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ABSTRACT
For unattended telescopes in Antarctic, the remote operation, autonomous observation and

control are essential. An EPICS-(Experimental Physics and Industrial Control System) and
RTS2-(Remote Telescope System, 2nd Version) based autonomous observation and control
system with remoted operation is introduced in this paper. EPICS is a set of open source
software tools, libraries and applications developed collaboratively and used worldwide to
create distributed soft real-time control systems for scientific instruments while RTS2 is
an open source environment for control of a fully autonomous observatory. Using the ad-
vantage of EPICS and RTS2, respectively, a combined integrated software framework for
autonomous observation and control is established that use RTS2 to fulfil the function of
astronomical observation and use EPICS to fulfil the device control of telescope. A command
and status interface for EPICS and RTS2 is designed to make the EPICS IOC (Input/Output
Controller) components integrate to RTS2 directly. For the specification and requirement of
control system of telescope in Antarctic, core components named Executor and Auto-focus
for autonomous observation is designed and implemented with remote operation user inter-
face based on browser-server mode. The whole system including the telescope is tested in
Lijiang Observatory in Yunnan Province for practical observation to complete the autonomous
observation and control, including telescope control, camera control, dome control, weather
information acquisition with the local and remote operation.
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1 IN T RO D U C T I O N

We build telescopes in remote sites such as high altitude plateau
and mountain, Antarctic, and outer space, because they offer bet-
ter seeing, less atmospheric water vapour and reduced light pol-
lution. But these areas are not suitable for human habitation for
its harsh environments. Hence, the ability of autonomous obser-
vation and control for astronomical telescope is highly required.
This paper describes the design of an Antarctic autonomous obser-
vation and control system with remote operation, which is aimed
at the Antarctic Bright Star Survey Telescope (BSST) which will
be built in latter half of the year 2015 at Zhongshan Station,
Antarctic.

BSST is a small telescope with 30 cm aperture, which is
used to study extrasolar planet. Its field of view is wide, so it

� E-mail: zguangyu@mail.ustc.edu.cn (GZ); wangjian@ustc.edu.cn (JW)

can observe many targets simultaneously, which has advantage
of bright star survey. After its construction, BSST will take ad-
vantage of polar night to make observation on wide scope sky
area.

We have designed a common framework for astronomical tele-
scopes based on the generality of control system (Wang et al. 2013).
The framework is modified for small telescopes in Antarctic (Fig. 1).
The overall structure has changed from 5 to 4-layer to make it more
compact and efficiency. In 4-layer structure, the Workstation Level
and Local Control Level in 5-layer structure are merged into one
layer – device control layer. At the bottom layer is device layer
corresponding to hardware layer in 5-layer structure. Observation
control layer is used to control the observation of entire telescope
system which corresponds to top control level in 5-layer structure.
User layer is user interfaces for local access and remote access.
Since the telescope is located in Antarctic, user needs to communi-
cate with it through satellite channel, which is slow and expensive.
The development of remote user interface needs to consider this
factor.
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Figure 1. Structure of BSST Control System.

2 SYSTEM STRUCTURE

The structure of the autonomous observation and control system for
telescope in Antarctic is designed and developed based on Remote
Telescope System, Version 2 (RTS2) and Experimental Physics and
Industrial Control System (EPICS).

RTS2 (Remote Telescope System, 2nd version)1 is a Linux-based
remote telescope control system created by Petr Kubanek in 2001
(Kubánek et al. 2006, 2008). It is designed for unattended op-
eration with devices trouble-free. It can pick appropriate targets
from database and make observations automatically. RTS2 is par-
ticularly suited for small-aperture telescope.2 It has been success-
fully deployed on more than 10 observatories located in Spain, the
USA, Chile, Argentina, New Zealand, South Africa and the Czech
Republic.

EPICS3 is a software environment used to develop and implement
distributed soft real-time control system, which is developed by Los
Alamos National Laboratory (LANL) and Argonne National Lab-
oratory (ANL). It has been widely applied to particle accelerators,
telescope and other large experiments for its real-time performance
(Botlo, Jagielski & Romero 1993; Xu & Kraimer 2005; Wang et al.
2008). In the field of large telescope, an increasing number of or-
ganization choose EPICS as the basic framework of their control
system, such as Keck II telescope in the USA (Lupton 2000), Gem-
ini 8 m telescope (McGehee 1994; Maclean 2000), the monitor
platform of Sloan Digital Sky Survey (SDSS) (McGehee 2000).

This system is designed with a hierarchical component model.
The three layers from top to bottom are User Interface (UI) layer,
observation control layer and device control layer shown in Fig. 2.
The telescope control system of BSST uses EPICS to control de-
vices, and uses RTS2 to manage observation flow, which forms a
new design for telescope control and observation with the new direct
interface between RTS2 connection and EPICS IOC. The underly-
ing devices painted green are controlled by EPICS Input/Output

1 http://rts2.org/
2 http://bootes.iaa.es/
3 http://www.aps.anl.gov/epics/

Figure 2. Control System Structure based on EPICS and RTS2. The com-
ponents with green colour correspond to Device Control Layer; the com-
ponents with yellow colour correspond to Observation Control Layer; the
components with blue colour correspond to UI Layer.

Controller (IOC) programs that called IOC device implemented by
EPICS. Observation Control(OC) components painted yellow is ful-
filled using RTS2 and UI components painted blue is designed based
on RTS2 with local operation and remote operation. This structure
can reduce coupling between upper layers and bottom IOC. EPICS
IOC and OC components can be adapted to each other as long as
the interface stays unchanged.

UI layer contains local UI and remote UI. This layer is mainly
used to provide interface for user to manage the telescope. It pro-
vides local interface and remote interface for user to access. The re-
mote interface connects XMLRPCD (XML Remote Procedure Call
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Daemon) component with HTTP protocol, while the local interface
connect to RTS2 components directly with socket connection. A
web interface is also designed for remote operation. The functions
of the web interface are as follows: statuses view of each com-
ponent, image view of dome webcam, weather information view,
the view and import of observation plans, autonomous observation,
manual observation, common manual commands, log and history
of important parameters.

The XMLRPCD in observation control layer is used to provide re-
mote interface for remote web interface with XML-RPC protocol.4

The protocol between OC components is the same with RTS2 pro-
tocol. The connection to bottom device control layer is Channel
Access of EPICS. Some EPICS client operation needs to be added
into the RTS2 Connection class, such as triggering the command
Process Variable (PV), monitoring IOC status PV, so that the Con-
nection class can connect to IOC programs.

Device control layer is composed of control programs of devices.
Control programs connect to devices through standard interface
such as network, serial port and USB. To make these programs
being controlled by RTS2 components, some functions need to be
added into these programs, such as synchronization of state and
value table.

3 O B S E RVAT I O N C O N T RO L MO D E L

Programs in observation control layer are based on RTS2 com-
ponents with some modifications. Connections between each ob-
servation control component are socket, while connections be-
tween observation control components and EPICS IOC are Channel
Access.

3.1 Structure of observation control component

CentralD, XMLRPCD, Focus and Executor all belong to OC com-
ponents of observation control. They are all extended from corre-
sponding RTS2 components, so they all have similar structure. The
structure of an observation control component is shown in Fig. 3.

The structure of an OC component can be divided into three lev-
els. The first level is the functional level, including timers, values,
the status value of the components and logging function. The second
level is the internal mechanism, which contains the implementation
of functions and the relationship between each part. The third level
is connection level, which is used to communicate with other ob-
servation components and EPICS IOCs. The connection between
components is through RTS2 protocol with socket, while the con-
nection between an OC component and an EPICS IOC is through
Channel Access protocol of EPICS. The conversion between RTS2
protocol and Channel Access protocol is implemented to make it
available to communicate with EPICS IOC program. The interac-
tions of connection level fall into two categories: commands and
status changes. When a command is received, connection will call a
function named CommandAuthorized to process it. The Comman-
dAuthorized function then modifies values or status, or publishes an
Event through PostEvent function, depending on which command
it is. BSST OC components complete a task flow through a series
of Events. Each time the PostEvent function is called, a command
will be sent to another component by DevClient. If the status of that
component is changed, that means the Event is finished or failed. At

4 http://xmlrpc.scripting.com/default.html
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Figure 3. Structure of an OC component.

this point, DevClient or StateChanged function will publish a new
Event to continue the task.

3.2 Format of communication protocol

The protocol is based on RTS2 protocol [8], string protocol with
space as the separator. There are two kinds of protocol message,
commands and value setting. Their formats are described as follow.

Command protocol: [command name] [param1] [param2] . . .

Example: move 12.23 45.65

“move” is the pointing command for telescope, followed with
the equatorial coordination under J2000.

Value setting protocol: X [value name] [new value]

Example: X exposure 0.1

This message set the exposure time of camera to 0.1 second.

Value report protocol: V [value name] [value]

Example: V temperature 22.5

Device may report its value when a value has changed.

Status change protocol: S [status value] [optional reason]

Example: S 0

This message tells other components that it has just been ready.

Command return: +/−[3 digits] [message]

When command completes, a command return is sent. Plus sign
means OK; minus sign means error. The three-digit number is the
return value of the command. Message contains description of error.
If no error, message should be ‘OK’.
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Figure 4. Diagram of Class Connection Extension.

3.3 Device control layer interface

Since device control layer is based on EPICS IOC, the Connec-
tion class in OC component needs to support communication with
EPICS IOC program. A middleware-like function is added into the
Connection class, which is used to convert RTS2 string message to
EPICS client function calls.

The conversion involves three parts: commands, values and image
reading. A value in an OC component is a parameter, such as current
target name, exposure time. Each RTS2 command with parameters
and value is mapped to an EPICS record. Connection class uses
‘caput’ to manipulate these records. When a command is being
sent, write parameters into parameter record first, and then trigger
the command record. When an image is ready, Connection will
receive it and create an image data structure manually and then pass
it to the image process function.

Fig. 4 is the structure of Connection class and the relationship
with NMonitor as an example. NMonitor is a local client of BSST
that can monitor BSST status and send commands to devices. Some
functions relative to EPICS communication are added into Con-
nection class. An XML configuration file is used to represent the
mapping from RTS2 commands and values to EPICS records. Con-
nection class reads the file on initialization and creates a mapping
table. Benefiting from these functions, other parts can work well
with EPICS IOC without modification.

The format of the XML configuration file is shown in Fig. 5.
Here we take the mapping of commands as an example. Other
types of mapping are similar. Command mappings are wrapped in
‘CommandPV’ tag. Each device has a leaf tag under the ‘Com-
mandPV’ tag. The ‘cmd’ tag uses attribute ‘name’ and ‘pv’ to
represent the mapping from command name to EPICS record. In
the Fig. 5, command ‘exposure’ is mapped to EPICS record ‘AN-
DOR:cam1:Acquire’.

A new device type ‘DEVICE_EPICS’ is added to the RTS2 device
type list to represent an EPICS IOC device. When a Connection
object has been created to connect to an EPICS IOC device, it will
first parse the XML configuration file and save the relationship in
two mapping tables:

map<string(cmd),vector<string(cmdPV)>>

map<string(valuePVName),string(valueName)>

Figure 5. Format of Commands and Values Mapping file.

This work is done by the ‘initEpics’ function in Connection class.
It also creates a monitor thread to monitor the changes of each
EPICS PV. When a PV has changed, the monitor thread will call a
callback function and pass changed message into it, and then update
the corresponding value or status.

Different Connection subclasses are needed for different com-
ponents or clients. The NMonitor uses NMonnConn class as its
Connection class (Fig. 4), while RTS2 Device class use DevCon-
nection as its Connection class. We also extend these subclasses
with EPICS connection function.

To make EPICS IOCs accord with this interface, two PVs needs
to be added to each IOC program to represent device name and
device status. RTS2 components can check the existence of the
name PV to know whether an IOC is running. The format of the
device status PV should be the same with RTS2, which has been
defined above. Device can have its own statuses. These statuses
need to be pre-defined as macros in the ‘status.h’ header file. The
camera IOC needs another PV to show its pixel data type, the value
of which needs to be consistent with RTS2.

3.4 Device IOC

BSST observatory system contains the following devices: telescope,
camera, dome, weather station, etc. Here we take the telescope
control and camera control for example.

The telescope in BSST is composed by mount, filter and focuser.
It is controlled by specific software. The telescope IOC program
is the proxy between Executor and the telescope control software.
This IOC program implements the communication with telescope
control software. It can convert commands sent from Executor to
the message that can be recognized by the control software. The
structure of telescope IOC is shown in Fig. 6.

Telescope IOC uses string-based socket to connect to the control
software. The socket connection has two channels: command chan-
nel and alarm channel. Command channel is used to send command
and return results and intermediate states, while alarm channel is
used to send alarm message. Telescope IOC uses Channel Access
protocol to connect to upper level components.
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Image control IOC is based on a third-party software
areaDetector.5 areaDetector uses camera driver to control the cam-
era hardware. Some extra records are added to make it available to
connect to RTS2, including RTS2 32-bit status variable and com-
mand interface (Zhang et al. 2015).

4 AU TO N O M O U S O B S E RVAT I O N

To realize autonomous observation of BSST, we investigate the need
of observation and define several observation mode and observation
plan. Executor can automatically load plans from database and
execute them.

4.1 Observation modes and observation plan

Observation plan needs to be determined by objective of research.
Each observation mode has a template to describe the workflow.
There are mainly 5 kinds of observation modes: normal mode, dark
mode, bias mode, flat mode and focus mode.

(1) Normal mode: Telescope points to the target and then start
tracking. Open the shutter and expose.

(2) Dark mode: Close the shutter and expose for the same
duration.

(3) Flat mode: Shoot at dust or morning. Telescope points to a
point a little higher than horizon. Telescope does not need to track.

(4) Bias mode: Telescope does not need to point. Keep shutter
closed and expose for 0 s.

(5) Focus mode: Generally execute it every 12 h. Choose a fairly
bright star to focus the telescope.

The observation mode templates are described with XML. Com-
mands can combined as serial or parallel sequence. These two kinds
of sequence can also combine with each other to generate a tree-like
command sequence.

(1) ‘CommandSequence’ is the root tag of the XML. Its
‘type’ attribute means the observation mode. It can be set to
the following macros: PLAN_STAR, PLAN_FLAT, PLAN_BIAS,
PLAN_DARK and PLAN_FOCUS.

(2) ‘SerialCommand’ tag is the root of a serial command se-
quence. ‘ParallelCommand’ tag is the root of a parallel command
sequence.

5 http://cars9.uchicago.edu/software/epics/areaDetectorDoc.html

(3) ‘Command’ tag expresses a command. It has some attributes
to set command name, argument number, device name which it
belongs to, time cost, running state and state mask. The ‘Arg’ tag in
‘Command’ tag expresses a parameter of the command. There can
be multiple ‘Arg’ tags in a ‘Command’ tag. An example of ‘filter’
command is as follow:
<Command name=‘‘filter’’ argnum=‘‘1’’
device=‘‘TEL’’ needtime=‘‘-1’’
donestate=‘‘TEL_FIL_END_MOVE’’
statemask=‘‘TEL_MASK_FIL’’>

<Arg name=‘‘filter’’>∃filter</Arg>

</Command>

A variable can defined with a ‘$’ symbol before its name. The value
of variables can be set from Executor at runtime. The ‘needtime’ is
set to ‘—1’, which means there is no need to monitor if it is timeout.

(4) ‘Value’ tag expresses an RTS2 value. The ‘name’ attribute is
the value name in RTS2, and the ‘argnum’ is always 1. Only one
‘Arg’ tag is required to set the value.
<Value name=‘‘sensor_port_mode’’

argnum=‘‘1’’ device=‘‘CCD’’>

<Arg name=‘‘port_mode’’>0</Arg>

</Value>

(5) The direct child of root tag should be only one ‘SerialCom-
mand’ tag.

(6) A ‘SerialCommand’ tag, the same with ‘ParallelCommand’
tag, can have ‘SerialCommand’, ‘ParallelCommand’ and ‘Com-
mand’ as its children,

(7) ‘Command’ tag can only contain ‘Arg’ tag as its children.

4.2 Device status

A device status is very important in the control system. It can
reflect the current task of the device, such as pointing, tracking or
switching filters for the telescope, and exposing or reading for the
camera. There are also some common statuses that can be used by
all devices. A change of status can be a signal of the completion of
a command, which is necessary to continue an observation flow.

A device status is a 32-bit integer. The format is described as
shown in Table 1.

Bit 1: Weather status bit. ‘0’ means weather is good for obser-
vation; ‘1’, defined as ‘BAD_WEATHER’, means weather is bad.
The weather status collected by weather IOC will influence this bit
and the 9–12 bits described below.

Bit 2: Stop bit. When device is stopping, it will be set to 1.
Bit 3–8: Blocking bits. It is used to block other devices’ actions.
Bit 9–12: Weather reason bits. It shows the specific reason of

bad weather: ‘1’ for precipitation, ‘2’ for gale, ‘4’ for high humidity
and ‘8’ for cloud.

Bit 13–16: Error bits. It shows if there are some errors in the
device: ‘0’ for no error, ‘1’ for forced stopped, ‘2’ for hardware error
defined as ‘HW_ERROR’ and ‘4’ for not ready with some reason
defined as ‘NOT READY’. An EPICS device IOC can set its error
bits according to the condition of its running condition. Executor
will monitor every device’s error bits and do some process on it.
The error handling in Executor is explained in Section 4.3.

Bit 17–20: Miscellaneous bits such as Idle, Shutdown.
Bit 21–32: Device specific status bits. These bits are used for

devices to show its specific status such as telescope is moving, dome
is opening, etc.

The weather information of BSST is from a mobile weather
station. The weather station provides air parameters such as
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Table 1. Device status bits.

Bit1 Bit2 Bit3-8 Bit9-12 Bit13-16 Bit17-20 Bit21-32

Weather Stop bit Blocking Weather reason Error Misc. Device specific status

Figure 7. State transition diagram of Executor and CentralD.

temperature, relative humidity, air pressure, and wind speed. An
EPICS IOC program is used to fetch these data. This program is a
sensor module of BSST, and the air parameters are its Values. While
it keeps reading air parameters, it will set the weather status bit and
weather reason bits to notify other components.

4.3 Executor

Executor is a core component in BSST control system. It is used
to execute observation plan, distribute commands and control the
observation workflow. With a command-driven model, Executor
parses observation plan to observation command sequences and
parses observation commands to basic commands, and then send
the commands to devices through EPICS Channel Access. It will
monitor the state transition of devices to determine which command
will be send. Executor can not only execute prepared observation
plan, but also execute a single observation command.

Executor can start observation automatically in automatic mode
or receive a command to start observation manually. Executor needs
to check if the target is available to observe (15◦ higher than hori-
zon, 30◦ away from moon). Then Executor reads out the observation
mode template from database and executes it. Device and user can
interrupt the command sequence when the command sequence is
running. When camera generates an image, Executor collects infor-
mation needed by the FITS header and save the image to the disk.
In addition, Executor needs to manage the transition of CentralD
state process. Each of these main steps needs to be logged for error
checking.

The key of Executor is the switching of state in different condi-
tions. Fig. 7 is the state transition diagram. The concrete meaning
of each state is as follows:

IDLE state: Executor is idle. It can now receive commands from
upper layer components and then switch to other working state.

OBSERVE state: When Executor receives an observation com-
mand in IDLE state, it will switch to OBSERVE state.

IMG state: Executor is processing image received from camera.
STOPPING state: Executor receives a stop command when ob-

serving. It will send stop command to other devices and switch state
to IDLE.

CentralD has four states: ON, STANDBY, OFF and Error. The
ON state means observing. The STANDBY state means it is ready
for observation: camera is cooling; shutter-heating house is work-
ing; dome is opened. The OFF state means hardware is reset: camera
is not cooling; telescope is parked; dome is closed; shutter-heating
house is not working. When switching among these three states,
Executor needs to do related work to actually switch state for other
devices. If an error occurs in a device, CentralD will run into Er-
ror state and cannot be changed to other states manually, until the
device is recovered from error.

There are 4 kinds of transition of CentralD state, corresponding to
4 intermediate state of Executor. ON2STANDBY means switching
CentralD state from ON to STANDBY. The other three states are
similar. During this state, Executor needs to stop current observa-
tion. When Executor is in STANDBY2OFF state, Executor needs to
close the dome and stop camera cooling and shutter-heating house.
In the other two states, Executor will do reverse actions. Executor
will also check devices’ error bit. If the error bit is not zero, Executor
will switch to STOPPING state and then to IDLE state. Meanwhile
CentralD will enter Error state. When the device is recovered from
error, CentralD will change from Error state to StandBy state, wait-
ing for observing. An alarm value is used to store error reason. See
Section 4.4 below for detail.
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Figure 8. Class Diagram of Executor.

Figure 9. State Change of Executor.

The class structure of Executor is shown in Fig. 8.
When Executor receives an observation command from upper

layer, it reads out the plan template and sends it to parser. The
parser in Executor converts the XML format observation plan tem-
plate into command sequence, and then executes it. A BSSTCmd
object represents a command. It can invoke the queCommand func-
tion in DevClient to send command. DevClientTelescopeExec and
DevClientCameraExecDb are two DevClients specific for telescope
and camera. They can send command to devices and process the
‘state changed’ event from devices.

Each RTS2 component has a callback function named ‘state-
Changed’. This function will be called each time when other com-
ponents’ state changes. The component can judge the state change
and do some action. In Executor, this function is called with weather
changes, command finish and device errors. When a command is
finished, stateChanged will trigger the next command in current
command list. The switching rule of weather state and device error
state is shown in Fig. 9.

During observing, if some devices run into hardware error, tele-
scope will switch to ERROR state. After errors are fixed, telescope
will be switched to STANDBY state and finally to ON state to
continue observation. When bad weather occurs, telescope will be
stopped. The dome will be closed when gale or precipitation occurs.
If a device is in NOT_READY state, telescope will be switched to
NOT READY state which means that some device needs to be reini-

tialized to work properly. Executor will wait its state change and
check devices’ state again. If all devices are ready, Executor will
switch to STANDBY state.

4.4 Status monitor and alarm mechanism

Status Monitor and alarm mechanism are essential to the automatic
control of telescope. This kind of mechanism can insure discover-
ing error timely and reacting rapidly and thus hardware can avoid
getting to damage. The system can also monitor weather change.
The structure of monitor system is shown as Fig. 10.

The monitor system is consistent with the structure of BSST.
There are three layers. The bottom layer is sampling layer corre-
spond to device IOCs layer. This layer samples every status and
its value, and provides uniform interface to the observation con-
trol layer. The IOCs also add alarm message into their values. The
middle layer is XMLRPCD and Executor. XMLRPCD is used to
collect and record values, while Executor is used to process some
of the state changes. The top layer includes local monitor client and
web-based remote user interface, which is used to display status and
alarm message and to provide some manual operation interface.

The value recording function in XMLRPCD inherits from RTS2.
XMLRPCD will read a XML configuration file to get a list of values
to be recorded. When a value changes, XMLRPCD will record its
new value to the database. A new API is added to get a list of value
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Figure 10. Structure of BSST Monitor System.

records. Web interface will draw a curve to show the trend of the
value.

The alarm function is implemented with EPICS alarm status. An
EPICS record can define four fields, HIGH, LOW, HIHI and LOLO
to set its alarm threshold. In order to integrate EPICS alarm status
with RTS2, two member variables are added into the Value class
to store the alarm status. Each IOC has a record special for storing
alarm message. The alarm record is a string type. Its format is shown
as follows.

The update of alarm record is done by IOCs. When an IOC gets a
parameter, it will check its range and update the alarm record. Web
server will keep querying each device’s alarm records. If it finds an
alarm record has error message, it will push the message to the web

interface through WebSocket. The web interface will display a bold
red number to represent the count of error messages. User can see
detailed messages in the side bar.

Values to be monitored in BSST include temperature of each
part, weather information and device parameters. Table 2 shows
some main parameters to be monitored. As for an automatic control
telescope, the more values monitored, the better they benefit the
judgment and process of telescope status.

The most important monitor parameters are weather information
and temperatures of each part. The weather information is provided
by weather station IOC, which has been described in Section 4.2.
Temperature information includes Charge Coupled Device (CCD)
chip temperature, shutter heater temperature, case temperature, lens
barrel temperature, etc. We use the heating temperature of shutter
as an example to illustrate the system. Since shutter cannot work
in the environment temperature of Antarctic, a heating system is
designed for it. The heating system uses a temperature sensor to
sample shutter temperature. Once shutter temperature is lower than
threshold, CCD will be stopped to expose. Similarly, if CCD cool-
ing temperature does not reach the pre-set value, it will generate
more noise, thus making the image data unusable. Table 2 defines
the threshold of some device parameters in BSST. When an IOC
program finds a device parameter is out of range, it will modify the
error bit in its status. The error state will also trigger observation
state change in Executor (Fig. 9). When the Web server finds the
temperature is out of the threshold, it will push the error message
to the web interface.

Besides the parameters mentioned above, monitor information
also includes disk storage information. BSST has eight disks. The
capacity of each disk is 1 TB. Each two disks form a RAID1 group.
Only one group is powered on at the same time in order to save
energy. A disk power control board is used to switch the power of
the four disk groups. When a disk group is almost full, the web
interface needs to receive an alarm message. When the disk is full,
an IOC program will send a switch command to the disk power
control board, and the Web server will push the information to the
web interface. This is the process of automatically switching disk.

Table 2. Threshold values of telescope parameters.

Parameter Meaning Warning range Error range Device state

T1 Lens temperature 1 <−70, >45 <−80, >50 HW_ERROR
T2 Lens temperature 2 <−70, >45 <−80, >50 HW_ERROR
T5 RA Internal <−20, >10 <−30, >20 NOT_READY
T6 DEC Internal <−20, >10 <−30, >20 NOT_READY
T7 RA Motor <−20, >10 <−30, >20 NOT_READY
T8 DEC Motor <−20, >10 <−30, >20 NOT_READY
T10 Control case <10, >25 <5, >30 HW_ERROR
U1 24 V Voltage <23, >24.5 <22, >25 HW_ERROR
U2 12 V Voltage <11.5>12.5 <11, >13 HW_ERROR
U3 5 V Voltage <4.7, >5.3 <4.5, >5.5 HW_ERROR
I1 Mount Current >2.5 >3A HW_ERROR
I2 24 V Current >4.5A >5A HW_ERROR
I3 Heater current of motor and coder >2.5A >3A HW_ERROR
I4 Heater current of motor box >2.5A >3A HW_ERROR
SHUTTER TEMP Heater temperature of shutter <0, >10 <−10, >20 NOT_READY
CCD_TEMP CCD Chip temperature >Target Temp NOT_READY
Temperature_A Computer temperature <10, >25 <5, >30 HW_ERROR
Temperature_B MCU Temperature <20, >50 <10, >60 HW_ERROR
WindSpeed Wind speed >7 m s−1 >10 m s−1 BAD_WEATHER
Humidity Humidity >60% >70% BAD_WEATHER
Cloudy Cloudage >6 >8 BAD_WEATHER
Precipitation Precipitation >0 BAD_WEATHER
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Figure 11. Structure of focusing system.

Figure 12. Class Diagram of BSSTFocus.

4.5 Automatic focusing

The position of focus changes with astronomical seeing and tem-
perature, so telescope needs to be focused before observation. The
focus system is closely related to CCD control and telescope con-
trol. The structure of the focus system is shown in Fig. 11. When
telescope has finished pointing and started to track, Executor sends
focus command to BSSTFocus component. BSSTFocus chooses a
position to start focusing depending on which filter is used. It first
sends focus moving command to telescope. After that, it sends ex-
posure command to camera and then analyses the image generated
by camera. When finished, BSSTFocus controls telescope to move
camera again. After several times of exposure, BSSTFocus can cal-
culate the position of focus and control telescope to move camera
to that position.

BSSTFocus is an OC component, which extends from RTS2 Fo-
cusd as shown in Fig. 12. CCDDevClient and TELDevClient are
DevClients to control CCD IOC and Telescope IOC. CCDConn
and TelConn are the interface to interact with IOCs. The coordi-
nation among different parts is implemented with the PostEvent
mechanism, which has been illustrated in Fig. 3.

BSSTFocus uses FWHM to evaluate the focus quality of an im-
age. It will calculate multiple stars and take the median value as the
result. It uses SEXTRACTOR6 to do the calculation. The result is shown
in Fig. 13.

Since position of focus is related to temperature, BSSTFocus
can get a mapping table from temperature to focus position using
experimental data. Then it estimates the upper limit and the lower
limit of the focal point. It takes several images within the limit with
step of 0.1 mm. The accurate focal point is calculated by making a
quartic curve fitting and calculating the lowest point.

The precision of focal point calculated from curve fitting can be
0.02 mm, which has reached the limitation of telescope focusing.

4.6 Automatic observation and remote operation

Automatic observation will start after user sends start command or
the status of CentralD changes to on. After automatic observation
is started, Executor tries to pick an executable plan whose start time
differs from current within ‘waitTime’. ‘waitTime’ is a writable
value in Executor. User can modify it from user interface. If an exe-
cutable plan exists, Executor runs the plan. If there is no executable
plan to load from database, Executor runs the last finished plan. In
other case, Executor waits for ‘waitTime’ and checks again. The
‘waitTime’ value is aimed to insure that plans are executed accord-
ing to the pre-defined time. This execution strategy is aimed to keep
the efficiency of observation. The automatic observation mode will
last until breaking command is received or CentralD status changes
to standby or off.

The remote Web interface of BSST control system is shown in
Fig. 14.

The main interface includes status of every component, the im-
age of dome webcam, weather information, view and importing of
observing plan, automatic observing, manual observation and fre-
quently used manual commands. It also provides view of system
log and history of some important parameters.

During the test of BSST in Lijiang Observatory in Yunnan
Province for practical observation, it works well in the control of the
entire telescope system. BSST can do five kinds of observing mode
including normal observation. It can also finish observation task
automatically. Fig. 15 shows the raw image of normal observation
mode.

5 C O N C L U S I O N

An autonomous observation and control system for Antarctic tele-
scopes is designed and implemented based on RTS2 and EPICS. The
system has been tested with BSST in Lijiang Observatory in Yunnan
Province for practical observation. For the maturity of RTS2 and
EPICS, our design is not only suitable for BSST but also for other
small or mid-size telescopes in Antarctic with small modification.
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Figure 13. The result of curve fitting using FWHM method. (a) Diagram of curve fitting. X-axis is imaging position and Y-axis is the mean FWHM value of
stars in the image. (b) Sequence of stellar images near the focal point.

Figure 14. BSST remote operation interface based on web technology.

Figure 15. Images shot by BSST telescope.
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