catalogues and density profiles are derived using
the publicly available code Amiga Halo Finder (AHF; Knollmann &
Knebe 2009).

5 SI MULATI ON R ESULTS

5.1 Preliminary illustrations

Before presenting any quantitative comparisons between our CDM
and SIDM runs, we provide some simulation renderings in order to
help communicate the qualitative differences.

The upper panels of Fig. 2 show a large-scale comparison: two
(50 × 50 × 10) h−1 Mpc slices from the CDM-50 and SIDM1-50
boxes side-by-side at z = 0. The structures are colour-coded by
local phase-space density (∝ ρ/v3

rms). It is evident that there are no
observable differences in the large-scale characteristics of CDM and
SIDM1. We discuss this result in more quantitative terms in Section
5.2 but of course this is expected. The SIDM models we explore
do not have appreciable rates of interaction for densities outside the
cores of dark-matter haloes. The upper panels of Fig. 2 provide a
visual reminder that the SIDM models we consider are effectively
identical to CDM on large scales.

The differences between CDM and SIDM become apparent only
when one considers the internal structure of individual haloes. The
lower panels of Fig. 2 provide side-by-side images of a Milky Way
mass halo (Z12) simulated with CDM (left) and SIDM1 (right).
SIDM tends to make the cores of haloes less dense and kinetically
hotter (see Section 5.3) and these two differences are enhanced
multiplicatively in the phase-space density renderings. The central
regions of the host halo are also slightly rounder in the SIDM
case (Peter et al. 2012). Importantly, the difference in substructure
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Table 1. Simulations discussed in this paper.

Name Volume Number of particles Particle mass Force softening Smoothing length Cross-section
LBox ( h−1 Mpc) Np mp ( h−1 M�) ε ( h−1 kpc) hsi ( h−1 kpc) σ/m ( cm2 g−1)

CDM-50 50 5123 6.88 × 107 1.0 – 0
CDM-25 25 5123 8.59 × 106 0.4 – 0
CDM-Z11 (3Rvir)a 2.5 × 106a 1.07 × 106a 0.3 – 0
CDM-Z12 (3Rvir)a 5.6 × 107a 1.34 × 105a 0.1 – 0

SIDM0.1-50 50 5123 6.88 × 107 1.0 2.8ε 0.1
SIDM0.1-25 25 5123 8.59 × 106 0.4 2.8ε 0.1
SIDM0.1-Z11 (3Rvir)a 2.5 × 106a 1.07 × 106a 0.3 2.8ε 0.1
SIDM0.1-Z12 (3Rvir)a 5.6 × 107a 1.34 × 105a 0.1 1.4ε 0.1

SIDM1-50 50 5123 6.88 × 107 1.0 2.8ε 1
SIDM1-25 25 5123 8.59 × 106 0.4 2.8ε 1
SIDM1-Z11 (3Rvir)a 2.5 × 106a 1.07 × 106a 0.3 2.8ε 1
SIDM1-Z12 (3Rvir)a 5.6 × 107a 1.34 × 105a 0.1 1.4ε 1

aThe Z11 and Z12 runs are zoom simulations with multiple particle species concentrating on haloes of mass Mvir = 5 × 1011 and 1.0 ×
1012 M�, respectively (no h). The volumes listed refer to the number of virial radii used to find the Lagrangian volumes associated with
the zoom. The particle properties listed are for the highest resolution particles only.

characteristics is minimal, especially at larger radii. We return to a
quantitative description of substructure differences in Section 5.4.

5.2 Large-scale structure and halo abundances

Fig. 3 provides a quantitative comparison of both the clustering
properties (left) and halo abundance evolution (right) between our
full-box CDM and SIDM1 simulations. The left-hand panel shows
the two-point function of dark-matter particles in both cosmological
runs for CDM and SIDM1. There are no discernible differences
between SIDM and CDM over the scales plotted, though of course
the different box sizes (and associated resolutions) mean that the
boxes themselves only overlap for a limited range of scales. For
a given set of initial conditions, however, SIDM and CDM give
identical results.

The right-hand panel of Fig. 3 shows the cumulative number den-
sity of dark-matter haloes (including subhaloes) as a function of their
peak circular velocity (Vmax) for the CDM-50 (solid) and SIDM1-50
(dashed) simulations at various redshifts. Remarkably, this compar-
ison shows no significant difference either – indicating that SIDM
with cross-sections as large as 1 cm2 g−1 does not strongly affect the
maximum circular velocities of individual haloes. The two panels
of Fig. 3 demonstrate that for large-scale comparisons, including
analyses involving field halo mass functions, SIDM and CDM yield
identical results. The implication is that observations of large-scale
structure are just as much a ‘verification’ of SIDM as they are of
CDM.

5.3 Halo structure

Before presenting statistics on halo structure, we focus on six well-
resolved haloes that span our full mass range Mvir = 5 × 1011−2 ×
1014 M�, selected from our full simulation suite, including our
two zoom-simulation haloes (Z12 and Z11). Figs 4–6 show radial
profiles for the density, circular velocity and velocity dispersion for
all three dark matter cases. In each figure, black circles correspond
to CDM, green triangles to SIDM0.1 and blue stars to SIDM1. All
profiles are shown down to the innermost resolved radius for which
the average two-body relaxation time roughly matches the age of
the Universe (Power et al. 2003).

We begin with the density profiles of haloes shown in the six-
panel Fig. 4. For each halo in the CDM run, we have fit an NFW
profile (Navarro et al. 1997) to its radial density structure,

ρNFW(r) = ρs r3
s

r(rs + r)2
, (11)

and recorded its corresponding scale radius rs. The CDM-fit rs value
for each halo is given in its associated panel along with the halo
virial mass. The radial profiles for each halo (in both the CDM and
SIDM runs) are normalized with respect to the CDM rs value in
the plot. This allows our full range of halo masses to be plotted on
identical axes.

The SIDM versions of each halo show remarkable similarity to
their CDM counterparts at large radii. However, the SIDM1 cases
clearly begin to roll towards constant-density cores at small radii.
The best resolved haloes in the SIDM0.1 runs also demonstrate
lower central densities compared to CDM, though the differences
are at a factor of ∼2 level even in our best resolved systems. Clearly,
higher resolution simulations will be required in order to fully quan-
tify the expected differences between CDM and SIDM for σ/m ∼
0.1 cm2 g−1.

For the SIDM1 cases, we can quantify the halo cores by fitting
them to Burkert (1995) profiles:

ρB(r) = ρbr
3
b

(r + rb)(r2 + r2
b )

. (12)

These Burkert fits are shown as blue dashed lines. They are good
fits for radii within ∼2–3rs, but the quality of the fits gets worse
at large radii. The blue arrows in each panel show the value of the
best-fitting Burkert core radius for the SIDM1 haloes. Note that the
values are remarkably stable in proportion to the CDM rs value at
rb � 0.7rs.

As explained in Section 7, the fact that the SIDM1 profiles are
reasonably well characterized by a single scale-radius Burkert pro-
file may be a lucky accident, only valid for cross-sections near
1 cm2 g−1. It just so happens that for this cross-section the radius
where dark-matter particles experience significant scattering sets in
at r ∼ rs (see Fig. 7 and related discussion). For a smaller cross-
section (with a correspondingly smaller core) a multiple parameter
fit may be necessary. Given the beginnings of very small cores we
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Figure 2. Top: large-scale structure in CDM (left) and SIDM1 (right) shown as a 50 × 50 h−1 Mpc slice with 10 h−1 Mpc thickness through our cosmological
simulations. Particles are coloured according to their local phase-space density (white densest). There are no visible differences between the two cases. Bottom:
small-scale structure in a Milky Way mass halo (Z12) simulated with CDM (left) and SIDM1 (right), including all particles within 200 h−1 kpc of the halo
centres. The magnitude of the central phase-space density is lower in SIDM because the physical density is lower and the velocity dispersion is higher. The
core of the SIDM halo is also slightly rounder. Note that substructure content is quite similar except in the central regions.

are seeing in the SIDM0.1 runs, it appears that we would need one
scale radius to define an rs bend and a second scale radius to define
a distinct core.

Another qualitative fact worth noting is that the density profiles
of the SIDM1 haloes overshoot the CDM density profiles near the
Burkert core radius (not as much as the Burkert fits do, but the
difference in the data points is noticeable). This is due to the fact
that as particles scatter in the centre, those that gain energy are
pushed to larger apocentre orbits. This observation invites us to
consider a toy model for SIDM haloes where the effect of SIDM
is confined to a region (smaller than a radius of about rb) wherein
particles redistribute energy and move towards a constant-density
isothermal core. We will develop this model further to explain the
scaling relations between core size and halo mass in Section 6.

The circular velocity curves for the same set of haloes discussed
above are shown in Fig. 5. The SIDM rotation curves rise more
steeply and have a lower normalization than for CDM within the
NFW scale radius rs. This brings to mind the rotation curves ob-
served for low surface brightness galaxies and we will explore this
connection later. Note though that the peak circular velocity Vmax

actually is slightly higher for the SIDM1 case because of the mass
rearrangement (evident in the density profiles in Fig. 4) briefly dis-
cussed in the last paragraph. At radii well outside the core radius,
the rotation curves of the CDM and SIDM1 haloes converge, though
this convergence occurs beyond the plot axes >rs for most of the
haloes shown.

An appreciation of why the density profiles of SIDM haloes be-
come cored can be gained from studying their velocity dispersion
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Figure 3. Large-scale characteristics. Left: dark-matter two-point correlation functions from our CDM-50 (CDM-25) and SIDM1-50 (SIDM1-25) simulations
in black (grey) and blue (cyan) colours, respectively. There are no noticeable differences between the CDM and SIDM1 dark-matter clustering over the scales
plotted. Right: cumulative number density of dark-matter haloes as a function of their maximum circular velocity (Vmax) at different redshifts for our CDM-50
(solid) and SIDM1-50 (dashed) simulations. There are no significant differences in the Vmax functions of CDM and SIDM1 at any redshift.

Figure 4. Density profiles for our six example haloes from our SIDM1 (blue stars) and SIDM0.1 (green triangles) simulations and their CDM counterparts.
With self-interactions turned on, halo central densities decrease, forming cored density profiles. Solid lines are for the best NFW (black) and Burkert (blue)
fits, with the points representing the density at each radial bin found by AHF. The arrow indicates the location of the Burkert core radius rb. rs is the NFW scale
radius of the corresponding CDM halo density profile (black solid line). Burkert profiles provide a reasonable fit to our SIDM1 haloes only because rb ≈ rs for
σ/m = 1 cm2 g−1, so a cored profile with a single scale radius works. As discussed in Section 7, this is not the case for σ/m = 0.1 cm2 g−1 and thus Burkert
profiles are not a good fit to our SIDM0.1 haloes.

profiles compared to their CDM counterparts, as illustrated in Fig. 6.
Here, vrms is defined as the root mean square speed of all particles
within radius r. While the CDM haloes (black) are colder in the cen-
tre than in their outer parts (reflecting a cuspy density profile) the
SIDM haloes have hotter cores, indicative of heat transport from the
outside in. Moreover, the SIDM haloes are slightly colder at large

radii, again reflecting a redistribution of energy. As discussed in the
introduction, it is this heat transport that is the key to understanding
why CDM haloes differ from SIDM haloes in their density struc-
ture (Balberg et al. 2002; Colı́n et al. 2002; Ahn & Shapiro 2005;
Koda & Shapiro 2011). The added thermal pressure at small radii is
what gives rise to the core. The SIDM1 simulations have sufficient
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Self-interacting dark-matter simulations – I. 89

Figure 5. Circular velocity profiles for our example selection of six well-resolved haloes from our CDM, SIDM1 and SIDM0.1 simulations. The magnitude of
the circular velocity at small radii (r � rs) is lowered for all haloes when self-interactions are turned on. rs is the NFW scale radius of the corresponding CDM
halo density profile.

Figure 6. Velocity dispersion profiles for our six example haloes from our SIDM1 and SIDM0.1 simulations overplotted with their CDM counterparts. The
velocity dispersion is inflated at small radii and slightly suppressed at large radii. The effects set in at approximately the radius where SIDM particles experience
at least one interaction on average over the lifetime of the halo (see Fig. 7).
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Figure 7. Estimate of the local scattering rate modulo the cross-section ρvrms = �(σ/m)−1 for six well-resolved haloes from our CDM, SIDM0.1 and SIDM1

simulations. The quantity is scaled by 1Gyr cm2 g−1, such that ‘1’ in these units means that each particle has roughly one interaction per Gyr in SIDM1 and 0.1
per Gyr in SIDM0.1. Based on this argument, the effects of self-interactions in the properties of haloes over ∼10 Gyr should start to become important when
the ordinate is greater than about 0.1 in SIDM1 (r/rs ∼ 0.8) and greater than about 1 in SIDM0.1 (r/rs ∼ 0.2). Comparisons to Figs 4–6 indicate that this is
indeed the case.

interactions that they have been driven to isothermal profiles for
r/rs � 1, while for SIDM0.1 the vrms profiles typically begin to devi-
ate from the CDM lines only at smaller radii, r/rs ∼ 0.2, reflecting
the relatively lower scattering rate.

The deviations in the SIDM vrms profiles compared to CDM
appear to set in at approximately the radius where we expect every
particle to have interacted once in a Hubble time. This is explored
directly in Fig. 7, where we present a proxy for the local scattering
rate as a function of distance from the halo centre:

ρ(r) vrms(r) ∝ �(r) (σ/m)−1. (13)

We have divided out the cross-section, so it is easier to compare the
SIDM0.1 and SIDM1 cases. Fig. 7 presents this rate proxy in units
of 1Gyr cm2 g−1; for the SIDM1 case (with σ/m = 1 cm2 g−1), the
radius where a typical particle will have scattered once over a 10
Gyr halo lifetime is ρ(r)vrms(r) = 0.1. For the SIDM0.1 case (with
σ/m = 0.1 cm2 g−1), the ordinate needs to be 10 times higher (∼1)
in order to achieve the same scattering rate.

By comparing Fig. 7 to Fig. 6 (and to some extent to all Figs
4–6), we see that the effects of self-interactions do become evident
at radii corresponding to ρ vrms ∼ 0.1 for SIDM1 (at r/rs ∼ 0.8)
and ρ vrms ∼ 1 for SIDM0.1 (at r/rs ∼ 0.2). Interestingly, for the
SIDM1 haloes this interaction radius is fairly close to the Burkert
scale radius (shown by the blue arrows). It should be kept in mind,
however, that the structure of haloes can be affected at larger radii
because particles scattering in the inner regions can gain energy
and move to larger orbits. A careful inspection of the density and
rotation velocity profiles shows that this is indeed the case.

We will discuss these findings in more detail in Sections 6 and
7. In particular, in Section 7 we present an analytic model aimed
at understanding how the central densities and scale radii of SIDM
haloes are set in the context of energetics. Moreover, before moving
on to those issues, we first explore halo substructure in SIDM.

5.4 Substructure

The question of halo substructure is an important one for SIDM.
One of the original motivations for SIDM was to reduce the num-
ber of subhaloes in the Milky Way halo in order to match the
relative dearth of observed satellite galaxies (Spergel & Steinhardt
2000). However, the overreduction of halo substructure is now rec-
ognized as a negative feature of SIDM compared to CDM, given the
clear evidence for galaxy-size subhaloes throughout galaxy clusters
(Natarajan et al. 2009) and the new discoveries of ultrafaint galax-
ies around the Milky Way (see Bullock 2010; Willman 2010 for
reviews). In fact, one of the most stringent constraints on the self-
interaction cross-section comes from analytic subhalo-evaporation
arguments (Gnedin & Ostriker 2001).

Fig. 8 demonstrates that the effects of subhalo evaporation in
SIDM are not as strong as previously suggested on analytic grounds.
Here we show the cumulative number of subhaloes larger than a
given Vmax for a sample of well-resolved haloes in our CDM (solid),
SIDM0.1 (dotted) and SIDM1 (dashed) simulations. The associated
virial masses for each host halo are shown in the artwork. The
left-hand panel presents the Vmax function for all subhaloes within
the virial radius of each host and the right-hand panel restricts the
analysis to subhaloes within half of the virial radius. We see that
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Self-interacting dark-matter simulations – I. 91

Figure 8. Subhalo cumulative number as a function of halo peak circular velocity (Vmax) for several well-resolved haloes in our CDM (solid), SIDM0.1 (dotted)
and SIDM1 (dashed) simulations. When looking at all subhaloes within r < rvir (left), the differences are small and the slope of the subhalo Vmax function is
the same for the CDM and SIDM cases. The offset in the subhalo Vmax function increases when we look only at subhaloes inside r < 0.5rvir (right-hand panel),
showing that SIDM suppresses the number of subhaloes in the central regions of haloes more strongly.

generally the reduction in substructure counts at a fixed Vmax is small
but non-zero and that the effects appear to be stronger at small radii
than large. Similarly, there appears to be slightly more reduction
of substructure in the SIDM cluster haloes compared to the galaxy
size systems.

We can understand the following two trends: (1) the increase
in the difference between the CDM and SIDM Vmax functions as
Mvir increases and (2) the increase in the difference as one looks at
the central regions of the halo, using the results from the previous
section as a guide. The typical probability that a particle in an SIDM
subhalo will interact with a particle in the background halo is

P ≈ 〈ρhost(r)(σ/m)vorb(r)〉T T , (14)

where vorb(r) is the orbital speed of the subhalo at position r, ρhost

is the mass density of the host halo and T is the orbital period.
The typical speed of the subhalo is similar to the rms speed of the
smooth component of the halo, and thus ρhost(r)(σ/m)vorb(r) should
be similar to the function we show in Fig. 7. At fixed r/rs we expect
P to scale with Vmax as V 3

max/r
2
max (given that ρs ∝ V 2

max/r
2
max), which

is a very mildly increasing function of Vmax over the range of halo
masses we have simulated. Note though that we expect scatter at
fixed halo mass because of the scatter in the Vmax−rmax relation
(Bullock et al. 2001).

While the increase in destruction of subhaloes with host halo mass
is not strong, it is clear from the above arguments that subhaloes in
the inner parts of the halo (r/rs 
 1) should be destroyed but the
bulk of the subhaloes around r/rs ∼ 1 and beyond should survive
for σ/m = 1 cm2 g−1. This effect is strengthened by the fact that
subhaloes in the innermost region of the halo were accreted much
longer ago than subhaloes in the outskirts, so they have experienced
many more orbits (Rocha, Peter & Bullock 2012). These arguments
explain the comparisons between the subhalo mass functions plotted
in Fig. 8. Our arguments demonstrate that a large fraction of the

subhaloes found in CDM haloes (most of which are in the outer
parts) would still survive in SIDM haloes for σ/m values around or
below 1 cm2 g−1.

Overall in the previous two sections we have seen that the ef-
fects of self-interactions between dark-matter particles in cosmo-
logical simulations are primarily in the central regions of dark-
matter haloes, leaving the large-scale structure identical to our non-
interacting CDM simulations. Thus, we retain the desirable features
of CDM on large scales while revealing different phenomenology
near halo centres. In the following section, we will move to explore
how the properties of SIDM haloes presented here scale with halo
mass.

6 SC A L I N G R E L AT I O N S

In the previous section we saw that while SIDM preserves the CDM
large-scale properties of dark-matter haloes, self-interactions in the
central regions of haloes result in a decrease of central densities
and the formation of cores in their density profiles. We found that
the density profiles of haloes from our SIDM1 simulations can be
relatively well fit by Burkert density profiles inside r ∼ 2−3rs (see
Fig. 4). Here we define a sample of well-resolved haloes from
all our SIDM1 simulations and use Burkert fits to their density
profiles in order to quantify their central densities and core sizes.
We then provide scaling relations of dark-matter halo properties
with maximum circular velocity Vmax.

The sample of haloes used for the rest of this section con-
sists of the two host haloes in our SIDM1-Z11 and SIDM1-Z12
simulations together with the 25 most massive haloes from our
SIDM1-50 and the 25 most massive haloes from our SIDM1-25
simulations. That gives us a total of 52 haloes spanning a range
Vmax = 30−860 km s−1 or Mvir = 5 × 1011−2 × 1014 M�. For
this set of haloes the innermost resolved radius, defined by equation
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(20) in Power et al. (2003), is always smaller than one-third of the
Burkert scale radius from which we define the sizes of cores. It is vi-
tal that we do a conservative comparison to the Power et al. (2003)
radius because both gravitational scattering and self-interactions
lead to the same phenomenological result of constant-density cores.
Most of the haloes (other than the 52 we select here) do not pass this
test well enough for the core set by self-interactions to be resolved
with confidence. This desire to be conservative in our presentation
of scaling relations forces us to find these relations from only a
small sample of haloes for SIDM1 and leaves us with basically no
haloes to find scalings for SIDM0.1. Moreover, one has to keep in
mind that our SIDM1 relations could be biased by selecting only the
most massive haloes in our full-box simulations. Evidently higher
resolution simulations are necessary to find definitive answers. It is
reassuring however that the scaling relations derived from our ana-
lytical arguments in Section 7 agree so well with the ones presented
here for σ/m = 0.1 cm2 g−1.

We have checked that for all of our haloes we resolve the scatter-
ing rate out to at least four times the Burkert scale radius. Outside
of this point the scattering rate is underestimated because of our
choice of the self-interaction smoothing length relative to the inter-
particle spacing (see Section 3). However, the expected scattering
rate is negligible with respect to the Hubble rate outside that radius
(Fig. 7). Moreover, we have re-run our 50 h−1 Mpc boxes for a range
of SIDM smoothing values and found identical results. Thus, we
consider our sample to be well resolved.

Eight haloes in our sample are undergoing significant interactions
and have density profiles that are clearly perturbed even in the CDM
runs. We include these eight systems in all of the following plots
but indicate them with open symbols. We do not use them in the
best fits for the scaling relations that we provide.

We start by examining the global structure of haloes as character-
ized by the maximum circular velocity Vmax and the radius where
the rotation curve peaks, rmax. The relationship between Vmax and
rmax provides a simple, intermediate-scale measure of halo concen-
tration and we aim to investigate any differences between SIDM
and CDM. Fig. 9 shows the Vmax−rmax relation for CDM (black)
and SIDM1 (blue) haloes. We can see that small differences of about

Figure 9. rmax versus Vmax for our combined sample of well-resolved haloes
from our SIDM1 and CDM simulations. Open symbols correspond to haloes
for which the density profiles showed signs of being perturbed, thus they
were not included in the best fit of the relation. Small differences of about
10 per cent exists in both Vmax and rmax; however, the slope of Vmax–rmax

relation is unchanged from CDM to SIDM1.

Figure 10. Burkert scale radius versus Vmax for our combined sample of
well-resolved haloes from our SIDM1-50 (blue circles), SIDM1-25 (green
stars), SIDM1-Z12 (cyan square) and SIDM1-Z11 (red triangle) simulations.
Open symbols correspond to haloes that are undergoing mergers. These
perturbed haloes were not included in the fit for the scaling relation. A
single power law holds along the whole range of our sample, suggesting that
this dependence continues towards smaller and larger Vmax values.

10 per cent exist in both Vmax and rmax, with SIDM1 haloes having
larger values for Vmax and smaller for rmax. This was already evident
in Fig. 5, where the circular velocity curves of SIDM1 haloes seem
to peak at slightly smaller radii and slightly larger velocities than
their CDM analogues, even though SIDM1 curves decrease more
steeply at the centre.

The apparent difference is consistent with a picture where en-
ergy exchange due to scattering redistributes the SIDM dark-matter
particles, with many of the tightly bound particles scattered on to
less bound, high-apocentre orbits. Since the radius at which self-
interactions are significant (see Fig. 7) is smaller than (but close to)
rs, it is entirely reasonable that the scattered particles lead to a new
rmax for SIDM1 that is smaller than the CDM rmax and a Vmax that is
larger. Note that the slope of the Vmax−rmax relation is unchanged
from CDM to SIDM1. The best-fitting relations are

rmax = 26.21 kpc

(
Vmax

100 km s−1

)1.45

(CDM) ,

rmax = 22.46 kpc

(
Vmax

100 km s−1

)1.46

(SIDM1). (15)

We continue this discussion by considering the sizes of cores in
our SIDM1 simulations as a function of Vmax. The core sizes of
haloes are quantified by the scale radius in the Burkert fit to their
density profiles, namely rb in equation (12). Fig. 10 shows that
for this relation a single power law holds along the whole range
of our sample. We will come back to this result in Section 8 on
extrapolating to smaller and larger Vmax values to make contact
with observations of cores in galaxies and clusters. The power law
that best fits our data is given by

rb = 7.50 kpc

(
Vmax

100 km s−1

)1.31

. (16)

If we fit to Mvir instead of Vmax, we get

rb = 2.21 kpc

(
Mvir

1010 M�

)0.43

. (17)
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Figure 11. Burkert scale radius in SIDM1 haloes versus the NFW scale
radius in their CDM counterparts. Points and labels are the same as in
Fig. 10. There is a one-to-one correlation indicating that the core size of
SIDM1 haloes scales the same as the scale radius of CDM haloes with Vmax.

We note that the scaling with Vmax is close to that expected for
rmax or rs. We show this explicitly by fitting for the core size of
SIDM1 haloes rb as a function of the NFW scale radius rs of their
CDM counterparts, as shown in Fig. 11. We find that the ratio of the
core size of an SIDM1 halo to the scale radius of the corresponding
CDM halo varies very mildly with Vmax. In other words, the core
sizes are a fixed fraction of the CDM halo scale radius. The relation
that best fits our data is given by

rb

rs
= 0.71

(
rs

10 kpc

)−0.08

. (18)

This underscores the point that rb and rs are closely tied to each
other and the fact that they are numerically so close to each other
is the reason why a cored profile with a single scale (like a Burkert
profile) provides a reasonable fit to our SIDM1 haloes. We will
explain this striking behaviour using an analytic model in the next
section.

The central densities in SIDM1 haloes can be defined either as
the Burkert profiles scale density or as the density at the innermost
resolved radius. We have found that both definitions give similar
results with no significant differences. In Fig. 12, we show how the
Burkert scale density ρb scales with Vmax. The trend in the ρb−Vmax

relation is not as strong as for the rb−Vmax relation, with a scatter as
large as about a factor of 3. We will come back to the implications
of this result in Section 8. The relation that best fits our data is given
by

ρb = 0.015 M� pc−3

(
Vmax

100 km s−1

)−0.55

. (19)

If we fit to Mvir instead of Vmax, we get

ρb = 0.029 M� pc−3

(
Mvir

1010 M�

)−0.19

. (20)

We urge caution when using the above fits to the central densities
as it is likely to be affected by our small sample size given the
large scatter. The toy model discussed in the next section predicts a
slightly stronger scaling with Vmax. However, the typical densities
of the order of 0.01 M� pc−3 for galaxy haloes and 0.001 M� pc−3

Figure 12. Burkert scale density versus Vmax. Points and labels are the
same as in Fig. 10. The trend in the ρb−Vmax relation is not as clear as for
the rb−Vmax relation, with a scatter of up to a factor of 3.

for cluster haloes (see Fig. 12) are in line with the predictions of the
analytic model.

In this section, we have presented scaling relations for the prop-
erties of haloes in our SIDM1 simulations. Our limited resolution
allows us to use only 52 haloes spanning a modest mass range, from
which we throw out eight systems that are undergoing mergers. Ad-
mittedly, this sample is not large enough to be definitive, especially
in regards to scatter. However, the strong correlation between the
SIDM core radius rb and the counterpart CDM scale radius rs is
clearly statistically significant and the general trends provide a use-
ful guide for tentative observational comparisons – a subject we
will return to in the final section below.

7 A NA LY T I C MO D E L TO E X P L A I N
T H E SC A L I N G R E L AT I O N S

In this section, we develop a simple model to understand the scaling
relations shown in Section 6. This model is based on identifying an
appropriate radius r1 within which self-interactions are effective and
demanding that the mass as well as the average velocity dispersion
within this radius are set by the mass and the average velocity
dispersion (within the same radius) of the same halo in the absence
of self-scatterings. The mass loss due to scatterings in the core
should be insignificant because particles rarely get enough energy
to escape and this implies that the mass within r1 should be close
to what it would have been in the absence of self-interactions. This
also implies that the potential outside r1 is unchanged from its
CDM model prediction, but tends to a constant value faster inside
r1. Within this set of approximations, the dominant effect due to
scatterings is to redistribute kinetic energy in the core, while keeping
the total kinetic energy within r1 the same as it would have had
before self-interactions became important. We have looked at the
kinetic energy profiles in the best-resolved haloes in our simulations
and have confirmed that this is indeed a good approximation. Note
that in this picture, there is a clear demarcation of time-scales such
that the inner halo structure (say r � rs) is set (the same way as in
the CDM model) well before self-interactions become important.
For cross-sections much larger than what we are interested in here,
this need not hold.

To set up the model, we start by recalling that self-interactions
work to create an isothermal core (see Fig. 6) that is isotropic (both
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spatially and in velocity space). Using the spherical Jeans equation,
one can then see that for a system with these properties

v2
rms,0 = 3σr(0)2 = 2πξ−1Gρ(0)r2

0 , (21)

where we have defined r0 to be the expansion parameter such that
ρ(r)σr(r)2 = ρ(0)σr(0)2[1 − ξ (r/r0)2] when r 
 r0 and σr is the
radial velocity dispersion. The form of the Taylor expansion for
ρ(r)σr(r)2 is dictated by the Jeans equation for density profiles that
tend to a constant value, as may be readily ascertained by taking the
derivative of ρ(r)σr(r)2. To fix r0, we will choose it to be equivalent
to the Burkert scale radius where the density is one-fourth of the
central density. The parameter ξ encapsulates uncertainties from
the profile and velocity dispersion anisotropy in the outer parts of
the halo. We test various models and find that a range of 2–3 for ξ

is largely consistent with most parametrizations and hence we fix
ξ = 2.5. If we specify the central velocity dispersion, then with an
additional constraint on the core region (i.e. r1), we would be able
to back out both the core radius and the core density.

We then set v2
rms,0 equal to the average velocity dispersion squared

(i.e. two times kinetic energy divided by mass) within the region
r1 in the absence of self-interactions. This basically demands that
the kinetic energy within r1 is unchanged from the value it would
have had in the absence of self-interactions. Note, however, that
we are setting the average velocity dispersion squared equal to
v2

rms,0 and not the corresponding average in the SIDM halo. This is
an approximation, but one that is degenerate with choosing the ξ

parameter.
To finish specifying this model, we need a density profile for the

region inside r1. A Burkert profile has a velocity dispersion pro-
file (assuming isotropy) that asymptotes very slowly to the central
dispersion. For small radii, the radial dispersion profile is slowly
increasing (with radius) because of the r/rb term in the Taylor ex-
pansion for the density profile. If we want a flatter central dispersion
profile (as is observed for the SIDM1 haloes), we can fix this by
either assuming an isothermal profile or something like 1/[1 +
1.52(r/r0)2]3/2. The final results turn out to be qualitatively similar
for these profiles. Hence we adopt a Burkert profile for ease of com-
parison to the fits presented here and then check the results with
more appropriate profiles later. Our two constraints (on the radial
velocity dispersion and mass) fully specify the density and radial
scales of the Burkert profile.

In order to obtain scaling relations we need to estimate r1,
which demarcates the inner region where self-interactions are ef-
fective from the outer region that is mostly undisturbed by the
self-interactions. In reality, this divide will not be sharp but we will
see that the main features of the scaling relations are well captured
by this simple model. We define r1 to be the region where each
particle on average suffers one interaction. Since the region outside
is assumed to be unperturbed by interactions, we may estimate r1

as

�(r1)tage = 1.3ρCDM(r1)vrms,CDM(r1)
σ

m
tage = 1 , (22)

where we set age (tage) to be 10 Gyr for now, keeping in mind that
larger haloes have a shorter age and that major mergers can reset the
timer. We will consider what happens when tage is a function of halo
mass shortly. The factor 1.3 is 〈|v − u|〉/

√
〈v2〉 for a Maxwellian

distribution where u and v are the velocities of the two interacting
dark-matter particles. We have not attempted to use a more realistic
velocity distribution since the dependence of this factor on a possible
high-velocity cut-off to the distribution function was found to be
fairly mild.

For the density profile in the absence of self-interactions, we
assume an NFW profile and to fix the velocity dispersion we use
the observed fact that the phase-space density is a power law in
radius (Taylor & Navarro 2001). By noting that vrms, CDM(r) =
[ρCDM(r)/Q(r)]1/3 and using a phase-space density profile Q(r) =
Q(rs)(r/rs)−η (Taylor & Navarro 2001; Ascasibar et al. 2004; Rasia,
Tormen & Moscardini 2004; Dehnen & McLaughlin 2005; Ascasi-
bar & Gottlöber 2008), we may fully specify the dependence of r1

on the cross-section and halo parameters (say Vmax and rmax). For the
phase-space density profile, we use a power-law index η = 2 and
Q(rs) = 0.3/(GVmaxr

2
max) derived from jointly fitting our relaxed

CDM haloes; these parameters are very similar to the fits provided
in Ascasibar & Gottlöber (2008).

Let us first look at how r1 scales with rs in the NFW density
profile. One notes that ρs = 1.72V 2

max/(Gr2
max) and hence ρsVmax ∝

V 3
max/r

2
max which is a very mildly increasing function of Vmax as

equation (15) shows. Thus, equation (22) implies that r1/rs should
be roughly a constant. Numerically, we find that r1/rs � 0.7−0.8
over the range of Vmax of interest for σ/m = 1 cm2 g−1.

Having now specified r1, we are ready to look at the scalings of
rb and ρb. For our assumed value of ξ , v2

rms,0 � 2.5 Gρbr
2
b . Thus,

we are looking for the value of rb/rs that solves〈
ρs

(r/rs)(1 + r/rs)2

(r/rs)η

Q(rs)

〉
(r1) = (vrms,0)3 , (23)

with the constraint that Mb(r1) = MNFW(r1), where MNFW(r) and
Mb(r) are the masses enclosed within radius r for NFW and Burkert
profiles, respectively. We note that if rb/rs is not a strong function
of Vmax and since we know r1/rs is a mild function of Vmax, then
the mass constraint essentially sets ρbr

3
b /(ρsr

3
s ) to be a constant

or ρbr
3
b ∝ (ρsr

3
s ). This implies v2

rms,0rb ∝ V 2
maxrmax. Now equation

(23) sets vrms, 0 � Vmax because r1/rs is a mild function of Vmax

and it therefore follows that rb ∝ rs is a consistent solution to the
above equations. As a check we note that assuming r1/rs = 0.7−0.8
gives vrms, 0 � 1.1Vmax, in reasonable agreement with our SIDM1

simulation results (see Fig. 6). This simple model thus predicts
that rb/rs should not vary much with Vmax in agreement with the
observed scaling relations from the SIDM1 simulation.

In detail, the model predicts that rb/rs = 0.5−0.6 for dwarf to
cluster haloes in good agreement with the fits to our SIDM1 haloes,
but about 25 per cent smaller for Vmax ∼ 100 km s−1. It departs from
the results of the simulation in predicting that rb/rs increases gently
with Vmax, whereas Fig. 11 predicts that this ratio should decrease
gently with Vmax. We find that this departure from simulations is
likely related to the assumption of a constant age for all haloes. To
generalize our model, we use the results of Wechsler et al. (2002)
who show that the virial concentrations of haloes are correlated
with their formation times, and in particular cvir = 4.1(1 + zform)
for a particular definition of formation time. We invert this equa-
tion to derive an estimate of the halo age using zform. With the age
thus specified in equation (22), we find that now rb/rs decreases
gently with Vmax in substantial agreement with the fit to our sim-
ulations. Thus, the reason that larger haloes have a smaller rb/rs

is because self-interactions have had less time to operate. We note
that the values for the core radius in the analytic model with halo
mass-dependent tage are uniformly about 25 per cent smaller, but
this should not be a cause for concern given the approximation in
demanding a sharp transition at r1.

Given the Burkert core radius rb and the central velocity disper-
sion vrms, 0, one can easily check that the central density ρb is about
0.01 M� pc−3 for Vmax = 300 km s−1 haloes and 0.005 M� pc−3 for
Vmax = 1000 km s−1 in this analytic model. These numbers and the
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scaling with Vmax for ρb (when including the halo mass-dependent
tage) are in good agreement with the densities in Fig. 12 and the fit in
equation (19). As we have indicated before, the scaling relation for
the central density should be interpreted with care given the large
scatter. Given the tight correlation between core radius and rs, it
is possible that the substantial scatter in the central density arises
in large part due to the scatter introduced by the assembly history
in the concentration–mass relation. This has important implications
for fitting to the rotation velocity profiles of low surface brightness
spirals (LSBs; Kuzio de Naray et al. 2010) and deserves more work.

The simple model constructed above also provides insight into
the core-collapse time-scales. In particular, as long as the outer
part (region outside r1) dominates the potential well and sets the
average central temperature (or the total kinetic energy in the core),
we do not expect core collapse. This is simply because core collapse
requires uncontrolled decrease in temperature, which is prohibited
here. Once r1 moves out well beyond rmax or to the virial radius,
there is significant loss of particles and core collapse may occur if
there are no further major mergers. The time-scale for this process
is much longer than the age of the Universe for σ/m = 1 cm2 g−1

because the inner core is at r1 < rs after 10 Gyr for this self-
interaction strength and we see no evidence for significant mass
loss.

8 O B S E RVAT I O NA L C O M PA R I S O N S

The goal of this section is to discuss our results in comparison to ob-
servationally inferred properties of dark-matter density profiles. In
particular, we will focus on the core densities and core sizes. Section
8.1 presents our expectations for SIDM1 and SIDM0.1. Our predic-
tions for σ/m = 1 cm2 g−1 are anchored robustly to our simulations,
though they do require some extrapolation beyond the mass range
directly probed by our simulations (Vmax = 130−860 km s−1). For
σ/m = 0.1 cm2 g−1 the predictions are much less secure because the
associated core sizes are of the order of our resolution limit; thus,
we rely on our analytic model more directly here. In Section 8.2,
we discuss our predictions in light of observations of dark-matter
haloes for a wide range of halo masses. In Section 8.3, we discuss
our results on subhaloes in the context of past work and constraints
on SIDM based on subhalo properties.

Before proceeding with this discussion we would like to clarify
how we quantify core sizes. In this work, we have fit the σ/m =
1 cm2 g−1 haloes with Burkert density profiles. However, many ob-
servational constraints on cores on galaxy scales come from fitting
pseudo-isothermal density profiles with core size rpi to data (e.g.
Simon et al. 2005; Kuzio de Naray et al. 2008), although some
constraints do come from Burkert modelling (Salucci et al. 2012).
We found that pseudo-isothermal density profiles also give good
fits to the inner regions of the SIDM1 haloes, but Burkert fits are
better because of that profile’s ρ ∝ r−3 dependence at large radii.
For a pseudo-isothermal density profile [∝1/(r2

c + r2)], the density
decreases to one-fourth the central density at 1.73 times its core
radius rc. Thus, as a crude approximation, one may convert the
Burkert radius to the equivalent pseudo-isothermal core radius by
multiplying by a factor of 0.58 (rc � rb/1.73).

8.1 Predicted core sizes and central densities in SIDM

8.1.1 SIDM with σ/m = 1 cm2 g−1

The central properties of dark-matter haloes have been inferred
from observations from tiny Milky Way dSph galaxies (Vmax �

50 km s−1) to galaxy clusters (Vmax � 1000 km s−1). If we extrapo-
late the results from our set of SIDM1 simulations using equations
(16)–(20), we predict that SIDM haloes with σ/m = 1 cm2 g−1

would have the following (Burkert) core sizes and central densities:
For galaxy clusters (Vmax � 700–1000 km s−1),

rb � (95−155) kpc; ρb � (0.005−0.004) M� pc−3. (23)

For low-mass spirals (Vmax � 50−130 km s−1),

rb � (3−10) kpc ; ρb � (0.02−0.01) M� pc−3. (23)

For dSph galaxies (Vmax � 20−50 km s−1),

rb � (0.9−3) kpc ; ρb � (0.04−0.02) M� pc−3. (23)

Although we cannot completely determine the scatter in our scaling
relations due to low number statistics, it is important to note from
Figs 10 and 12 that a scatter of at least a factor of 2 in core sizes,
and at least a factor of 3 in central densities, is expected for a given
Vmax. We suspect that these differences are in large part a result of
the diversity of merger histories of dark-matter haloes. Note that
the Vmax−rmax and Q(rs) scalings assumed in the analytic model
are the median values. The strong dependence of the SIDM halo
profiles on these quantities makes it clear that the scatter in these
relations will introduce significant scatter in the halo core sizes
and core densities. Thus, the analytic model should also provide
a simple way to understand (some of the) scatter seen for SIDM1

halo properties. In future work, we will characterize the relation
between the core properties and merger history in the context of a
detailed discussion of the scatter in the scaling relations, especially
on scales that we do not resolve with our current simulations.

8.1.2 SIDM with σ/m = 0.1 cm2 g−1

As discussed in Section 5.4, our SIDM0.1 simulations are not well
enough resolved to definitively measure a core radius for any of our
haloes, much less define scatter in that quantity. Nevertheless, our
best resolved systems do demonstrate some clear deviations from
CDM and allow us to cautiously estimate individual core densities.
Referring back to Fig. 4, we see that in our two best resolved cluster
haloes (at Mvir � 1014 M�) the SIDM0.1 core densities approach
∼0.01 M� pc−3 – each at least a factor of ∼3 denser than their
SIDM1 counterparts. Similarly, in our Z12 Milky Way case, the
SIDM0.1 core density appears to be approaching ∼0.1 M� pc−3

compared to ∼0.02 M� pc−3 in the SIDM1 case.
Given the lack of well-resolved halo profiles, it is worth appealing

to the analytic model presented in Section 7 to estimate core radii
for SIDM0.1. Using exactly the same arguments (including the halo
mass-dependent age), we find that r1/rs � 0.05−0.12 in the 100–
1000 km s−1 Vmax range and a corresponding Burkert core radius
rb/rs � 0.09−0.17. We note that the Burkert radius is close to
but slightly larger than r1. It is important to keep in mind that in
this analytic model we are only explicitly fitting the inner ‘self-
interaction zone’ of r < r1. This does not imply that the entire
halo has to be well fit by the Burkert profile. Recall that a single-
scale Burkert profile only works as well as it does for σ/m =
1 cm2 g−1 because rb ≈ rs, such that to a good approximation there
is only one relevant length scale. For the smaller cross-section that
we are now considering we expect the core and NFW scale radii
to be widely separated, suggesting that a generic functional form
for SIDM haloes should have two scale radii. A wide separation
between the SIDM0.1 core and rs does appear to be consistent with
the highest resolved haloes presented in Fig. 4. However, we note
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that given the strong correlation between rb/rs, we still expect a
one-parameter family of models for a given σ/m.

To see how dependent our results are on the shape of the inner halo
profile, we modify the analytic model to include a density profile
that decreases with radius as 1/[1 + (r/rc)2]α/2. For this density
profile, the velocity dispersion profile has the right form to match
our simulation results. The price we pay is the introduction of a new
parameter α. We set this parameter α by additionally demanding
that the slope of the mass profile (i.e. density) is continuous at r1,
so that the mass profile joins smoothly with the NFW mass profile.
This picks out a narrow range α = 5.5−7.0 as the solution over most
of the Vmax range of interest (with smaller values corresponding to
lower Vmax). Interestingly, this implies that at r1, the slope of the
density profile is very close to −2 for the entire range of Vmax values
of interest. Note that while the mass profile is continuous, the slope
of the density profile is not matched smoothly at r1 (since the slope
of the NFW profile would be closer to −1 at r1 
 rs). This probably
signals that if the matching were not done sharply (at r1), the density
profile of SIDM would overshoot that of CDM and catch up at some
radius beyond r1 (as is seen in the comparison of SIDM1 and CDM
density profiles).

As a check we apply this α model to the σ/m = 1 cm2 g−1 case
and find that the results are qualitatively the same as the model with
the Burkert profile. The quantitative differences are at 20 per cent
level with the densities being smaller and inferred Burkert core radii
(where density is one-fourth of the central density) larger compared
to the Burkert profile model. The predicted slope of the density
profile at r1 is close to −2.5 implying a smoother transition to the
NFW profile (since r1 ∼ rs for σ/m = 1 cm2 g−1), as is seen Fig. 4.

For the σ/m = 0.1 cm2 g−1 case, we obtain rc/rs = 0.08−0.17
and an equivalent Burkert core radius (where the density is one-
fourth of the central density) rb/rs = 0.06−0.14, in substantial
agreement with the results we obtained using the Burkert profile.
Thus, our analysis would suggest core sizes ∼0.1rs for σ/m =
0.1 cm2 g−1. The results from the analytic model for σ/m =
0.1 cm2 g−1 also seem consistent with our simulation results; see
Fig. 6 where the vrms profiles for SIDM0.1 start to deviate from CDM
at ∼0.2rs.

Based on the discussion above, we conclude that for σ/m =
0.1 cm2 g−1 we expect the following:

For galaxy clusters (Vmax � 700–1000 km s−1),

rb ∼ (16−20) kpc; ρb ∼ 0.04 M� pc−3. (23)

For low-mass spirals (Vmax � 50−130 km s−1),

rb ∼ (0.6−2.5) kpc; ρb ∼ 0.2−0.1 M� pc−3. (23)

For dSph galaxies (Vmax � 20−50 km s−1),

rb ∼ (0.2−0.6) kpc; ρb ∼ 0.5−0.2 M� pc−3. (23)

These values do not include the scatter from mass assembly history.
It is probably reasonable to assume a factor of 2 scatter for both
core radii and core densities based on what we see in SIDM1. It is
also possible that the core densities are ∼50 per cent smaller than
what we would see in simulations, given that the SIDM1 simulations
have core densities that are somewhat larger than the predictions
from the analytic model. For the dSph galaxies, the values should
be interpreted with caution as it is the prediction for field haloes
with Vmax range 20–50 km s−1.

While these values are somewhat tentative compared to those
presented above for SIDM1 (given our lack of direct simulation
fits), two factors are reassuring. First, the analytic model is based

on the simple assumption that scattering redistributes kinetic energy
within the inner halo and the non-trivial aspect of the model is
defining this ‘inner halo’ region. There is no reason to suspect that
this assumption or the prescription breaks down for SIDM0.1 haloes
when it works so well in describing the SIDM1 haloes. The predicted
densities are in line with those inferred for the best resolved haloes in
our SIDM0.1 simulations (shown in Fig. 4 and discussed above). For
the core radii, we reiterate that the label ‘rb’ should be interpreted
(according to its definition in the analytic model) as the radius
where the density reaches one-fourth the asymptotic core density.
The overall profile of a halo with such a small core compared to rs

will not be fit by the Burkert form. Note that the strong correlations
we predict between the core radius and the NFW scale radius raise
the intriguing possibility that the SIDM haloes may be also well
fit (modulo scatter) by a single parameter profile as is the case for
CDM.

Next, we compare our predictions for SIDM core properties
against data and show that the core radii and densities appear to
be consistent with that seen in real data, motivating future simu-
lations with high enough resolution to resolve cores in SIDM0.1

haloes.

8.2 Observed core sizes and central densities versus SIDM

In this section, we explore the predictions for the properties of den-
sity profiles with SIDM in the context of observational constraints
on density profiles. We also revisit previous constraints on SIDM
from observations in light of our simulation suite.

8.2.1 Clusters

One of the tightest SIDM constraints from the first generation of
SIDM studies emerged from one cluster simulation and one ob-
served galaxy cluster. Specifically, Yoshida et al. (2000) simulated
an individual galaxy cluster with different SIDM cross-sections.
When comparing the core size of this simulated cluster to the core
size estimated by Tyson, Kochanski & dell’Antonio (1998) for CL
0024+1654, they found that the observed core in CL 0024+1654
would be consistent with SIDM only if σ/m � 0.1 cm2 g−1. Since
that time, evidence has emerged that this particular cluster is under-
going a merger along the line of sight (Czoske et al. 2001, 2002;
Zhang et al. 2005; Jee et al. 2007; Jee 2010; Umetsu et al. 2010).
Thus, this cluster is not the ideal candidate for SIDM constraints
based on the properties of relaxed haloes, and the Yoshida et al.
(2000) constraint is not valid in this context.

Using X-ray emission, weak lensing, strong lensing, stellar kine-
matics of the brightest cluster galaxy (BCG) or some combination
thereof, the mass distributions within a number of galaxy clusters
have been mapped in the past decade. Arabadjis, Bautz & Garmire
(2002) placed a conservative upper limit of 75 kpc on the size of
any constant-density core, and an average density within the in-
ner 50 kpc of ∼0.025 M� pc−3 for a halo with an estimated mass
M ∼ 4 × 1014 M�.

Sand et al. (2004), Sand et al. (2008), Newman et al. (2009)
and Newman et al. (2011) all find central density profiles in clus-
ters shallower than the NFW CDM prediction. The difference in
the work between these authors and others is that they use stel-
lar kinematics of the BCG to constrain the density profile of the
cluster dark-matter halo on small scales. While this probe of the
density profile is more sensitive on small scales than strong lensing
is, proper inference of the dark halo properties depends on accurate
modelling of the BCG density profile and equilibrium structure.
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They have typically assumed a ‘gNFW’ profile in order to constrain
the central densities: ρ(r) ∝ 1/[xg(1 + x)3 − g] with r = xrs and the
NFW form obtained when g = 1. The Newman et al. (2009, 2011)
mass models of M ∼ 1015 M� clusters show average dark-matter
central densities within 10 kpc of ∼0.03−0.06 M� pc−3 and rs of
the order of 100 kpc. Note that 10 kpc is typically the smallest radius
our simulations can resolve.

Saha, Read & Williams (2006) and Saha & Read (2009) studied
the mass structure of three cluster haloes from gravitational lens-
ing and obtained density profiles that are consistent with ρ ∝ r−1

outside the inner 10−20 kpc regions. Similarly, Morandi, Pedersen
& Limousin (2010) and Morandi & Limousin (2012) find that the
radial mass distribution of cluster dark-matter haloes is consistent
with NFW predictions outside 30 kpc in projection. The CLASH
multi-cycle treasury programme on the Hubble Space Telescope
is finding many new strongly lensed galaxies in about a set of 25
massive clusters (Postman et al. 2012). Initial results from this pro-
gramme show that the total density profile of these clusters (or total
density minus the BCG), if modelled as spherically symmetric, is
consistent with NFW predictions for the halo alone if the gNFW
functional form is used in the fit (Zitrin et al. 2011; Coe et al. 2012;
Umetsu et al. 2012). However, Morandi et al. (2010) and Morandi,
Pedersen & Limousin (2011) find that spherical mass modelling
of galaxy clusters typically results in an overestimate of the cuspi-
ness of the density profile, although axially symmetric modelling
is found to lead to underestimates (Meneghetti et al. 2007). Thus,
the present status of the density profiles of the CLASH clusters is
unclear and clearly an interesting data set to look forward to.

We note here a complexity involved in using the lensing results to
constrain SIDM models. Lensing provides mass in cylinders along
the line of sight and this 2D mass profile is sensitive to mass from
a large range of radii. As an example, let us consider mass within
30 kpc in projection. If we were to do something extreme and create
a zero-density core inside 30-kpc sphere, the differences in the 2D
mass profile would be less than a factor of 2 for clusters in the
1014−1015 M� mass range. For SIDM0.1, the differences are com-
paratively benign. Our analytic model predicts that differences rela-
tive to CDM at about 0.1rs (which is 10−40 kpc for 1014−1015 M�
virial mass range) are 20–30 per cent, which implies that SIDM0.1

surface mass density profiles are very similar to CDM on these
scales. Moreover, for SIDM1 the expected differences would be
measurably large.

On a related technical note, we discourage the use of the gNFW
functional form when thinking about models that deviate from the
CDM paradigm. In the SIDM case, for σ/m < 1 cm2 g−1, there
will generically be two scale radii: one is the NFW-like scale radius
which is the result of hierarchical structure formation (Lithwick
& Dalal 2011) and the second is the core radius from dark-matter
self-scattering. For σ/m = 1 cm2 g−1, as we explained in detail in
Section 7, the two scales are about the same. If most of the cluster
data constrain the density profile beyond an SIDM core, as they
may for weak lensing and X-ray studies, the gNFW or NFW fit is
dominated by those data, and a core will not be ‘detected’ in the
fit. In future work, we will simulate haloes with a broader range of
σ/m and provide SIDM-inspired density profiles to the community.

The results discussed above seem to suggest that the density pro-
file beyond about 25 kpc should be close to the predictions from
the NFW profile. To test this we plot the average physical den-
sity within 25 kpc for well-resolved haloes in our CDM (black),
SIDM0.1 (green) and SIDM1 (blue) simulations in Fig. 13. We see
that for the most massive haloes, the σ/m = 1 cm2 g−1 run pro-
duces densities at 25 kpc that are ∼2−3 times lower than their

Figure 13. Dark-matter average density within 25 kpc versus Vmax for
resolved haloes in our CDM, SIDM0.1 and SIDM1 simulations. It is clear
that SIDM1 has significantly lower densities than CDM haloes at group and
cluster scales. For the SIDM0.1 model, the differences are muted and only
appear on cluster scales. Thus, observations of central densities in clusters
likely provide the most promising avenue to look for signatures of SIDM
with cross-sections in the vicinity of 0.1 cm2 g−1.

CDM counterparts. Thus, it seems like the measured densities in
clusters rule out the σ/m = 1 cm2 g−1 SIDM model. At the same
time, the σ/m = 0.1 cm2 g−1 simulations are quite similar to CDM
at these radii, though beginning to show some differences as we
discussed earlier in this section. Analyses that combine information
from X-rays, lensing and BCG stellar kinematics seem to suggest
lowered densities (e.g. Newman et al. 2011) that would be compat-
ible with SIDM0.1. Given this outlook, it is reasonable to conclude
that estimates of the central dark-matter density in clusters will
provide essential tests of interesting SIDM models.

8.2.2 Low-mass spirals

For low-mass spirals with maximum circular velocities in the range
50−130 km s−1, constant-density cores with sizes of ∼0.5−8 kpc
and central densities of ∼0.01−0.5 M� pc−3 have been observed
(de Blok et al. 2001; Sánchez-Salcedo 2005; Simon et al. 2005;
Kuzio de Naray et al. 2008, 2010; Oh et al. 2011a; Salucci et al.
2012). Similar to what we found for cluster scales, SIDM with
σ/m = 1 cm2 g−1 would be able to reproduce the largest core sizes
observed in low-mass galaxies but it predicts central densities that
are too low. SIDM with σ/m = 0.1 cm2 g−1 would be much more
consistent. Moreover, the predicted log-slope of the density profile
at 500 pc for σ/m = 0.1 cm2 g−1 haloes in the 50–130 km s−1 range
is −0.5 to 0, both facts consistent with results from THINGS (Oh
et al. 2011a). Note that the slope at 500 pc for the σ/m = 1 cm2 g−1

model is 0 in the same Vmax range, which is not consistent with the
scatter seen in the data.

We conclude, as before, that the observed densities and core radii
are not consistent with SIDM1 but are fairly well reproduced in
SIDM models with σ/m � 0.1 cm2 g−1.

8.2.3 Dwarf spheroidals in the Milky Way halo

The least massive and most dark-matter-dominated galaxies provide
an excellent setting to confront the predictions of different dark-
matter models with observations. Recent work by Boylan-Kolchin
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et al. (2011, 2012) has found that the estimated central densities of
the bright Milky Way dSph satellites are lower than the densities of
the massive subhaloes in dark-matter-only simulations. SIDM offers
a way to solve this problem because it reduces the central density of
haloes. Thus in SIDM, the massive subhaloes do host the luminous
dSph but have shallower density profiles than predicted in CDM
simulations. This has recently been demonstrated by Vogelsberger
et al. (2012). We do not directly compare to Vogelsberger et al.
(2012) because their work is focused on the subhaloes of the Milky
Way and the velocity-independent cross-section that they simulate
(σ/m = 10 cm2 g−1) is larger than the cross-sections considered in
our work.

Regardless of whether Milky Way dSphs have cuspy or cored
dark-matter haloes, we may estimate the enclosed mass, and hence
average density, around the half-light radius of the stellar dis-
tribution. Mass estimates within 300 pc and mass profile mod-
ellings using stellar kinematics together with chemodynamically
distinct stellar subcomponents of Milky Way dSph galaxies sug-
gest central densities of ∼0.1 M� pc−3 (Strigari et al. 2008; Wolf
et al. 2010; Walker & Peñarrubia 2011; Amorisco & Evans 2012;
Wolf & Bullock 2012). For the faintest dSph Segue 1, the den-
sity within the half-light radius (about 40 pc) is measured to be
about 2.5+4.1

−1.9 M� pc−3 (Martinez et al. 2011; Simon et al. 2011).
The errors on Segue 1 density are large but it is clear that if
SIDM is to accommodate this result, it must allow for large scat-
ter in the core sizes and densities for small Vmax haloes. With a
factor of 2–3 scatter in the densities quoted earlier for SIDM0.1

haloes, Segue 1 would appear to be compatible with SIDM0.1 if its
Vmax value is towards the lower end of the 20−50 km s−1 range in
Vmax.

For the two dSph galaxies that appear to have cored density
profiles (Fornax and Sculptor), the core sizes must be of the or-
der of ∼0.2−1 kpc (Walker & Peñarrubia 2011). For small haloes
with circular velocities in the 20−50 km s−1 range, which is close
to the expected peak circular velocities of dSph haloes before
infall into the Milky Way host halo, an SIDM with σ/m =
1 cm2 g−1 predicts core sizes of the order of ∼0.8−3.0 kpc,
with central densities of ∼0.02−0.04 M� pc−3. Therefore, we
find again that σ/m = 1 cm2 g−1 cannot reproduce the observed
high central densities. On the other hand, our estimates suggest
that an SIDM model with σ/m = 0.1 cm2 g−1 would produce
central densities and core sizes consistent with the Milky Way
dSph.

In this last section we have used the analytic results that explain
the scaling relations for the core sizes and central densities of haloes
in our SIDM1 and SIDM0.1 simulations, to extrapolate our results to
scales ranging from galaxy clusters to dSph galaxies and to lower
cross-sections. We have found that σ/m = 1 cm2 g−1 would be
unable to reproduce the observed high central densities. Remark-
ably, we find that the observations should be consistent with the
predictions of an SIDM with cross-section in the ballpark of σ/m =
0.1 cm2 g−1. These expectations are based on the scaling relations
seen in SIDM1 simulations and our analytic model, which is consis-
tent with the results from our direct σ/m = 0.1 cm2 g−1 simulations
at the radii where we can trust our simulations. This deserves fur-
ther study both in terms of simulations with SIDM cross-section
values smaller than 1 cm2 g−1 and more detailed comparisons to
observations. Our current look at the global data does not suggest a
need for a velocity-dependent cross-section as has been previously
suggested. In a companion paper (Peter et al. 2012), we show that
these SIDM models are also consistent with observations of halo
shapes.

8.3 Observed substructure versus SIDM

In Fig. 8, we show that the number of subhaloes for σ/m =
1 cm2 g−1 is not significantly different from CDM predictions, es-
pecially in galaxy-scale haloes. This is interesting because it means
that SIDM fails to deliver on one of the original motivations for
considering this model of dark matter. Recall that Spergel & Stein-
hardt (2000) originally promoted SIDM as a solution to the missing
satellites problem (Klypin et al. 1999; Moore et al. 1999), stating
that many subhaloes would be evaporated by interactions with the
background halo. Given the new discoveries of ultrafaint galaxies
around the Milky Way and the high likelihood of many more dis-
coveries from surveys like LSST (Bullock et al. 2010; Willman
2010), a significant reduction in substructure counts may very well
be a negative characteristic of any non-CDM model (Tollerud et al.
2008).

However, in Milky Way mass haloes, SIDM with σ/m =
1 cm2 g−1 will yield a significant probability for subhalo particle
scattering only for systems that pass within ∼10 kpc of the host
halo centre. Thus, for this cross-section, we can form interesting-
sized cores but largely leave the subhalo mass function unaffected
in Milky Way mass haloes. For smaller cross-sections, the differ-
ences between SIDM and CDM subhalo mass functions will be
even smaller. We note that we are not the first to find that SIDM can
form cores but not solve the missing satellites problem; it was first
discussed in D’Onghia & Burkert (2003).

This finding is also interesting in the context of other alterna-
tives to CDM. Warm dark matter (WDM) models, for which the
outstanding difference from CDM is that dark-matter particles have
high speeds at matter–radiation equality and a related free-streaming
cut-off in the matter power spectrum, predict a suppression in the
halo (and subhalo) mass function at small scales. Otherwise, the
abundance and structure of haloes and subhaloes are nearly in-
distinguishable from CDM (Villaescusa-Navarro & Dalal 2011;
Maccio’ et al. 2012). WDM haloes may be less concentrated than
CDM haloes on scales not much larger than the free-streaming
scale, but are still cusped. They are only significantly cored right at
the free-streaming scale, at which the halo and subhalo abundance
is highly suppressed. Thus, each of the two leading modifications
to CDM can solve only one of the two historical motivations for
looking beyond the CDM paradigm.

The lack of subhalo suppression for σ/m � 1 cm2 g−1 has im-
plications for another of the SIDM halo constraints from a decade
ago. Gnedin & Ostriker (2001) set a constraint excluding the range
of 0.3 < σ/m < 104 cm2 g−1 based on the Fundamental Plane of
elliptical galaxies. The argument rests on the observation that there
are no significant differences in the Fundamental Plane of field
and cluster ellipticals (e.g. Kochanek et al. 2000; Bernardi et al.
2003; La Barbera et al. 2010). Elliptical galaxies have a signifi-
cant amount of dark matter within their half-light radii, with more
massive ellipticals having larger mass-to-light ratios, either caused
by varying stellar mass-to-light ratios or varying dark-matter con-
tent (Padmanabhan et al. 2004; Tollerud et al. 2011; Conroy &
van Dokkum 2012). Gnedin & Ostriker (2001) argue that elliptical
galaxies falling into cluster-mass haloes should have dark matter
evaporated from their centres if σ/m �= 0, which would cause the
stars in the elliptical galaxy to adiabatically expand and hence move
the galaxy off the Fundamental Plane.

However, in our simulations, we find that few subhaloes are
fully evaporated, and that the subhalo Vmax function is not greatly
different for σ/m = 1 cm2 g−1 from CDM. In addition, our ana-
lytic arguments show that the trend with (host) halo mass for the
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evaporation of subhaloes at fixed r/rs is mild. This suggests that
the Gnedin & Ostriker (2001) constraints are overly conservative
even at the σ/m � 1 cm2 g−1 level. The main caveats are that the
suppression of the subhalo Vmax function is higher in more massive
clusters and that the suppression is highest at the centre of the cluster
halo. It would also be interesting to see if there are any differences
in the Fundamental Plane as a function of projected distance in the
cluster, both observationally and in simulations. For all of these
reasons, it would be worthwhile to perform simulations of elliptical
galaxies in clusters with SIDM and explore the Fundamental Plane
constraints in more depth.

To summarize, although we have not fully resolved the cores of
σ/m = 0.1 cm2 g−1 SIDM haloes, the intuition gleaned from our
analytic model (tested against the SIDM1 results) and our moder-
ately resolved simulation results suggest that σ/m = 0.1 cm2 g−1

is an excellent fit to the data across the range of halo masses from
dwarf satellites of the Milky Way to clusters of galaxies. Values of
cross-section over dark-matter particle mass in this range are fully
consistent with the published Bullet cluster constraints (cf. Sec-
tion 1), measurements of dark-matter density on small scales and
subhalo survival requirements. In a companion paper (Peter et al.
2012), we show that this model is also consistent with halo shape
estimates. It is therefore important to simulate galaxy and cluster
haloes with cross-sections in the 0.1 cm2 g−1 range.

9 SU M M A RY A N D C O N C L U S I O N S

We have presented a new algorithm to include elastic self-scattering
of dark-matter particles in N-body codes and used it to study the
structure of SIDM haloes simulated in a full cosmological con-
text. Our suite of simulations (summarized in Table 1) relies on
identical initial conditions to explore SIDM models with velocity-
independent cross-sections, σ/m = 1 and 0.1 cm2 g−1 as well as a
comparison set of standard CDM simulations (with σ/m = 0).

Our primary conclusion is that while SIDM looks identical to
CDM on large scales, SIDM haloes have constant-density cores,
with core radii that scale in proportion to the standard CDM scale
radius (rcore � ε rs). The relative size of the core increases with
increasing cross-section (ε � 0.7 for σ/m = 1 and ε ∼ 0.2 for
σ/m = 0.1 cm2 g−1). Correspondingly, at fixed halo mass, core
densities decrease with increasing SIDM cross-section. For both
core radii and core densities, there is significant scatter about the
scaling with Vmax of the halo. The scaling relationship is strong
enough that measurements of dark-matter densities in the cores
of dark-matter-dominated galaxies and large galaxy clusters likely
provide the most robust constraints on the dark-matter cross-section
at this time. In a companion paper (Peter et al. 2012) we demonstrate,
in contrast to previous claims, that SIDM constraints from halo
shape measurements may be less restrictive than (or at least similar
to those from) measurements of absolute core densities alone.

Based on our simulation results, we conclude that the dark-matter
self-scattering cross-section must be smaller than 1 cm2 g−1 in or-
der to avoid underpredicting the observed core densities in galaxy
clusters, LSBs and dSph galaxies. However, an SIDM model with
a velocity-independent cross-section of about σ/m = 0.1 cm2 g−1

appears capable of reproducing reported core sizes and central den-
sities of dwarfs, LSBs and galaxy clusters. Higher resolution simula-
tions with better statistics will be needed to confirm this expectation.

An accounting of our results is as follows.

(i) Outside of the central regions of dark-matter haloes (r �
0.5Rvir), the large-scale properties of SIDM cosmological simula-

tions are effectively identical to CDM simulations. This implies
that all of the large-scale confirmations of the CDM theory apply to
SIDM as well.

(ii) The subhalo Vmax function in SIDM with σ/m = 1 cm2 g−1

differs by less than ∼30 per cent compared to CDM across the mass
range 5 × 1011−2 × 1014 M� studied directly with our simulations.
Differences in the Vmax function with respect to CDM are only
apparent deep within the centres of large dark-matter haloes. Thus,
although possible, it will be difficult to constrain SIDM models
based on the effects of subhalo evaporation.

(iii) SIDM produces haloes with constant-density cores, with cor-
respondingly lower central densities than CDM haloes of the same
mass. For σ/m = 1 cm2 g−1, our simulated halo density structure
is reasonably well characterized by a Burkert (1995) profile fit with
a core size rb � 0.7rs, where rs is the NFW scale radius of the
same halo in the absence of self-interactions. Core densities tend
to increase with decreasing halo mass (ρb ∝ M−0.2

vir ) but demon-
strate about a factor of ∼3 scatter at fixed mass (likely owing to the
intrinsic scatter in dark-matter halo concentrations).

(iv) SIDM halo core sizes, central densities and associated scal-
ing relations can be understood in the context of a simple analytic
model. The model treats the SIDM halo as consisting of a core
region, where self-interactions have redistributed kinetic energy
to create an approximately isothermal cored density profile; and an
outer region, where self-interactions are not effective. The transition
between these regions is set by the strength of the self-interactions
and this model allows us to make quantitative predictions for smaller
cross-sections where the cores are not resolved by our simulations.
Based on this model and a few of our best resolved simulated haloes,
we find core sizes ∼0.1rs for σ/m = 0.1 cm2 g−1.

(v) Halo core densities over the mass range from
1015 to 1010 M� in SIDM with σ/m = 1 cm2 g−1 are too low
(∼0.005–0.04 M� pc−3) to match the observed central densities
in galaxy clusters (∼0.03 M� pc−3) and dSphs (∼0.1 M� pc−3).

(vi) Halo core central densities in SIDM with σ/m = 0.1 cm2 g−1

are in line with those observed from galaxy clusters to tiny dwarfs
(0.02–0.5 M� pc−3) without the need for any velocity dependence.
The densities are more consistent with observations than those pre-
dicted in dissipationless CDM simulations, which are generically
too high. SIDM models with this cross-section over dark-matter
particle mass value are consistent with Bullet cluster observations,
subhalo survival requirements and, as we show in a companion
paper (Peter et al. 2012), measurements of dark-matter halo shapes.

Future work is necessary to expand both the dynamic range of
our simulations in halo mass and resolution as well as the dynamic
range in cross-sections. These simulations are necessary in order
to make detailed comparisons with observations given the exciting
possibility that dark-matter self-interaction with σ/m in the ballpark
of 0.1 cm2 g−1 could be an excellent fit to the central densities of
haloes over 4–5 orders of magnitude in mass.
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Davé R., Spergel D. N., Steinhardt P. J., Wandelt B. D., 2001, ApJ, 547, 574
de Blok W. J. G., 2010, Adv. Astron., 2010, 5
de Blok W. J. G., McGaugh S. S., Bosma A., Rubin V. C., 2001, ApJ, 552,

L23
de Laix A. A., Scherrer R. J., Schaefer R. K., 1995, ApJ, 452, 495
Dehnen W., McLaughlin D. E., 2005, MNRAS, 363, 1057
D’Onghia E., Burkert A., 2003, ApJ, 586, 12
Dutton A. A. et al., 2011, MNRAS, 416, 322
Feng J. L., 2010, ARA&A, 48, 495
Feng J. L., Kaplinghat M., Tu H., Yu H.-B., 2009, J. Cosmol. Astropart.

Phys., 7, 4
Feng J. L., Kaplinghat M., Yu H.-B., 2010, Phys. Rev. Lett., 104, 151301
Ferrero I., Abadi M. G., Navarro J. F., Sales L. V., Gurovich S., 2012,

MNRAS, 425, 2817
Firmani C., D’Onghia E., Avila-Reese V., Chincarini G., Hernández X.,

2000, MNRAS, 315, L29
Flores R. A., Primack J. R., 1994, ApJ, 427, L1

Gentile G., Salucci P., Klein U., Vergani D., Kalberla P., 2004, MNRAS,
351, 903

Gnedin O. Y., Ostriker J. P., 2001, ApJ, 561, 61
Governato F. et al., 2010, Nat, 463, 203
Governato F. et al., 2012, MNRAS, 422, 1231
Griest K., 1988, Phys. Rev. D, 38, 2357
Hahn O., Abel T., 2011, MNRAS, 415, 2101
Jee M. J., 2010, ApJ, 717, 420
Jee M. J. et al., 2007, ApJ, 661, 728
Jungman G., Kamionkowski M., Griest K., 1996, Phys. Rep., 267, 195
Katz N., White S. D. M., 1993, ApJ, 412, 455
Klypin A., Kravtsov A. V., Valenzuela O., Prada F., 1999, ApJ, 522, 82
Knollmann S. R., Knebe A., 2009, ApJS, 182, 608
Kochanek C. S., White M., 2000, ApJ, 543, 514
Kochanek C. S. et al., 2000, ApJ, 543, 131
Koda J., Shapiro P. R., 2011, MNRAS, 415, 1125
Komatsu E. et al., 2011, ApJS, 192, 18
Kravtsov A. V., Berlind A. A., Wechsler R. H., Klypin A. A., Gottlöber S.,
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A P P E N D I X A : D E R I VATI O N O F TH E H A R D - S P H E R E I N T E R AC T I O N R AT E
IN N- B O DY SI M U L ATI O N S

The challenge is to represent a microphysical scattering process in a macroscopic context in which neither a fluid nor collisionless treatment
is appropriate. In order to develop a Lagrangian technique in which to represent the scattering process, we start with the Boltzmann equation.
Particles with mass m, a hard-sphere scattering cross-section dσ/d	 (as a function of centre-of-mass scattering angle) and a distribution
function f (x, v, t) evolve as

Df (x, v, t)

Dt
= �[f , σ ] (A1)

=
∫

d3v1

∫
d	

dσ

d	
|v − v1|

[
f (x, v′, t)f (x, v′

1, t) − f (x, v, t)f (x, v1, t)
]
. (A2)

Here, D/Dt is a Lagrangian time derivative and �[f, σ ] is the collision operator. If the particles were collisionless, the Lagrangian time
derivative of the distribution function would be zero; the phase-space density of particles would be conserved. The left-hand expression in the
brackets in equation (A2) represents scattering of particles into a small patch of phase space centred on (x, v), and the right-hand expression
(after the minus sign) represents scattering out of that patch of phase space. If v and v1 represent the initial velocities of the primary and target
particles, then v′ and v′

1 are their post-scatter velocities, which are related to the initial velocities by the centre-of-mass scattering angle 	.
The key step in being able to represent the scattering process in a simulation is the ansatz that the evolution of the coarse-grained distribution

function f̂ (the distribution function averaged over several times the interparticle spacing) is a good representation of the evolution of the
fine-grained distribution function f. In other words, the ansatz is that the solution to

Df̂

Dt
=

∫
d3v1

∫
d	

dσ

d	
|v − v1|

[
f̂ (x, v′, t)f̂ (x, v′

1, t) − f̂ (x, v, t)f̂ (x, v1, t)
]

(A3)

is the same as the solution for f in equation (A2) averaged over a patch of phase space. If this is the case, our next step is to discretize equation
(A3) such that we can solve the Boltzmann equation by Monte Carlo N-body methods.

To discretize equation (A3), we consider a particle-based Lagrangian method in which each particle in the N-body simulation represents a
patch of phase space. In the absence of collisions, the simulation particles trace out geodesics in the gravitational field of the particles. When
we discretize the phase space, we do it as follows:

f̂ (x, v, t) =
∑

i

(Mi/m)W (|x − xi |; hi)δ
3(v − vi). (A4)

Here, i labels a discrete macroparticle representing a patch of phase space that has mass Mi; thus, each macroparticle represents a patch of
phase space inhabited by Mi/m of the true particles. We assume a delta-function form for the velocity distribution because each macroparticle
travels at only one speed. We treat each macroparticle as being smoothed out in configuration space with a smoothing kernel W with smoothing
length hi. The reason for treating each macroparticle as inhabiting a finite region of configuration space is that we want the local estimate of
the density

n(x) =
∫

d3vf̂ (A5)
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to be smooth. Preliminary tests show that smoothness is necessary to properly estimate the collision term of the Boltzmann equation. Note
that in the main text we use Mi = mp and hi = hsi for all i. This is because all of the N-body particles have the same mass in our simulations
and we have fixed hsi to be constant for all particles in the simulations we present.

In the particle-based discretization of the Boltzmann equation, the fact that each particle represents a patch of phase space means that we
must discretize the collision operator; we must integrate the collision operator over the patch of phase space inhabited by a single particle.
Thus, if a specific particle represents a patch of phase space of size δxpδvp , we must calculate

∫
δxp

d3x
∫

δvp

d3v
Df̂

Dt
=

∫
δxp

d3x
∫

δvp

d3v

∫
d3v1

∫
d	

dσ

d	
|v − v1|

[
f̂ (x, v′, t)f̂ (x, v′

1, t) − f̂ (x, v, t)f̂ (x, v1, t)
]
. (A6)

Thus, our approach to estimating the collision term and the Boltzmann equation is as follows. To find the collision rate for the region of
phase space associated with a particle j, we divide equation (A6) by Mj/m (so that we are calculating the scattering probability for a single
macroparticle j), and we consider only the ‘scattering out’ part of the collision operator. We consider the pairwise rate �ij for particle j to
scatter off any of the other i particles. We do a Monte Carlo simulation of the scatters; if a pair of particles is allowed to scatter in a given
small time step, we calculate the macroparticles’ post-scatter velocity using the centre-of-mass scattering angle 	. This latter step is our
approximation to the ‘scatter out’ term of the Boltzmann collision operator.

The pairwise collision operator is

�pq = �(p|q) + �(q|p)

2
, (A7)

where the conditional probability of scattering a specific particle p off a target particle q is �(q|p), which is determined by the collision term
of the Boltzmann equation. This collision term is derived from equation (A6), such that

�(p) =
∫

δxp

d3x
∫

δvp

d3v

∫
d3v1

∫
d	

dσ

d	
|v − v1| (Mp/m)−1f̂ (x, v, t)f̂ (x, v1, t) (A8)

=
∫

δxp

d3x
∫

δvp

d3v

∫
d3v1

∫
d	

dσ

d	
|v − v1| (Mp/m)−1

{ ∑
j

(Mj/m)W (|x − xj |; hj )δ3(v − vj )

∑
q

(Mq/m)W (|x − xq |; hq )δ3(v1 − vq)
}

(A9)

=
∫

δxp

d3x
∫

d3v1

∫
d	

dσ

d	

∣∣vp − v1

∣∣ ∑
q

(Mq/m)W (|x − xp|; hp)W (|x − xq |; hq )δ3(v1 − vq ) (A10)

=
∑

q

∫
d	

dσ

d	

Mq

m
|vq − vp|

∫
δxp

d3xW (|x − xp|; hp)W (|x − xq |; hq ) (A11)

=
∑

q

(σ/m)Mq |vq − vp|gpq (A12)

=
∑

q

�(q|p). (A13)

We note the appearance of the term σ/m, which is the scattering cross-section per unit mass. The kernel g is defined as

gpq =
∫ max(hp,hq )

0
d3x′W (|x′|, hp)W (|δxpq + x′|, hq ). (A14)

Using these sets of equations, we calculate �pq for each pair of particles whose configuration-space patches overlap at each time step δt,
making sure to keep the time steps small enough that �pqδt 
 1 for each time step.

A P P E N D I X B: T E S T FO R T H E SC AT T E R I N G K I N E M AT I C S

We use the same set-up as described in Section 3 to test our implementation against the expected kinematics. For this we looked at the
distributions of the post-scatter velocity magnitudes and directions for both the sphere and background particles. For the distributions of the
velocity directions, we looked at the inclination and azimuthal angles of the post-scatter velocity vectors. The angles are defined such as the
line of interaction is along the θ = 0 direction (i.e. the z-axis) and φ is the azimuthal angle about which the experiment is symmetric. The
distributions resulting from our test simulation are compared to those obtained from the transformation of a uniform isotropic distribution in
the centre-of-mass frame to the simulation/lab frame; the results are shown in Figs B1–B3. Fig. B1 shows that the distributions of the velocity
magnitudes rise linearly from v = 0 to vs, followed by a sharp cut-off at v = vs, where vs is the relative speed between the sphere and the
background. From conservation of energy, it is only possible to have particles with v > vs if they have interacted multiple times. Multiple
interactions are not considered in our calculations of the theoretical distributions but they are allowed in our simulation; hence, in Fig. B1 one
can observe a tail for velocities >vs on the distributions of both types of particle velocities, but not on the theoretical distribution. Looking
at Fig. B2 one can see that most of the particles are scattered towards the θ = 45◦ directions, i.e. forming a 45◦ angle with respect to vs. It is
visible that the distributions resulting from the simulation in the left-hand panel of Fig. B2 are higher than expected for θ � 20◦. This is again
from the fact that multiple scatters are possible in the simulation and this is not included in the calculations of the theoretical histograms.
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Figure B1. Distribution of the post-scatter velocity magnitudes. From conservation of energy it is only possible to have particles with velocities >vs if they
have interacted multiple times, this is not included in our calculation of the theoretical distribution but it is allowed in our simulation, hence one can observe a
tail for velocities >vs on the distributions of both types of particle velocities, but not on the theoretical distribution.

Figure B2. Distributions of the post-scatter velocities along the θ directions. It is evident that most of the particles are scattered towards the θ = 45◦ directions,
i.e. forming a 45◦ angle with vs. Note that the distributions resulting from the simulation in the left-hand panel are higher that expected for θ � 20◦. This is
because multiple scatters are possible in the simulation and they are not considered in the calculations of the theoretical histograms. We demonstrate this by
showing in the right-hand panel the distributions from the simulation when we exclude any particles with v > vs, excluding that way any particles that we
know have interacted multiple times and bringing the distributions from the simulation to a better agreement with the theory.

We demonstrate that this is the case by showing in the right-hand panel of Fig. B2 the distributions obtained from the simulation when we
exclude any particles with v > vs, excluding that way any particles that we know have interacted multiple times, as one can see doing this
brings the distributions from the simulation to a better match with the theory. Fig. B3 shows the distributions of the velocities as a function
of φ, these are flat as expected due to the symmetry of the experiment.
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Figure B3. Distributions of the velocities along the φ directions. The flat distributions show that the results are symmetric about the direction of motion, i.e.
the z-axis.
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