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ABSTRACT
We present an analysis of the clustering of high-redshift galaxies in the recently completed
94 deg2 Spitzer South Pole Telescope Deep-Field survey. Applying flux and colour cuts
to the mid-infrared photometry efficiently selects galaxies at z ∼ 1.5 in the stellar mass
range 1010–1011 M�, making this sample the largest used so far to study such a distant
population. We measure the angular correlation function in different flux-limited samples
at scales >6 arcsec (corresponding to physical distances >0.05 Mpc) and thereby map the
one- and two-halo contributions to the clustering. We fit halo occupation distributions and
determine how the central galaxy’s stellar mass and satellite occupation depend on the halo
mass. We measure a prominent peak in the stellar-to-halo mass ratio at a halo mass of
log (Mhalo/M�) = 12.44 ± 0.08, 4.5 times higher than the z = 0 value. This supports the
idea of an evolving mass threshold above which star formation is quenched. We estimate the
large-scale bias in the range bg = 2–4 and the satellite fraction to be fsat ∼ 0.2, showing a clear
evolution compared to z = 0. We also find that, above a given stellar mass limit, the fraction
of galaxies that are in similar mass pairs is higher at z = 1.5 than at z = 0. In addition, we
measure that this fraction mildly increases with the stellar mass limit at z = 1.5, which is the
opposite of the behaviour seen at low redshift.

Key words: galaxies: evolution – galaxies: haloes – galaxies: high-redshift – cosmology:
observations – large-scale structure of Universe.

1 IN T RO D U C T I O N

Many observational studies have measured dark matter halo masses
in order to find correlations with the properties of the galaxies they
host. Various works have utilized gravitational lensing of back-
ground objects (Mandelbaum et al. 2006; Gavazzi et al. 2007;
Bolton et al. 2008; Cacciato et al. 2009, 2013; Auger et al. 2010;
Velander, Kuijken & Schrabback 2011), virial temperatures de-
rived from X-rays (Lin, Mohr & Stanford 2003; Lin & Mohr 2004;
Peterson & Fabian 2006; Hansen et al. 2009) and dynamics of
satellites (More et al. 2009, 2011). These methods have achieved
high accuracy, but are also observationally expensive to carry out
on large samples and for small haloes, which limits the statistical
strength and range of application. A less direct but more compre-
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hensive method of linking galaxies to haloes is abundance matching
(Conroy, Wechsler & Kravtsov 2006; Vale & Ostriker 2006;
Behroozi, Conroy & Wechsler 2010; Guo et al. 2010; Moster et al.
2010; Moster, Naab & White 2013), which uses the merger trees
from N-body dark matter simulations as input and assumes that the
halo mass is the main determinant of galaxy luminosity and stel-
lar mass. The basic idea is to cumulatively match observed galaxy
luminosity functions and halo mass functions by placing progres-
sively less luminous galaxies in less massive haloes. By design, this
method reproduces the luminosity (or stellar mass) function, and
is able to predict the clustering of galaxies in many cases (Conroy
et al. 2006; Conroy & Wechsler 2009; Moster et al. 2010).

Direct measurements of galaxy clustering are another powerful
ways to connect galaxies with the underlying dark matter distribu-
tion. As a function of physical separation r, clustering is commonly
measured in the form of the two-point spatial correlation function
ξ (r) (SCF; Peebles 1980). The relation between the distributions of
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galaxies and dark matter can be parametrized through the galaxy
bias bg (Kaiser 1984; Coles 1993; Fry & Gaztanaga 1993; Mo
& White 1996; Kauffmann, Nusser & Steinmetz 1997; Sheth &
Tormen 1999; Tinker et al. 2005, 2010), which is given by the
scaling between the SCFs of these two fields:

ξg(r, z) = ξm(r, z) b2
g(r, z). (1)

The SCF of dark matter depends on the cosmology, and can be
prescribed analytically given those parameters (Eisenstein & Hu
1999; Smith et al. 2003). Thus, the bias of a galaxy sample is
directly determined by its SCF. In general, the bias depends on
the spatial scale and redshift (Fry 1996; Moscardini et al. 1998;
Tinker et al. 2005; Moster et al. 2010), since galaxies and dark
matter do not evolve in the exact same manner in time or space. The
measurement of bg(r, z) can therefore reveal a precise description
of the connection between galaxies and dark matter.

Many studies up to intermediate redshifts (z < 1) have inves-
tigated galaxy clustering with samples selected in different ways
(Phleps et al. 2006; Zheng, Coil & Zehavi 2007; Blake, Collister
& Lahav 2008; Brown et al. 2008; Coil et al. 2008; McCracken
et al. 2008; Meneux et al. 2008, 2009; Simon et al. 2009; Abbas
et al. 2010; Foucaud et al. 2010; Ross, Percival & Brunner 2010;
Matsuoka et al. 2011; Wake et al. 2011; Zehavi et al. 2011; Jullo
et al. 2012; Leauthaud et al. 2012; de la Torre et al. 2013; Hartley
et al. 2013; Mostek et al. 2013; Donoso et al. 2014). The most
common conclusion is that clustering strength is correlated with lu-
minosity, red colour and morphology (towards early type). Galaxies
on the extreme of these properties are highly biased and therefore
they live in massive haloes.

These conclusions can be obtained just by analysing the overall
amplitude of the bias. However, the precise form of this observ-
able as a function of spatial separation contains more information
about the inner structure of the haloes. The halo occupation distribu-
tion (HOD) is a simple parametric framework to accurately model
the bias (Ma & Fry 2000; Peacock & Smith 2000; Seljak 2000;
Scoccimarro et al. 2001; Berlind & Weinberg 2002; Cooray &
Sheth 2002; Berlind et al. 2003; Kravtsov et al. 2004; Zheng et al.
2005). It considers galaxies to be either centrals or satellites, and
the number of these that a halo can host is fully determined by the
halo mass.

One of the advantages of the HOD framework is that its pa-
rameters have a clear physical meaning, and thus when fitting the
clustering one can gain a deeper insight into the connection be-
tween the galaxies and their host haloes. For example, the HOD
framework can directly relate the average stellar mass of the central
galaxies to a particular halo mass. As shown in many studies at
z = 0–1, the ratio of these masses is highest around a halo mass of
∼1012 M� (Zheng et al. 2007; Leauthaud et al. 2012; Yang et al.
2012; Zehavi, Patiri & Zheng 2012; Behroozi, Wechsler & Conroy
2013; Moster et al. 2013; Reddick et al. 2013; Wang et al. 2013).
This implies that there is a characteristic halo mass where galaxy
formation has been more efficient. The qualitative explanation for
this is that at low halo masses the gravitational potential is not deep
enough to halt the expulsion of gas due to stellar winds (Benson
et al. 2003), while high-mass haloes have heated up the intrahalo
medium by gravitational heating and active galactic nuclei (AGN)
feedback (Bower et al. 2006; Croton et al. 2006; van de Voort et al.
2011a) so that infalling gas gets heavily shocked and cannot easily
cool and condense (Birnboim & Dekel 2003; Dekel & Birnboim
2006; Kereš et al. 2005, 2009). These two trends can be reduced to
a comparison between dynamical and gas cooling times in haloes,
such that τ dyn � τ cool for low masses and τ dyn �τ cool for high

masses. A possible consequence is that the peak halo mass Mpeak is
related to a characteristic quenching mass Mq that sets τ dyn ∼ τ cool

(Neistein, van den Bosch & Dekel 2006) and marks a transition
between star-forming and quenched haloes. Indeed, massive red
galaxies with little star formation have been shown to live in mas-
sive haloes (Coil et al. 2008; Zehavi et al. 2011), supporting the idea
of the red sequence of galaxies arising when they become quenched
(Bower et al. 2006; Croton et al. 2006). This blue/red dichotomy
is present in the nearby Universe (Kauffmann et al. 2003, 2004;
Baldry et al. 2004), and starts its build-up around z ∼ 2 (Bell et al.
2004; Cooper et al. 2006; Muzzin et al. 2013a; Wang et al. 2013).
Thus, when haloes become large enough, they quench their star
formation. A consequence of this is that the most massive galaxies
today have no significant ongoing star formation. This effect has
been called archeological downsizing (Cowie et al. 1996; Juneau
et al. 2005; Conroy & Wechsler 2009), and is also inferred from
the lack of evolution in the massive end of the stellar mass function
(Pérez-González et al. 2008; Marchesini et al. 2009; Muzzin et al.
2013a). HOD models have shown that the stellar-to-halo mass ratio
(SHMR) evolves in the sense that the peak moves to lower halo
masses with increasing time, at least since z ∼ 1 (Coupon et al.
2012; Leauthaud et al. 2012). This trend has been predicted to per-
sist up to z = 2 by extensions of HOD that use conditional stellar
mass functions (Yang, Mo & van den Bosch 2003; Yang et al. 2012;
Wang et al. 2013) and abundance-matching studies (Behroozi et al.
2013; Moster et al. 2013). A possible mechanism for this would
involve evolution in Mq, which is supported by the idea that the
universal gas fraction drops with time and therefore star formation
becomes more difficult with time at fixed halo mass (van de Voort
et al. 2011a,b). However, this is still a matter of debate (Conroy
& Ostriker 2008; Tinker & Wetzel 2010). For instance, Leauthaud
et al. (2012) present evidence in favour of this evolution being set
by quenching below a critical galaxy–halo mass ratio instead of a
critical halo mass. Such a mechanism would also shift the SHMR
towards lower masses with time.

We have described the basic processes that can determine Mpeak,
based on the comparison of τ dyn and τ cool as a function of halo
mass. This basic model can be extended to include modes of galac-
tic outflows, which are then directly constrained by the observed
slope of the SHMR. The stellar mass growth of a galaxy is heavily
regulated by the expulsion of gas, which could be mainly sourced
by supernovae feedback (Murray, Quataert & Thompson 2005).
The stellar mass-loss rate, Ṁ�, can be broken down in two contri-
butions: pressure-supported energy injection (energy-driven winds)
and coherent momentum transfer (momentum-driven winds). The
energy and momentum deposition rates, Ė and Ṗ , can be re-
lated from first principles to the mass via a proxy of the kinetic
velocity field, σ W: Ṁ� ∝ Ė/σ 2

W and Ṁ� ∝ Ṗ /σW . This suggests
that galaxies with low velocity fields, and therefore low masses,
may have their outflows dominated by energy-driven winds (Dut-
ton & van den Bosch 2009). Thus, a larger contribution from
this type of wind would result in a steeper low-mass slope of
the SHMR.

At high masses (and high σ W), these arguments would point to
a dominance of momentum-driven winds. However, the winds in
this regime are also sourced by radiative AGN feedback, which is
expected to have a strong contribution (Vogelsberger et al. 2013).
In addition, a large merger rate between central galaxies will result
in a flattening of the SHMR (Leauthaud et al. 2012). With all these
processes at play, the high-mass slope is less straightforward to
interpret than the low-mass one, but it can still offer important
constraints on this combination of mechanisms.
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Galaxy clustering combined with HOD modelling provide par-
ticularly solid measurements of the SHMR whenever the selection
of galaxies spans the relevant range of stellar masses. At z � 1.5,
such measurements have proven to be very difficult given the lack of
large volume-limited samples. Wake et al. (2011) use the 0.25 deg2

NEWFIRM survey (van Dokkum et al. 2009), but the low number
statistics made it difficult to map the turnover of the SHMR. In
this study, we use a 94 deg2 mid-infrared (MIR) survey to select
galaxies with stellar masses ranging from 1010–1011 M� and fit an
HOD model to the angular correlation function (ACF). We present
the most robust measurement to date of the peak of the SHMR at
z = 1.5.

In addition, the HOD yields particularly strong constraints on the
satellite population of a given galaxy sample. We determine what
fraction of the galaxies are satellites, and how the abundance of
these depends on the halo mass. Moreover, we measure a proxy for
the occurrence of galaxy pairs of similar mass, and find that it mildly
decreases towards high luminosities. Although we do not achieve a
robust detection, this represents the opposite trend to what is seen
at low redshift. The processes that produce this relationship are
strongly tied to the accretion and merger events between galaxies
and haloes, as well as the quenching of star formation in satellites.

The paper is organized as follows. In Section 2, we describe all
data sets that are used. In Section 3, we describe how we adapt
redshift and stellar mass distributions from a reference optical +
mid-IR survey. In Section 4, we define the two-point clustering
statistic and the method used to compute it. In Section 5, we describe
the model that links galaxies to haloes. In Section 6, we explain the
fitting procedure of the HOD to the observed clustering. In Sections
7, 8 and 9 we discuss the results obtained regarding the SHMR, the
satellite galaxies and the large-scale bias, respectively. We end with
a short summary in Section 10. For the reader that is only interested
in the results, we recommend reading Sections 7 and beyond.

Additionally, we include several appendices where many of the
details are covered. Appendix A presents a calibration of system-
atic effects in the photometry. Appendix B compares the results
obtained from using different reference catalogues to draw redshift
and stellar mass distributions. Appendix C calculates the systematic
offset in the clustering amplitude due to the geometry of the survey.
Appendix D presents the formalism of the halo model. Appendix
E investigates the removal of low-redshift sources from the sample
using optical data. Appendix F explores different choices of free
parameters used in the HOD fits to the clustering.

Throughout this paper we use the following cosmology:
�m = 0.27, �� = 0.73 and H0 = 70 km s−1Mpc−1. All magni-
tudes are in the Vega system and masses are in units of M�.

2 DATA SETS

Our main data set is the Spitzer South Pole Telescope Deep-Field
Survey (SSDF; Ashby et al. 2013b), a 93.8 deg2 photometric sur-
vey using the infrared array camera (IRAC) 3.6 and 4.5 μm bands
(hereafter [3.6] and [4.5]). The mosaics have a nominal integration
time of 120 s. We used Source Extractor ( SEXTRACTOR; Bertin &
Arnouts 1996) in dual image mode, detecting galaxies in [4.5] and
extracting the flux from fixed 4 arcsec apertures in both IRAC chan-
nels. These aperture fluxes were then corrected to total fluxes using
growth curves from isolated point sources found in the mosaics. A
detailed description of the survey and a public photometric cata-
logue are presented in Ashby et al. (2013a). However, here we use
a deeper private catalogue and account for faint-end photometric
bias and detection completeness (see Appendix ). We determine the

5σ limit in [4.5] to be 18.19 mag, in agreement with Ashby et al.
(2013a).

We use the near-infrared 2MASS Point Source Catalog
(Skrutskie et al. 2006) to identify and remove sources brighter than
Ks(AB) = 12 mag, most of which are likely to be stars. In addition,
we visually inspected some of these sources in the IRAC mosaics
and determined an empirical relation between their Ks-band mag-
nitude and the maximum radius where their 4.5 μm flux caused a
clear suppression in the detection of nearby sources. This relation
was then applied to the rest of the Ks-selected sample and the re-
sulting radii were used to mask all SSDF sources enclosed within
from the main catalogue. For reference, the radii corresponding to
Ks(AB) = 8 and 12 sources were 41 and 8.4 arcsec, respectively. We
also masked out low coverage gaps in the survey, yielding a final
effective area of 88.8 deg2.

Finally, in order to better understand the redshift distribution of
our IRAC-selected sample in the SSDF, we use public catalogues in
two other regions of the sky: the COSMOS-UltraVista field (here-
after COSMOS; Muzzin et al. 2013) and the Extended Groth Strip
(hereafter EGS; Barro et al. 2011a,b). These two surveys have publi-
cally accessible IRAC photometry, photometric redshifts and stellar
masses. In the following section, we describe how we used these
catalogues to infer the redshift and mass distributions of SSDF
samples.

3 C O N T RO L S A M P L E

This study requires knowledge of the redshift and stellar mass distri-
bution of the SSDF galaxy sample. However, our main data set is too
limited to obtain reliable values for these observables. Therefore,
the strategy is to import this information from a reference survey
that contains optical data and IRAC photometry with a higher accu-
racy. We consider the catalogues from COSMOS and EGS, which
include photometric redshifts and stellar masses. We will adopt
COSMOS as the fiducial data set because it is larger and has bet-
ter statistics, and in Appendix B we show how our results do not
change significantly when using EGS instead. The reference cata-
logue is degraded to become a control sample whose photometric
errors match those of the SSDF. Then, applying the same IRAC
selection in both SSDF and the control sample allows us to match
the derived distributions of redshift and mass. A brief description
of the COSMOS photometry can be found in Appendix B.

For every source in the reference catalogue, we have [4.5] mag,
[3.6] − [4.5] colours, photometric redshifts and stellar masses. The
goal is to infer the SSDF distributions of these parameters by de-
grading the reference photometry, which is done using the SSDF
photometric errors. We calculate the scatter in SSDF magnitudes
and colours as a function of these same variables, using the results
from the photometric simulations described in Appendix A. These
scatter profiles are shown in Fig. 1. At fixed [4.5] mag, the scat-
ter in colour increases for larger colours since these imply fainter
[3.6] mag. In the case of the reference sample, since it is 2 mag
deeper than SSDF (see Appendix B), we can safely consider its
photometric scatter as negligible in comparison.

The degradation of the reference catalogue into a control sam-
ple consists of transforming the specific values (e.g. magnitude)
of each source in the catalogue into Gaussian probability density
functions (PDFs). These PDFs are defined in the parameter space of
apparent magnitude [4.5] (M), [3.6] − [4.5] colour (C) and photo-
metric redshift (zphot): P(M, C, zphot). The centroids are given by
μi = (Mi , Ci , zi

phot), which correspond to the parameter vectors
of the sources in the reference catalogue. The standard deviations
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Figure 1. Photometric scatter of SSDF sources derived from the simulations
in Appendix A. Left: standard deviation in [4.5] mag. There is higher scatter
for fainter sources. Right: standard deviation in [3.6]−[4.5] colour (4 arcsec
diameter aperture). Dashed, dotted, solid and dash-dotted lines represent
fixed [4.5] input magnitudes of 15, 16, 17 and 18, respectively. Larger
colours imply fainter [3.6] mag, which is reflected as a mild increase in the
scatter.

are σ i = (σ i
M, σ i

C, σ i
zphot

). The first two components in σ are the
functions σM(M) and σC(M, C), which are shown by the curves
in Fig. 1. The redshift component does not have a counterpart in
the SSDF catalogue, but we apply a variable redshift smoothing
kernel equivalent to 100 comoving Mpc, in order to filter the effect
of large-scale structure. This amounts to σzphot = 0.02–0.1 within
our redshift range. However, we find that this redshift filtering has
a minimal effect in the results, varying the z = 1.5 clustering am-
plitude and galaxy number density at the ∼1 per cent level.

3.1 Main redshift distribution

If we consider galaxies with apparent magnitudes within some
bracket �M, we can compute the distribution in colour and redshift
space K(C, z) of the control sample:

K(C, z) = 1

Nref

Nref∑
j=1

∫
�M

dm P(m, C, z; μj , σ j ). (2)

Here, we have marginalized each individual PDF over �M and
summed them in the resulting space of (C, zphot), using the ref-
erence catalogue (subscript ‘ref’). A similar procedure to de-
rive full redshift distributions based on the Bayesian combina-
tion of individual redshift likelihood functions was performed by
Brodwin et al. (2006a,b). The normalization of K(C, z) is the total
number of sources in the reference catalogue, Nref. Fig. 2 shows the
application of equation (2) for �M → 15 < [4.5] < 18.6, which
are the limits for our full SSDF sample (see Section 3.2). The top
panel corresponds to the colour versus redshift distribution from
the raw reference catalogue. The bottom panel shows the control
sample, which is how SSDF sources are expected to be distributed.
For comparison, we have also plotted a galaxy evolutionary track
for a single stellar population with solar metallicity and formation
redshift of zf = 3.5, computed using the Bruzual & Charlot (2003)
models with Chabrier (2003) initial mass function (IMF).

There is a clear correlation between colour and redshift at z

> 0.6. This occurs because going from z = 0.6 to 2, the IRAC
bands map the galaxy spectrum across the stellar bump at rest-frame
H band. This results in a monotonic change in observed colour
within z = 0.6 − 2. An insightful description of this phenomenology
can be found in Muzzin et al. (2013b). We can take advantage of
this effect to select galaxies in redshift using a colour cut. A lower
colour threshold needs to be high enough to reject z < 0.3 galaxies

Figure 2. [3.6]−[4.5] colour versus redshift for galaxies with
15 < [4.5] < 18.6, based on the COSMOS reference catalogue. The hori-
zontal white lines indicate the colour selection that we apply to our SSDF
samples. The purple curve is the evolutionary track of a galaxy formed at
zf = 3.5 using the BC03 model with a Chabrier IMF, shown for comparison.
Top: distributions of the raw reference catalogue. Bottom: reference cata-
logue degraded to match the SSDF photometric properties, derived from
equation (2).

(see Fig. 2), while also keeping a number of higher redshift sources
that is large enough to measure a robust clustering signal. An upper
threshold is also necessary, since very red colours [3.6] − [4.5] ∼ 1
are characteristic of AGN (Stern et al. 2005). The best compromise
is a colour cut of 0.6 < [3.6] − [4.5] < 0.8, as shown in Fig. 2.

With a given �C, we can derive the redshift distribution of
sources:

φ(z) = 1

Nref

Nref∑
j=1

∫
�M

∫
�C

dm dc P(m, c, z; μj , σ j ). (3)

Note that
∫

φ(z; �M,�C) dz is equal to 1 only when �M and
�C represent the full ranges spanned by the reference sources. We
denote such distribution as φfull(z), while the one corresponding to
the colour selection �C → 0.6 < [3.6] − [4.5] < 0.8 is denoted as
φcut(z).

We are assuming that this colour cut selects a representative sam-
ple of the z > 1 galaxy population. However, it is important to check
whether such a selection is biased towards young or old galaxies.
It has been shown that older galaxies exhibit a higher clustering
amplitude than their younger counterparts (Skibba et al. 2014, and
references therein). In our case, we are tracing a part of the spectral
energy distribution that is much less sensitive to star formation his-
tory. To illustrate this point, we use the EZGAL package (Mancone
& Gonzalez 2012) to compare the [3.6] − [4.5] colours for passive
and star-forming galaxies using assorted stellar population models
(Bruzual & Charlot 2003; Maraston 2005; Conroy, Gunn & White
2009). For the passive galaxies, we assume a single burst model
with formation redshift zf = 3.5. For the star-forming galaxies,
we run models with exponentially declining star formation, using
τ = 1 Gyr and an initial formation redshift zf = 3.5. The difference
in [3.6] − [4.5] is �0.05. For the galaxy sample used in our analy-
sis, this difference is comparable to or smaller than the photometric
errors (see Fig. 1). Thus, the associated systematic bias due to the
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Figure 3. Density map of the SSDF field for galaxies in our selected sample:
0.6 < [3.6]-[4.5] < 0.8 and 15 < [4.5] < 18.6. This corresponds to a redshift
selection around z ∼ 1.5. Units are galaxies per square arcminute. Masking
has been applied to bright stars and low coverage gaps, yielding a final size
of 88.8 square degrees.

colour selection will be small compared to the photometric errors
and intrinsic scatter in galaxy colours, and can be neglected for the
current analysis.

3.2 Definition of subsamples

Our main science sample of SSDF galaxies is determined by the
apparent magnitude and colour cuts of 15 < [4.5] < 18.6 and
0.6 < [3.6] − [4.5] < 0.8. The first of these cuts imposes an upper
magnitude limit at the 80 per cent completeness level (see Appendix
A3), and the second is tuned to select galaxies at high redshift while
avoiding AGN. A density map of this selection can be seen in Fig. 3,
representing a slice of the Universe at z ∼ 1.5.

We further split the main sample into 13 subsamples, with faint
limits over the range [4.5] = 16.2 − 18.6 in steps of 0.2 mag. The
bright limit is [4.5] = 15 in all of them. We do this instead of a selec-
tion within differential magnitude bins because the halo occupation
framework presented in Section 5 requires cumulative samples in
order to link halo masses and galaxy masses. We note that this ap-
proach carries the drawback of producing a correlation between the
different samples. This correlation is strong between neighbouring
samples, but not dominant otherwise. Due to the steep variation of
the stellar mass function, any given sample is mostly comprised
by galaxies close to its low-mass threshold, making their clustering
less sensitive to the most massive population (see Matsuoka et al.
2011).

The photometric scatter increases for fainter samples. Thus, we
calculate the redshift distribution (see equation 3) for each sample,
obtaining sets of φk

full, φk
cut, where k = 1 − 13 is the sample index

(going from brightest to faintest). We can also define the number
density completeness as f k

N(z) = φk
cut(z)/φk

full(z), which determines
the fraction of galaxies as a function of redshift that the colour cut
retains. Fig. 4 shows a comparison of φcut, φfull for k = 13 (the
largest sample). At the peak of the colour-cut distribution we have
that f k

N ∼ 0.3, and we will use this factor to scale up and correct the
number density (see below). Fig. 5 shows φk

cut for the smallest and

Figure 4. Redshift distribution of the COSMOS-based control sample us-
ing the faintest selection (15<[4.5]<18.6, k = 13). The dashed lines repre-
sent the additional colour-cut selection. The colour cut imposes a selection
around z ∼ 1.5, although it only keeps about one third of the total number
counts at that redshift.

Figure 5. Normalized redshift distributions of the COSMOS-based control
sample using the faintest (15<[4.5]<18.6, orange triangles) and brightest
(15<[4.5]<16.2, blue circles) flux thresholds with the colour cut. Brighter
sample thresholds induce a higher contribution of low-redshift sources (see
the text).

largest samples (i.e. brighter and fainter thresholds, k = 1,13), where
each curve is shown normalized to 1. We also derive cosmic vari-
ance errors using the prescriptions from Moster et al. (2011), which
are based on analytical predictions of dark matter structure given
a particular survey geometry (see also Brodwin et al. 2006a). The
peak in these redshift distributions is consistently around z = 1.5
in all samples. In general, the samples consist of a z ≥ 1 popula-
tion that has approximately the same absolute luminosity and stellar
mass (see Section 3.3), plus a z ∼ 0.3 contribution of ‘contaminant’
galaxies that are intrinsically much less luminous. These contam-
inants represent 12 per cent (37 per cent) of all galaxies in our full
(brightest) sample. When setting a brighter flux threshold, the high-
redshift population becomes less dominant since these galaxies are
closer to the turnover of the luminosity function. The consequence
of this is the clear trend where brighter samples have a stronger
low-redshift bump. The contribution of the latter to the clustering is
modelled in the following sections. Alternatively, we show in Ap-
pendix E that our results remain unchanged if instead we employ
shallow optical data to remove most of the low-redshift sources.
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Table 1. Sample properties and HOD fits. Column 1: upper limiting magnitude for each sample. The lower limit is fixed at 15 mag. Column 2: total
number of observed SSDF sources, corrected for completeness. Column 3: estimated fraction between observed and true number of sources at zp. Column
4: number density at zp, corrected by fN. Units are 10−4Mpc−3. Errors are derived by the method of Moster et al. (2011). Columns 5 and 6: median
stellar masses of z = zp galaxies at and above the flux limit of the sample, respectively. Columns 7–11: parameters from the HOD fits. M ′

1 are best-fitting
values, the rest are derived parameters. The reduced χ2 is given by χ2

ν = χ2/(28 − 1). Since α = 1, one can directly compute M1 = M ′
1 + M0, with

logM0 = 0.76 logM ′
1 + 2.3.

[4.5] limit Nobs fN ng logM̄ lim
� logM̄ full

� logM ′
1 logMmin bg fsat χ2

ν

16.2 17713 0.43 0.4 ± 0.1 10.93 ± 0.02 11.05 ± 0.02 14.28 ± 0.09 13.17 ± 0.05 3.95 ± 0.13 0.06 ± 0.01 0.33
16.4 29385 0.42 0.7 ± 0.2 10.86 ± 0.02 10.99 ± 0.02 14.03 ± 0.11 13.00 ± 0.06 3.57 ± 0.12 0.09 ± 0.01 0.74
16.6 47242 0.40 1.3 ± 0.3 10.80 ± 0.01 10.91 ± 0.02 13.80 ± 0.09 12.84 ± 0.05 3.28 ± 0.08 0.12 ± 0.01 1.27
16.8 72506 0.40 2.2 ± 0.4 10.72 ± 0.01 10.83 ± 0.01 13.62 ± 0.09 12.70 ± 0.05 3.04 ± 0.07 0.15 ± 0.02 1.79
17.0 105801 0.40 3.2 ± 0.6 10.63 ± 0.01 10.74 ± 0.01 13.51 ± 0.08 12.57 ± 0.04 2.85 ± 0.05 0.15 ± 0.01 1.93
17.2 146773 0.40 4.5 ± 0.8 10.54 ± 0.01 10.65 ± 0.01 13.39 ± 0.09 12.47 ± 0.05 2.72 ± 0.06 0.16 ± 0.02 1.76
17.4 195346 0.39 6.0 ± 1.0 10.46 ± 0.01 10.57 ± 0.01 13.28 ± 0.08 12.38 ± 0.05 2.62 ± 0.04 0.18 ± 0.01 1.22
17.6 249444 0.38 7.6 ± 1.3 10.36 ± 0.01 10.48 ± 0.01 13.20 ± 0.08 12.30 ± 0.04 2.52 ± 0.04 0.18 ± 0.01 1.04
17.8 308064 0.37 9.3 ± 1.5 10.26 ± 0.01 10.37 ± 0.01 13.12 ± 0.10 12.24 ± 0.06 2.46 ± 0.04 0.20 ± 0.02 0.90
18.0 370735 0.35 11.1 ± 1.8 10.16 ± 0.01 10.27 ± 0.01 13.06 ± 0.09 12.17 ± 0.05 2.40 ± 0.04 0.20 ± 0.02 1.03
18.2 435672 0.34 13.0 ± 2.1 10.06 ± 0.01 10.18 ± 0.01 13.00 ± 0.07 12.12 ± 0.05 2.35 ± 0.03 0.21 ± 0.01 0.95
18.4 503212 0.32 15.0 ± 2.3 9.97 ± 0.01 10.08 ± 0.01 12.95 ± 0.07 12.07 ± 0.05 2.30 ± 0.03 0.22 ± 0.01 0.88
18.6 575131 0.30 17.2 ± 2.6 9.87 ± 0.01 9.99 ± 0.01 12.89 ± 0.07 12.03 ± 0.05 2.27 ± 0.03 0.23 ± 0.01 0.56

With these redshift distributions, we can calculate the spatial
number density of observed galaxies at the pivot redshift zp ≡ 1.5.
Here, we use the SSDF area and the effective number of observed
sources in the subsamples, Nk

obs. This number is derived by summing
the inverse of the completeness value for all galaxies, using the
relation from Fig. A2. Then, the true number of galaxies within
zp ± δz/2 can be written as

Nk
true = Nk

obs

f k
N (zp)

φk
cut(zp)∫

φk
cut(z′) dz′ δz. (4)

The sampled volume reads as

V = dV (zp)

dz
δz = c � χ2(zp)

H (zp)
δz, (5)

where χ (z) is the comoving radial distance, H(z) is the Hubble
function, c is the speed of light and � = 0.0271 sr is the solid angle
subtended by the survey. Hence, the number density at zp results in

nk
g = Nk

true

V
. (6)

Note that this quantity is the result of combining the SSDF observed
number counts (via Nk

obs) and the colour fractions of the control
sample. Table 1 shows the values of these number densities for all
samples.

3.3 Stellar masses

The stellar masses in the reference catalogue are also retrieved to
construct our control sample. We use those based on Bruzual &
Charlot (2003, hereafter BC03) stellar grids, Chabrier (2003) IMF
and Calzetti et al. (2000) dust extinction. Unless otherwise noted,
all stellar masses are given under these prescriptions.

For the purposes of this paper, we need to calculate stellar masses
for two different selections of galaxies. One is the median mass of
all galaxies within each sample, derived at every redshift bin, M̄ full

� .
This mass will be used to derive a redshift scaling of the galaxy bias
in Section 5.2. The other, M̄ lim

� , is the median mass of the galaxies
at the pivot redshift (zp = 1.5) and at the magnitude limit of each
sample. This is the stellar mass that will be linked in Section 7 to a
particular halo mass.

Ideally, in order to calculate M̄ full
� we would compute the median

mass of those galaxies within the given selection range in the param-
eter space of redshift, magnitude and colour. However, classifying
galaxies on whether they fall in that range is not straightforward,
since each galaxy is represented by an extended probability dis-
tribution in the parameter space. A more insightful approach is to
compute the probability that a galaxy’s true parameter vector falls
within the specified range, which reads as

�j (z) =
∫

�M

∫
�C

dm dc P(m, c, z; μj , σ j ), (7)

where 0 < �j < 1 and j is an index that identifies every galaxy in the
reference catalogue. Thus, we can calculate M̄ full

� as the weighted
median stellar mass over all galaxies in the reference catalogue,
where the set of �j act as weight coefficients to the individual stellar
masses Mj

� . By definition, the weighted median mass represents
the mass value where the weighted integral of the mass distribution
above and below that value is the same, and we write it in the
following condensed form

M̄ full
� = Median

[
M�; weights = �

]
, (8)

where we have omitted the implicit dependence on z. Conveniently,
the weighted distribution of masses follows closely a lognormal
distribution. Thus, equation (8) returns almost the same value as the
weighted mean of logM�, which allows us to adopt the standard
deviation from the latter distribution:

�M =
∑ (

logMj
� − logM̄ full

�

)2
�j∑

�j

, (9)

which is typically ∼0.2 dex. Even though this scatter is rather large,
these log-mass distributions are single peaked and approximately
symmetric, so their mean value is well defined and physically mean-
ingful. We use the scatter to estimate the error in the mean as

�̄M = �M√Nind
(10)

with

Nind =
(∑

�j

)2∑
�j

2
. (11)
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Figure 6. Redshift evolution of the median stellar mass in our brightest
and faintest samples. The lower solid curve is a polynomial fit to the points
from the latter. Those corresponding to the bright sample are noisier, so we
offset the lower solid curve to match them. This is physically motivated by
the approximation that mass scales linearly with flux.

Here, Nind represents the effective number of independent elements
in the ensemble. This number is proportional to the sum of contribut-
ing weights and inversely proportional to their scatter. It equals the
total number of elements in the reference catalogue in the limit of
�j → 1.

Fig. 6 shows M̄ full
� (z) for all samples. The errors are from equa-

tion (10) and the solid curve is a fifth order polynomial fit to the
points of the faintest sample. We use that curve plus an offset to
fit the data from the rest of the samples, since it becomes noisier
at brighter limits. Here, we take advantage of the fact that stellar
mass scales with flux approximately in a linear manner. It is clear
from the figure that the mass is tightly correlated with the redshift
of observation within z = 0–1.5. Beyond that, the relation flattens
out significantly. The reason for this is that at z ≥ 1.5, the [4.5]
band samples the rising spectral slope of the stellar bump (Muzzin
et al. 2013b). This offsets the k-correction in a way that galaxies of
a certain intrinsic near-infrared luminosity have a similar apparent
[4.5] mag across a range of redshift. A consequence of this is that
any [4.5] limited sample becomes roughly stellar mass limited at
z > 1.5 (see also fig. 14 in Barro et al. 2011b). Nonetheless, we
do not attempt to take advantage of this effect by averaging stellar
masses at high redshift. The modelling in this work is based on
well-defined median masses as a function of redshift, independent
of the form of that redshift dependence. However, the flattening of
this curve does benefit our study to some extent. Since there is an
inherent uncertainty in how well represented the SSDF data is with
the control sample, it is convenient that the stellar masses are natu-
rally more constrained than a case where they had a strong redshift
dependence.

We can calculate M̄ lim
� at zp in an analogous way, considering a

selection within �C. The corresponding weights are

κj (M) =
∫

�C
dc P(M, c; zp, μj , σ j ), (12)

and replacing �j with κ j in equations (7)– (10) gives us the median
mass M̄ lim

� , along with its error. An example of the stellar mass
histograms that are obtained using these weights can be seen in
Fig. 7. They are shown for the brightest and faintest magnitude
limits of our samples. These distributions are symmetric and have
a well-defined mean. The scatter is generally large, with values
around ∼0.2 dex. However, the error in the logarithmic mean (see
equation 10) is typically quite small ∼0.03 dex. The values of these

Figure 7. Normalized distributions of the z = 1.5 stellar mass at the bright-
est and faintest magnitude limits of our samples.

limiting masses are displayed in Table 1. Thus, we have calculated
the median mass of all galaxies in our samples as a function of
redshift, and the median mass of galaxies around the pivot redshift
at each sample magnitude limit.

4 TWO -POI NT CLUSTERI NG

Given a population of galaxies in a 3D space, one can define the
joint probability of finding two such objects in volume elements
δV1, δV2 separated by a distance r (Peebles 1980; Phillipps et al.
1978):

δP (r) = N̄ 2(1 + ξg(r))δV1δV2. (13)

Here, N̄ is the density of galaxies and ξ g is the SCF, which quantifies
the clustering strength of the field as a function of r. The SCF can
also be interpreted as the differential probability of finding two
objects separated by a given distance, with respect to the case of a
random distribution.

The SCF for a galaxy population can be directly computed if the
individual distances (redshifts) to those galaxies are known. How-
ever, in our case we are limited to individual sky positions and the
ensemble redshift distribution. Therefore, we are interested in the
ACF, which is the projection of the SCF on to the 2D sphere. Anal-
ogously to the SCF, the ACF represents the differential probability
with respect to a random distribution of finding two galaxies sepa-
rated by a particular angle. The ACF is related to the SCF through
the Limber projection (Limber 1953), which integrates the SCF
along the line of sight using the normalized redshift distribution
φ(z) as a weight kernel (Phillipps et al. 1978; Coupon et al. 2012):

ω(θ ) = 2

c

∫ ∞

0
dzH (z)φ2(z)

∫ ∞

0
dy ξg(r =

√
y2 + D2

c (z)θ2),

(14)

where Dc(z) is the radial comoving distance, H(z) is the Hubble
function, c is the speed of light and θ is the angular separation given
in radians.

In order to measure ω(θ ), we use the estimator presented in
Hamilton (1993), which counts the number of galaxy pairs with
respect to those of a random sample distributed in the same
geometry:

ω̂(θ ) = RR(θ )GG(θ )

GR2(θ )
− 1, (15)
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where GG, GR and RR are total number of galaxy–galaxy, galaxy–
random and random–random pairs separated by an angle θ . We
have also tested the estimator from Landy & Szalay (1993), which
returns results that are practically indistinguishable from those using
equation (15).

In order to account for the completeness shown in Fig. A2, we
make a small generalization of equation (15). Instead of counting
all pairs with values of 1, we use a weighted scheme where each pair
of sources α, β is counted as a product of weights υαυβ . Random
sources have υ = 1, and galaxies have weights equivalent to the
inverse of the completeness value at its apparent magnitude. We
count pairs by brute force in discrete angular bins using the graphics
processing unit on a desktop computer. We have developed our own
code, which yields computation times of the order of 1000 times
faster than using a CPU-based run with 16 cores. Our code is written
in PYCUDA,1 which is a PYTHON wrapper of the CUDA, the programming
language that interfaces with the device.

The estimator in equation (15) implicitly assumes that the aver-
age galaxy density of the survey is the same as the all-sky value.
However, since the survey is a small fraction of the sky, its den-
sity is higher (structures cluster more towards smaller scales) and
this results in a systematic suppression of ω̂(θ ). We correct for this
effect, even though it is not significant for our results. Details can
be found in Appendix C. The values of the corrected ACF for all
samples are displayed in Table 2.

4.1 Error estimation

We estimate errors with the jackknife technique, which uses the
observed data and is very effective in recovering the covariance of
ω̂(θ ) between different scales. First, the entire sample is divided
into Njack = 64 spatial regions of equal size. Then, the correlation
is run Njack times, each one excluding one of those regions from the
sample. The value of the estimator is the average ω̄(θ ) of those itera-
tions and the covariance between angular bins is given by (Scranton
et al. 2002)

Cjk = N − 1

N

N∑
i=0

[
ω̂i(θj ) − ω̄(θj )

]
[ω̂i(θk) − ω̄(θk)] . (16)

We also compare the jackknife errors with those obtained from
mock simulations, which are described in Appendix A. We find that
both sets of errors have a good agreement, with differences around
20 per cent. Although our mock simulations only cover large scales,
the systematic differences between mock and jackknife errors are
not expected to vary significantly across different scales for a pro-
jected statistic like ω(θ ) (Norberg et al. 2009).

5 PL AC I N G G A L A X I E S I N H A L O E S

The galaxy bias bg (see equation 1) encodes all the information that
can be extracted from the two-point galaxy distribution, given a
particular cosmology. Thus, our aim is to construct a precise model
of bg and adjust the resulting correlation function to match the
observed clustering of galaxies. The main idea behind this model is
to assume a halo distribution and place galaxies in haloes according
to a set of simple rules, as explained below.

1 documen.tician.de/pycuda/

5.1 The halo occupation distribution

The distribution of dark matter haloes under the cold dark matter
(CDM) paradigm has been well studied both phenomenologically
and through simulations (Ma & Fry 2000; Berlind & Weinberg
2002; Cooray & Sheth 2002), leading to a halo model where the
halo mass function, the bias bh and the halo density profile are
determined by the halo mass. The HOD is a statistical framework
that has been developed to link the halo model with the distribu-
tion of galaxies (Berlind & Weinberg 2002; Cooray & Sheth 2002;
Kravtsov et al. 2004). The HOD is mainly described with the prob-
ability P(N|M) that a halo of a given virial mass M hosts N galaxies;
one central and N − 1 satellites distributed according to a Navarro,
Frenk and White (NFW) profile. All galaxies are linked to some
halo, and the occupation is independent of their formation history
and environment (Zentner et al. 2005). This assumption is generally
valid, since the induced changes in the galaxy bias due to environ-
ment are expected to be only at the ∼5 per cent level (Croton, Gao &
White 2007; Zu et al. 2008), while the overall uncertainties in galaxy
clustering studies are typically larger. For our work in particular, the
main source of error arises from the uncertainty in the shape of the
redshift distribution, which is explored in Appendix B by comparing
results from the use of COSMOS and EGS as reference catalogues.
The variations in galaxy bias are around 10 per cent and they do
not alter qualitatively any of the final conclusions. Therefore, given
that the environmental effects in the galaxy bias are expected to be
smaller, we consider them negligible for the current purposes.

The average distribution of central galaxies as a function of halo
mass can written as (Zheng et al. 2005, 2007)

Nc(M) = 1

2

[
1 + erf

(
logM − logMmin

σlogM

)]
. (17)

This implies that Nc(Mmin) = 0.5. Thus, Mmin sets a step-like tran-
sition where half of the haloes above this mass will host a central
galaxy, and this transition is smoothed by the scatter σ logM. The
number of satellites galaxies is drawn from a Poisson distribution
with mean

Ns(M) = Nc(M)

(
M − M0

M ′
1

)α

, (18)

and are assumed to follow an NFW (Navarro, Frenk & White 1997)
density profile from the halo centre. The factor Nc(M) accounts
for the constraint that only haloes with a central galaxy may host
satellites. Equation (18) represents a power law, where α sets the
steepness, M ′

1 defines the typical mass scale for this distribution
being close to unity and M0 represents the mass below which the
power law is cut off. In addition, one can derive the characteristic
mass where a halo hosts exactly one satellite on average, M1, by
imposing Ns(M1) ≡ 1 and noting that generally Nc(M ≈ M ′

1) = 1.
In the case where M0 = 0 it reduces simply to M1 = M ′

1, and when
α = 1 then M1 = M ′

1 + M0. The occupation distribution of the total
number of galaxies in a halo can be expressed as the sum of the
central and satellite terms:

N (M) = Nc(M) + Ns(M). (19)

Other HOD-derived quantities are the effective galaxy bias

beff
g = 1

ng

∫
dM

dn(M)

dM
N (M)bh(M), (20)

and the fraction of satellite galaxies

fsat = 1

ng

∫
dM

dn(M)

dM
Ns(M). (21)
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Table 2. Measured angular correlation for all our samples, which are denoted by their limiting [4.5] magnitude in the first row. These values have been
corrected for the integral constraint.

θ (degrees) 16.2 16.4 16.6 16.8 17.0 17.2 17.4
0.0019 2.8 ± 0.9 × 100 1.9 ± 0.4 × 100 1.7 ± 0.2 × 100 1.5 ± 0.2 × 100 1.3 ± 0.1 × 100 1.2 ± 0.1 × 100 1.1 ± 0.1 × 100

0.0025 1.8 ± 0.5 × 100 1.6 ± 0.3 × 100 1.2 ± 0.1 × 100 1.1 ± 0.1 × 100 8.6 ± 0.6 × 10−1 7.5 ± 0.4 × 10−1 6.5 ± 0.3 × 10−1

0.0033 9.5 ± 3.0 × 10−1 9.3 ± 1.6 × 10−1 7.5 ± 0.9 × 10−1 6.6 ± 0.7 × 10−1 5.8 ± 0.5 × 10−1 5.3 ± 0.3 × 10−1 4.6 ± 0.2 × 10−1

0.0044 4.2 ± 2.1 × 10−1 5.1 ± 1.2 × 10−1 5.0 ± 0.6 × 10−1 4.3 ± 0.3 × 10−1 3.6 ± 0.3 × 10−1 3.3 ± 0.2 × 10−1 2.9 ± 0.2 × 10−1

0.0058 3.7 ± 1.9 × 10−1 3.6 ± 0.8 × 10−1 3.7 ± 0.5 × 10−1 3.6 ± 0.3 × 10−1 3.0 ± 0.2 × 10−1 2.5 ± 0.2 × 10−1 2.0 ± 0.1 × 10−1

0.0077 3.0 ± 1.0 × 10−1 1.5 ± 0.5 × 10−1 1.7 ± 0.3 × 10−1 1.6 ± 0.2 × 10−1 1.7 ± 0.1 × 10−1 1.4 ± 0.1 × 10−1 1.4 ± 0.1 × 10−1

0.0102 2.1 ± 0.9 × 10−1 1.9 ± 0.4 × 10−1 2.0 ± 0.2 × 10−1 1.7 ± 0.1 × 10−1 1.4 ± 0.1 × 10−1 1.3 ± 0.1 × 10−1 1.1 ± 0.1 × 10−1

0.0135 1.8 ± 0.5 × 10−1 1.6 ± 0.3 × 10−1 1.4 ± 0.2 × 10−1 1.3 ± 0.1 × 10−1 1.1 ± 0.1 × 10−1 1.0 ± 0.1 × 10−1 9.3 ± 0.8 × 10−2

0.0178 9.7 ± 5.7 × 10−2 1.0 ± 0.2 × 10−1 1.1 ± 0.1 × 10−1 1.1 ± 0.1 × 10−1 9.9 ± 0.8 × 10−2 8.8 ± 0.7 × 10−2 7.7 ± 0.7 × 10−2

0.0235 1.4 ± 0.3 × 10−1 1.3 ± 0.1 × 10−1 1.0 ± 0.1 × 10−1 9.3 ± 0.9 × 10−2 7.9 ± 0.7 × 10−2 7.4 ± 0.5 × 10−2 6.6 ± 0.5 × 10−2

0.0311 6.3 ± 3.0 × 10−2 8.5 ± 1.9 × 10−2 7.6 ± 1.0 × 10−2 7.5 ± 0.7 × 10−2 6.3 ± 0.5 × 10−2 5.7 ± 0.4 × 10−2 5.0 ± 0.4 × 10−2

0.0411 5.9 ± 1.9 × 10−2 6.8 ± 1.1 × 10−2 7.2 ± 0.7 × 10−2 6.8 ± 0.7 × 10−2 5.7 ± 0.4 × 10−2 4.9 ± 0.3 × 10−2 4.4 ± 0.2 × 10−2

0.0543 4.5 ± 1.7 × 10−2 5.3 ± 1.0 × 10−2 4.7 ± 0.7 × 10−2 4.3 ± 0.5 × 10−2 4.2 ± 0.3 × 10−2 3.8 ± 0.3 × 10−2 3.5 ± 0.2 × 10−2

0.0717 4.9 ± 1.2 × 10−2 3.9 ± 0.8 × 10−2 3.6 ± 0.5 × 10−2 3.5 ± 0.3 × 10−2 3.2 ± 0.2 × 10−2 2.8 ± 0.2 × 10−2 2.6 ± 0.1 × 10−2

0.0947 2.5 ± 1.1 × 10−2 2.6 ± 0.6 × 10−2 2.8 ± 0.5 × 10−2 2.7 ± 0.3 × 10−2 2.5 ± 0.2 × 10−2 2.3 ± 0.2 × 10−2 2.1 ± 0.1 × 10−2

0.1250 2.8 ± 0.8 × 10−2 2.7 ± 0.5 × 10−2 2.1 ± 0.3 × 10−2 2.2 ± 0.2 × 10−2 1.9 ± 0.2 × 10−2 1.7 ± 0.1 × 10−2 1.6 ± 0.1 × 10−2

0.1651 2.0 ± 0.6 × 10−2 1.8 ± 0.4 × 10−2 1.8 ± 0.3 × 10−2 1.7 ± 0.3 × 10−2 1.5 ± 0.2 × 10−2 1.4 ± 0.1 × 10−2 1.3 ± 0.1 × 10−2

0.2180 1.8 ± 0.5 × 10−2 1.3 ± 0.3 × 10−2 1.4 ± 0.3 × 10−2 1.4 ± 0.2 × 10−2 1.2 ± 0.1 × 10−2 1.0 ± 0.1 × 10−2 9.9 ± 1.3 × 10−3

0.2879 7.2 ± 4.4 × 10−3 1.1 ± 0.3 × 10−2 1.0 ± 0.2 × 10−2 9.8 ± 2.0 × 10−3 9.2 ± 1.7 × 10−3 8.1 ± 1.3 × 10−3 7.3 ± 1.1 × 10−3

0.3802 9.4 ± 3.6 × 10−3 8.3 ± 2.2 × 10−3 7.4 ± 2.0 × 10−3 6.6 ± 1.7 × 10−3 5.7 ± 1.4 × 10−3 5.2 ± 1.0 × 10−3 4.7 ± 0.9 × 10−3

0.5021 5.5 ± 2.7 × 10−3 4.4 ± 2.1 × 10−3 5.1 ± 1.5 × 10−3 4.6 ± 1.2 × 10−3 3.7 ± 0.9 × 10−3 3.3 ± 0.8 × 10−3 3.0 ± 0.7 × 10−3

0.6630 4.8 ± 2.4 × 10−3 3.2 ± 1.8 × 10−3 3.1 ± 1.3 × 10−3 3.3 ± 1.2 × 10−3 2.7 ± 1.0 × 10−3 2.3 ± 0.8 × 10−3 2.1 ± 0.7 × 10−3

0.8755 1.7 ± 1.8 × 10−3 2.6 ± 1.4 × 10−3 2.5 ± 1.0 × 10−3 2.3 ± 0.9 × 10−3 1.4 ± 0.8 × 10−3 1.5 ± 0.6 × 10−3 1.3 ± 0.5 × 10−3

1.1561 2.0 ± 1.7 × 10−3 1.7 ± 1.2 × 10−3 1.6 ± 0.9 × 10−3 1.0 ± 0.8 × 10−3 8.5 ± 6.7 × 10−4 7.7 ± 5.8 × 10−4 7.8 ± 5.4 × 10−4

1.5266 − 5.1 ± 13.0 × 10−4 1.3 ± 9.4 × 10−4 1.0 ± 7.2 × 10−4 − 1.1 ± 6.8 × 10−4 − 0.2 ± 6.1 × 10−4 − 1.0 ± 4.8 × 10−4 1.0 ± 4.5 × 10−4

2.0158 − 7.4 ± 9.5 × 10−4 0.3 ± 7.1 × 10−4 − 2.9 ± 5.9 × 10−4 − 3.7 ± 5.5 × 10−4 − 5.4 ± 4.5 × 10−4 − 5.1 ± 3.6 × 10−4 − 4.6 ± 2.9 × 10−4

2.6618 − 4.0 ± 10.0 × 10−4 1.4 ± 7.1 × 10−4 − 2.7 ± 6.0 × 10−4 − 4.2 ± 4.9 × 10−4 − 2.6 ± 4.3 × 10−4 − 1.9 ± 3.9 × 10−4 − 3.0 ± 3.3 × 10−4

3.5148 − 9.4 ± 9.3 × 10−4 − 1.2 ± 0.5 × 10−3 − 1.0 ± 0.4 × 10−3 − 7.4 ± 4.3 × 10−4 − 4.7 ± 3.3 × 10−4 − 4.4 ± 2.9 × 10−4 − 4.2 ± 2.5 × 10−4

θ (degrees) 17.6 17.8 18.0 18.2 18.4 18.6

0.0019 9.0 ± 0.4 × 10−1 7.5 ± 0.3 × 10−1 6.5 ± 0.3 × 10−1 5.7 ± 0.2 × 10−1 5.0 ± 0.2 × 10−1 4.3 ± 0.2 × 10−1

0.0025 5.7 ± 0.3 × 10−1 5.0 ± 0.2 × 10−1 4.4 ± 0.2 × 10−1 3.9 ± 0.2 × 10−1 3.4 ± 0.2 × 10−1 2.9 ± 0.1 × 10−1

0.0033 4.0 ± 0.2 × 10−1 3.5 ± 0.2 × 10−1 3.0 ± 0.2 × 10−1 2.5 ± 0.2 × 10−1 2.3 ± 0.1 × 10−1 1.9 ± 0.1 × 10−1

0.0044 2.6 ± 0.1 × 10−1 2.3 ± 0.1 × 10−1 2.0 ± 0.1 × 10−1 1.8 ± 0.1 × 10−1 1.6 ± 0.1 × 10−1 1.4 ± 0.1 × 10−1

0.0058 1.9 ± 0.1 × 10−1 1.6 ± 0.1 × 10−1 1.4 ± 0.1 × 10−1 1.2 ± 0.1 × 10−1 1.1 ± 0.1 × 10−1 1.0 ± 0.1 × 10−1

0.0077 1.2 ± 0.1 × 10−1 1.1 ± 0.1 × 10−1 1.0 ± 0.1 × 10−1 9.0 ± 1.0 × 10−2 8.0 ± 0.9 × 10−2 7.1 ± 0.9 × 10−2

0.0102 1.0 ± 0.1 × 10−1 9.4 ± 0.9 × 10−2 8.6 ± 0.8 × 10−2 7.5 ± 0.8 × 10−2 6.7 ± 0.8 × 10−2 6.2 ± 0.8 × 10−2

0.0135 8.1 ± 0.8 × 10−2 7.4 ± 0.8 × 10−2 6.5 ± 0.7 × 10−2 5.8 ± 0.7 × 10−2 5.3 ± 0.7 × 10−2 4.8 ± 0.7 × 10−2

0.0178 6.5 ± 0.6 × 10−2 5.9 ± 0.5 × 10−2 5.3 ± 0.5 × 10−2 5.0 ± 0.5 × 10−2 4.4 ± 0.5 × 10−2 3.9 ± 0.5 × 10−2

0.0235 5.8 ± 0.4 × 10−2 5.3 ± 0.4 × 10−2 4.8 ± 0.4 × 10−2 4.1 ± 0.3 × 10−2 3.7 ± 0.3 × 10−2 3.3 ± 0.3 × 10−2

0.0311 4.5 ± 0.3 × 10−2 4.1 ± 0.3 × 10−2 3.8 ± 0.3 × 10−2 3.4 ± 0.3 × 10−2 3.0 ± 0.3 × 10−2 2.7 ± 0.2 × 10−2

0.0411 4.1 ± 0.2 × 10−2 3.4 ± 0.2 × 10−2 3.0 ± 0.2 × 10−2 2.7 ± 0.2 × 10−2 2.4 ± 0.2 × 10−2 2.1 ± 0.2 × 10−2

0.0543 3.1 ± 0.2 × 10−2 2.7 ± 0.2 × 10−2 2.4 ± 0.1 × 10−2 2.1 ± 0.1 × 10−2 1.9 ± 0.1 × 10−2 1.7 ± 0.1 × 10−2

0.0717 2.4 ± 0.1 × 10−2 2.0 ± 0.1 × 10−2 1.8 ± 0.1 × 10−2 1.6 ± 0.1 × 10−2 1.5 ± 0.1 × 10−2 1.3 ± 0.1 × 10−2

0.0947 1.8 ± 0.1 × 10−2 1.7 ± 0.1 × 10−2 1.5 ± 0.1 × 10−2 1.3 ± 0.1 × 10−2 1.2 ± 0.1 × 10−2 1.0 ± 0.1 × 10−2

0.1250 1.5 ± 0.1 × 10−2 1.3 ± 0.1 × 10−2 1.2 ± 0.1 × 10−2 1.0 ± 0.0 × 10−2 9.5 ± 0.8 × 10−3 8.4 ± 0.7 × 10−3

0.1651 1.1 ± 0.1 × 10−2 1.0 ± 0.1 × 10−2 9.6 ± 1.1 × 10−3 8.7 ± 1.1 × 10−3 7.7 ± 1.0 × 10−3 6.9 ± 0.9 × 10−3

0.2180 8.7 ± 1.2 × 10−3 7.8 ± 1.0 × 10−3 6.8 ± 0.9 × 10−3 6.2 ± 0.7 × 10−3 5.7 ± 0.7 × 10−3 5.0 ± 0.6 × 10−3

0.2879 6.3 ± 1.0 × 10−3 5.6 ± 0.9 × 10−3 5.0 ± 0.8 × 10−3 4.6 ± 0.7 × 10−3 4.1 ± 0.7 × 10−3 3.6 ± 0.6 × 10−3

0.3802 4.1 ± 0.8 × 10−3 3.7 ± 0.7 × 10−3 3.4 ± 0.7 × 10−3 3.0 ± 0.6 × 10−3 2.8 ± 0.6 × 10−3 2.5 ± 0.5 × 10−3

0.5021 2.7 ± 0.6 × 10−3 2.4 ± 0.5 × 10−3 2.3 ± 0.5 × 10−3 2.0 ± 0.4 × 10−3 1.8 ± 0.4 × 10−3 1.6 ± 0.3 × 10−3

0.6630 1.8 ± 0.6 × 10−3 1.5 ± 0.5 × 10−3 1.5 ± 0.5 × 10−3 1.2 ± 0.4 × 10−3 1.1 ± 0.4 × 10−3 1.0 ± 0.3 × 10−3

0.8755 1.0 ± 0.5 × 10−3 8.8 ± 4.7 × 10−4 8.3 ± 4.3 × 10−4 7.6 ± 3.8 × 10−4 7.2 ± 3.4 × 10−4 5.7 ± 3.0 × 10−4

1.1561 6.5 ± 4.5 × 10−4 6.6 ± 4.2 × 10−4 5.4 ± 3.7 × 10−4 5.6 ± 3.3 × 10−4 5.4 ± 3.0 × 10−4 4.5 ± 2.6 × 10−4

1.5266 1.2 ± 3.7 × 10−4 1.8 ± 3.2 × 10−4 1.7 ± 2.7 × 10−4 1.9 ± 2.6 × 10−4 1.7 ± 2.3 × 10−4 1.2 ± 2.1 × 10−4

2.0158 − 3.3 ± 2.6 × 10−4 − 2.0 ± 2.3 × 10−4 − 1.4 ± 2.0 × 10−4 − 1.1 ± 1.9 × 10−4 − 0.7 ± 1.7 × 10−4 − 0.8 ± 1.6 × 10−4

2.6618 − 2.1 ± 2.6 × 10−4 − 2.4 ± 2.3 × 10−4 − 1.8 ± 2.0 × 10−4 − 1.7 ± 1.8 × 10−4 − 2.0 ± 1.5 × 10−4 − 1.8 ± 1.4 × 10−4

3.5148 − 3.3 ± 2.0 × 10−4 − 2.8 ± 1.8 × 10−4 − 2.7 ± 1.5 × 10−4 − 2.6 ± 1.4 × 10−4 − 2.4 ± 1.3 × 10−4 − 1.8 ± 1.1 × 10−4
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Further details about the halo model used here can be found in the
Appendix D.

5.2 Redshift scaling

We aim to fit the halo model at the pivot redshift zp = 1.5. How-
ever, the galaxies in our samples have redshift distributions that are
too broad to be neglected or averaged over (see Fig. 5). Thus, our
approach is to produce ξ p

g ≡ ξg(z = zp), and scale it using a sim-
ple prescription to generate ξ g at all other redshifts. We then use
equation (14) to make a redshift projection of ξ g(z) on to ω(θ ).

The scaling we apply is based on how the large-scale clustering
(represented by the two-halo term ξ 2h

g , see equation D16) varies
with redshift. This change in amplitude is driven by the growth
factor G(z) of the dark matter and the galaxy bias bg(z). Hence, we
can write

ξg(z) = G2(z)

G2(zp)

b2
g(z)

beff
g

2 ξ p
g , (22)

where beff
g and ξ p

g are set at zp by construction. Here, we have
made the approximation that the entire correlation function can be
scaled with a single factor. However, the relative amplitude of the
one- and two-halo terms is known to evolve (Conroy et al. 2006;
Watson, Berlind & Zentner 2011), in the sense that typically the
one-halo term is more prominent at higher redshift. We have tested
how ω(θ ) would change if we allow for some differential redshift
scaling between the one- and two-halo terms of ξ g. This was done
applying a linearly redshift-dependent factor to the one-halo term,
in addition to the general scaling from equation (22). In this way,
below and above zp the one halo becomes reduced and boosted,
respectively. We find that this has a very little effect on the resulting
ACF. This is because the redshift distributions of our galaxies are
more or less symmetric, so that the relative scaling of the one halo
above and below zp is almost cancelled when these contributions
are summed together. In reality, this relative scaling might have a
more complex dependence on redshift, but we believe that the linear
representation we considered here is adequate given the symmetric
and peaked forms of our redshift distributions. Thus, we find that
our model is not sensitive to the particular evolution of the one-halo
term and do not incorporate it in the determination of our results.

Our general approach is to calculate the bias as a function of the
evolving median stellar mass, bg(z) = bg(M̄ full

� (z)). For this purpose,
we make use of the galaxy bias as a function of stellar mass and red-
shift presented in Moster et al. (2010, hereafter M10), bM10

g (M�, z).
However, we do not use their bias values directly since we need
to enforce that bg(zp) = beff

g , i.e. the bias function has to match the
HOD bias at the redshift of the fit. Our bias function is normalized
to hold that constraint, but the scaling at other redshifts is adopted
from M10 (for a given stellar mass). To accomplish this, first we
define the stellar mass M ′

� where bM10
g (M ′

�, zp) = beff
g . Ideally, M ′

�

would be equal to the median mass of the sample from Section 3.3,
M̄ full

� (zp), but they differ. This is not surprising, since the modelling
in M10 is based on abundance matching, which is different from our
clustering approach and can potentially yield differing values of the
bias. In addition, some variations are expected given the differences
in models and codes used to derive stellar masses in M10 and our
reference sample. However, the M10 masses by themselves are not
relevant to us, and they simply represent a quantity or label that links
brighter populations of galaxies with a larger bias. Therefore, it is
sufficient to assume a priori that all these masses hold a monotonic
relationship with sample luminosity, which has been proven correct

Figure 8. Comparison of the normalized redshift distribution φ(z) of the
brightest sample (15<[4.5]<16.2), which has the most prominent low-
redshift bump, and the corresponding Limber kernel. The y-scaling is ar-
bitrary in either curve. In the Limber projection, the bias function boosts
the contribution of high-z galaxies, since they are also more massive. This
effect minimizes the contribution of the low-redshift bump to the ACF.

a posteriori. In other words, M ′
� does scale monotonically with M̄ full

�

across all samples. So, for a given sample, what we calculate is the
offset �logM� = logM ′

� − logM̄ full
� at zp. In this way, we are able

to ‘convert’ our stellar masses into M10 masses. Our bias function
then becomes

bg(z) = bM10
g

(
logM̄ full

� (z) + �logM�, z
)
. (23)

In Section 3.3, we calculated M̄ full
� (z) for all samples. For the bright-

est ones, the data become a bit noisy due to the low number density
(see Fig. 6). This mass distribution is consistent with having a con-
stant shape and varying it by some normalization that scales with
the magnitude limit of the sample. Thus, we adopt the functional
form of the largest sample M̄ full

� (z; k = 13), which is given by the
polynomial fit shown in Fig. 6. The normalization of this function
does not need to be taken into account, since it will be implicitly
incorporated in �logM�.

The stellar mass dependence of the bias has an important ef-
fect on ω(θ ). Because the stellar mass of our samples is larger at
high redshift (about 10 times larger at z = 1.5 than at z = 0.5;
see Fig. 6), the bias will place a stronger weight there than at low
redshift. This helps to minimize the contribution of the undesired
low-redshift bump at z ∼ 0.3. Additionally, there are other func-
tions weighing in the Limber projection, which is proportional to
H(z)[φ(z)bg(z)G(z)]2, as inferred from equations (14) and (22).
Fig. 8 shows the comparison between the redshift distribution φ(z)
and the full Limber kernel. It is shown for the brightest sample
because it is the one with the highest fraction of low-redshift con-
taminants. In the end, the low-redshift contribution to the clustering
is minimized due to the decrease in M̄ full

� (z), which suppresses bg(z).
This effect is convenient for our analysis, since it makes the cluster-
ing properties of our samples highly representative of the z ∼ 1.5
Universe. Moreover, in Appendix E we investigate how the final
results are impacted by the use of available optical data in the SSDF
field to remove low-redshift sources. We find that the changes in
the results are negligible compared to keeping these sources and
modelling their weak contribution to the clustering, as done in this
section.

A possible concern at this point is that the results from M10
would be ‘built in’ to ours through the coupling with equation (23).
However, the normalization of the bias is set by our own data,
and it is the redshift modulation that we incorporate from these
authors. In addition, we have explored variations of bM10

g (M�, z)
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and determined that our model is not very sensitive to such changes.
As seen in Fig. 8, the redshift modulation plays a role in weighing
galaxies at z = 0.3 versus z = 1.5. Basically, any function that
down-weights the low-redshift bump will do so in a manner that it
becomes quickly subdominant. We just need a function that reflects
approximately the variation of the bias with stellar mass and redshift,
which is precisely what is provided by scalings from M10. Our
model does not strongly depend on the detailed form of this function,
and we have verified that our results are not pre-set in a significant
way by those in M10.

6 H O D M O D E L FI T S

The fitting procedure is based on maximizing the likelihood of the
model given the observable L(mod|obs) = e−χ2

, with

χ2 =
N∑

i=0

N∑
j=0

[
ωm(θj ) − ω̄(θj )

]
C−1

ij [ωm(θk) − ω̄(θk)] . (24)

Here, ωm and ω̄ are the model and observed ACFs, Cij is the co-
variance matrix from equation (16) and N = 28 is the number of
angular bins. The halo occupation model we consider has a total
of five parameters: Mmin, M ′

1, M0, α and σ logM. Even though the
signal-to-noise ratio (S/N) of our ACFs is very good (11σ–31σ

with respect to the null hypothesis), the fact that it is the result of
projecting the SCF across a wide redshift distribution reduces our
constraining power on the HOD model. Thus, to avoid overftting
the data, we choose to fix a number of parameters. We have run
sets of Monte Carlo Markov chains to explore the sensitivity of the
model to different choices of constraints. To evaluate this sensitiv-
ity, we use the Akaike criterion (Akaike 1974), which states that an
extra free parameter is justified only when the new best-fitting χ2

is reduced by an amount larger than 2. For either σ logM and M0, this
criterion is not fulfilled. Thus, we follow Conroy et al. (2006) and
set logM0 = 0.76 logM1 + 2.3. We also fix σ logM = 0.2, following
a number of studies that support typical values >0.15 (More et al.
2009, 2011; Behroozi et al. 2010, 2013; Wake et al. 2011; Moster
et al. 2013; Reddick et al. 2013). In the case of α, we have that
�χ2 ≈ 3, which would mildly favour setting it free. However, this
parameter has an intrinsic degeneracy with M ′

1 and when left free to
float, the best-fitting values show a significant stochastic component
in their behaviour with respect to sample luminosity. It cannot be
constrained as well as M1, and thus we decide to fix it to a common
choice in the literature that is also supported by simulations, α = 1
(Kravtsov et al. 2004; Tinker et al. 2005; Zentner et al. 2005; Zheng
et al. 2005; Wake et al. 2011; Zehavi et al. 2011; Leauthaud et al.
2012). None of the final conclusions in this work change whether
or not we allow α to vary freely. Additionally, equation (D7) fixes
Mmin through the observed galaxy number density, leaving M ′

1 as the
only parameter left in the fit. In Appendix F, we comment on how
the resulting HOD model changes if we leave nearly all parameters
free in the fit.

Obtaining the best-fitting value of M ′
1 is straightforward. The

error in the fit can be estimated from the width of the likelihood
distribution, but it does not account for departures arising from
cosmic variance. To account for that, we perform a set of 100
random realizations of the redshift distribution and number density
at zp, which we call φrd

cut(z) and nrd
g . We find the best HOD fit M ′

1

each time, along with the corresponding derived parameters. Each
redshift j bin in φrd

cut, j is drawn from a normal distribution with
mean φcut, j and standard deviation as in Section 3.1 (see Fig. 5).
The value for nrd

g is produced in a similar manner; using a normal

Figure 9. Observed ACF (points with error bars) of the samples
15 < [4.5] < {16.2, 16.8, 17.4, 18.0, 18.6}. The solid curves correspond to
the best model fits. An extra decade has been added between consecutive
curves for easier visualization. The error bars are drawn from the diagonal
elements of the covariance matrix (equation 16). In general, neighbouring
points are positively correlated, while those far apart are anticorrelated. This
is an inherent property of the ACF estimation (Norberg et al. 2001; Scranton
et al. 2002), but can be effectively taken into account via a metric of the
form of equation (24).

Table 3. Best-fitting SHMR parameters. Columns 1 and 2: SHMR
functions (see equations 25–27) and parameters that describe them.
Column 3: prediction of the parameter values at z = 1.5, derived by
these authors using data from luminosity and stellar mass functions at
different redshifts. Column 4: parameter values derived from fitting
these functions to our clustering data at z = 1.5.

Function Parameter Prediction z = 1.5 SSDF fit

NM 0.020 ± 0.007 0.0139 ± 0.0003
SM logMM

p 12.31 ± 0.32 12.25 ± 0.02
(Moster βM 0.88 ± 0.20 1.64 ± 0.09
et al. 2013) γ M 0.81 ± 0.12 0.60 ± 0.02

logMpeak 12.33 12.44 ± 0.08

logεB −1.70 ± 0.16 −2.03 ± 0.17
SB logMB

p 11.88 ± 0.13 12.03 ± 0.15
(Behroozi αB −1.64 ± 0.09 −2.10 ± 0.16
et al. 2013) γ B 0.12 ± 0.25 0.32 ± 0.26

δB 2.65 ± 0.90 3.31 ± 1.15
logMpeak 12.23 12.44 ± 0.07

logMY
0 9.57 ± 0.31 10.65 ± 0.13

SY logMY
p 10.48 ± 0.22 10.37 ± 0.30

(Yang αY 0.56 ± 0.11 0.16 ± 0.04
et al. 2012) βY 35 ± 30 100

logMpeak 12.38 12.44 ± 0.06

distribution with mean and standard deviation equal to the value
and error of ng in Table 1. The scatter in all parameters from the
random realizations is clearly dominant over that arising from the
width of the M ′

1 likelihood in the fiducial fit, especially due to the
variations in ng. We can therefore approximate the final errors as
those from the random realizations.

Fig. 9 shows the observed ACF and the model fits for a few
samples. The values and errors for all relevant parameters are given
in Table 3.
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7 THE STELLAR-TO -HALO MASS R ATIO

Haloes of masses equal to Mmin host on average 0.5 central galaxies
with luminosities greater than the sample threshold (equation 17).
Zheng et al. (2007) showed analytically that central galaxies living
in these particular haloes have a median luminosity corresponding
to the limit of the sample. This links halo masses with luminosities,
albeit with some scatter �0.15 dex (Zehavi et al. 2011; Coupon
et al. 2012). However, we are interested in the connection with
stellar masses, which also have a well-defined mean and scatter
at fixed luminosity (see Section 3.3). Hence, we can link Mmin to
M lim

� , with a scatter (σ logM) that ought to be close to the quadratic
sum of the scatters from the luminosity–Mmin and luminosity–M lim

�

relations. We measure the latter to be around 0.2 dex, and the former
is expected to be similar. Thus, the fact that we fix σ logM = 0.2
might seem an underestimation. However, as we will discuss in
Appendix F, an unconstrained HOD fit does not prefer larger values
for this parameter. Also, the final results do not change significantly
by increasing it to larger values as 0.4 dex. We thus retain our choice
and proceed.

The values of M̄ lim
� and Mmin for our samples can be found in

Table 1. Their ratio yields the SHMR, which is plotted as a function
of halo mass in Fig. 10 for our different sets of stellar masses. The
vertical error bars are a combination of the halo mass uncertainty
and the error in the median stellar masses (equation 10), i.e. it
does not represent the scatter in stellar mass at fixed halo mass.
It is interesting that the error bars do not get notably bigger for
brighter samples, even though the ACFs of those are much noisier
and the stellar mass errors are indeed larger. The reason is that
Mmin becomes progressively less sensitive to the HOD fit at higher
luminosities. The fit is based on M ′

1, which falls close to the steep
drop of the halo mass function (equation D1) in the bright samples

and makes the overall HOD model be weakly affected by the satellite
occupation (e.g. equation D7). Thus, the error contribution from M ′

1

is minimized, and that from ng and M lim
� increases, keeping the total

error roughly constant across the different samples.

7.1 Comparison to other results at z = 1.5

There are several studies that have tried to constrain the SHMR at
z > 1, based on abundance matching (Behroozi et al. 2013; Moster
et al. 2013), HOD modelling (Zheng et al. 2007; Wake et al. 2011;
Coupon et al. 2012) and extensions using conditional luminosity
functions (Yang et al. 2012; Wang et al. 2013). Some of these
works also provide their own parametric form for the SHMR as a
function of halo mass, and we will use three of them to fit our points.
These are the forms from Yang et al. (2012), Moster et al. (2013)
and Behroozi et al. (2013) (hereafter Y12, M13, B13, respectively),
which read

SY (m) = MY
0

(
m

MY
p

)αY +βY (
1 + m

MY
p

)−βY

, (25)

SM (m) = 2NM

⎡
⎣

(
m

MM
p

)−βM

+
(

m

MM
p

)γ M
⎤
⎦

−1

(26)

and

logSB (m) = log(εBMB
p ) + f

(
log

m

MB
p

)
− f (0) − log(m) (27)

Figure 10. SHMR from our study and predictions from other authors. The dashed and solid lines are predictions at z = 0 and 1.5, respectively. Our points
are plotted as log(M̄ lim

� /Mmin) versus logMmin. The error bars are strongly correlated between neighbouring points, since our galaxy samples are defined in
cumulative magnitude bins. We fit the parametrizations from those authors to our data, robustly measuring a maximum at logMpeak = 12.44 ± 0.08. This
characteristic mass scale is ∼4 times larger than what is found at z = 0. The M13 fit is shown as the thin red curve. We also include data from Wake et al. (2011)
as empty circles, where their M05-based stellar masses have been increased by 50 per cent to approximately match the BC03 masses used by other authors.
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with

f (x) = −log(1 + 10αBx) + δB [log(1 + exp(x))]γ
B

1 + exp(10−x)
. (28)

The superscript labels {Y, M, B} refer to the author names. The
position of the peak is mostly modulated by the pivot mass MY,M,B

p .
In Y12 and M13, the low-mass logarithmic slopes are set by βM,
αY + βY − 1 and the high-mass slopes by γ M, αY − 1, respectively.
In the case of B13, the link between the slopes and the parameters is
less straightforward, but the low- and high-mass regimes are mostly
modulated by αB and δB. γ B tunes the high-mass behaviour of
logSB (m) going from logarithmic at γ B = 0 to power law at γ B = 1
(see B13). We set all of these parameters free while performing
orthogonal regression fits of SY, M, B to our measurements of the
SHMR. However, we do enforce γ B ≤ 1 and βY ≤ 100 (see Y12),
which are limits by definition.

These authors mainly use measures of the stellar mass func-
tions at different redshifts to build a redshift evolution model of
the SHMR. They provide explicit redshift dependence for all pa-
rameters in equations (26) and (27). Thus, we use them to compare
our measurements to the predicted SHMR of these authors at the
redshift of our survey. This is shown in Fig. 10, where we plot
their predictions at low and high redshift. In addition, the specific
parameter values of the z = 1.5 curves, for both the predictions and
the fits to our data, are displayed in Table 3. The normalization val-
ues NM, logεB and logMY

0 are also fitted, although we disregard any
interpretation of them because there are important systematic uncer-
tainties in the stellar masses between different authors. A thorough
examination of these to allow a meaningful comparison is beyond
the scope of this paper. For the current purposes, we simply assume
that the differences in stellar masses are due to a simple logarithmic
offset. This assumption holds well when comparing different sets of
masses in the COSMOS and EGS catalogues. In addition, M13 and
B13 use stellar masses based on BC03 and Chabrier IMF, which
matches our fiducial choice of masses. Y12 use masses produced
with the Fioc & Rocca-Volmerange (1997) models and Kroupa IMF,
but we still do not expect a significant deviation from a constant
offset when compared to our masses (Barro et al. 2011b). We have
checked this based on the masses from this particular model that are
also available in the EGS control catalogue. We also note that we
use the SHMR in Y12 that is based on fits ‘CSMF/SMF1’, where
only stellar mass functions are utilized.

We limit the comparison between all measurements to the cen-
troid position and slopes of the SHMR. There are some discrepan-
cies when comparing our results to the predictions from the other
authors, but these are not dramatic (see below). The centroid of
the SHMR is computed as the actual peak position in the para-
metric relations, and the fits of these models to our data show
logMpeak = 12.44 ± 0.08 (see Table 3). We did not compute confi-
dence intervals for the Mpeak predictions because it requires knowl-
edge of the explicit covariance between their parameters fits. Our
value is larger than these predictions; based only on our errors, it lies
0.8σ above Y12, 1.2σ above M13 and 2.7σ above B13. Because
their errors are not being taken into account, these offsets should
not be treated as absolute levels of inconsistency with respect to our
study.

For the slopes, there are also some slight discrepancies. To better
visualize this comparison, we have plotted in Fig. 11 the prediction
and the fits to our data for each parametric model. All curves in each
panel are scaled in the x-axis to match the peak of the prediction,
and scaled in the y-axis to set all peak heights to zero. The idea is to
fix the peak position (in both axes) of all curves to better compare

Figure 11. Comparison of the high- and low-mass slopes between model
predictions {M13, B13, Y12} at z = 1.5 and the fits of their parametric
models to our data. In each panel, we have offset all curves to the same
peak value and shifted our curves in mass to match the peak position of the
prediction. This has been done to help the eye in comparing the slopes at
either side of the peak. Our data show a moderate discrepancy compared to
the predictions.

the slopes on either side. In this case, the slopes are the approximate
power-law index at either side of the peak, and is not necessarily
linked to a parameter in a unique manner (except for M13, where
the slopes are independently controlled by βM, γ M). In comparison
to M13, our low-mass slopes are steeper (higher βM) and the high-
mass slopes are shallower (lower γ M) than their predictions. With
respect to B13, the low-mass slopes are in agreement but our high-
mass slopes are shallower. In the case of Y12, our slopes are steeper
at both low and high mass.

As explained in Section 1, the low-mass slope can be directly re-
lated to the importance of energy- versus momentum-driven winds.
In general, we find a steeper low-mass slope than the predictions,
which favours energy-driven winds. At high masses, the interpre-
tation of the slope is less clear, since AGN feedback and galaxy
mergers should also have an important contribution.

Another important study to compare our measurements with is
Wake et al. (2011). It is based on HOD modelling of ∼1010 M�
stellar mass limited galaxies at z ∼ 1.5, which makes it similar to our
work. These authors had the advantage of using data with accurate
photometric redshifts and stellar masses, but also the drawback of
sampling a small region of the sky (NEWFIRM survey, 0.25 deg2).
They had very few galaxies around 1011 M� and therefore it was
not possible to map the full peak of the SHMR. Their data are shown
in Fig. 10, where we have scaled the stellar masses by 50 per cent to
roughly transform them from the Maraston (2005, hereafter M05)
model to BC03. These authors performed a parametric fit and found
a peak at logMpeak = 12.63 (an estimated uncertainty was not pro-
vided), which lies 2.5σ above our result of 12.44 ± 0.08.

7.2 Evolution with redshift

At this point, we can compare our result for the peak in the SHMR
with other studies at different epochs and trace its evolution with
redshift (Fig. 12). We include HOD results from Zehavi et al. (2011),
Zheng et al. (2007), Leauthaud et al. (2012), Coupon et al. (2012)
and Wake et al. (2011), as well as predictions from M13, B13 and
Y12. As mentioned earlier, our peak lies above the predictions and
below the value inferred by Wake et al. (2011). Looking at the trend
with values at other epochs, the peak mass seems to have evolved in
a monotonic and quasi-linear way with redshift. Our data support
a change of logMpeak = 12.44 → 11.8 through z = 1.5 → 0. This
means that the halo mass scale that is most efficient at forming
and accreting stars to the central galaxy has decreased by a factor
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Figure 12. Top: evolution in the M1/Mmin ratio for samples with density
ng = 10−3Mpc−3, collected from different HOD studies. A decline in this
ratio with redshift is measured consistently and agrees with results from N-
body simulations. The basic interpretation is that at high redshift there is a
larger rate of halo infall, which increases the fraction of similar mass galaxies
and reduces M1/Mmin (see the text). Bottom: evolution in the peak halo mass
of the SHMR. Our results show that Mpeak has decreased by a factor of 4.5
through z = 1.5–0. In combination with other HOD measurements (points),
the evolution seems to be monotonic. The curves show predictions from
conditional luminosity function and abundance-matching studies.

of 4.5 during this redshift range. Thus, the downsizing trend of
galaxies has continued steadily during the last 10 Gyr. Low-mass
galaxies have grown faster than their haloes, while the opposite
trend happened for high-mass galaxies.

8 SAT E L L I T E G A L A X I E S

8.1 Satellite fraction

The satellite fractions for all of our samples are displayed in Table 1
and plotted in the lower panel of Fig. 13. Note that the satellites
making up this fraction are above the sample flux limit, i.e. fsat does
not refer to the total fraction of satellites that a central galaxy at
the flux limit has. The satellite fraction clearly decreases towards
the brighter end, which is a manifestation of the drop in the halo
mass function. Based upon the model we use, M1 is the scale that
sets the occupation number of satellites in a halo of a given mass,
and the number of such haloes is given by the mass function. If M1

approaches the cutoff scale of the mass function, then the satellite
contribution to the total density will be reduced compared to that
of central galaxies. This effect is seen in most studies (Zheng et al.
2007; Wake et al. 2011; Zehavi et al. 2011; Coupon et al. 2012;
Tinker et al. 2013).

Our faint-limit value is fsat ∼ 0.2 (see Fig. 13). Compared to the
results of fsat ∼ 0.3 obtained at z = 0 by Zehavi et al. (2011), our
value is suggestive of a mild increase in the satellite fraction with

Figure 13. Results from the HOD fits. Each point denotes a sample defined
by a limiting apparent magnitude threshold, which is associated with the
median stellar mass M̄ lim

� . In the top panel, the shaded region represents the
±1σ interval of direct large-scale bias fits. These are consistent with
the HOD bias.

cosmic time. A similar conclusion was also reached by Coupon et al.
(2012) based on their comprehensive study of samples at 0 < z < 1,
and such evolution is predicted by some simulations (e.g. Wetzel,
Cohn & White 2009; Wetzel et al. 2013). We caution, however,
that the sample in Zehavi et al. (2011) extends to fainter absolute
magnitudes than our data set (M� + 2.4 versus M� + 1.2), and so the
evidence from this comparison is suggestive rather than conclusive.

8.2 The M1/Mmin relation

A deeper insight into the relationship between haloes and their
satellites is given by the M1/Mmin ratio. As mentioned in previous
sections, haloes typically become occupied by a central galaxy at
Mmin and gain an additional satellite at M1. Thus, at fixed Mmin,
lowering M1 would directly increase the overall satellite fraction.
However, M1/Mmin holds further clues in relation to the galaxies
that occupy these haloes. Because of the decline in the halo mass
function towards the massive end, most of the haloes are small and
have masses around Mmin. These will typically host galaxies that
are also small, with stellar mass close to the sample limit M̄ lim

� .
The satellites considered have masses that are also near this limit
and living in haloes near M1, where the central galaxy can have a
mass much larger than M̄ lim

� . However, if M1 approaches Mmin, then
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its central galaxy will have a mass closer to M̄ lim
� . In the case of

M1/Mmin � 1, the satellite will have a stellar mass around M̄ lim
� and

the central will be slightly more massive than that. Thus, when this
ratio is smaller, there is an increased fraction of centrals that have a
satellite of similar stellar mass.

In the local Universe, M1/Mmin ≈ 17 (Zehavi et al. 2011;
Beutler et al. 2013). On the other hand, we measure M1/Mmin ≈
9 at z = 1.5. A decline of this ratio with redshift had been pre-
dicted by simulations (Kravtsov et al. 2004; Zentner et al. 2005)
and measured by abundance matching (Conroy et al. 2006) and
other HOD studies. Ratios at different redshifts and fixed number
density ng = 10−3 Mpc−3 are shown in the top panel of Fig. 12,
where it can be seen that there is a general increase towards later
times. The reason why both fsat and M1/Mmin are higher at low red-
shift is due to the evolution of the mass function. At low redshift,
there are very large haloes that can host multiple satellites, which
helps increase the average satellite fraction. However, the fraction
of galaxies that are satellites with masses close to the limit of the
sample is still larger at high redshift. This happens because the halo
infall time-scale is lower, which enhances their accretion rate on
to other structures and reduces the gap between M1 and Mmin (see
below and Conroy et al. 2006).

However, the most interesting result we derive is the trend of
M1/Mmin with sample luminosity. The middle panel of Fig. 13
shows indications of a slight rise at high luminosities, which is not
obviously expected. At z � 1, this ratio has been observed to be
constant or decrease with increasing luminosity at fixed redshift
(Zheng et al. 2007; Blake et al. 2008; Abbas et al. 2010; Matsuoka
et al. 2011; Zehavi et al. 2011; Leauthaud et al. 2012; Beutler et al.
2013). Simulations also predict that the accretion rate is larger for
more massive haloes at all times (Zentner et al. 2005; Fakhouri
& Ma 2008; McBride, Fakhouri & Ma 2009; Wetzel et al. 2009;
Fakhouri et al. 2010), which would lower M1/Mmin at the bright end.
We measure the opposite trend at z = 1.5. Interestingly, Wake et al.
(2011), the only other study at this redshift that measured HOD for
stellar mass selected samples, also obtained a slight increase of this
ratio with sample mass. However, those authors did not explore this
effect in depth. The results from Coupon et al. (2012) also hint a
similar trend at z < 1 in haloes of mass <1013 M�, although they
are consistent with a constant ratio.

In order to better compare the results from a few different au-
thors, we plot M1/Mmin as a function of cumulative number density
in Fig. 14. For visual clarity, we show in the left- (right)-hand
panel those results that follow an increasing (decreasing) trend with
density, along with our data. A caveat in this comparison is that,
in reality, the number density of a given population does not re-
main constant through redshift. However, the data from Zheng et al.
(2007) and Coupon et al. (2012) do not follow the same trends, even
though they sample similar redshifts. Thus, from the observational
side, the 0 < z < 1 data do not offer a consensus regarding the trend
with luminosity. At z = 1.5, our results and those from Wake et al.
(2011) do support a minimal rise in M1/Mmin with luminosity.

As shown in Fig. 14, two families of curves can be defined. Our
results, Wake et al. (2011) and Coupon et al. (2012) show a similar
shape, offset in the y-axis according to redshift. Meanwhile, Zehavi
et al. (2011) and Zheng et al. (2007) are similar to one another.
One possible effect leading to the disparity between the two sets
of results may be the particular selection of galaxy samples. Those
in Zehavi et al. (2011), Zheng et al. (2007) and Coupon et al.
(2012) are limited by absolute magnitude in the optical. Wake et al.
(2011) select directly in stellar mass, and we make a luminosity
selection that is later matched to a stellar mass limited sample.

Figure 14. Ratio between M1 and Mmin as a function of cumulative galaxy
number density. We compare our data (red points) with other studies, group-
ing them in those showing a decrease (left-hand panel) or an increase (right-
hand panel) with number density. The dashed line indicates the ratio of
17 presented in Zehavi et al. (2011) as the typical value for low-redshift
galaxies.

Thus, we find no clear explanation for the existence of these two
families of curves regarding sample selection. In addition, all these
authors (including us) use a very similar form of the HOD, and
variations in the chosen cosmology do not have such a strong impact.
Regarding possible systematics effects in our modelling, we test
different possibilities in Appendices F and E and find nothing that
would alter our conclusions.

8.3 Physical mechanisms for a mass-dependent evolution

The rise of M1/Mmin with luminosity is not clearly detected. How-
ever, Zehavi et al. (2011) and Zheng et al. (2007) very clearly
measure the opposite behaviour at redshifts z = 0 and 1, respec-
tively, so that even if our data follow a flat trend at z = 1.5, it
would imply that evolution has taken place. Interestingly, there is
no obvious mechanism that could be responsible for this change,
and we speculate with some possibilities in what follows. The dy-
namical processes at play can be reduced to a competition be-
tween accretion and destruction of satellites. Regarding the former,
big structures have recently assembled a larger fraction of their
mass than smaller counterparts, at all times (Wechsler et al. 2002;
Zentner et al. 2005; Fakhouri et al. 2010). In other words, the specific
growth rate of haloes is an increasing function of mass. Regarding
the latter, the dynamical time in bigger haloes is larger, contributing
to a slower destruction of accreted satellites. These effects yield
a larger number of recently accreted and undisrupted satellites in
larger haloes, which would produce a decrease in M1/Mmin towards
higher masses.

So, what additional mechanism can reverse this trend at high
redshift? This mechanism could involve the ratio of destruction
to accretion being larger at high masses, which is possible if the
dynamical time-scale decreases considerably with mass. However,
a caveat in these scenarios is that we are implicitly considering that
galaxies are accreted or disrupted in the same way as haloes, which
does not have to hold. What we are really tracking are galaxies,
since M1/Mmin is inversely proportional to the occurrence of galaxy
pairs with masses close to the sample limit. Thus, there could be
a star formation dependent process that drives the trend we see
with stellar mass. For example, Wetzel et al. (2013) show that the
star formation in satellites fades at the same rate as the central
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galaxy for a few Gyr after accretion, but then undergoes a rapid
quenching period. They find that quenching time-scale is shorter
for more massive satellites. Thus, if the central galaxy outgrows
the satellites in a way proportional to its own mass, this would
produce a lower fraction of similar mass pairs and play in favour
of our trend. In addition, such a mechanism would need to become
milder towards low redshift, so that the trend becomes inverted. This
allows us to restate our previous question: what physical process
would more efficiently quench satellites in similar mass pairs and is
more important at high redshift? We do not have a plausible answer
for this question.

9 G A L A X Y B I A S

At small scales, the complex baryonic processes of galaxy forma-
tion break the homology between the spatial distribution of galaxies
and dark matter. However, at large scales, the gravitational effects
of dark matter dominate the dynamics and the overdensity of some
selection of galaxies is expected to match that of dark matter mul-
tiplied by a scaling factor, the galaxy bias bg. In the HOD models,
this quantity is described as a number-weighted average of the halo
bias (see equation 20) and ideally would match the square root of
the ratio between the large-scale SCF of galaxies and dark matter
(equation 1).

Our measurements of the effective galaxy bias are shown in the
top panel of Fig. 13, where we plot against apparent magnitude
threshold. Bright (massive) galaxies have a larger bias than faint
(small) ones, a trend that has been determined in many other studies
(Benoist et al. 1996; Norberg et al. 2001; Tegmark et al. 2004;
Zehavi et al. 2005; Brodwin et al. 2008; Brown et al. 2008; Foucaud
et al. 2010; Zehavi et al. 2011; Matsuoka et al. 2011; Coupon et al.
2012; Jullo et al. 2012; Beutler et al. 2013; Mostek et al. 2013) and
is expected because luminous galaxies reside on average in more
massive haloes, which are more biased with respect to dark matter
(White et al. 1987; Kauffmann et al. 1997). In addition to beff

g , we
also fit the large-scale bias directly to our measured ACF at θ >

0.◦05 (�4 comoving Mpc at z = 1.5). This fit does not depend on
the HOD, and is performed by scaling the dark matter SCF in a
similar way to the procedure in Section 5.2, but leaving the z = 1.5
bias as a free parameter. The inputs from the galaxy population
are the redshift distributions and the evolution in the median mass
to modulate the bias across redshifts, but not the galaxy number
density. The shaded regions in the top panel of Fig. 13 represent
the ±1σ confidence intervals for the direct bias fit, which is in
good agreement with the HOD values. Thus, we find that the HOD
modelling of our data makes a good description of the large-scale
bias.

Nonetheless, we note that this description is not perfect. In Ap-
pendix F, we comment on how a HOD fitted with all parameters
allowed to vary freely makes σ logM float down to unphysical val-
ues �0, trying to maintain a high bias that otherwise would yield
a smaller value due to small shifts in the fitted Mmin and ng. The
overall HOD is not very sensitive to σ logM and therefore this is not a
significant problem. However, it points towards the amplitude of our
observed ACFs being slightly too large to be perfectly reproduced
by the combination of halo bias and halo mass functions.

9.1 Comparison to Wake et al. (2011)

We find a slight bias excess in our data, a result that has been noted to
a larger extent in other HOD studies of stellar mass limited samples
at 1 < z < 2. Matsuoka et al. (2011) and Wake et al. (2011) find

that their ACFs are too strong to be reproduced by a halo model
with the observed density of galaxies. Those fits to the clustering
plus density were compared to fits to the clustering only, where the
number density was not fixed to the observed value. The latter fit
was able to reproduce the ACFs, but with a bias about 50 per cent
higher than the clustering plus density fit in their most massive and
distant samples. The z = 1.5 samples of Wake et al. (2011) are
directly comparable to our study, since they are defined by lower
stellar mass limits. In the lower panel of Fig. 15, we show our
standard HOD bias measurements as a function of stellar mass and
the bias results from those authors. To make the comparison more
direct, we plot our results for the M05 evolutionary models with the
Kroupa (2001) IMF. Here, we comment on the two types of HOD
fits in Wake et al. (2011), and how they compare to our results.

(i) Clustering only: Wake et al. (2011) find the effective bias from
this fit to be the closest to a direct measurement of the large-scale
bias. However, these values are high compared to our findings. The
0.2 dex offset relative to our work could be due to a difference
in stellar mass estimates (Fig. 15). Given that both studies employ
very similar stellar mass models (M05 stellar grids, Kroupa IMF and
Calzetti 2000 extinction), this possibility seems unlikely. Another
explanation would be sample variance due to the small size of the
survey in Wake et al. (2011), which could lead to an excess in the

Figure 15. Top: comparison of our HOD bias with other values from the
literature, as a function of stellar mass. There are some differences in the
way masses from the other studies are defined, but in general they represent
the median stellar mass of a given sample. For this reason, we show M̄ full

�

instead of M̄ lim
� . We use BC03/Chabrier IMF stellar masses, as do most of the

other authors. We note the increase of bias at fixed stellar mass as a function
of redshift. Bottom: comparison of our HOD bias with Wake et al. (2011)
as a function of stellar mass limit. For more direct comparison between the
results, here we model our galaxies with M05/Kroupa IMF. The clustering-
only fits of these authors yield considerably larger bias values than ours, but
this might be due to sample variance in their survey (see the text).
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clustering signal. Our survey is almost 400 times larger in area and
therefore significantly less impacted by this effect.

(ii) Clustering + density: Wake et al. (2011) find biases from this
fit that are also not fully consistent with ours. Their bias is larger
(smaller) than our values in the low- (high)-mass end. However, the
observed number densities are discrepant in the opposite way, and
the stellar mass at which the densities and biases match is roughly
the same, logM lim

� ∼ 10.6. In any HOD model, the effective bias is
anticorrelated with number density if the rest of the parameters are
held fixed. Thus, if Wake et al. (2011) and our study had the same
observed densities, the HOD bias from both surveys could perhaps
be in full agreement.

Thus, we speculate that the high clustering amplitude in Wake
et al. (2011) might be predominantly a consequence of cosmic
variance (as also suggested by those authors), and their clustering
+ density HOD fits would be consistent with ours if the observed z

∼1.5 comoving number densities were the same.

9.2 Comparison to other studies

We also compare our bias results with other measurements at dif-
ferent redshifts based on stellar masses in the top panel of Fig. 15.
These studies include M10, Foucaud et al. (2010), Matsuoka et al.
(2011), Jullo et al. (2012), Hartley et al. (2013), Mostek et al. (2013)
and Beutler et al. (2013). The comparisons are less straightforward
than with Wake et al. (2011), since there are some differences with
the stellar mass models used by each author. In addition, the selec-
tion is not always done with stellar mass lower limits, but in stellar
mass ranges. Thus, we choose to plot the bias against the median
stellar mass of the full galaxy samples. We show our results with
BC03 and Chabrier IMF masses, since this is the most common
choice among the other authors.

At fixed stellar mass, the bias increases with increasing redshift.
This result has also been shown in most studies that use multiredshift
data (Foucaud et al. 2010; M10; Ross et al. 2010; Matsuoka et al.
2011; Wake et al. 2011; Jullo et al. 2012; Hartley et al. 2013).
Such behaviour is expected from analytical derivations (Fry 1996;
Moscardini et al. 1998) and can be qualitatively understood if we
assume that most of the galaxies are formed around a particular
redshift and at high density peaks in the dark matter distribution.
Such galaxies would then be initially very biased, but with time
their spatial distribution would relax to match that of dark matter.
Thus, the bias is generally expected to evolve towards lower values.

M10 do not use clustering measurements, but an abundance-
matching technique based on the stellar mass functions. They pro-
vide predictions of the galaxy bias for several redshifts and stellar
mass ranges. We have plotted an interpolation of these values in the
top panel of Fig. 15, taking the middle point of their mass ranges as
the effective median mass. Overall, there is a good agreement with
our results.

9.3 Bias of central galaxies

Ideally, one would like to predict the bias of an individual galaxy
based on its stellar mass. However, this is not possible because there
is some intrinsic scatter (represented by the HOD fudge parameter
σ logM) related to other physical processes that might also intervene,
such as environment or assembly history. In addition, there can
be ensemble scatter, which arises if the bias and mass are drawn
from population averages. This is what we have done so far in this
work, establishing a connection between the effective bias and the

median mass of a given sample (see Table 1), which are moments
of broad mass distributions. Thus, we wish to reduce the amount
of ensemble scatter in the bias-stellar mass mapping, which can be
done straightforwardly by considering the bias of central galaxies.
Basically, we exploit the connection outlined in Section 7, where
central galaxies with stellar mass M̄ lim

� typically occupy haloes of
mass Mmin. Therefore, the bias of such galaxies can be computed as
bc(M̄ lim

� ) = bh(Mmin). Here, there is no averaging over halo masses
and the stellar mass distribution is less broad than that of the full
galaxy samples. We fit a fourth order polynomial to our results and
thus provide a functional form of the bias of central galaxies as a
function of the stellar mass logarithm m:

bc(m) = 1.6 + p1(m − 9.8) + p2(m − 9.8)2

+p3(m − 9.8)3 + p4(m − 9.8)4, (29)

p = [0.22 ± 0.07, 1.38 ± 0.38, −2.79 ± 0.62, 2.23 ± 0.31] ,

which is valid over the range 9.8 < m < 11.

1 0 S U M M A RY

We use a recently completed Spitzer-IRAC survey over 94 deg2 to
study the relation between dark matter and galaxies through their
angular two-point clustering. Our data allows us to select galaxies
at z ∼ 1.5 with stellar masses in the range 1010–1011 M�. In order
to derive stellar mass and redshift distributions, we employ the
optical+MIR data from the COSMOS field (Muzzin et al. 2013b) as
a reference catalogue, adapting it to the photometry of our survey.
Then, we develop a statistical method that links sources between
the SSDF and the reference catalogue by matching their IRAC
photometry, accounting for the relative photometric errors in both
data sets. We are able to infer with high confidence the distribution
of stellar mass and redshift in the SSDF for a particular IRAC
selection. IRAC magnitudes and colours are well correlated with
these quantities for galaxies in the range of 1 < z < 2.

The ACFs are fitted with an HOD model, which offers physical
insight into the relationship between dark matter haloes and the
galaxies they host, both centrals and satellites. Our main results are
as follows.

(i) We fully map the SHMR across its peak, which lies in the
middle of the mass range we probe. The halo mass at the peak
is found to be logMpeak = 12.44 ± 0.08. This is 4.5 times higher
than what is found at z ∼ 0, supporting the trend of ‘archeological
downsizing’ since z = 1.5. An evolving quenching mass scale Mq

related to Mpeak could be responsible for this effect.
(ii) We compare our SHMR curves with the predictions from

other authors at z = 1.5. Our results show a higher Mpeak than Y12,
M13 and B13. The low- and high-mass slopes of the relation are
more consistent with M13 and B13 than Y12. In particular, we
measure a slightly steeper low-mass slope than these predictions,
which could support a large contribution from energy-driven winds
in low-mass galaxies.

(iii) The effective bias of galaxies is in the range 2–4 for galaxies
of stellar mass 1010–1011 M�, respectively. This is in good agree-
ment with an HOD-independent fit of the large-scale bias. When
compared to low-redshift studies, we find that at fixed stellar mass
the bias decreases with time, in agreement with expectations from
theory. We also provide a fitted form of the bias of central galaxies as
a function of stellar mass. This relation suffers less from ensemble
scatter than one that uses the sample average of the bias, beff

g .
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(iv) The satellite fraction is ∼0.2 for galaxies of stellar mass M� ∼
1010 M� and decreases towards the high-mass end. In comparison
to the higher fractions ∼0.3 measured at low redshift (Zehavi et al.
2011, with the caveat that the two studies extend to different absolute
magnitudes), this agrees with the hierarchical CDM scenario, where
with time there are bigger virialized structures that can host multiple
satellites.

(v) We find mild evidence of an increase of M1/Mmin in more
massive samples. This is at odds with what is generally found at
lower redshifts (e.g. Zheng et al. 2007; Zehavi et al. 2011) and
predicted by some simulations (Wechsler et al. 2002; Zentner et al.
2005; Wetzel et al. 2009). If true, this effect implies that at z = 1.5
the overall fraction of M� ∼ 1011 M� galaxies in similar mass pairs
is smaller than at lower masses. We do not find a clear reason for
this trend.

Regarding possible systematic effects in our treatment, we stress
that our results are robust. In general, we have not found that any
of the choices we have made about the fitting parameters or overall
HOD model would make a qualitative difference in our conclusions.
Fixing a different number of parameters or allowing for a differential
evolution between the one- and two-halo terms does not produce
significant changes. This is in part due to the strong constraint placed
by the observed galaxy number density, which is the main driver for
setting Mmin and the bias. In addition, if the prior on the density is
dropped, the results become naturally more noisy but still consistent
with our fiducial model. As explored in Appendix B, our results are
also robust with the use of either COSMOS or EGS data sets as the
reference catalogue, even though the photometry and data products
in those surveys were generated in very different ways. This fact
strongly supports the robustness of our methods and conclusions.

In the near future, deep optical catalogues in the SSDF field will
be available from the Dark Energy Survey. Combining such data
with the IRAC catalogues used in this study will yield an enormous
boost to this kind of science. Accurate photometric redshifts and
stellar masses for individual galaxies will enable a much cleaner
selection. Such data will also allow HOD modelling through many
redshift slices in the range of 0 < z < 2, delivering a consistent
and comprehensive description of the evolution in the halo–galaxy
connection.

Additionally, there are dark matter convergence maps on the
SSDF field derived from CMB lensing with the South Pole Tele-
scope (Carlstrom et al. 2011). Cross-correlations in the SSDF field
have already been performed by Bleem et al. (2012) and Holder et al.
(2013) with an early IRAC galaxy catalogue and Herschel data, re-
spectively. These studies focused on z � 1 sources and measured
a positive signal, although no halo model was fitted. In Martinez-
Manso et al. (in preparation), we use the accurately calibrated IRAC
catalogues in this paper to explore the cross-correlation of z ∼ 1.5
stellar mass-selected galaxies with dark matter maps. This study
will offer a direct connection between these matter fields, and allow
for an independent test of the halo model framework.
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APPENDIX A : PHOTO METRIC SIMULATIONS

Our selection criteria are based on aperture photometry drawn from
the Ashby et al. (2013a) 4.5 μm-selected catalogue, but we used
sources fainter than their 5σ sensitivity threshold. For this reason,
we carried out an independent analysis of the SSDF source extrac-
tion in order to estimate the completeness and photometric bias for
the faintest sources. This was done by placing artificial sources of
known brightness in representative SSDF mosaics (i.e. a pair of
coextensive 3.6 and 4.5 μm ‘tiles’ of size 2 × 1 deg2; Ashby et al.
2013b), which were observed to the nominal survey depth. Then, we
performed a detailed comparison between the resulting photometric
measurements and the input brightnesses, as described below.

A1 Simulation procedures

We began by generating point spread function (PSF) images to rep-
resent the artificial sources. This is consistent with high-resolution
Hubble Space Telescope/wide field camera 3 observations showing
that the vast majority of galaxies having magnitudes in our range of
interest are point sources at IRAC resolution (fig. 25 of Ashby et al.
2013a). We first identified 18 point sources in the SSDF science
mosaics and verified by visual inspection that they did not contain
any artefacts or anomalies. These point sources were then scaled
and median stacked at their centroid positions. The resulting PSF
images were constructed with 41 by 41 0.6 arcsec pixels to match
the spatial resolution of the SSDF science mosaics. The full widths
at half-maximum (FWHMs) of these images were found to be 1.69
and 1.85 arcsec in the 3.6 and 4.5 μm bands, respectively. These
values are close to those measured for IRAC in single exposures,
i.e. 1.62 and 1.77 arcsec.

The PSF images were then placed in the science mosaic. They
were placed at random positions, but at a minimum distance from
each other. This minimum distance varies linearly with the magni-
tude of the simulated source from 18 to 6 arcsec through [4.5] =
15 − 21. In addition, simulated sources were not allowed to fall
within regions contaminated by stars brighter than Ks = 12 mag.
The size of the exclusion regions around these stars was determined
following the method described in Section 2.

Outside the masked regions, 1500 simulated point sources hav-
ing [4.5] = 15 mag were added to random locations of the 4.5 μm
science mosaic. This number of simulated sources is low enough
to avoid crowding and alterations in the photometric background.
An equal number of sources were also put at identical locations in
the 3.6 μm science mosaic. The 3.6 μm sources were set to have
colours [3.6] − [4.5] = 0.7, appropriate for the sample selection
described in Section 3.2. The modified science mosaics were then
processed with SEXTRACTOR. This was also done on the original, un-
modified science mosaic. Identical SEXTRACTOR parameter settings
were used in all instances, following those presented in Ashby et al.
(2013a). The process was repeated until a total of 80 000 [4.5] =
15 mag sources were detected and photometered. The simulations
were then carried out in the same manner for input magnitudes
in the range [4.5] = 15.5 − 21 mag with steps of 0.5 mag. We
used the resulting pairs of SEXTRACTOR catalogues to determine our

detection completeness and photometric bias. Specifically, we re-
trieved all catalogued sources found within 6 arcsec of the position
of each simulated source in both the original and modified mosaics.
This search radius was set empirically to encompass all possible
shifts in the measured centroids of sources due to the distortion
caused by the simulated source. Sources in the two catalogues were
judged to match when they differed by less than 50 per cent in flux
and were separated by less than half the PSF FWHM (0.9 arcsec).
This left a number of non-matched sources from the original and
modified mosaics: Norig and Nmod, respectively. Then, a detection of
the simulated source was determined if one of the following cases
applied.

A: Norig = 0, Nmod = 1. This is the most typical case, where only
one source in the modified mosaic could not be matched to another
in the original mosaic and was therefore identified as the simulated
source.

B: Norig = 0, Nmod > 1. As in A, all sources in the original
mosaic were uniquely identified in the modified mosaic. However,
there were a few sources in the latter with no counterpart. This
happened because the simulated source was erroneously recovered
by SEXTRACTOR as multiple sources. We identified the brightest one
of these with the simulated source.

C: Norig > 0, Nmod > Norig. The local photometric influence of
the simulated source caused a change in the position and flux of
several sources in the modified mosaic. As a result, not all sources
in the original mosaic found a match in the modified mosaic. This
left at least two candidates in the modified mosaic to represent the
simulated source. Consequently, one of them would correspond to
an unmatched source in the original mosaic. To simplify the iden-
tification process, we restricted the selection of unmatched sources
based on the input location of the simulated source: we considered
the closest one and the closest two from the original and modi-
fied mosaics, respectively. If the source from the original mosaic
was brighter than the simulated one, then the former ought to have
shifted its position less than the latter. Thus, the source in the orig-
inal mosaic was matched to the source in the modified mosaic that
lay closest to it. Otherwise, the simulated source may have not
shifted significantly due to the presence of the source in the original
mosaic. In this case, the simulated source was identified with the
nearest source in the modified mosaic.

D: Nmod > 0, Norig ≥ Nmod. In this situation, either a blend oc-
curred or the simulated source distorted the local background in
such a way that some sources in the original mosaic were not re-
covered in the modified mosaic. In the latter case, the candidate to
represent the simulated source was the one found closest to it. A
detection was judged if the candidate was the result of a blend be-
tween the simulated source and one or more in the original mosaic,
provided that the simulated source dominated the total flux. This
was confirmed when the flux ratio between the candidate and the
simulated source was less than 2.

A direct product of these photometric simulations is the rela-
tion between input and 4 arcsec-aperture recovered magnitudes.
For bright sources, this quantity should match the aperture cor-
rection, which represents the flux loss due to the finite aperture
size. The 4.5 μm-selected catalogue from Ashby et al. (2013a) in-
cludes aperture corrections of (�[3.6], �[4.5]) = (0.33, 0.33), derived
from PSF growth curves. The values returned by our simulations
for [4.5] = 15 mag sources are (�[3.6], �[4.5]) = (0.32, 0.36). For
consistency with the rest of our procedures, we undo the corrections
applied in Ashby et al. (2013a) and use the values derived here.
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Figure A1. Photometric bias in the 3.6 and 4.5 µm SSDF mosaics. The
photometric bias was measured as the difference between the input mag-
nitude and the output aperture-corrected magnitude, as derived from the
simulations. The solid lines represent the median bias and error bars are
one standard deviation. The arrow marks the 5σ sensitivity level in [4.5]
fluxes. The bias trend in [4.5] indicates an artificial brightening of sources
towards faint input magnitudes, mainly caused by the contamination of flux
from nearby objects and noise peaks. On the other hand, [3.6] extracted
magnitudes become slightly fainter towards faint input magnitudes, which
is due to positional shifts in the [4.5] selection aperture with respect to
the real centroid of the source. The aperture-corrected magnitudes in the
SSDF catalogue are combined with the photometric bias to obtain the final
photometry (see the text).

A2 Photometric bias

Due to the broad PSF, IRAC photometry suffered from a non-
negligible level of source confusion. This caused the aperture flux
to be contaminated by neighbouring sources and photometric back-
ground noise. In general, these effects were more significant for
fainter sources. Thus, it was necessary to measure the average pho-
tometric bias as a function of magnitude, and use it to correct the full
SSDF source catalogue. For this purpose, we employed the results
from the simulations described in Appendix A1.

We calculated the photometric bias as the median difference be-
tween the input magnitude of the simulated sources and the re-
covered aperture-corrected magnitude, for those sources that were
detected. The photometric biases for [4.5] and [3.6] (sources were
selected in 4.5 μm) are shown in Fig. A1. This bias became pro-
gressively larger in [4.5] towards fainter magnitudes, in the sense
that those sources had greater excess of flux due to contamination.
An important contribution to the contamination in faint sources
came from the background noise fluctuations. Sources falling on
top of noise peaks became brighter, while those overlapping with
noise troughs could avoid detection. Therefore, the net effect was
an overestimation of the [4.5] flux in point sources, which became
increasingly important towards the faint end.

In the case of the 3.6 μm photometry, the photometric bias fol-
lowed the opposite trend than seen at 4.5 μm. This can be understood
as being driven by the 4.5 μm selection. As mentioned in Appendix
A1, a faint source was likely to be measured in the 4.5 μm mosaic
at a shifted location from its true centre, which was caused by the
addition of a nearby background flux spike in the 4.5 μm mosaic
and boosting the extracted flux value. However, within the same
aperture in the 3.6 μm mosaic, that flux spike was not present. We
have verified these effects by visual inspection of the modified mo-
saics in the simulations. On average, the 3.6 μm measurement did
not add extra flux from the background and still lost input flux due

Figure A2. Recovered fraction of simulated sources as a function of input
magnitude in [4.5]. The dash-dotted line at 18.19 represents the 5σ level of
photometric sensitivity. The dashed and dotted lines mark the points where
the recovery fraction reaches 80 per cent at 18.58 and 50 per cent at 19.39,
respectively. The open triangles represent the recovery fraction derived in
Ashby et al. (2013a). We measure higher completeness than seen by Ashby
et al. (2013a) because we employ a more complicated source identification
procedure, which boosts the detections in complex cases (e.g. blends and
positional shifts) that otherwise would be rejected.

to the aperture shift. This induced a photometric bias that slightly
underestimated the 3.6 μm aperture fluxes.

The detection algorithm in Appendix A1 already required some
photometric bias correction to compare the measured and input
fluxes in items C and D. Therefore, we ran a first pass of the
simulation to compute a pre-correction, which was then used in
the second pass to obtain the final results. In the first pass, we
only considered the photometry of recovered sources via A and B,
whose detection was independent of the photometry itself. In the
second pass, we ran the simulation using the full detection algo-
rithm, where we used the pre-corrections to perform comparison
with input fluxes. In this algorithm, we did not use 4 arcsec aper-
tures. Instead, 3 and 5 arcsec corrected [4.5] fluxes were used for
C and D, respectively. The pre-corrections were computed in these
apertures. We chose 3 arcsec because it was the aperture with the
lowest photometric scatter, and 5 arcsec due to the larger sizes that
source blends generally had.

A3 Completeness

With the results from the mock source simulations described in Ap-
pendix A1, we can compute the detection fraction as a function of
input 4.5 μm magnitude. This photometric completeness is shown
in Fig. A2, reaching 80 per cent at 18.58 and 50 per cent at 19.39.
We obtain significantly higher values than Ashby et al. (2013a),
which is due to the different procedures used in the detection algo-
rithm. The procedure used in this work considers a larger number
of cases where a source may be detected. This includes the po-
sitional shifts >1 arcsec in the measured photometry and the flux
variations >0.5 mag due to source confusion (see items B–D in
Appendix A1).

The scatter in the extracted 4.5 μm fluxes allows us to determine
the photometric sensitivity. The 5σ limit is [4.5] = 18.19, very
similar to the level of 18.2 found in Ashby et al. (2013a).
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A P P E N D I X B: C O S M O S V E R S U S EG S A S
RE FERENCE SAMPLES

All the procedures presented so far have used COSMOS data as the
reference sample, but we have also performed the same calculations
with EGS. The comparison between these sets of results provides a
sense of the systematic uncertainty associated with the choice of the
reference survey. The redshift distributions, number densities and
stellar masses present some differences, but we show below that
these variations do not qualitatively alter our results.

First, we present a brief description of some of the relevant aspects
of the EGS and COSMOS data sets.

(i) EGS: Barro et al. (2011a) select sources in IRAC with 4 arcsec
apertures and reach S/N = 5σ at ∼21 mag. The survey covers
0.48 deg2 and photometric redshifts are provided with an accuracy of
δz/(1 + z) = 0.034. The IRAC photometry in EGS is almost 3 mag
deeper than SSDF, reaching a higher source completeness through-
out the range of magnitudes considered in this work ([4.5] < 18.6).
Likewise, the higher depth in EGS makes it robust against the pho-
tometric bias that affects the SSDF (see Appendix A2). Barro et al.
(2011a) apply aperture corrections of (�[3.6], �[4.5]) = (0.32, 0.36)
derived from PSF growth curves. These values are exactly the same
as our photometric corrections in the bright limit (see Fig. A1).

(ii) COSMOS: Muzzin et al. (2013a) explain that images from
optical+near-infrared bands are PSF matched and source selection
is done in the Ks band with 2.1 arcsec colour apertures. The Ks-band
images are then used as high-resolution templates in a fitting proce-
dure to deblend confused IRAC sources. The 4.5 μm photometry
reaches S/N = 5σ at ∼20, which is 2 mag deeper than the SSDF and
therefore completeness in COSMOS is not a concern. The survey
region covers 1.62 deg2 and the photometric redshifts are accurate
to δz/(1 + z) = 0.013. The aperture corrections are very different
from the schemes used in EGS and by us in the SSDF. From PSF
growth curves, they derive the correction to the Ks AUTO flux. The
ratio between this corrected AUTO flux and the 2.1 arcsec flux in
Ks is used as the aperture correction for all other bands.

In COSMOS, the IRAC aperture-flux corrections factors are
∼50 per cent lower on average than in EGS, taking into account
the different aperture sizes. In other words, for the same popula-
tion of galaxies, EGS measures a higher IRAC apparent flux than
COSMOS. Surprisingly, this has a very little impact in the stellar
masses for a given luminosity, where the difference is just an offset
of ∼0.07 dex between these catalogues.

In Fig. B1, we compare the HOD-derived quantities beff
g , M1/Mmin

and fsat for EGS and COSMOS. This figure demonstrates the agree-
ment between these data sets. Note that the redshift distributions
used to model the ACFs are generated from these reference cata-
logues, as described in Section 3.1. Regarding the SHMR, the peak
using COSMOS was found at logMpeak = 12.44 ± 0.08, whereas it
is 12.35 ± 0.10 for EGS. These measurements are mutually consis-
tent given their uncertainties. In addition, the slopes of the relation
are also practically the same.

A P P E N D I X C : IN T E G R A L C O N S T R A I N T

The estimators of the ACF (such as the one in equation 15) suffer
from a well-known systematic suppression due to the finite size
of the survey, called the integral constraint (Peebles 1980). By

Figure B1. Results from the HOD fits to the SSDF data using COSMOS
and EGS as reference catalogues. Each point denotes a sample defined by a
limiting apparent magnitude threshold. In the top panel, the shaded regions
represent the ±1σ interval of direct large-scale bias fits. These are consistent
with the HOD bias. There is an excellent agreement between both data sets
in all panels.

construction, the estimator requires the probability to be normalized
over the survey area. This means that∫

survey
ω̂(θ ) d� = 0. (C1)

However, the true ω(θ ) is normalized with the entire sky, so that∮
sky

ω(θ ) d� = 0. (C2)

Equation (C1) shows that ω̂(θ ) will be different from ω(θ ) whenever
the survey is a fraction of the sky. In order to calculate the correc-
tion ω̂(θ ) → ω(θ ) for the SSDF ACFs, we run simulations with
mock realizations of the galaxy field in the survey region. These
are generated with some known ω(θ ), which is then compared to
the measured estimator ω̂(θ ). We adopt the power spectrum of dark
matter P(k, z = 0) and a redshift selection function equal to that
of our main galaxy sample, φmock(z) = φ12

cut(z)/
∫

φ12
cut(z

′) dz′ (see
Fig. 5). Following Tegmark et al. (2002), the angular power spec-
trum is computed as

Cmock
l = 2

π

∫ ∞

0
dk k2 P (k)

[∫ ∞

0
dz φmock(z) G(z) jl(χ (z)k)

]2

,

(C3)
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Figure C1. Red: theoretical ACF of dark matter following a redshift dis-
tribution as in Fig. 5. Blue: measured ACF of mock galaxy fields within
the SSDF region. Their parent distribution follows the same statistics as the
theoretical curve. Error bars represent one standard deviation. The suppres-
sion in the measured curve is due to the normalization of the mean galaxy
density within a survey region that is a fraction of the total sky.

where G(z) is the growth factor, χ (z) the radial comoving distance
and jl the spherical Bessel function. We use the routine SYNFAST
in the HEALPIX2 distribution (Górski et al. 2005) to produce 1000
different sky realizations drawn from this angular power spectrum.
These overdensity maps are cropped to the SSDF mask and renor-
malized within that region. A pixelized version of the estimator
in equation (15) (see equation 18 in Scranton et al. 2002) is then
employed to calculate the ACF. The theoretical expression of this
statistic takes the form of

ωmock(θ ) =
∑

l

(2l + 1)

4π
Cmock

l Pl(cosθ ), (C4)

where Pl are the Legendre polynomials. Fig. C1 shows this theo-
retical expectation along with the measured statistic from the mock
simulations. We define the difference between both curves as �(θ ).
In general, this quantity should scale with the overall bias of the
ACF being corrected. Therefore, we correct the galaxy ACFs as
ωgal(θ ) = ω̂gal(θ ) + γ �(θ ). Here, γ is a relative bias factor deter-
mined by the quotient γ = ω̂gal/ωmock at θ = 0.5, where � � 0. For
our largest galaxy sample, the large-scale correction is ∼10−4. In all
samples, the correction is considerably smaller than the errors at all
scales and it does not play a significant role in the results presented
in this study.

A P P E N D I X D : TH E H A L O M O D E L

We use the halo mass function from Tinker et al. (2010), which
considers spherically collapsed haloes with an average density
200 times greater than the critical density of the Universe. It takes
the form

dn(M, z)

dM
= ρm

M
f (ν) dν, (D1)

2 http://healpix.sf.net

where ρm is the comoving average matter density of the Universe.
The function f(ν) is empirically determined by simulations in Tinker
et al. (2010) and parametrized with the variable

ν(M, z) = δc(z)

σ (M, z)
. (D2)

Here, δc is the critical density for halo collapse (Press & Schechter
1974) for which we adopt the redshift evolution from Weinberg &
Kamionkowski (2003)

δc(z) = 3

20
(12π)2/3(1 + 0.131 log�m(z)), (D3)

with the universal fraction of matter evolving as

�m(z) =
[

1 + ��

�m0(1 + z)3

]−1

. (D4)

The rms of the matter density field inside spheres of R =
(3M/4πρm)1/3 is

σ 2(M, z) = G2(z)
∫ ∞

0
dk

k2Plin(k)

2π2
W 2(kR), (D5)

where Plin is the linear matter power spectrum today,
W(x) = (3/x3)(sinx − x cosx) and the growth factor is (Linder 2005;
Weinberg 2012)

G(z) = exp

[
−

∫ z

0

dz′

1 + z′ �m(z′)−0.55

]
. (D6)

With the mass function we can write the predicted total number
density of galaxies as

ng =
∫ Mhigh

Mlow

dM
dn

dM
(M)N (M), (D7)

where the integration limits are set hereafter by Mlow = 108 M�
and Mhigh = 1016 M�. The NFW halo density profile is

ρh(M, r) = ρs

(r/rs)(1 + r/rs)2
. (D8)

Here, rs = r200/c, where r200 = [3M/(4π 200ρm)]1/3 and the con-
centration parameter is given by Duffy et al. (2008)

c(M, z) = A(M/Mpivot)
B (1 + z)C, (D9)

with A = 6.71, B =−.091, C =−0.44 and Mpivot = 2.86 × 1012 M�.
We have also tried other concentration models from the literature
(Bullock et al. 2001; Gao et al. 2008) and explored variations in the
normalization. We find the ACFs to be relatively insensitive to these
changes within the angular scales probed by our data. The central
density ρs can be determined through

M =
∫ r200

0
dr4πr2ρh(M, r) (D10)

so that

ρs = 200ρmc3

3 [ln(1 + c) − c/(1 + c)]
. (D11)

For the large-scale halo bias, we adopt the prescription from Sheth,
Mo & Tormen (2001)

bh(M, z) = bh(ν) = 1 + 1

δc
√

a

[
√

a(aν2) + √
ab(aν2)1−c

− (aν2)c

(aν2)c + b(1 − c)(1 − c/2)

]
, (D12)
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with the updated parameters from Tinker et al. (2005) a = 0.707,
b = 0.35 and c = 0.8. Under the halo definition we use (spherical
overdensity; Tinker et al. 2008), haloes are allowed to overlap as
long as the centre of one halo is not contained within the radius of
another halo. The full scale-dependent bias is given by Tinker et al.
(2012)

bh(M, z, r) = bh(M, z)
[1 + 1.17ξm(R∗, z)]1.49

[1 + 0.69ξm(R∗, z)]2.09
, (D13)

with

R∗ =
⎧⎨
⎩

r if r >= 2Rhalo

2Rhalo if r < 2Rhalo,

(D14)

which sets a constant bias in the regime where haloes overlap. The
non-linear matter power spectrum is obtained with the CAMB package
(Lewis, Challinor & Lasenby 2000). It transforms to the correlation
function as

ξ (r) = 1

2π2

∫ ∞

0
dk k2P (k)

sinkr

kr
. (D15)

Since the virialized regime of satellites within haloes will be differ-
ent from the large-scale interaction between central galaxies, it is
convenient to express the SCF as a sum of two terms:

ξg(r) = 1 + ξ 1h
g (r) + ξ 2h

g (r). (D16)

The one-halo term is highly non-linear and dominates at scales
smaller than the average halo size (i.e. virial radius), while the two-
halo term becomes more important at large scales. Furthermore, the
one-halo term can be separated into central–satellite and satellite–
satellite parts. In the former, the correlation follows the form of an
NFW density weighted by spherical volume, since by construction
satellites are distributed according to that profile from the central
galaxy. In the latter, the satellite–satellite correlation follows the
form of an NFW profile (still representing the distribution of satel-
lites from the central galaxy) convolved with itself. In the case of
the two-halo term, the correlation traces the convolution between
ξm and density profiles of different haloes. Given the many convo-
lutions, it is better to work in Fourier space, where all these become
simple products. Thus, equation (D16) can be rewritten as

Pg(k) =
[
P cs

g (k) + P ss
g (k)

]1h
+ P 2h

g (k). (D17)

The explicit form of the one-halo terms is

P cs
g (k, z) = 2

n2
g

∫ Mhigh

Mlow

dMNs(M)Nc(M)
dn

dM
(M, z)u(k, M, z),

(D18)

P ss
g (k, z) = 1

n2
g

∫ Mhigh

Mlow

dMNs(M)Nc(M)
dn

dM
(M, z)u2(k, M, z),

(D19)

where u is the Fourier transform of an NFW profile (Cooray & Sheth
2002). For the two-halo term, we must not consider overlapping
haloes if one of their radii contains the centre of the other. This
is done by adopting halo exclusion (Zheng 2004), where we set
the minimum separation allowed for two haloes to d = max(Rhalo1,
Rhalo2) (Leauthaud et al. 2011). This implies that measuring halo
correlations at distances smaller than r, we can integrate all possible
pairs where the individual radii are bound to an upper limit Rlim = r.

The two-halo term thus reads

P 2h
g (k, r, z) = Pm(k, z)

[
1

n′
g(r)2

∫ Mlim(r)

Mlow

dMN (M)

× dn

dM
(M, z)bh(M, r, z)u2(k, M, z)

]2

, (D20)

where the scale-dependent halo bias is introduced and
Mlim(r) = M(r = r200) enforces halo exclusion. This integration
limit restricts the average density of the galaxies considered (Tinker
et al. 2005):

n′
g(r) =

∫ Mlim(r)

Mlow

dM
dn

dM
(M)N (M), (D21)

compared to the total ng in equation (D7). After Fourier transform-
ing P 2h

g into ξ 2h
g

′
, the probability function needs to be suppressed to

account for the missing galaxies in n′
g as

1 + ξ 2h
g (r, z) =

(
n′

g(r)

ng

)2

[1 + ξ 2h
g

′
(r, z)]. (D22)

Adding the one-halo terms from equations (D18) and (D19) com-
pletes the HOD description of our model.

APPENDI X E: LOW-REDSHI FT BUMP

Low-z galaxies have an important contribution to the redshift dis-
tribution in our brightest galaxy sample, [4.5] < 16.2, as shown in
Fig. 5. In this section, we use the optical Super Cosmos survey data
(Hambly et al. 2001) to match and remove these sources from the
SSDF catalogue and evaluate how this changes the HOD results
from Section 5. This is intended to serve as a consistency check for
the methods used so far to model the low-redshift galaxy clustering.

Super Cosmos (hereafter SC) is a full sky survey produced from
digitized photographic plates in the B, R and I bands, with a typical
depth of R(AB) ∼ 21 mag. We retrieved from the Super Cosmos
Science Archive3 all sources in the SSDF footprint with detection in
R and at least one other band. We chose R as the main optical band
because, in combination with our infrared cuts, it is particularly
effective in selecting z < 1 galaxies at R(AB) � 22.5 (Papovich
2008). We removed from the SSDF catalogue all the sources in
the SC sample that matched within a search radius of 1 arcsec. The
SSDF clustering computation and modelling followed the same
procedures described through Sections 3–6, except for a modifi-
cation of equation (2). This equation describes the SSDF redshift
distribution as a sum of contributions from the individual galaxies
in the control sample, given a particular [3.6] and [4.5] selection.
The modification consists of including a weight factor to each indi-
vidual contribution based on the galaxy’s R-band magnitude. This
weight, W(R) ∈ [0, 1], should represent the probability of a galaxy
in the SSDF to be undetected in SC. We defined this probability
as W(R) = 1 − U(R), where U(R) is the R-band completeness in
SC. We estimated the completeness directly from the distribution
of R magnitudes from the SC catalogue, shown in the lower panel
of Fig. E1. This distribution, D(R), was assumed to obey a power
law (Schechter 1976) that is suppressed at the faint end by the
completeness function

D(R) = d0R
d1 U(R). (E1)

3 surveys.roe.ac.uk/ssa/
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Figure E1. Distribution of R-band magnitudes from SC sources in the
SSDF region (points). We fit the data with a function consisting of a power
law times an error function (dashed line). The best-fitting error function is
displayed in the top panel and represents the R-band photometric complete-
ness of the SC sample.

Here, d0 and d1 are the power-law coefficients and

U(R) = 1

2
(1 − Erf (s (R − R0))) , (E2)

Erf(y) = 2√
π

∫ y

0
e−t2

dt, (E3)

where R0 and s are parameters that control the shape of the error
function. We fit D(R; d0, d1, R0, s) to the SC data. This is shown in
Fig. E1, where the upper panel represents the corresponding U(R)
component.

The application of W(R) to the galaxies in the control sample
produces a strong suppression of the low-redshift contribution. This
can be seen in Fig. E2 for the [4.5] < 16.2 subsample. Compared
to the fiducial distribution derived in Section 3.2, the removal of
SC sources eliminates almost completely the bump at z ∼ 0.3. The
comoving number density at z = 1.5 (equation 6) increases only
7 per cent. The HOD fit suffers a decrease in Mmin of 0.02 dex and an
increase in M1 of 0.05 dex. For subsamples with thresholds fainter
than [4.5] = 16.2, these variations become even smaller. Overall,
the impact of removing SC data on the results presented in this
paper is negligible. This provides solid support to the modelling of
the low-redshift galaxy clustering described in Sections 3–5.

We have not used the analysis from this section to derive the
main results of the paper because there are potential systematic
effects in the SC catalogue that we have not thoroughly inspected.
For instance, the SC photometry suffers from differential coverage
depth across the field, which could cause an artificial contribution
to the clustering. In addition, we do not have a complete statistical
description of the large photometric R-band errors present in SC.
An improved treatment in this analysis would entail the use of such
errors to deconvolve the SC distribution of R magnitudes, in order

Figure E2. Redshift distribution of our brightest galaxy sample obtained
from the COSMOS-based control sample. The solid line represents the
fiducial distribution as derived in Section 3, which includes sources selected
only with IRAC data. The dashed line shows the simulated effect of removing
all sources with R-band detections in SC. This optical selection is very
effective at suppressing the low-redshift bump.

to be consistent with the high photometric quality of the control
sample.

A P P E N D I X F: N O PR I O R O N N U M B E R
DENSI TY

In the fitting procedure, we have fixed all basic HOD parameters
except M ′

1, and used galaxy number densities obtained through a
combination of the SSDF observed number counts and the control
sample. Here, we check what happens if we leave all those parame-
ters to vary freely and discard any prior information on the number
density. Thus, ng becomes a derived quantity through equation (D7).
We still need to use the normalized redshift distributions from the
control sample, however. For the sake of clarity in this section, we
will call the fiducial fit of this paper model A (one-parameter fit, ng

fixed), and the unconstrained one model B (five-parameter fit, ng as
derived quantity).

The goodness of fit, χ2
ν , remains on average the same between

models A and B, which points to the latter not really being statisti-
cally favoured. The bg, M1/Mmin and fsat relations also do not change
appreciably, as shown in Fig. F1. This implies that: (1) the observed
clustering is able to correctly reproduce the measured galaxy num-
ber density, which is a free parameter in B, and (2) the values of
the fixed parameters in A are reasonable choices. On average, the
changes in the derived parameters and ng are �20 per cent, which
supports the validity of the halo occupation model. We choose A as
the fiducial model because the relation between the derived param-
eters and sample luminosity is more monotonic than in B. The latter
shows roughly the same average trends but with a stronger level of
stochasticity. In essence, there would be no substantial information
gain by adopting B instead of A. In addition, A includes the ob-
served number density, which places an important constraint on the
HOD model. The inferred densities from equation (6) do contain
some uncertainty since they are partially derived from the control
sample, but we believe that using them produces a more physically
consistent HOD model.
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Figure F1. Results from the HOD fits to the SSDF data using the COSMOS
reference catalogue. Models A and B refer to fits using one and five free
parameters, respectively (see the text). The galaxy number density is fixed
in A to the observed number counts, but it is left as a free parameter in B.
Both models are fully consistent, which implies that the observed clustering
can reproduce the correct number density and that the values for the fixed
parameters in A are reasonable. We choose A as our fiducial model since it
yields a more monotonic behaviour between the derived parameters and the
sample luminosity, as expected.

When performing a fit of the SHMR with results from B, the
errors become large enough to be consistent at about 1σ level with
A. For example, in the M13 parametrization, for A we obtained
logMpeak = 12.44 ± 0.08, β = 1.64 ± 0.09 and γ = 0.60 ± 0.02,
while for B these become logMpeak = 12.43 ± 0.09, β = 2.14 ± 0.98
and γ = 0.50 ± 0.11. We obtain similar values when using EGS as
the reference catalogue (see Appendix B).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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