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ABSTRACT
We present new clean maps of the cosmic microwave background (CMB) temperature
anisotropies (as measured by Planck) constructed with a novel internal linear combination
(ILC) algorithm using directional, scale-discretized wavelets – scale-discretized, directional
wavelet ILC or Scale-discretised, directional wavelet Internal Linear Combination (SILC).
Directional wavelets, when convolved with signals on the sphere, can separate the anisotropic
filamentary structures which are characteristic of both the CMB and foregrounds. Extending
previous component separation methods, which use the frequency, spatial and harmonic sig-
natures of foregrounds to separate them from the cosmological background signal, SILC can
additionally use morphological information in the foregrounds and CMB to better localize
the cleaning algorithm. We test the method on Planck data and simulations, demonstrating
consistency with existing component separation algorithms, and discuss how to optimize the
use of morphological information by varying the number of directional wavelets as a function
of spatial scale. We find that combining the use of directional and axisymmetric wavelets
depending on scale could yield higher quality CMB temperature maps. Our results set the
stage for the application of SILC to polarization anisotropies through an extension to spin
wavelets.
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1 IN T RO D U C T I O N

Accurate measurements of the cosmic microwave background
(CMB) arguably form the bedrock of modern precision cosmol-
ogy. In particular, the full-sky multifrequency CMB maps provided
by three generations of satellite experiments – COBE (Mather et al.
1990; Boggess et al. 1992), Wilkinson Microwave Anisotropy Probe
(WMAP; Bennett et al. 2003a) and Planck (Planck Collaboration I
2011) – represent milestones in our understanding of the cosmolog-
ical model. However, to obtain a full-sky map of the CMB requires
removing instrumental noise and signals due to astrophysical fore-
grounds (primarily in the Milky Way). Full-sky foreground-cleaned
CMB maps are used for a wide variety of scientific purposes (see
e.g. Planck Collaboration XVI 2015; Planck Collaboration XVII
2015).

There are numerous methods to perform foreground component
separation. They broadly fall into two categories: blind methods
which make minimal physical assumptions about the contribut-
ing signals and the so-called mixing matrix (which quantifies the
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strength of different components at different frequencies) and non-
blind methods which are based on a physical modelling of the sky
components. Examples of non-blind methods include the maximum
entropy method (Hobson et al. 1998) and the parametric Bayesian
CMB Gibbs sampler Commander (Eriksen et al. 2006, 2008). Corre-
lated component analysis (Bedini et al. 2005) is a semiblind method
that estimates the mixing matrix based on second-order statis-
tics. Spectral Estimation via Expectation Maximization (SEVEM;
Martı́nez-González et al. 2003; Leach et al. 2008; Fernández-Cobos
et al. 2012) is a template-fitting technique. Examples of so-called
blind source separation include the sparsity based method local-
generalized morphological component analysis (Bobin et al. 2008,
2013) and the spectral matching independent component analysis
(SMICA; Cardoso et al. 2008), although the latter work does dis-
cuss how the choice of component model affects the blindness of
this method. Of particular interest to this work is another blind
method, the internal linear combination (ILC), most recently im-
plemented by the needlet ILC (NILC; Delabrouille et al. 2009). In
its component separation analysis, the Planck Collaboration used
Commander, NILC, SEVEM and SMICA (Planck Collaboration IX
2015). See, e.g. Delabrouille et al. (2009) and Bobin et al. (2013)
for reviews of CMB component separation methods.
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The ILC computes a weighted sum of CMB maps as measured at
multiple frequencies. These weights are constrained to sum to unity
at each point in the map, ensuring that the CMB signal is conserved,
assuming that it is equal at each frequency. Under this constraint,
the weights are calculated by minimizing the empirical variance
of the ILC map, which in turn minimizes the variance of the error
in CMB reconstruction (assuming the CMB and foregrounds and
the CMB and noise are, respectively, uncorrelated). The variances
we minimize are empirical in that they are calculated using the
data themselves. In this way, the weights are calculated to remove
foreground and noise, revealing the underlying primordial CMB
anisotropies. The ILC method was originally used by the WMAP
Collaboration (Bennett et al. 2003b) and then extended by Eriksen
et al. (2004) through an analytical calculation of the weights. One
limitation of the original ILC approach is the extent of localization
of the weights. The initial versions calculated different weights in
separate parts of the sky (e.g. Bennett et al. 2003b split the Galactic
region into 11 parts). In order to further remove local contamination,
the weights can be allowed to vary across the sky and also at different
spatial scales. Tegmark, de Oliveira-Costa & Hamilton (2003) made
an ILC map allowing the weights to vary at each multipole, as well
as within different regions of the sky. A direct extension of this
work is to make use of both spatial and frequency information
simultaneously using wavelets. The weights are then defined across
wavelet scales and within wavelet coefficient maps on the sky.

Wavelets are functions that are localized in both real and fre-
quency space. To analyse full-sky CMB maps, wavelets defined on
the surface of a sphere are required. A number of wavelet frame-
works on the sphere have been developed recently (Antoine &
Vandergheynst 1998, 1999; Barreiro et al. 2000; Wiaux, Jacques
& Vandergheynst 2005; McEwen, Hobson & Lasenby 2006; Nar-
cowich, Petrushev & Ward 2006; Sanz et al. 2006; Starck et al. 2006;
Geller et al. 2008; McEwen & Scaife 2008; Marinucci et al. 2008;
Wiaux et al. 2008; Baldi et al. 2009; Starck, Moudden & Bobin
2009; Geller & Marinucci 2010, 2011; McEwen, Wiaux & Eyers
2011; Leistedt et al. 2013, 2015; McEwen, Vandergheynst & Wiaux
2013; McEwen et al. 2014, 2015b; McEwen, Durastanti & Wiaux
2015a). In particular, needlets (Narcowich et al. 2006; Marinucci
et al. 2008; Baldi et al. 2009) have been used in the latest generation
of ILC methods. Needlets are a set of axisymmetric kernels defined
on the surface of a sphere. Each member of the set has compact
support in harmonic space over different multipole ranges. When
each needlet is convolved with a signal defined on the sphere, the re-
sulting signal (i.e. needlet coefficients) also has compact harmonic
support. NILC (Delabrouille et al. 2009) computes its weights by
considering needlet scales separately (harmonic localization) and
then different parts of each needlet coefficient map separately (spa-
tial localization). The needlets are constructed in such a way that
the original signal can be recovered from its needlet coefficients
with no loss of information (in practice, small losses can be intro-
duced by approximate spherical harmonic transforms). NILC has
been very successful at forming clean full-sky CMB maps, which
contain very little residual foreground and noise contamination.

In this work, we introduce the scale-discretized, directional
wavelet ILC or Scale-discretised, directional wavelet Internal Lin-
ear Combination (SILC), which extends the wavelet ILC frame-
work by localizing the calculation of ILC weights in an additional
domain. We use wavelets which are not only harmonically local-
ized but also directional (Wiaux et al. 2008; McEwen et al. 2013;
McEwen et al. 2015b). Unlike needlets, which are axisymmetric
on the sphere, directional wavelets are non-axisymmetric, i.e. the
kernels are ‘squeezed’. This means that for one wavelet scale, one

Figure 1. The spatial localization on the sphere of directional, scale-
discretized wavelets. Each sub-plot shows a representation of a directional
wavelet kernel at different scales, where red, raised parts show positive
wavelet response and blue, depressed parts show negative wavelet response.
From left to right, top to bottom: wavelet scale index j decreases. The number
of directions per wavelet scale N = 3. Therefore, for complete reconstruc-
tion at each scale, the above wavelets would be complemented by two more
wavelets of the same size but of a different orientation on the sphere. This
figure is adapted from McEwen et al. (2013).

axisymmetric kernel is replaced by a number of complementary
directional kernels, each with a different orientation. When these
directional wavelets are convolved with a signal on the sphere,
(within each scale) different orientations of signal structure are sep-
arated. This directional localization allows the ILC weights to be
additionally fine-tuned to better remove foreground and noise, in
particular for signals with filamentary structure. Furthermore, di-
rectional wavelets exhibit exact reconstruction, allowing them to be
embedded in an ILC such that no signal is lost.

SILC is being developed with the goal of analysing CMB po-
larization components through an extension to spin, directional
wavelets (McEwen et al. 2014, 2015b; Leistedt et al. 2015), which
are expected to be well suited to localizing the complex filamen-
tary morphologies of polarized foregrounds. As a precursor step, in
this work we test SILC on the scalar temperature field in order to
demonstrate the quantitative consistency of its foreground cleaning
performance compared with existing component separation meth-
ods, and to identify possible optimizations for the extension to spin
fields.

Directional wavelets are explained briefly in Section 2. In
Section 3, the SILC algorithm is explained in detail. Various sources
of error in the method are considered in Section 4. In Section 5, we
compare our method to previous component-separation methods.
The application to Planck simulations (Section 6) is followed by
application to Planck data (Section 7). We discuss the results and
error estimation based on the data in Section 8 and conclude in
Section 9.

2 D I R E C T I O NA L WAV E L E T S

Directional, scale-discretized wavelets on the sphere that support
exact reconstruction have been developed in Wiaux et al. (2008),
McEwen et al. (2013) and McEwen et al. (2015b), while their lo-
calization properties have been studied in McEwen et al. (2015a).
Fig. 1 shows an example of the spatial localization of directional
wavelets. Larger wavelet scales have larger kernels, and when these
are convolved with signals defined on the sphere (such the CMB
and astrophysical foregrounds), signal structure with the same scale

MNRAS 460, 3014–3028 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/460/3/3014/2609411 by guest on 19 April 2024



3016 K. K. Rogers et al.

Figure 2. The harmonic response of the directional wavelets used in this
work, where j specifies the wavelet scale. Increasing j corresponds to a
smaller wavelet kernel and so a multipole range on smaller scales (i.e.
larger multipoles �). The largest wavelet scale (Scal.) is the scaling function
(Section 3.4). The two smallest wavelets are harmonically truncated at
� = 3600 but are smoothly tapered to zero from � = 3400 to � = 3600
(the two dotted lines) by the beam tapering discussed in Section 3.3. The
band-limits of the above wavelets are given in Table 1.

and orientation as the wavelet is isolated. The kernels in Fig. 1
are shown for a single direction and (for complete reconstruction)
would be complemented by two more sets of kernels of the same
sizes but rotated to different orientations. Fig. 2 shows an example of
the harmonic localization of directional wavelets (for the wavelets
used in this work). The harmonic supports of the wavelets overlap,
with each wavelet covering a finite set of multipoles. Fig. 3 shows
an example of directional wavelet decomposition as applied to the
CMB. Although the CMB anisotropies are statistically Gaussian,
the CMB spots on the sky demonstrate anisotropy as a function of
scale (Bond & Efstathiou 1987). When the CMB is convolved with
directional wavelets, structure of different orientations is separated.
This further supports the use of directional wavelets in CMB anal-
ysis: both filamentary foreground structure and the CMB itself are
better localized. This particularly applies in the case of polarization,
as will be discussed in Section 9 when we consider extensions to
our method. For a mathematical description of directional wavelets,
see Section 3.4.

In the spherical harmonic transforms used in the computation of
directional wavelet coefficient maps, we adopt the sampling scheme
on the sphere of McEwen & Wiaux (2011, hereafter MW sampling),
rather than, e.g. HEALPIX sampling (Górski et al. 2005), although in
principle HEALPIX could be used if desired. The corresponding sam-
pling theorem of McEwen & Wiaux (2011) shows that the MW
sampling scheme requires fewer samples for a band-limited signal
than any other sampling theorem. Additionally, the use of a sepa-
ration of variables and fast Fourier transforms (FFTs) yields a nu-
merically efficient algorithm. In particular, our spherical harmonic
transforms are theoretically exact, unlike HEALPIX. This allows one
to manipulate signals with the minimal number of samples and to
perform the numerous spherical harmonic transforms involved in
the ILC algorithm without any loss of information (other than that
due to the finite representation of floating point numbers). Our final
map products, however, are provided in HEALPIX format. Finally,
MW sampling of spin signals on the sphere requires no additional
computational complexity and this will be vital in the extension
of our method to polarization E and B modes (Section 9). Further
details on MW sampling are given in Section 3.4.

Figure 3. The CMB (top map) decomposed into directional wavelet co-
efficient maps (bottom section). The wavelet kernels are shown (middle
section), where red indicates positive response and blue indicates negative.
In the full analysis, we also include smaller wavelets than we show above.

3 M E T H O D

We start by outlining the SILC algorithm. The steps are explained
in more detail in the subsequent subsections (Sections 3.1–3.6). We
discuss our numerical implementation in Section 3.7.

(1) The raw input data are multifrequency full-sky maps of CMB
temperature fluctuations. These maps use the HEALPIX format. (See
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Section 3.1.) The model we employ for the raw data is explained in
Section 3.2.

(2) The maps are ‘pre-processed’ by inpainting in a small point
source mask (see Section 3.6).

(3) The input maps are converted to thermodynamic (CMB) tem-
perature (if necessary). For Planck temperature data, the 545 and
857 GHz maps are converted from spectral flux density per unit solid
angle (MJy Sr−1) to CMB temperature (KCMB) by the unit conver-
sions given in the Planck 2015 Release Explanatory Supplement.1

(4) The maps are each convolved to have the same effective beam
(see Section 3.3).

(5) Each input map is converted into a set of wavelet coefficient
maps. This separates both the scale and orientation of structure
within each map. These wavelet coefficient maps use MW sampling
(McEwen & Wiaux 2011). (See Section 3.4.)

(6) The ILC method is then applied separately to each wavelet
scale and orientation. For each scale and orientation, the multifre-
quency wavelet coefficient maps are weighted and added to form
a single wavelet coefficient map that contains mainly CMB signal,
as well as some residual foreground and noise. These weights are
allowed to vary from wavelet coefficient to wavelet coefficient. The
calculation of these weights is explained in Section 3.5.

(7) The final ILC wavelet coefficient maps are synthesized to
form the final product: a full-sky map of CMB temperature fluc-
tuations (with some residual foreground and noise). The final map
uses the HEALPIX format. (See Section 3.4.)

(8) The final map is inpainted in a small point source mask (see
Section 3.6).

3.1 Input data

Our main CMB temperature map products use full-mission 2015
release Planck temperature maps as their input.2 All nine frequency
channels are used. At 70 GHz, we use the higher resolution version
at Nside = 2048. We also use the full-mission full focal plane 8
(FFP8) simulations (Planck Collaboration XII 2015) without band-
pass mismatch.3

3.2 Data model

Each full-sky temperature map can be modelled (e.g. Basak &
Delabrouille 2012) as

T OBS,c(n̂) =
∫

n̂′
dn̂′Bc(n̂, n̂′)T SIG,c(n̂′) + T N,c(n̂), (1)

where the signal component can further be decomposed as

T SIG,c(n̂) = acT CMB(n̂) + T FG,c(n̂). (2)

T CMB(n̂) is the CMB component at a point on the sky n̂. T FG,c(n̂)
and T N,c(n̂) are, respectively, the foreground and detector noise
components for frequency channel c. ac is the calibration coefficient
for the CMB for each channel. The overall signal component is

1 Planck 2015 Release Explanatory Supplement: UC CC tables
(http://wiki.cosmos.esa.int/planckpla2015/index.php/UC_CC_Tables). For
the 545 GHz map, the unit conversion is (58.0356 ± 0.0278) MJy Sr−1

K−1
CMB and for the 857 GHz map, the unit conversion is (2.2681 ± 0.0270)

MJy Sr−1 K−1
CMB.

2 http://pla.esac.esa.int/pla
3 FFP8 simulations are also available with bandpass mismatch, account-
ing for differences in the bandpasses of detectors nominally at the same
frequency, leading to spurious signals in the frequency maps.

smoothed by a beam function Bc(n̂, n̂′) due to the finite resolution
of the observations. However, the noise component is not smoothed
by the beam. Here, we assume the beam to be circularly symmetric.
Therefore, the beam can be represented as a sum over Legendre
polynomials,

Bc(n̂, n̂′) =
∞∑

�=0

2� + 1

4π
Bc

�P�(n̂.n̂′). (3)

We can recast equation (1) in the spherical harmonic representation
as

aOBS,c
�m = acBc

�a
CMB
�m + Bc

�a
FG,c
�m + aN,c

�m , (4)

where a�m are the coefficients of spherical harmonics Y�m(n̂).

3.3 Beam convolution

Equation (4) shows that each frequency channel c has a different
beam transfer function Bc

� . To replace each beam with a channel-
independent resolution, we perform a deconvolution/convolution
procedure to give spherical harmonic coefficients

ac
�m = BEFF

�

Bc
�

aOBS,c
�m , (5)

where BEFF
� is the final (effective) beam transfer function of our

map products. For Planck data, we use a Gaussian beam with a full
width at half-maximum (FWHM) of 5 arcmin as our input beam.
We taper this beam to zero from � = 3400 to � = 3600 using
a Fermi function. This suppresses any small-scale power aliasing
due to having harmonically truncated wavelets in this multipole
range. Convolving with beam transfer functions ignores the non-
axisymmetric component of the beams; these will remain in the
input maps but are assumed to be small.

This deconvolution/convolution procedure does not correctly
handle the noise component of our input maps. Equation (5) can be
expanded (using equation 4) as

ac
�m = BEFF

� (acaCMB
�m + aFG,c

�m ) + BEFF
�

Bc
�

aN,c
�m , (6)

where ac are the CMB calibration coefficients (not to be confused
with the inverse spherical harmonic transform of harmonic coeffi-
cients ac

lm). The final resolution of an ILC map is usually chosen to
match the best resolution of the input maps. Therefore, for all but
the highest resolution channel and for all �, BEFF

� > Bc
� . This has the

effect of increasing the noise contribution of the input maps, partic-
ularly at high � and for low-resolution maps, where BEFF

� � Bc
� . We

use the Planck beam transfer functions as provided in the Reduced
Instrument Model (RIMO).4 For the Low Frequency Instrument
(LFI) beams, we use Gaussian approximations with FWHM 32.33,
27.01 and 13.25 arcmin for 30, 44 and 70 GHz, respectively. Fol-
lowing Planck Collaboration XII (2014), the deconvolved beams are
thresholded such that the Bc

l is set to the value given in the RIMO
or 0.001, whichever is larger. This prevents the last term in equation
(6) from becoming so large that numerical errors occur. Although
we lose accuracy in the deconvolution process, the contribution of
the channels in the multipole ranges affected is highly attenuated in
the ILC weights in any case.

4 Planck 2015 Release Explanatory Supplement: the 2015 instrument model
(http://wiki.cosmos.esa.int/planckpla2015/index.php/The_RIMO).
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3.4 Wavelet analysis and synthesis

The wavelet ILC method requires the decomposition of each band-
limited temperature map T c(n̂) into a set of wavelet coefficient maps
W�j

: in our case, directional, scale-discretized wavelets (Wiaux
et al. 2008; McEwen et al. 2013; McEwen et al. 2015b). A general
introduction was provided in Section 2 – here, we provide some
technical details of the implementation. We drop the c superscript
on T for the rest of this subsection since each map is analysed
using the same wavelets. The wavelet coefficients are defined as the
directional convolution of T with wavelets defined on the sphere
�j ∈ L2(S2) [specifically those shown in Fig. 2], where index j
denotes the wavelet scale. Importantly, directional wavelets yield
coefficients W�j

(ρ̂) that live on the space of three-dimensional
rotations, i.e. the rotation group SO(3):

W�j

(ρ̂) ≡ 〈T ,Rρ̂�
j 〉 =

∫
S2

dn̂ T (n̂)(Rρ̂�
j )∗(n̂), (7)

where dn̂ is the usual invariant measure on the sphere, (Rρ̂�
j )∗

denotes complex conjugation and the rotation operator is defined
by

(Rρ̂�
j )(n̂) ≡ �j (R−1

ρ̂ n̂), (8)

where Rρ̂ is the three-dimensional rotation matrix corresponding
to Rρ̂ . In these equations, ρ̂ = (θ, φ, χ ) ∈ SO(3) denotes the Euler
angles (in the zyz convention) with colatitude θ ∈ [0,π], longitude
φ ∈ [0, 2π) and direction χ ∈ [0, 2π).5 In other words, the wavelet
coefficients probe directional structure in T with χ corresponding
to the orientation about each point (θ , φ) on the sphere.

Following the directional construction of scale-discretized
wavelets (Wiaux et al. 2008; McEwen et al. 2013; McEwen et al.
2015b), wavelets are defined by their spherical harmonic coeffi-
cients in factorized form:

�
j
�n ≡ κj (�)s�n, (9)

where κ j(�) sets the harmonic localization (Fig. 2) and s�n sets the
directional localization.

In the original definition of scale-discretized wavelets, the size
of all harmonic kernels (setting the harmonic localization of the
wavelets) is parametrized by a unique wavelet dilation parameter
λ ∈ R

+
∗ , λ > 1. Similarly, the number of directions is set by a unique

azimuthal band-limit N. These two parameters, respectively, char-
acterize κ j(�) and s�n for all j. In this work, we vary λ as a function of
multipole in order to allow more flexible harmonic localization. We
achieve this by defining different values of λ in different multipole
regions and then stitching together harmonically truncated wavelets
at the region boundaries. We use the values λ = 2, 1.3, 1.2 with tran-
sitions at the multipoles � = 512, 2015. If at a transition multipole
the harmonic peak of the larger wavelet does not equal the peak of
the smaller wavelet, then a small amount of unit response is used
so that the two wavelets can be continuously combined. Wavelets
constructed in this manner satisfy the standard admissibility crite-
rion required for exact reconstruction. The harmonic tiling of the
resulting wavelets is shown in Fig. 2. The technical details of the
construction of each kernel is described in McEwen et al. (2015a).
Finally, we use a single parameter N for all scales, i.e. each wavelet
is divided into the same number of directions. However, a possible
extension of this work is to vary N as a function of scale j, e.g.

5 We adopt the zyz Euler convention corresponding to the rotation of a
physical body in a fixed coordinate system about the z, y and z axes by χ , θ

and φ, respectively.

Table 1. The harmonic band-limits [�j
min, �

j
max] of the directional wavelets

used in this work. �
j
peak is the multipole at which each wavelet has its

maximum response. The final column shows the number of equiangular
samples per wavelet coefficient map N

j
samp.

Wavelet scale j �
j
min �

j
peak �

j
max N

j
samp

Scal. 0 64 64 8385
0 32 64 128 33 153
1 64 128 256 131 841
2 128 256 512 525 825
3 256 512 706 998 991
4 542 705 918 1688 203
5 705 917 1193 2850 078
6 917 1192 1551 4815 856
7 1192 1550 2015 8126 496
8 1550 2015 2540 12 910 821
9 2116 2539 3048 18 589 753
10 2539 3047 3600 25 930 801
11 3047 3600 3600 25 930 801

by using curvelet kernels (Chan et al. 2015) or other directional
optimizations.

In the case of a single parameter λ, the limits of the wavelet
harmonic window for scale j are simply (�j

min, �
j
max) = (λj−1, λj+1),

with their peak response at λj. In our hybrid scheme, this property
remains but j and λ must be adjusted in each harmonic region.
The full details of our tiling are given in Table 1. When the limits
of the harmonic windows of the maximum wavelet scales extend
beyond the overall band-limit �max, the windows are truncated at
�max. Finally, note that a scaling function W
 is needed to capture
the very low frequency content of the signal. It is axisymmetric
and the corresponding scaling coefficients therefore live on the
sphere. Here, we do not give the full details of the construction
of the scaling function or the factors κ j(�) and s�n, since these can
be straightforwardly reproduced by following previous approaches
(Wiaux et al. 2008; McEwen et al. 2013; McEwen et al. 2015b) and
using Table 1.

To apply the ILC algorithm, the above continuous wavelet coef-
ficients must be discretized. Since they live on the rotation group
SO(3), we represent them using the sampling scheme of McEwen
et al. (2015c), which is a generalization of the MW sampling
scheme (McEwen & Wiaux 2011). Because our wavelets have well-
defined band-limits, this approach allows a multiresolution scheme
where each scale is pixellated with a minimal number of sam-
ples. In practice, the j-th wavelet scale has a band-limit �j

max and
is only evaluated at locations (θj

t , φj
p, χn) with t ∈ {0, 1, . . . , �j

max},
p ∈ {0, 1, . . . , 2�j

max} and n ∈ {0, 1, . . . , N − 1}. Although wavelet
coefficients are evaluated at discrete samples only, for a band-
limited signal they capture the total information content of the
underlying continuous wavelet coefficient representation, probed
up to harmonic band-limit �j

max and azimuthal band-limit N. Thanks
to the sampling theory on the rotation group SO(3) of McEwen
et al. (2015c). In the full ensemble of realizations, the ILC (see
Section 3.5 for details) has no sensitivity to the choice of coordinate
convention for directions χ . In a single realization, there will be
some marginal sensitivity to this choice manifesting in the local-
ization of the empirical covariances we use. However, this effect
is sub-dominant to the choice of N, on which we concentrate our
analysis.

After the ILC method (see Section 3.5) has been applied to the
sets of wavelet coefficient maps, there is one final map W�j ,ILC(ρ̂),
for each wavelet scale j, living on SO(3) and including the multiple
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orientations χ0, . . . , χN−1. The additional axisymmetric scaling
coefficients W
,ILC(n̂) live on the sphere. The final temperature
map T ILC(n̂) is synthesized by

T ILC(n̂) =
∫

S2
dn̂′W
,ILC(n̂′)(Rn̂′
)(n̂)

+
jmax∑

j=jmin

∫
SO(3)

dρ̂ W�j ,ILC(ρ̂)(Rρ̂�
j )(n̂), (10)

where dρ̂ is the usual invariant measure on the rotation group. This
final ILC temperature map is pixellated using the HEALPIX format
from its spherical harmonic coefficients T ILC

�m .
The wavelet analysis and synthesis are performed using the latest

version of the S2LET6 code (Leistedt et al. 2013; McEwen et al.
2015c), which in turn relies on the SSHT7 (McEwen & Wiaux 2011)
and SO38 (McEwen et al. 2015c) codes to compute spin spherical
harmonics and Wigner transforms exactly and efficiently using the
MW sampling scheme. Thanks to the sampling theorem, the wavelet
coefficients can be transformed using Wigner transforms without
any loss of information (McEwen et al. 2015c).

3.5 ILC method

Following the wavelet analysis of the input maps (see Section 3.4),
there is a wavelet coefficient map Wc

jnk for each channel c, scale j and
orientation n with a pixel index k. Using this more compact notation,
we conflate the scaling coefficient map with the wavelet coefficient
maps as the ILC method applies in exactly the same fashion. The
ILC estimate of the CMB signal at each wavelet scale and orientation
is defined as a weighted sum of the wavelet coefficient maps at that
scale and orientation

W ILC
jnk ≡

Nc∑
c=1

ωc
jnkW

c
jnk , (11)

where ωc
jnk are the weights (which are allowed to vary across the

scale and orientation of the signal as well as pixel space) and Nc is
the number of input channels.

We impose a constraint on the weights (to ensure that the CMB
signal is preserved) such that

Nc∑
c=1

acωc
jnk = 1. (12)

Assuming that the CMB and foregrounds and the CMB and noise
are, respectively, uncorrelated, the variance of the error in the result
is minimized when the variance of the ILC map itself is minimized.
The resulting weights are given by

ωc
jnk =

∑Nc
c′=1(R−1

jnk)cc
′
ac′

∑Nc
c=1

∑Nc
c′=1 ac(R−1

jnk)cc′
ac′ , (13)

where the true covariance matrices at scale j, orientation n and pixel
k, (Rjnk)cc

′ = 〈Wc
jnkW

c′
jnk〉 (where the angled brackets indicate an

ensemble average). For a derivation of equation (13), see Tegmark
et al. (2003) and Eriksen et al. (2004).

6 http://www.s2let.org
7 http://www.spinsht.org
8 http://www.sothree.org

In this work, we estimate covariance matrices empirically by the
following procedure (as used in Basak & Delabrouille 2012; Planck
Collaboration IX 2015). We start by calculating at each pixel k:

(Rapprox
jnk )cc

′ = Wc
jnkW

c′
jnk. (14)

We then smooth each element of the above matrix by a Gaussian
beam wj(k, k′) in pixel space to form the empirical estimates of
covariance matrices

(R̂jnk)cc
′ =

N
j
samp∑

k′=1

wj (k, k′)(Rapprox
jnk′ )cc

′
, (15)

where Nj
samp is the total number of pixels in a given map at scale j. For

computational efficiency, we perform this smoothing in harmonic
space:

(R̂jnk)cc
′ =

2�
j
max∑

�=0

�∑
m=−�

w�
j (r�m

jn )cc
′
Y �m

k , (16)

where (r�m
jn )cc

′
are the harmonic coefficients of the maps formed by

the elements of matrices (Rapprox
jnk )cc

′
, w�

j is a Gaussian beam transfer
function and Y �m

k are the spherical harmonics evaluated at pixel k.
The size of the Gaussian kernel used to smooth the covariance

matrices is chosen to be proportional to the size of the wavelet
used to form a particular set of wavelet coefficient maps.9 In gen-
eral, the estimation of covariance matrices in ILC methods could
be further optimized. It may be preferable to dynamically adapt
the smoothing kernel used based on local data. Delabrouille et al.
(2009) suggested using a larger kernel at high Galactic latitudes,
where Galactic emission does not vary so much and a smaller ker-
nel towards the Galactic equator, where emission is more complex.
It could involve masking equatorial regions when estimating the
covariance at higher latitudes [somewhat akin to Planck Collabora-
tion XII (2014)]. It could involve convolving the maps of elements
of covariance matrices with the same directional wavelet in order to
pick out how the local covariance follows the directional structure
of the underlying signal. As mentioned above, in this work, we use
a similar method as in previous work for ease of comparison.

It is also worth discussing the upper limit on the summation over
� in equation (16). We first note the general rule that for the product
of two spherical harmonics (Driscoll & Healy 1994)

Y�1,m1 (n̂)Y�2,m2 (n̂) =
�1+�2∑

L=|�1−�2|
aL,m1+m2YL,m1+m2 (n̂), (17)

where YL,m1+m2 (n̂) is defined to be zero, if |m1 + m2| > L. It
follows that for the product of two band-limited maps, M(n̂) =∑�2

�=�1

∑�
m=−� m�mY�m(n̂) and N (n̂) = ∑�4

�=�3

∑�
m=−� n�mY�m(n̂)

(where, without loss of generality, �1 ≤ �4):

M(n̂)N (n̂) =
�2+�4∑
L=0

L∑
M=−L

pLMYLM (n̂) (18)

for �3 < �2, i.e. the limits on � in the two maps overlap (the pLM

are the new harmonic coefficients). (If the limits do not overlap, the
lower limit on L in equation (18) becomes �3 − �2.) The limits on � in
the wavelet coefficient maps Wc

jnk are (�j
min, �

j
max) [see Section 3.4].

Therefore, as per equations (18) and (15), the limits on � in the

9 FWHMj = 50
√

1200
N

j
samp

. This value is the same as used in the NILC imple-

mentation on Planck data.
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covariance matrix element maps (R̂jnk)cc
′

are (0, 2�j
max); hence the

limits on � in equation (16).
Having established the main equations governing the ILC

method, we now present the main steps in the ILC algorithm that
we use.

(i) Form the (Rapprox
jnk )cc

′
by equation (14).

(ii) Smooth the (Rapprox
jnk )cc

′
in harmonic space by equation (16).

(iii) Take the inverse of each covariance matrix at each pixel to
form (R̂−1

jnk)cc
′
.

(iv) Calculate the ILC weights ωc
jnk by equation (13), where we

assume that ac = 1 for all c and we substitute the empirical estimates
for the inverse covariance matrices.

(v) Finally, calculate the ILC estimate wavelet coefficient maps
W ILC

jnk by applying equation (11).

3.6 Point source masking

The input frequency maps are diffusively inpainted in a small point
source mask following the method employed by Planck Collabora-
tion XVII (2015). This recognizes that the ILC fails when the CMB
is obscured by bright extragalactic sources or complex emission
near the Galactic equator. The inpainting removes these sources and
attempts to replace them with an extrapolation of the surrounding
signal. The mask supplied is taken from the NILC section of Planck
Collaboration I (2014) and is constructed from the Planck Catalogue
of Compact Sources (Planck Collaboration XXVIII 2014; Planck
Collaboration XXVI 2015).10 It masks about 2.2 per cent of the
whole sky, predominantly along the Galactic equator towards the
Galactic Centre.

Because of this inpainting, the final ILC map is inpainted within
the point source mask. For the purposes of this inpainting, we have
split the mask into two, based on the size of its constituent individ-
ual contiguous holes.11 For holes consisting of less than or equal
to 800 pixels, we inpaint with a constrained Gaussian realization
following the method of Benoit-Lévy et al. (2013), itself an approx-
imate implementation of the Hoffman–Ribak algorithm (Hoffman
& Ribak 1991). For holes consisting of more than 800 pixels (the
largest 131 out of 10 031), we inpaint with a standard diffusive algo-
rithm (in particular, following the method employed by Planck Col-
laboration XVII 2015). The result is that the ILC map is 1.3 per cent
Gaussian inpainted and 0.9 per cent diffusively inpainted. This fol-
lows Benoit-Lévy et al. (2013), who do not recommend using their
Gaussian inpainting for large holes near the Galactic equator.

3.7 Numerical implementation

SILC is implemented in PYTHON and is parallelized. At full Planck
resolution (Nside = 2048, �max = 3600), when run on a 60-core
symmetric multiprocessor (SMP) with 1.5 TB RAM and a 24-core
cluster node with 256 GB RAM,12 the pipeline takes approximately

10 The details of its construction are given in Planck Collaboration I (2014).
It can be downloaded from http://pla.esac.esa.int/pla and is labelledI_MASK
in the NILC data products.
11 Note that many holes can be large and irregularly shaped due to the
overlapping of smaller circular holes.
12 The exact specification for our infrastructure is an Intel Xeon E7-4890
2.8 GHz SMP with 4 × 15-core CPUs with 25.6 GB RAM per core, and an
Intel Xeon E5-2697 2.7 GHz node with 2 × 12-core CPUs with 10.7 GB
RAM per core.

12 h per direction. As shown by equation (16), we perform spher-
ical harmonic transforms to 2�max = 7200. For a given number
of directions N, the full pipeline takes approximately N times as
long as the axisymmetric limit of our method (when N = 1). In
our infrastructure, the code was usually memory-limited (due to the
very high resolution of the covariance matrix maps (Rjnk)cc

′
at har-

monic band-limit 2�j
max); the amount of parallelization sometimes

had to be reduced to prevent memory overloads on a single node.
As mentioned in Section 3.4, the wavelet transforms employ the
latest version of S2LET (Leistedt et al. 2013; McEwen et al. 2015c),
written in C with PYTHON wrappers, itself employing SSHT (McEwen
& Wiaux 2011) and SO3 (McEwen et al. 2015c). Despite the use
of MW sampling and FFTs, spherical harmonic transforms are the
most time-consuming part of the pipeline, again due to the very high
resolution of the (Rjnk)cc

′
[for the smallest wavelets, these covari-

ance maps are band-limited at � = 7200]. There is scope to further
optimize the implementation. Our wavelet analysis and synthesis
functions do not, respectively, output and take as input wavelet
coefficient maps at double-resolution (i.e. a map band-limited at
�max

j sampled at 2�max
j ), requiring additional spherical harmonic

transforms to double the resolution. Also, our spherical harmonic
transform function does not calculate harmonic coefficients to a
multipole less than the band-limit of the input map (i.e. to only
calculate a�m for � < L where L < �j

max), resulting in excess com-
putation at certain steps in the algorithm. These optimizations are
left as further work.

4 SO U R C E S O F ER RO R I N T H E IL C

By the linearity of the wavelet transform in equation (7), the data
model in equations (1) and (2) can be recast in wavelet space as

Wc
jnk = acWCMB

jnk + W FG,c
jnk + WN,c

jnk , (19)

where WCMB
jnk , W FG,c

jnk and WN,c
jnk are, respectively, the CMB, fore-

ground and instrumental noise contributions to each wavelet coeffi-
cient map. The beams within each component have been absorbed
into the component wavelet coefficient maps. Substituting equa-
tion (19) into equation (11) gives

W ILC
jnk =

Nc∑
c=1

acωc
jnkW

CMB
jnk +

Nc∑
c=1

ωc
jnk(W FG,c

jnk + WN,c
jnk )

= WCMB
jnk +

∑Nc
c,c′=1(W FG,c

jnk + WN,c
jnk )(R−1

jnk)cc
′
ac′

∑Nc
c,c′=1 ac(R−1

jnk)cc′
ac′ , (20)

where the second equality follows by applying the constraint given
in equation (12) and expanding the weights as given in equation (13).
Even when the calibration ac and the covariance matrices (Rjnk)cc

′

are correct, there is always residual signal in the final ILC wavelet
coefficient maps, given by the second term on the right-hand side
of equation (20). Due to the linearity of the inverse wavelet trans-
forms, this residual signal will propagate linearly into the final ILC
temperature map as calculated by equation (10). As explained in
Section 3.5, this error term is reduced by minimizing the empirical
variance of the ILC map assuming that the CMB and foregrounds
and the CMB and noise are, respectively, uncorrelated.

There are additional sources of error in the ILC method. The
first is due to inaccuracy in the calculation of covariance matrices
(Rjnk)cc

′
, i.e. deviations in the empirical estimate (R̂jnk)cc

′
from

the true covariance (Rjnk)cc
′
. Delabrouille et al. (2009) estimated

the first order expansion of the reconstruction error in the ILC
map estimate due to this covariance error. They showed that the

MNRAS 460, 3014–3028 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/460/3/3014/2609411 by guest on 19 April 2024

http://pla.esac.esa.int/pla


SILC: CMB temperature by directional wavelets 3021

covariance of the ILC error with the CMB is inversely proportional
to the number of ‘effective modes’ used in the ILC calculation.
This covariance bias is negative. In our directional wavelet decom-
position, our ‘effective modes’ are spherical harmonic coefficients
weighted to take account of the fact that the harmonic responses of
wavelets overlap in both scale and direction. As N, the number of
orientations probed, increases and so does the number of wavelets,
each wavelet coefficient map contains fewer ‘effective modes’. We
therefore conclude that our directional wavelet ILC may be suscep-
tible to this negative ILC bias by increasing N. Delabrouille et al.
(2009) also showed that due to chance correlations between the
CMB and foregrounds, the variance minimization leads to the unin-
tentional cancellation of Nc − 1 CMB modes. For Planck, Nc = 9,
whereas for WMAP, Nc = 5. We therefore expect the magnitude of
this negative bias to double simply by using more input frequency
channels. Also, since this covariance bias is due to the cancellation
of CMB modes, Delabrouille et al. (2009) showed that the absolute
value is proportional to the CMB power. Therefore, the absolute
value of the bias is greatest on large scales where CMB power is
concentrated. In general, these biases are best estimated through
suites of Monte Carlo simulations.

Another source of error is due to inaccuracy in the calibration ac of
the CMB. Dick, Remazeilles & Delabrouille (2010) calculated the
consequence of a first-order error in ac on a multiplicative correction
to the CMB term in equation (20). They showed that even a small
error in calibration can lead to a significant negative multiplicative
bias in the CMB term, when the signal-to-noise ratio is large. (Here,
the noise in this ratio also includes foreground signal.) They consider
the implications for using an ILC on Planck data, where the signal-
to-noise ratio is larger than for WMAP data. They estimate that a
1 per cent error in ac can cancel about a third of the CMB signal,
while even a 0.1 per cent error in ac can remove about 1 per cent of
the CMB. Since our main map products use Planck data as input,
they will be susceptible to this additional negative calibration bias.
In this work, we assume that the CMB is calibrated to have unit
response for all frequency channels, i.e. ac = 1 for all c.

As mentioned in Sections 3.2 and 3.3, we assume all beams to
be circularly symmetric. Therefore, non-axisymmetric beam com-
ponents will propagate into the ILC calculation but are assumed
sufficiently small to be ignored.

5 C O M PA R I S O N TO PR E V I O U S WO R K

We now consider how SILC compares with existing component
separation methods, particularly those adopted for the Planck anal-
ysis. We applied the axisymmetric limit (when N = 1) of SILC
to full-mission Planck data and compared the results to existing
Planck analyses using the NILC and SMICA methods: the former
because it is the closest in spirit to SILC, and the latter because
it is the baseline method adopted by the Planck Collaboration for
high-resolution analyses. Fig. 4 shows the CMB reconstructed by
the axisymmetric limit of SILC, while Fig. 5 shows the differences
between this map and the NILC and SMICA (full-mission 2015
release) CMB maps and the difference between NILC and SMICA.
The differences between the three maps are small in magnitude and
mostly concentrated at the edges of the Galactic mask towards the
Galactic Centre, where foreground emission is most intense and
complex. Quantitatively, we can compare the mean values and stan-
dard deviations of the masked difference maps. The mean values of
Figs 5(a), (b) and (c) are, respectively, 0.44, −0.63 and −1.07 μK,
while the standard deviations are, respectively, 4.24, 3.38 and 3.43
μK2. These values are small and similar, suggesting a strong consis-

Figure 4. Planck data. The CMB temperature anisotropies reconstructed
using SILC in the axisymmetric limit (N = 1, FWHM = 5 arcmin,
Nside = 2048). The grey pixels are the point source mask.

tency between the three methods. These difference maps have been
formed from maps which have been smoothed and downgraded in
resolution and so visually highlight differences at the lowest multi-
poles.

Fig. 6 compares point source masked TT angular power spec-
tra (D� = �(� + 1)C�/2π) at the full multipole range of the three
maps (up to � = 3400)13 with a CMB spectrum derived from the
Planck 2015 TT and low TEB likelihood.14 The SILC spectrum is
remarkably similar to that of NILC. This is unsurprising since the
axisymmetric limit of SILC (when N = 1) is very similar to the
NILC method. None the less, there are a number of pipeline dif-
ferences. In particular, we use a different set of wavelets than the
needlets employed in NILC (as discussed in Section 3.4), even in
the axisymmetric limit, with different harmonic responses. Fig. 2
shows the harmonic response of the wavelets used in this work and
Table 1 lists their harmonic band-limits �j

min and �j
max. The SMICA

spectrum has lower residuals at higher multipoles than both the
axisymmetric limit of SILC and NILC.

Fig. 7 compares full-sky angular power spectra of the three maps,
including the inpainted point source regions. The spectra are sim-
ilar to those in Fig. 6. The main difference is the lower noise tail
in the SILC map at high multipoles above � = 1500 (where all
component separation CMB maps are dominated by residual in-
strumental noise). This is because, unlike NILC and SMICA, we do
not Gaussian inpaint the very largest point source holes, but rather
use diffusive inpainting (as discussed in Section 3.6). The Gaussian
inpainting of large irregular holes is poorly constrained and adds
residual noise relative to diffusive inpainting.

We have shown that the axisymmetric limit of SILC gives com-
parable performance to NILC and SMICA. In Sections 6 and 7, we
‘turn on’ the directionality of the wavelets and consider the impact
on CMB reconstruction from simulated and real data, respectively.

13 In order to estimate full-sky spectra from a masked map, we correct the
C� by dividing by fsky = 0.978, a good approximation for a small mask. We
elect to use point source masked spectra in order to concentrate our analysis
on foreground and noise removal, rather than how maps are inpainted; all
three maps are inpainted (at least) within the mask used.
14 The parameters come from the base_plikHM_TT_lowTEB
likelihood. The values are available in the Planck 2015 Release Ex-
planatory Supplement: 2015 Cosmological parameters and MC chains
(http://wiki.cosmos.esa.int/planckpla2015/images/f/f7/Baseline_params
_table_2015_limit68.pdf).
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Figure 5. Planck data. Differences between the axisymmetric limit
(N = 1) of SILC, NILC and SMICA. The maps have been smoothed to
FWHM = 80 arcmin and downgraded to Nside = 128. The grey pixels are
the UT78 confidence mask from Planck Collaboration IX (2015), which
masks the regions of the NILC and SMICA maps not recommended for
cosmological analysis. The differences are [from top to bottom] (a) SILC
(N = 1) − NILC, (b) SILC (N = 1) − SMICA and (c) NILC − SMICA.

6 A PPLICATION TO PLANCK SIMULATIONS

We now apply SILC to the fiducial full-mission Planck FFP8 sim-
ulated sky maps, focusing on the impact on CMB reconstruction
by increasing directionality as a function of scale. Fig. 8 shows
the difference between our reconstructed CMB (using N = 1) and
the input simulated CMB. There are small-magnitude differences
particularly at the edge of the Galactic mask where the strength
and complexity of foreground emission is greatest. As in Fig. 5,
this difference map is at low resolution and so highlights residuals
at the lowest multipoles. Fig. 9 compares point source masked TT
angular power spectra (up to � = 3400) of CMB maps reconstructed
using values of N from 1 to 5. It can be seen that the introduction of

Figure 6. Planck data. TT angular power spectra comparing the axisym-
metric limit (N = 1) of SILC to NILC and SMICA. The top panel (a) shows
point source masked spectra. The middle panel (b) shows residuals after
subtracting the best-fitting � cold dark matter (�CDM) model from the
Planck 2015 likelihood. The bottom panel (c) shows the same residuals at
low multipoles only (� < 1500).

directionality has the greatest effect at multipoles around � = 800;
the residuals are beginning to converge for � >≈ 2000. Fig. 10 shows
the differences between simulated CMB maps reconstructed using
N = [2, 3, 4, 5] minus the input CMB. The four maps and the ax-
isymmetric difference map in Fig. 8 are almost identical with small
magnitude residuals. This is because these low-resolution difference
maps again highlight residuals on the very largest scales. However,
as discussed in Section 3.4, the wavelets we use are constructed
to have an axisymmetric scaling function at the very lowest multi-
poles. The scaling function we use (as detailed in Table 1) means
that no directionality is applied for � < 32.

Fig. 11 shows equivalent difference maps as in Fig. 10 but for
the simulated CMB reconstructed using directional wavelets at all
scales,15 including for � < 32. It can be seen that the reconstruction
errors are significantly larger in magnitude and cover almost the
entire sky. The errors are also dominated by the largest scales, in
particular a large error in the quadrupole increasing with magnitude
as the amount of directionality N increases. We attribute this effect
most probably to the ILC ‘biases’ discussed in Section 4, in particu-
lar the cancellation of CMB modes due to chance correlations with
foregrounds in the ILC variance minimization. Delabrouille et al.

15 In particular, the scaling function and j = 0 wavelet are replaced by two
directional wavelets with harmonic band-limits [1, 60] and [1, 128].
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Figure 7. Planck data. TT angular power spectra comparing the axisym-
metric limit (N = 1) of SILC to NILC and SMICA. The top panel (a) shows
full-sky spectra of inpainted maps. The middle panel (b) shows residuals
after subtracting the best-fitting �CDM model from the Planck 2015 likeli-
hood. The bottom panel (c) shows the same residuals at low multipoles only
(� < 1500).

Figure 8. Planck simulations. Difference between output ILC and input
CMB temperature maps from FFP8 simulations. The maps have been
smoothed to FWHM = 80 arcmin and downgraded to Nside = 128. The
grey pixels are the UTA76 confidence mask from Planck Collaboration IX
(2015), which masks the Galactic region in FFP8 simulations where fore-
ground emission is strongest.

Figure 9. Planck simulations. TT angular power spectra comparing output
ILC using different values of N and input CMB from FFP8 simulations.
The top panel (a) shows point source masked spectra. The middle panel
(b) shows residuals after subtracting the input CMB spectrum. The bottom
panel (c) shows the same residuals at low multipoles only (� < 1500).

(2009) showed that the absolute value of this effect is largest on
large scales where CMB power is concentrated, since the cancelled
CMB modes on large scales have the greatest magnitude. Further,
as discussed in Section 4 and shown in Fig. 11, these errors are ex-
pected to increase in magnitude as a function of N. This is because
as N increases, each directional wavelet coefficient map (the space
in which our ILC operates) contains fewer ‘effective modes’ of the
input data and so the error in our empirical covariance estimation is
expected to increase. This error propagates to the final maps.

These map reconstruction errors due to the implementation of
directionality on the very largest scales are accompanied by in-
creasingly negative power spectrum residuals as N increases, in
particular in the first multipole bin from � = 2 to � = 11. This is
also indicative of the negative ILC bias due to empirical CMB can-
cellation, as discussed in Section 4 and Delabrouille et al. (2009).
The results in Fig. 11 thus motivate the use of an axisymmetric
scaling function, which ensures that no directionality is used for
� < 32 and so reduces the errors in CMB reconstruction. In princi-
ple, these biases can be estimated and corrected through large suites
of simulations, which is beyond the scope of this work.

7 A PPLI CATI ON TO PLANCK DATA

We now study the application of SILC with increasing directional-
ity to the full-mission Planck sky maps. The left column of Fig. 12
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Figure 10. Planck simulations. Differences between output ILC reconstructed using different values of N and input CMB temperature maps from FFP8
simulations. The maps have been smoothed to FWHM = 80 arcmin and downgraded to Nside = 128. The grey pixels are the UTA76 confidence mask. The
differences are [ from left to right, top to bottom] (a) N = 2, (b) N = 3, (c) N = 4, (d) N = 5 minus the input CMB.

Figure 11. Planck simulations. Same as Fig. 10 (which uses the recommended wavelets) but here using directional wavelets on large scales (� < 32), which
is not recommended as it leads to increased CMB reconstruction errors as seen above.
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Figure 12. Planck data. Left: CMB temperature anisotropies reconstructed using SILC with different values of N (FWHM = 5 arcmin, Nside = 2048). Right:
differences between CMB temperature maps reconstructed using different values of N minus the axisymmetric limit N = 1. The maps have been smoothed to
FWHM = 80 arcmin and downgraded to Nside = 128. In both columns: the grey pixels are the point source mask (downgraded in resolution as appropriate).
From top to bottom: (a) N = 2, (b) N = 3, (c) N = 4, (d) N = 5.
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Figure 13. Planck data. TT angular power spectra comparing different
values of N from 1 to 5 and SMICA. The top panel (a) shows point source
masked spectra. The middle panel (b) shows residuals after subtracting the
best-fitting �CDM model from the Planck 2015 likelihood. The bottom
panel (c) shows the same residuals at low multipoles only (� < 1500).

shows the full-resolution reconstructed CMB maps as calculated
with different values of N from 2 to 5, which visually appear very
similar. The right column of Fig. 12 shows the differences between
the CMB reconstructed using N = [2, 3, 4, 5] minus the axisymmet-
ric limit (when N = 1), highlighting the differences at the lowest
multipoles. The differences are of largest magnitude towards the
Galactic plane where foreground emission is concentrated. This
shows how the different wavelet kernels are localizing the ILC
weights differently in response to the directional structure of the
foregrounds and CMB. The differences are small, reflecting the im-
plementation of an axisymmetric scaling function, meaning that no
directionality is applied at � < 32. Fig. 13 compares point source
masked TT angular power spectra of the CMB reconstructed us-
ing values of N from 1 to 5. The power spectrum residuals from a
Planck best-fitting �CDM model remain small for most scales until
the reconstructed spectra reach a characteristic noise spectrum for
� >≈ 1500 where the different values of N converge. At these high
multipoles, the ILC solution is dominated by residual instrumental
noise. We see the biggest impact from directionality at intermediate
multipoles (from � = 400 to � = 1500). For comparison, we plot
the SMICA power spectrum. In further support to the discussion in
Section 5, SILC matches the performance of SMICA. We note that,
as with the simulations in Section 6, directionality changes the re-
constructed CMB power spectrum most significantly at intermediate
multipoles around � = 800.

8 D I SCUSSI ON

The comparisons in Section 5 demonstrate that SILC matches the
performance of two previous methods, NILC and SMICA, in both
maps and power spectra, with particular similarity between the
axisymmetric limit of SILC and NILC, as expected. Both map
residuals and power spectra in Sections 6 and 7 show that switching
on directionality changes CMB reconstruction most significantly at
intermediate multipoles � = 400–1500. There appears to be little
benefit in localizing the ILC with directional wavelets at the very
smallest scales, where the ILC result is noise-limited. We also adopt
an axisymmetric scaling function on the very largest scales, meaning
that there is no directionality at � < 32. In Fig. 11, we show the
large CMB reconstruction errors arising from using directionality
on the largest scales. This motivates the use of an axisymmetric
scaling function, which significantly reduces the errors as seen in
Fig. 10. In Section 6, we sketched out an argument that attributes
these errors to empirical CMB cancellation (Section 4). However,
the precise source and exact magnitude of any ILC errors are best
estimated through suites of simulations.

We have presented this analysis by producing CMB maps (in
Sections 6 and 7) each with a different single value of N at all
wavelet scales. Our method can be simply extended to allow dif-
ferent values of N at each wavelet scale. In the same way that each
wavelet scale has different harmonic band-limits, they can also have
different azimuthal band-limits, optimized as identified above to re-
duce foreground and noise residuals.

The negative ILC power spectrum biases discussed in Section 4
must be quantified in parallel to this directionality optimization if
using the resulting map for power spectrum analyses. It is possible to
estimate variance biases in the data through suites of realistic simu-
lations. However, we can also calculate this using the data itself and
a fiducial CMB spectrum. In wavelet space, the variance estima-
tor at each wavelet coefficient is 〈W ILCW ILC†〉 = ω†〈W W†〉ω =
ω†Rω = (a†R−1a)−1 = (

∑Nc
c,c′=1(R−1)cc

′
)−1, where each equality

follows by applying in turn equations (11), (14) and (13) [from
Section 3.5] and then expanding the vector notation [the vectors
span the space defined by the number of input channels; explicitly,
we assume unit CMB calibration a = (1, 1, 1, 1, 1, 1, 1, 1, 1)]. In
order to calculate the variance bias in the ILC, we can subtract

the expected CMB variance
∑

�m C�|�j
�m|2. If analysis was done

in wavelet space, the above would define the variance bias. If only
considering the diagonal terms in wavelet space, it is possible to
straightforwardly transform this estimate to real space through an
inverse wavelet transform as in equation (10), substituting 
(n̂)
and �j (ρ̂), respectively, for |
(n̂)|2 and |�j (ρ̂)|2. However, for a
full treatment of the variance bias including off-diagonal terms, full
wavelet space covariances need to be calculated. Although many
off-diagonal terms would decay, this would still be computationally
demanding and will be the focus of future research. However, we
reiterate that if analysis is carried out in wavelet space, then variance
biases can be straightforwardly calculated from the information al-
ready contained in the results.

9 C O N C L U S I O N S

We have presented SILC, a new form of ILC that uses directional,
scale-discretized wavelets to localize the ILC weighting according
to the frequency, spatial, harmonic and, for the first time, mor-
phological information in the CMB and its foregrounds. This is
motivated by the anisotropic or filamentary morphology of both
the CMB and astrophysical foregrounds in the microwave sky. We
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have tested SILC on 2015-release Planck data and simulations,
demonstrating comparable performance to two existing component
separation algorithms, NILC and SMICA, and investigated how to
optimize the use of morphological information through direction-
ality. We have explored increasing the amount of directionality in
the algorithm, showing that on the largest and the smallest scales,
the axisymmetric limit of the ILC works well, while at intermedi-
ate multipoles (from � = 400–1500), increasing N (the number of
directions per scale) leads to lower residuals. At high multipoles
(� >≈ 1500), the input data are already noise-limited, as is the ILC
reconstruction, and directionality does not reduce the reconstruction
error, as instrumental noise has no directional structure. We adopt an
axisymmetric scaling function to analyse the largest scales, mean-
ing that we use no directionality for � < 32. This is motivated by
the observation that increasing directionality on large scales gives
increased reconstruction errors over the axisymmetric limit. We ar-
gue that these errors are due to empirical CMB cancellation in the
ILC calculation, though the exact source must be estimated through
large suites of realistic simulations. Allowing N to vary with wavelet
scale is analogous to the choice of different harmonic band-limits
at different scales.

We conclude that the introduction of directional wavelets allows
greater flexibility in the ILC to make use of morphological informa-
tion at targeted scales. Our multiprocessing implementation takes
advantage of the wavelet scales to allow large-scale results to be
analysed while small scales are still being processed. Moreover,
our wavelet transforms are quick and exact, using MW sampling
and FFTs (see Section 2). As discussed in Section 4, the ILC is
prone to several sources of error and variance bias, including em-
pirical CMB cancellation. This bias can be estimated through suites
of Monte Carlo simulations, but we have also outlined (in Section 8)
the ability to estimate biases directly from the data, most straight-
forwardly in wavelet space. We make our map products available at
http://www.silc-cmb.org.16

This work on scalar signals (i.e. the temperature I component
of the CMB) can be extended to spin signals (i.e. the polariza-
tion Q and U components of the CMB, or, equivalently, the E and
B modes), by using spin wavelets (McEwen et al. 2014, 2015b;
Leistedt et al. 2015). These are an extension of directional, scale-
discretized wavelets to represent spin signals, such as CMB polar-
ization, a spin ±2 signal. We expect that the directionality will be
particularly suited to the anisotropic, filamentary nature of polar-
ized foregrounds when observed on the sky, and in future work will
present the application of SILC to CMB polarization data.
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