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ABSTRACT

In this paper, we propose a Q stability parameter that is more realistic than those commonly
used, and is easy to evaluate (see equation 19). Using our Qy parameter, you can take into
account several stellar and/or gaseous components as well as the stabilizing effect of disc
thickness, you can predict which component dominates the local stability level, and you can
do all that simply and accurately. To illustrate the strength of O, we analyse the stability of a
large sample of spirals from The H 1 Nearby Galaxy Survey (THINGS), treating stars, H 1 and
H, as three distinct components. Our analysis shows that H, plays a significant role in disc
(in)stability even at distances as large as half the optical radius. This is an important aspect of
the problem, which was missed by previous (two-component) analyses of THINGS spirals.
We also show that H 1 plays a negligible role up to the edge of the optical disc and that the
stability level of THINGS spirals is, on average, remarkably flat and well above unity.

Key words: instabilities — stars: kinematics and dynamics — ISM: kinematics and dynamics —

galaxies: ISM — galaxies: kinematics and dynamics — galaxies: star formation.

1 INTRODUCTION

Today, several decades after the pioneering work of Lin & Shu
(1966) and the seminal papers by Jog & Solomon (1984a,b), it is
widely accepted that stars and cold interstellar gas have an impor-
tant interplay in the gravitational instability of galactic discs. The
gravitational coupling between stars and gas does not alter the form
of the local axisymmetric stability criterion, Q > 1 (Toomre 1964),
but makes the Q stability parameter dependent on the radial veloc-
ity dispersions and surface mass densities of the two components
(Bertin & Romeo 1988; Elmegreen 1995; Jog 1996; Rafikov 2001;
Shen & Lou 2003). The value of Q is also affected by other fac-
tors, such as the vertical structure of the disc (Shu 1968; Romeo
1990, 1992, 1994; Elmegreen 2011; Romeo & Wiegert 2011), gas
turbulence (Hoffmann & Romeo 2012; Shadmehri & Khajenabi
2012) and gas dissipation (Elmegreen 2011). Comprehensive anal-
yses have shown that the two-component Q parameter has a large
impact on the dynamics and evolution of spiral structure in galaxies
(see Bertin & Lin 1996), and is also a useful diagnostic for explor-
ing the link between disc instability and star formation (Leroy et al.
2008).

Romeo & Wiegert (2011) introduced a simple and accurate ap-
proximation for the two-component Q parameter, which takes into
account the stabilizing effect of disc thickness and predicts whether
the local stability level is dominated by stars or gas. The Romeo—
Wiegert approximation has been used for investigating the evolution

* E-mail: romeo@chalmers.se

© 2013 The Authors

of gravitationally unstable discs (Cacciato, Dekel & Genel 2012;
Forbes, Krumholz & Burkert 2012), the spiral structure of NGC
5247 (Khoperskov et al. 2012), the dynamical link between dark
matter and H 1in nearby galaxies (Meurer, Zheng & de Blok 2013),
as well as the link between disc stability and the relative distributions
of stars, gas and star formation (Zheng et al. 2013). Forbes et al.
(2012) concluded that the Romeo—Wiegert approximation is much
faster to use than the Q stability parameter of Rafikov (2001): it
speeds up their disc-evolution code by as much as one or two orders
of magnitude! This is simply because such an approximation esti-
mates Q analytically, without the need to minimize the dispersion
relation over all wavenumbers, as is usually done.

A fundamental problem that must be faced when analysing the
stability of galactic discs is how to represent their complex structure
using only two components. The results of such analyses are indeed
very sensitive to the choice of the gaseous 1D velocity dispersion,
o ,: the colder the gas, the stronger its impact on the stability of the
disc (e.g. Jog & Solomon 1984a; Bertin & Romeo 1988). Choosing
o, ~ 6kms™! will represent molecular gas well (Wilson et al.
2011), but will overestimate the contribution of atomic gas and
make the disc more unstable than it actually is. Vice versa, choosing
o, ~ 11kms™" will represent H 1 well (Leroy et al. 2008), but
will underestimate the contribution of H, and stabilize the disc
artificially. Intermediate values or more elaborate choices of o
will still not solve the problem. This motivates the use of a proper
multicomponent Q parameter.

One of the first papers that discussed the gravitational instability
of multicomponent discs dates back to Morozov (1981). This author
derived a dispersion relation that is valid for infinitesimally thin
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discs made of gas and N, stellar components. He also calculated
the stability criterion for N, = 2. Rafikov (2001) derived a stability
criterion that is valid for any N, and can easily be expressed in the
usual form Q > 1.!

In this paper, we introduce a new Q stability parameter, which has
the same strong advantages as the Romeo—Wiegert approximation,
and which is applicable to fully multicomponent and realistically
thick discs (see equation 19). We also show how to use our Qy
parameter for analysing the stability of galactic discs, and illustrate
the strength of a multicomponent analysis. We do so using a large
sample of spirals from The H 1 Nearby Galaxy Survey (THINGS),
and treating stars, H 1 and H, as three distinct components.

The rest of the paper is organized as follows. In Section 2, we
review the basic case of two-component discs and further motivate
the need for a multicomponent analysis (Section 2.1), we present
our Qy parameter (Sections 2.2— 2.4), and we analyse the stability
of THINGS spirals (Section 2.5). In Section 3, we discuss the weak-
nesses of Qy, which are common to all Q parameters and stability
criteria quoted here. In Section 4, we draw the conclusions.

2 STAR-GAS INSTABILITIES
AND THE Q DIAGNOSTIC

2.1 Two components ... or more? More!

Let us first discuss the case of two-component and infinitesimally
thin discs, which is fundamental to a proper understanding of Sec-
tions 2.2-2.5. It is well known that the stability properties of such
discs are determined by five basic quantities: the epicyclic fre-
quency, «, the stellar and gaseous surface densities, X, and X, the
stellar radial velocity dispersion, o g,, and the gaseous 1D velocity
dispersion, o p, (e.g. Lin & Shu 1966; Rafikov 2001). The last two
quantities reflect an important dynamical difference between stars
and cold interstellar gas. The stellar component is collisionless so its
velocity dispersion is anisotropic, while gas is collisional and has an
isotropic velocity dispersion (see, e.g. Binney & Tremaine 2008).
Hereafter, we will simplify the notation and denote the relevant
velocity dispersions of the two components with o, and o .

Lin & Shu (1966) and Rafikov (2001) took those facts into ac-
count by treating stars as a kinetic component and gas as a fluid (see
also Shu 1968). The resulting local axisymmetric stability criteria
are equivalent because they are based on the same dispersion rela-
tion, w?(k), and because they are derived by imposing that w*(k) > 0
for all k. However, Rafikov’s stability criterion is simpler and more
used (e.g. Dalcanton, Yoachim & Bernstein 2004; Li, Mac Low &
Klessen 2005, 2006; Kim & Ostriker 2007; Yang et al. 2007; Yim
et al. 2011). Such a criterion can be written as Qrx > 1, where

1
—— = max{SCpx(K)}, (H
QRk
_x2
. 2[1-e 1 (k)] L1 2Ks o
T, K 0, 1+ K22’
O
K=k—, (3)
K
KOy KOg
.= , e , 4
Q. G2, 2 nGXL, @

! Another (unpublished) stability analysis of N-component discs was made
by Romeo (1985, pp. 140-145, 215-216).

s = (@)

In these equations, Qgrx is Rafikov’s kinetic—fluid Q parameter,
SCrk(K) is the related stability curve, K is the radial wavenum-
ber of the perturbation expressed in dimensionless form, Q. and Q,
are the stellar and gaseous Toomre parameters and I, denotes the
modified Bessel function of the first kind and order zero.

Bertin & Romeo (1988), Elmegreen (1995), Jog (1996) and again
Rafikov (2001) adopted a less rigorous, but more straightforward
approach: they treated the stellar component as a fluid, with sound
speed equal to o .. The resulting two-fluid stability criteria are equiv-
alent, apart from the different parametrizations used, because they
are based on the same dispersion relation (Jog & Solomon 1984a).
However, even in this case, Rafikov’s criterion is simpler and is be-
coming more and more widely used (e.g. Leroy et al. 2008; Robert-
son & Kravtsov 2008; Dekel, Sari & Ceverino 2009; Mastropietro,
Burkert & Moore 2009; Ceverino, Dekel & Bournaud 2010; West-
fall et al. 2011; Elson, de Blok & Kraan-Korteweg 2012; Watson
et al. 2012; Williamson & Thacker 2012). Such a criterion can be
written as Qrr > 1, where Rafikov’s fluid—fluid Q parameter can be
computed by maximizing the related stability curve over all radial
wavenumbers:

1
—— = max{SCrs(K)}, (6)
Orf
1 2K 1 2Ks
SCri(K) = — — . 7
re(K) Q*1+K2+le+l(2s2 @)

What is the accuracy of the two-fluid stability criterion? Bertin &
Romeo (1988) compared the fluid—fluid and kinetic—fluid marginal
stability curves in a representative set of cases, and showed that
the differences are small (see their fig. 2). Rafikov (2001) carried
out a more detailed analysis and got similar results (see his fig. 3).
However, he did not evaluate the relative error (Qri—OQOrk)/ORrk»
which depends on s and

_ 2

0.’
and which is a useful piece of information for assessing the accuracy
of Qgrs. We do this in Fig. 1. Our contour map shows that such
error is less than 7 percent and has a root-mean-square value of
4 per cent. This means that Qgy and Qg are practically equivalent,
since the parameters s and g are themselves subject to observational
uncertainties.

Romeo & Wiegert (2011) showed that the two-fluid Q parameter
can be accurately estimated without the usual maximization (or
minimization) procedure:

q ®

1
Vil it =0,
1 J oo : o
e N
0. 0, £oE
20,04
W=62+002‘ (10)

Although very recent, such an approximation is already frequently
used (e.g. Cacciato et al. 2012; Forbes et al. 2012; Hoffmann &
Romeo 2012; Khoperskov et al. 2012; Meurer et al. 2013; Zheng
etal. 2013). Fig. 2 shows that Qrw is remarkably accurate even with
respect to the kinetic—fluid Q parameter. In fact, the relative error
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Figure 1. Accuracy of the two-fluid stability criterion. The curves shown
are the contour lines of the relative error (Orr — Ork)/Ork, Where Ory and
Ory are the fluid—fluid and kinetic—fluid Q parameters of Rafikov (2001). In
addition, Q, and Qy are the stellar and gaseous Toomre parameters, o, and
o are the relevant velocity dispersions of the two components.
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Figure 2. Accuracy of the Romeo—Wiegert approximation. The curves
shown are the contour lines of the relative error (Qrw — Ork)/ORrk, Where
Qrw is the two-component Q parameter of Romeo & Wiegert (2011), and
Ory is the kinetic—fluid Q parameter of Rafikov (2001). The rest of the
notation is the same as in Fig. 1.

(Orw — Ork)/Ork is below 10 per cent and has a root-mean-square
value of 5 per cent. Thus Qrw is a faster and physically equivalent
alternative to Qgs or Qgk.

To understand the weaknesses of a two-component analysis, let
us see how spiral galaxies populate the parameter plane of star—gas
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instabilities. We use a sample of 12 nearby star-forming spirals from
THINGS, previously analysed by Leroy et al. (2008) and Romeo
& Wiegert (2011): NGC 628, 2841, 3184, 3198, 3351, 3521, 3627,
4736, 5055, 5194, 6946 and 7331. For each galaxy of this sample,
we compute the radial profiles s = s(R) and g = ¢g(R), and hence
the track left by the galaxy in the (s, ¢) plane. The result for the
whole sample is shown in the left-hand panel of Fig. 3. Note that
20percent of the data fall within the shaded part of the (s, gq)
plane, which represents the condition for star—gas decoupling. In
this region, SCry(K) has two maxima: one at small K, where the
response of the stellar component peaks; and the other at large
K, where gas dominates. In the ‘stellar phase’, the maximum at
small K is higher than the other one, and therefore it controls the
onset of disc instability. Vice versa, in the ‘gaseous phase’, it is the
maximum at large K that determines Qgx. The two-fluid counterpart
of this region (thin dashed lines) is also populated by 20 per cent
of the data (Romeo & Wiegert 2011). In the rest of the parameter
plane, the dynamical responses of the two components are strongly
coupled and peak at a single wavelength.

The analysis of THINGS spirals carried out above treats the inter-
stellar medium (ISM) as a single component with ¥, = Xy, + Xy,
andog, = 11km s~! (Leroy et al. 2008). What are the limitations of
this approach? How do H 1 and H, contribute to star—gas instabili-
ties? To answer these questions, we consider H 1 and H, separately,
and choose observationally motivated values of the 1D velocity dis-
persion: oy, = 11 km s7! (Leroy et al. 2008), and oy, = 6 km g7
(Wilson et al. 2011). We then compute the (s, ¢) tracks for each case
(stars plus H 1 or Hy), and show the results in the right-hand panel
of Fig. 3. Note that H 1 and H, populate the parameter plane differ-
ently. In particular, none of the H 1 data falls within the two-phase
region, while H, populates such a region in 60 per cent of the cases.
This means that H 1 and H, have distinct stability properties, and a
fundamentally different dynamical coupling with stars. Treating the
ISM as a single component underestimates the role that H, plays
in star—gas instabilities, and overestimates the contribution of H 1.
This is why a multicomponent analysis is needed!

2.2 Approximating Q in the thin-disc limit

The only multicomponent stability diagnostics that have been avail-
able so far are the local axisymmetric stability criteria of Morozov
(1981) and Rafikov (2001), which are valid for infinitesimally thin
discs made of gas and N, stellar components. For N, = 2, the case
considered by Morozov (1981), such criteria are equivalent because
they are based on similar approximations. However, besides being
more general, Rafikov’s criterion is simpler and can be written as
Or.n > 1, where

! = max{SCr n(k)}, (11)
QR.N
21(, vy o2 [l—e M (K7
SCr v (k) = @7 2; e , (12
K=k, (13)
K
Q=0 (14)
T[GE,

Let us illustrate how to find a simple, accurate, fast and more
general Q diagnostic. In Section 2.1, we have shown that stars
can be accurately treated as a fluid when evaluating Q. So we
can safely replace the kinetic terms in equation (12) with their fluid
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Figure 3. Why a multicomponent analysis is needed: the parameter plane of star—gas instabilities populated by THINGS spirals. The cases illustrated in the
two panels are stars plus gas (left), and stars plus H 1 or Hy (right). The galaxy data are from Leroy et al. (2008), Q. and Qg are the stellar and gaseous Toomre
parameters, o, and o are the relevant velocity dispersions of the two components. The shaded part of the (s, ¢) plane represents the condition for star—gas
decoupling, with the stellar component treated as collisionless (thick solid lines) or collisional (thin dashed lines). This is the ‘two-phase region’ discussed in
the text. The boundaries of this region and the transition line intersect at (s, ¢) 2~ (0.21, 0.88) in the collisionless case, and at (s, ¢) >~ (0.17, 1) in the collisional

case.

counterparts. We then face the heart of the problem: how to estimate
the least stable wavenumber, k.., without the usual maximization
procedure. Consider the two-component case first, and compare the
Romeo—Wiegert approximation (equations 9 and 10) with the two-
fluid stability parameter (equations 6 and 7). One can easily infer
that Ky, fulfils the following conditions:

@) If Q, > Oy, then 2Ky /(1 + K2,) ~ W and 2K s /(1 +
K257 ~ 1. As W =2s/(1 + s%), this implies that K,x ~ 1/s, i.e.
kmax ~ K /0.

i) If Q; > Q.. then 2Ky /(1 + K2,) ~ 1 and 2K s /(1 +

max

K2..s*) ~ W. This implies that Kyax ~ 1, i.€. kmax ~ £ /0 4.

Conditions (i) and (ii) have not been pointed out in previous
analyses. They simply mean that 1/k.,,y is approximately the typi-
cal epicycle size of the less stable component. This approximation
is not accurate when s ~ 0.2 and g ~ 1, since for such values there
is a transition between three stability regimes and Kj,,,x has a jump
across one of the interfaces (see discussion of Fig. 3). Note, however,
that estimating K;,,,x as above produces a very accurate estimate of
Ors, namely the Romeo—Wiegert approximation. This is because
Or¢ 18 continuous across the ¢ = 1 line, and because the error that
affects the estimate of Qgy is of second order with respect to that
of Kinax: AQgrr & (AKpay)?. The first-order term is obviously zero,
since the first derivative of SCg(K) vanishes for K = Kpay.> This
flow of arguments suggests that we can estimate the N-component
O parameter as in the two-fluid case, i.e. by approximating 1/ky,x
with the typical epicycle size of the least stable component
(kmax ~ K/Jr7z):

2 This is actually the idea behind all minimization (or maximization) prob-
lems, and the reason why their solutions are robust. An instructive example
is the ‘optimal” Wiener filter used in signal/image processing (see, e.g., Press
etal. 1992).

N
=X (s)

20‘mO‘i

=tol’ (16)
where the index m denotes the component with smallest Q: Q,, =
min {Q;}. This is the component that dominates the local stability
level (W,, = 1). All other components have less weight; the more
o, differs from o, the smaller the weight factor W;.

What is the accuracy of Qy? In Appendix A, we show how
estimation uncertainties propagate from W; to Qy, and derive an
upper bound for the resulting root-mean-square error:

AQy
N

<0.03VN. (17

Equation (17) tells us that the accuracy of our approximation de-
teriorates slowly as we consider more and more components. In
the case of greatest interest, stars plus H 1 plus Hy, the relative er-
ror is on average less than 6 per cent, i.e. almost as low as in the
two-component case (see Fig. 2).

To demonstrate the accuracy of our approximation, we put it to a
stringent test: the 10-component model of the solar neighbourhood
analysed by Rafikov (2001). That model includes cold interstellar
gas, giants, stars in six luminosity ranges, white and brown dwarfs.
Rafikov also analysed the effect of varying the most uncertain model
parameters. He motivated and discussed five cases, which we sum-
marize in Appendix B. For each case, we compare Oy with Rafikov’s
Or, n parameter and compute the relative error (Oy — Or n)/OR. N-
Table 1 shows that our approximation is remarkably accurate. In all
cases, the relative error is less than 5 per cent, which means twice
as low as the upper bound predicted by equation (17).
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Table 1. Accuracy of our approximation in
the 10-component cases analysed by Rafikov
(2001).

Case OrnN Ov  (Ov—OrN)/Or N

1 1.10 1.12 1.8 per cent
2 1.00 1.04 3.7 per cent
3 1.00 1.04 4.5 per cent
4 1.00 1.01 0.8 per cent
4+1 1.00 1.01 1.2 per cent

Or, N is the N-component Q parameter of
Rafikov (2001), Qy is our N-component Q pa-
rameter and (Qy — Or, v)/OR, v 18 the relative
error of our approximation.

2.3 Adding the effect of disc thickness

Our approximation is not yet complete. It does not include the
stabilizing effect of disc thickness, which is important and should
be taken into account when analysing the stability of galactic discs
(Romeo & Wiegert 2011). In this section, we generalize the Romeo—
Wiegert approach and provide a simple recipe for adding such an
effect.

From the thin-disc limit, we have learned that the local stability
level is dominated by the component with smallest Q (see equa-
tions 15 and 16). The contributions of the other components are
weakened by the W; factors, which are different and small if the
components are dynamically distinct. In this case, we can estimate
the effect of thickness reasonably well by considering each com-
ponent separately. Romeo (1994) analysed this case in detail. The
effect of thickness is to increase the stability parameter of each
component by a factor 7, which depends on the ratio of vertical to
radial velocity dispersion:

2
1+0.6(GZ) for 0 < o, /og < 0.5,
T~ R (18)
0.8 +0.7 (‘i) for 0.5 < o, jor < 1.
OR

Equation (18) can be inferred from fig. 3 (top) of Romeo (1994).
The range 0 < 0, /or < 0.5 is characteristic of the old stellar disc
in Sc-Sd galaxies (Gerssen & Shapiro Griffin 2012), while 0.5 <
o,/or < 1is the usual range of velocity anisotropy (typical of the
old stellar disc in Sa—Sbc galaxies, of young stars and the ISM). To
approximate Q in this more general context, use then equation (15)
with Q; replaced by 7;0;:
N

1 W,
o "X 7o 1

i=1

where Qy is our Q stability parameter for multicomponent and
realistically thick discs, Q; = ko; /TG %; is the Toomre parameter
of component i, 7; is given by equation (18) and W; is given by
equation (16). Note that the index m now denotes the component
with smallest 7Q: T,,0,, = min {T;Q;}. This is the component that
dominates the local stability level. The contributions of the other
components are still suppressed by the W; factors.

2.4 What about the effect of ISM turbulence?

Turbulence plays a fundamental role in the dynamics and struc-
ture of cold interstellar gas (see, e.g., Elmegreen & Scalo 2004;
McKee & Ostriker 2007; Agertz et al. 2009). The most basic aspect
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of interstellar turbulence is the presence of supersonic motions.
These are usually taken into account by identifying o, with the
typical 1D velocity dispersion of the medium, rather than with its
thermal sound speed. Another important aspect of interstellar tur-
bulence is the existence of scaling relations between X,, o, and
the size of the region over which such quantities are measured (£).
Observations show that Ty, ~ £'/3 and oy, ~ £!/3 up to scales of
1-10kpc, whereas Xy, ~ constant and oy, ~ £'/2 up to scales of
about 100 pc (see, e.g., Elmegreen & Scalo 2004; McKee & Ostriker
2007; Romeo, Burkert & Agertz 2010).

Motivated by the large observational uncertainties of X,(¢) and
04(£), and having in mind near-future applications to high-redshift
galaxies, Romeo et al. (2010) considered more general scaling re-
lations, ¥, o £* and oy £?, and explored the effect of turbulence
on the gravitational instability of gas discs. They showed that tur-
bulence excites a rich variety of stability regimes, several of which
have no classical counterpart. See in particular the ‘stability map of
turbulence’ (fig. 1 of Romeo et al. 2010), which illustrates such sta-
bility regimes and populates them with observations, simulations
and models of ISM turbulence. Hoffmann & Romeo (2012) ex-
tended this investigation to two-component discs of stars and gas,
and analysed the stability of THINGS spirals. They showed that
ISM turbulence alters the condition for star—gas decoupling and
increases the least stable wavelength, but hardly modifies the Q pa-
rameter at scales larger than about 100 pc. Since these are the usual
scales of interest, we do not include that effect in our approximation.

2.5 Application to THINGS spirals

Our approximation is now complete. Let us then show how to use
our Qy parameter for analysing the stability of galactic discs, and
illustrate the strength of a multicomponent analysis.

In the following, we generalize the two-component approach of
Romeo & Wiegert (2011). We consider the same sample of spiral
galaxies as in Section 2.1 and refer to Leroy et al. (2008, hereafter
L08), for a detailed description of the data and their translation into
physical quantities. We treat stars, H 1 and H, as three components
with the same surface densities and o, as in LO8, but with distinct
values of o,: oy, = 11 km s~! (L08), and on, = 6 km s~! (Wilson
et al. 2011). For each galaxy, we compute the radial profile of Q3
using equation (19). We adopt (o, /o). = 0.6, as was assumed by
L08, and (0, /0k)u, = (0./0kr)H, = 1, as is natural for collisional
components. For comparison purposes, we also compute the radial
profile of Q,, treating the ISM as a single component with X, =
Yy + Xy, and oy =11 kms~' (LO8).

Fig. 4 shows Q3(R) and Q,(R) for the whole galaxy sample. Note
that the Q3 data are characterized by a sharp transition at about half
the optical radius. For R < 0.6 Rys, Q3 spans a range of one order of
magnitude, and a significant fraction of the data lie below or near the
critical stability level (although in most of the cases Q3 > 1). For
R 2 0.6 R,s, Q3 varies within a narrow range of values, and there is
asingle data point with Q3 < 1. Why do the inner and the outer discs
of THINGS spirals have distinct stability properties? Why does the
transition occur at about half the optical radius? To answer these
questions, we have colour-coded the Q3 data so as to show which
component dominates the local stability level. This is an important
piece of information, which can easily be predicted using our Qy
diagnostic (see equation 19). The fundamental difference between
inner and outer spiral discs is how H; contributes to disc (in)stability.
For R < 0.6 R,s, H, dominates in one-third of the cases: it lowers
the overall stability level, and increases the variance of Qj. At
R =~ 0.6 R,s, the contribution of H, becomes negligible. Thus, H,
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Figure 4. The stability level of THINGS spirals. The diagnostics used in the left- and right-hand panels are our Q, and Q3 parameters (see equation 19 for
N =2, 3). The galaxy data are from Leroy et al. (2008), R is the galactocentric distance and R»s is the optical radius. The data are colour-coded so as to show
whether the stability level is dominated by stars or gas (H 1/H), as predicted by equation (19). In the right-hand panel, the three data points that lie well below
the critical stability level tell us that the nuclear region of NGC 6946 is subject to strong H,-dominated instabilities. This is consistent with the facts that NGC

6946 hosts a nuclear starburst (e.g. Engelbracht et al. 1996) and a nuclear ‘bar within bar’ (e.g. Fathi et al. 2007).

leaves a characteristic imprint on the stability of THINGS spirals,
even though stars dominate in most of the cases. The contribution
of H 1 is instead negligible everywhere, even at the edge of the
optical disc, where H1is expected to contribute significantly. Such a
stability scenario cannot be predicted by a two-component analysis.
Note, in fact, that the Q, data underestimate significantly how gas
contributes to disc (in)stability, and fail to reproduce the transition
at half the optical radius (compare the left- and right-hand panels
of Fig. 4).

Fig. 5 illustrates how the stability properties of THINGS spirals
vary with galactocentric distance. To extract such information, we
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have binned the Q3 data of Fig. 4 in 12 rings of width 0.1 R/R»s.
For each ring, we have computed the median of Qj, the percentage
of cases in which Q3 < 1 and how frequently each component
dominates the local stability level. For comparison purposes, we
have also binned the O, data and computed the corresponding
stability characteristics. Note that H, plays a primary role in disc
(in)stability for R < 0.1-0.2 R;s, i.e. up to distances of about one disc
scalelength (Rys = 4.6 & 0.8 Ry; LO8). Thereafter, stars dominate
more often. Note also that the frequency of H,-dominated cases
decreases markedly with galactocentric distance, and falls below
10percent at R = 0.5-0.6 Rys. This corresponds to the transition
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Figure 5. Stability characteristics of THINGS spirals. The radial profiles shown in the left- and right-hand panels are computed by binning the Qy data of
Fig. 4 in 12 rings of width 0.1 R/R,s5, where Qy is our Q stability parameter for multicomponent and realistically thick discs (see equation 19 for N = 2,
3), R is the galactocentric distance and Rys is the optical radius. The right-hand panel shows how frequently the stability level is dominated by stars or gas
(H 1/Hy), and how frequently Oy < 1. The thick solid lines are the predictions of a three-component analysis (stars plus H 1 plus Hy), while the thin dashed
lines represent the two-component case (stars plus gas).
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radius identified in Fig. 4, and to the outskirts of the expected H,
domain (X, > Xy, for R < 0.43 & 0.18 Ry5; LO8). The frequency
of H 1-dominated cases shows a tendency to increase for R > 0.7—
0.8 Rys, but it never rises above 10 per cent. The remaining stability
characteristics provide more intriguing information. The frequency
of locally unstable cases is below 10 percent, except at distances
smaller than about half the disc scalelength. The median of Qj lies
well above the critical stability level, and is remarkably constant
across the entire optical disc: Q3 nea(R) > 2 (see the left-hand panel
of Fig. 5, and note the linear scale on the y-axis). Note, finally, how
fast the two-component case diverges from the predicted radial
profiles as we approach the galactic centre (compare the dashed
and solid lines in the two panels of Fig. 5). This result illustrates,
once again, (i) how important it is to treat stars, H 1 and H, as
three distinct components when analysing the stability of galactic
discs, and (ii) the strong advantage of using our Q parameter as a
stability diagnostic.

3 DISCUSSION

Now that we have illustrated the strength of Q, let us remember
its weaknesses. Like all Q parameters and stability criteria dis-
cussed so far, Qy measures the stability of the disc against local
axisymmetric perturbations, so it assumes that kR >> 1. This is the
short-wavelength approximation, which Binney & Tremaine (2008)
define as ‘an indispensable tool for understanding the properties of
density waves in differentially rotating discs’ (see p. 485 of Galac-
tic Dynamics by Binney and Tremaine). Here, the relevant & is
the least stable radial wavenumber, which can be approximated as
kmax ~ K /0, (see Section 2).

Rather than estimating the magnitude and radial behaviour of
kmaxR with qualitative arguments, we plot this quantity as a func-
tion of galactocentric distance for all THINGS spirals analysed in
Section 2. Fig. 6 illustrates that the results of our stability anal-
ysis are consistent with the short-wavelength approximation. For
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Figure 6. Consistency between the results of our stability analysis and
the short-wavelength approximation, kmaxR >> 1, where kpyqax is the least
stable radial wavenumber, R is the galactocentric distance and Rps is the
optical radius. Large error bars signal a transition from star- to H,-dominated
regimes, or vice versa, which causes a jump in the value of kmax (see
Section 2).

A simple and accurate approximation for Q 1395

instance, the condition kxR > 3 is fulfilled in 93 per cent of the
cases, and is always true for R 2 0.25 Rys = Ry, i.e. at distances
larger than about one disc scalelength (remember that Rys = 4.6 £
0.8 R4; LOS8). In contrast, there are only 2 per cent of the data with
kmaxR < 1, all close to the galactic centre: R < 0.05 Rys =~ 0.25 Ry.
Such data correspond to star-dominated regimes, which are more
prone to violate the short-wavelength approximation since Ky ~
k /o, and o, > oy, > on,. A comparison with the right-hand panel
of Fig. 4 shows that the corresponding values of Q3 are well above
unity. As Qs is well above unity and star-dominated in most of the
cases, the few data with kxR < 1 do not have a significant influence
on the stability of THINGS spirals. H 1- and H,-dominated regimes
are fully consistent with the short-wavelength approximation, and
so are the corresponding values of Q3. In particular, the three data
points that lie well below the critical stability level tell us that the
nuclear region of NGC 6946 is subject to strong H,-dominated
instabilities (see again the right-hand panel of Fig. 4). This is con-
sistent with the facts that NGC 6946 hosts a nuclear starburst (e.g.
Engelbracht et al. 1996) and a nuclear ‘bar within bar’ (e.g. Fathi
et al. 2007).

While the short-wavelength approximation is satisfied by most
spiral galaxies, the assumption of axisymmetric (or tightly wound)
perturbations is not so general. Local non-axisymmetric stability
criteria are far more complex than Toomre’s criterion: they depend
critically on how tightly wound the perturbations are, and cannot
generally be expressed in terms of a single ‘effective’ Q parameter
(e.g. Lau & Bertin 1978; Morozov & Khoperskov 1986; Bertin et al.
1989b; Jog 1992; Lou & Fan 1998; Griv & Gedalin 2012). However,
there is a general consensus that non-axisymmetric perturbations
have a destabilizing effect, i.e. a disc with Q > 1 can still be locally
unstable against such perturbations. Gas dissipation has a similar
effect (Elmegreen 2011). These may be two of the reasons why the
stability level of THINGS spirals is, on average, well above unity.
The remarkable flatness of Q3mea(R) across the entire optical disc
is far more intriguing.

The assumption of local perturbations is quite controversial.
While there is a general consensus that locally stable discs can be
globally unstable as regards spiral structure formation, the dynam-
ics and evolution of spiral structure depend critically on the radial
profile of the Q stability parameter (e.g. Bertin et al. 1989a,b; Lowe
et al. 1994; Romeo 1994; Korchagin et al. 2000, 2005; Khoperskov
et al. 2007, 2012; Sellwood 2011). Our results about the stability
level of THINGS spirals have no direct implications for that prob-
lem because they concern the THINGS sample as a whole, not each
of the spirals. Useful constraints on the nature of spiral structure in
galaxies might be found by analysing the radial profile of Qy for
each THINGS spiral, and by searching for trends in Qy(R) along
the Hubble sequence. This is however well beyond the scope of this

paper.

4 CONCLUSIONS

This paper provides a simple analytical recipe for estimating the Q
stability parameter in multicomponent and realistically thick discs
(see equation 19). Our Qy parameter applies for any number of stel-
lar and gaseous components (i = 1, . . ., N), and for the whole range
of velocity anisotropy observed in galactic discs: 0 < (o, /o) < 1.
The accuracy of this approximation can be rigorously quantified in
the thin-disc limit, where it scales as N~'/2. For N = 3, the predicted
root-mean-square error is well below 10 per cent. This is true even
for larger values of N. For example, in the 10-component model(s)
of the solar neighbourhood considered by Rafikov (2001) our
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approximation is accurate to within 5 percent. A further strength
of the Q diagnostic is that it predicts which component dominates
the local stability level. This is a useful piece of information, which
should always be given when analysing the stability of galactic
discs.

This paper also provides the first three-component analysis of
THINGS spirals. Our analysis predicts how stars, H 1 and H, con-
tribute to disc (in)stability, and how the stability properties of such
galaxies vary with galactocentric distance. We show that H, plays
a primary role up to distances of about one disc scalelength. Stars
dominate thereafter, but the contribution of H, remains significant
even at distances as large as half the optical radius. This is in sharp
contrast to the role played by H 1, which is negligible up to the edge
of the optical disc. We also show that the stability level of THINGS
spirals is, on average, remarkably flat and well above unity.
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APPENDIX A: DERIVATION
OF EQUATION (17)

From standard error analysis, we know that the relative uncertainty
of Qy is approximately equal to that of 1/Qx:

AQy  A(/Qw)
On 1/0n

(see, e.g., Bevington & Robinson 2003). We also know that
A(1/Qpy) arises from estimation uncertainties in W; (see equation
15). If we assume that all AW; are uncorrelated and of comparable
magnitude, then the error propagation equation reduces to

(Al
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Table B1. Rafikov’s reference model of the solar neigh-
bourhood: surface densities and velocity dispersions of
the various components.

i Component i Mppe?) o (kmsh)
1 ISM 13.0 7.0
2 Giants 0.4 26.0
3 My < 2.5 0.9 17.0
4 25<My<30 0.6 20.0
5 3.0< My <4.0 1.1 22.5
6 40<My<50 2.0 26.0
7 50<My<80 6.5 30.5
8 My > 8.0 12.3 32.5
9 ‘White dwarfs 4.4 32.5
10 Brown dwarfs 6.2 32.5
N 172
1
A(1/Qy) ~ AW ZE : (A2)
i=1 =i
Remembering that Q; > Q,,, we get
AW
A1/QW) S == VN. (A3)
On
Noting that 1/Qy > 1/0,, and using equation (A1), we then find
A
% < AWWN. (A4)
N

A simple and accurate approximation for Q 1397

AW can be evaluated from the two-component case, where the root-
mean-square value of the relative error (0, — Ork)/Okrx 1S 5 per cent
(see Fig. 2). Setting AW +/2 & 0.05, we finally obtain AW ~ 0.03
and thus

AQy

N

<0.03VN. (A5)

APPENDIX B: THE 10-COMPONENT CASES
ANALYSED BY RAFIKOV (2001)

(i) Case I: Rafikov’s reference model of the solar neighbour-
hood. The epicyclic frequency is k = 36 kms~! kpc™'. The surface
densities and velocity dispersions of the various components are
listed in Table B1.

(ii) Case 2: same as Case 1, but with the velocity dispersion of
white and brown dwarfs decreased from 32.5 to 20.0kms~!.

(iii) Case 3: same as Case 1, but with the total surface density of
white and brown dwarfs increased from 10.6 to 25.0 M@ pc~2.

(iv) Case 4: same as Case 1, but with the gas velocity dispersion
decreased from 7.0 to 5.9kms~!.

(v) Case 4+1: same as Case 1, but with the gas surface density
increased from 13.0to 14.8 M pe™? (this case was only mentioned
by Rafikov).

This paper has been typeset from a TEX/IATEX file prepared by the author.
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